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SI. FPQMC METHOD: MONTE CARLO UPDATES

Here, we present the Monte Carlo updates we use to move through the configuration space of our FPQMC method.
The configuration space is sampled through Markov chains starting from an, in principle arbitrary, configuration

C0. The Metropolis–Hastings algorithm is used to determine the probability of transferring from configuration Cn
at Monte Carlo step n to configuration Cn+1 at the subsequent Monte Carlo step n + 1. The transition probability
Wn→n+1 is

Wn→n+1 =W prop
n→n+1W

acc
n→n+1 (S1)

whereW prop
n→n+1 is the probability of proposing the update from configuration Cn to configuration Cn+1, whileW

acc
n→n+1

determines the probability with which such a proposal is accepted. The Metropolis–Hastings acceptance rate reads
as

W acc
n→n+1 = min{1, Rn→n+1} (S2)

where the acceptance ratio Rn→n+1 = 1/Rn+1→n depends on the weights of the configurations involved, as well as
on the proposal probabilities in both directions Cn ↔ Cn+1 in the following manner

Rn→n+1 =
w(Cn+1)W

prop
n+1→n

w(Cn)W prop
n→n+1

. (S3)

A. Updates that conserve the number of particles

1. change r local
We randomly choose one real-space state |Ψn

i,l0
⟩ [in all the time-dependent computations we perform, l0 ̸= 1 due

to |Ψn
i,1⟩ ≡ |ψ(0)⟩ at each Monte Carlo step n] and move an arbitrarily chosen electron (spin σ, position rσj ) to

a new position sσj under the condition that the state (σ, sσj ) is unoccupied in |Ψn
i,l0

⟩.

The inverse move proceeds in the same manner as described above. The ratio of proposal weights is
W prop

n+1→n

W prop
n→n+1

= 1.

This move ensures that we sample configurations with different real-space electron patterns.

2. change r global
We randomly choose one real-space state |Ψn

i,l0
⟩ [in all the time-dependent computations we perform, l0 ̸= 1

due to |Ψn
i,1⟩ ≡ |ψ(0)⟩ at each Monte Carlo step n] and replace it by a new state |Ψn+1

i,l0
⟩ ̸= |Ψn

i,l0
⟩. While the

effects of this “global” move can be mimicked by multiple applications of its “local” version change r local, we
found this move very useful in evenly sampling the configuration space, especially in time-dependent FPQMC
simulations.

3. spin flip—used only in equilibrium FPQMC simulations because it does not separately conserve the number of
spin-up and spin-down electrons, yet it conserves the total electron number
We randomly choose spin σ and attempt to increase/decrease the number of electrons of spin σ/σ by one.
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In each imaginary-time slice l = 1, . . . , Nτ , we choose an electron of spin σ at position r from the real-
space state |Ψn

i,l⟩ and construct the real-space state |Ψn+1
i,l ⟩ by changing the electron’s position r → s

and spin σ → σ. The ratio of the proposal probabilities in the real space can be directly computed as(
W prop

n+1→n

W prop
n→n+1

)
i,l

=
Nσ(Nc −Nσ)

(1 +Nσ)(Nc −Nσ + 1)
, where Nσ and Nσ are numbers of electrons of spin σ and σ in |Ψn

i,l⟩.

This move is very useful once the FPQMC starts sampling configurations whose total electron number (the
sum of the numbers of spin-up and spin-down electrons) fluctuates around the value predicted by the fixed
temperature and chemical potential. One value of the total electron number may be realized via many different
combinations of numbers of spin-up and spin-down electrons, and it is precisely this move that enables efficient
sampling through all these combinations.

B. Updates that do not conserve the number of particles

The updates add particle and remove particle are used only in equilibrium FPQMC simulations, when the
number of particles fluctuates according to the fixed chemical potential and temperature.

The move add particle/remove particle adds/removes one electron from the configuration. These two moves are
inverses of one another and their acceptance rates are mutually equal. The spin σ of the electron added to/removed
from the imaginary-time slice l = 1 fixes that an electron added to/removed from the remaining imaginary-time slices
l = 2, . . . , Nτ must have the same spin σ.
Let Nσ denote the number of electrons of spin σ in state |Ψn

i,l⟩ (before the update). In the first imaginary-time slice
l = 1, an electron can be added to any of Nc −N↑ +Nc −N↓ empty single-particle states, while an electron can be
removed from any of N↑+N↓ occupied single-particle states. Concerning the inverse move, an electron can be removed
from any of N↑ +N↓ + 1 occupied single-particle states, while an electron can be added to any of 2Nc −N↑ −N↓ + 1
empty single-particle states. We thus have(

W prop
n+1→n

W prop
n→n+1

)add

i,l=1

=
2Nc −N↑ −N↓

N↑ +N↓ + 1
,

(
W prop

n+1→n

W prop
n→n+1

)rmv

i,l=1

=
N↑ +N↓

2Nc −N↑ −N↓ + 1
. (S4)

In all other imaginary-time slices l = 2, . . . , Nτ , we have(
W prop

n+1→n

W prop
n→n+1

)add

i,l≥2

=
Nc −Nσ

Nσ + 1
,

(
W prop

n+1→n

W prop
n→n+1

)rmv

i,l≥2

=
Nσ

Nc −Nσ + 1
. (S5)

C. Fast determinant updates

The determinant Dβ(C,∆τ) is a product of 2Nτ determinants of imaginary-time single-particle propagators on a
lattice. Since all the updates can be seen as a single row/column change or addition/removal of a single row/column,
changes in individual determinants may be efficiently computed using the formulae for fast determinant updates.
These formulae, which provide the determinant ratio before and after the update, deal with the inverses of the
corresponding matrices. We store these inverses in memory and recompute them from scratch each time a Monte
Carlo update is accepted.

D. Extraction of Monte Carlo results

The average sign of FPQMC simulations is relatively large, so that, after the initial equilibration phase, the physical
quantities we compute depend quite weakly on the number of Monte Carlo steps completed. All relevant quantities
are measured at every Monte Carlo step, and the individual-step data are grouped into bins of length Lb, where
Lb ∼ 104 − 105, depending on the total number of steps completed. To provide the best possible estimate of a
quantity, we discard the first 80% of the simulation. The average of the binned data in the last 20% of the simulation
is taken as the Monte Carlo estimate of the quantity of interest. The statistical error is estimated as the root-mean-
square deviation of the binned data in the final 20% of the simulation from the above-computed average value. Such
an estimate of the error is appropriate for statistically independent data. While we have not performed a systematic
binning analysis, we may expect that the bin length we chose is sufficiently large that the data from different bins
may be considered as statistically independent.
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SII. ABQMC METHOD IN REAL TIME: MONTE CARLO UPDATES

Here, we present the Monte Carlo updates we use to move through the configuration space of our real-time ABQMC
method to compute the survival probability of an initial (pure) state. We only need updates that conserve the number
of particles of each spin orientation.

Within the alternating-basis method, which employs both coordinate-space and momentum-space many-body states,
we perform individual Monte Carlo updates on one of the two sets of states. The updates changing coordinate-space
states are the updates change r local and change r global that we present in Sec. SI. The updates that change
momentum-space states are designed so as to respect the momentum-conservation law. While the proposal proba-
bilities W prop

n→n+1 for coordinate-space updates can be determined relatively straightforwardly (even analytically), see
Sec. SI, their determination for the momentum-space updates may be quite challenging due to the explicit momentum
conservation. For all such moves, we can give no analytical expression for W prop

n→n+1, and we have to devise computer
algorithms capable of precisely enumerating all possible propositions that comply with the momentum (and also
particle-number) conservation.

1. add q
The momentum K of each of the states |Ψn

k,l⟩, l = 1, . . . , Nτ/t, is increased by a randomly chosen momentum

q ̸= 0, thereby obtaining new states |Ψn+1
k,l ⟩, l = 1, . . . , Nτ/t, with momentum K + q. The real-space states

are not changed, i.e., |Ψn
i,l⟩ = |Ψn+1

i,l ⟩. In each momentum-space state, momentum q is added to an electron of

spin σ that carries momentum kσ
j,l under the condition that the state (σ,kσ

j,l + q) is unoccupied in |Ψn
k,l⟩. All

possible momentum-accepting states (σ,kσ
j,l) have to be explicitly enumerated and their number is denoted as

p+q
l .

The inverse move starts from states |Ψn+1
k,l ⟩, l = 1, . . . , Nτ/t, with momentum K+ q, and adds momentum −q

to each of them. All possible momentum-accepting states in |Ψn+1
k,l ⟩ have to be explicitly enumerated and their

number is denoted as p−q
l .

The ratio of the proposal probabilities is then
W prop

n+1→n

W prop
n→n+1

=
∏
l

p+q
l

p−q
l

.

This move ensures that we sample configurations from sectors featuring different electronic momenta.

2. exchange q
We randomly choose one momentum-space state |Ψn

k,l0
⟩ in which we select two electrons of spins σ1 and σ2

and momenta kσ1
j1

and kσ2
j2
, which are ordered so that kj1,y + Nykj1,x > kj2,y + Nykj2,x. The momenta are

subsequently changed using kσ1
j1

→ kσ1
j1

+ q, kσ2
j2

→ kσ2
j2

− q (q ̸= 0). As a consequence, the net momentum

of |Ψn
k,l0

⟩ remains unchanged. Obviously, the move may be realized only when the states (σ1,k
σ1
j1

+ q) and

(σ2,k
σ2
j2

− q) are both unoccupied in |Ψn
k,l0

⟩.
We note that enumerating all possible momenta q ̸= 0 that may be transferred between the electrons is relatively
simple for σ1 ̸= σ2 (σ2 = σ1), when the two electrons can be distinguished by their spins. It is then enough
to go through all empty states (σ1,k

′) to which the electron (σ1,k
σ1
j1
) can be moved and to determine the

corresponding momentum transfer q = k′ − kσ1
j1
. We then ask if the state (σ1,k

σ1
j2

− q) is empty; in the
affirmative case, we memorize the current q as one possible momentum transfer. The inverse move proceeds in
a completely analogous manner by explicitly enumerating possible back-transfers.

On the other hand, two electrons of the same spin are indistinguishable, and special care should be exercised
to avoid double counting. For given kj1 and kj2 (we now omit σ1 = σ2), possible values of q follow from the
construction that is schematically summarized in Fig. S1. We make use of the periodic boundary conditions to
construct a new unit cell (in the momentum space) such that the electron of momentum kj1 is in its “center”,
while its vertices are at kj2 and its periodic copies kj2 +2π(1, 0), kj2 +2π(0, 1), and kj2 +2π(1, 1). The “central
point” and the four vertices partition the unit cell into four rectangular regions that are colored yellow (bottom
left), green (top left), cyan (top right), and magenta (bottom right). The vectors q that may be added to kj1 and
subtracted from kj2 are to be selected so that the final states kj1+q and kj2−q belong to just one half of each of
the regions, the two halves being separated by the line connecting the “central” point and the vertices. The halves
from which possible final states kj1+q, and thus possible momentum transfers q, are selected is shaded. Choosing
the momentum transfer such that the final state kj1 + q belongs to the other (unshaded) half is equivalent to
assigning momentum kj1 to the blue electron and kj2 to the red electron, i.e., to exchanging momentum labels
kj1 and kj2 , which produces the setup equivalent to that presented in Fig. S1. The momentum transfer q
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Figure S1. Construction used to correctly enumerate all possible momenta q ̸= 0 that can be exchanged between two electrons
of equal spins that carry momenta kj1 and kj2 . The momenta q that may be added to kj1 (and subtracted from kj2) are such
that the final state kj1 + q is found in one of the four shaded triangles, while kj2 − q is found in one of the four unshaded
triangles.

along the edges of the four shaded triangles should be counted only once because of the periodic boundary
conditions. For example, if we enumerate possible qs along the vertical edge of the green shaded triangle, then
we should not enumerate possible qs along the vertical edge of the cyan shaded triangle. Moreover, if any of
the lines connecting the “center” and the four edges contains any other lattice point, possible qs along that
line are subjected to the condition |q| ≤ |kj1 − kj2 − 2π(ax, ay)|/2, where (ax, ay) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.
While this construction is appropriate for kj1,x ̸= kj2,x and kj1,y ̸= kj2,y, further discussion is needed when
either kj1,x = kj2,x or kj1,y = kj2,y. In the inverse move, we start from the two electrons carrying momenta
k′
j1

= kj1 + q and k′
j2

= kj2 − q, we order them so that k′j1,y + Nyk
′
j1,x

> k′j2,y + Nyk
′
j2,x

, and repeat the
above-described procedure.

This move ensures that we sample configurations belonging to the sector of the chosen total electron momentum.



5

SIII. DETAILED PERFORMANCE OF THE FPQMC METHOD APPLIED TO EVALUATE THE EQUATION OF STATE

A. U/J = 4, T/J = 1.0408
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Figure S2. Acceptance rates of individual moves as a function of the chemical potential. FPQMC simulations are performed on
a 4× 4 square-lattice cluster using (a) Nτ = 2, (b) Nτ = 4, and (c) Nτ = 6 imaginary-time slices. The remaining parameters
are: U/J = 4, T/J = 1.0408. Acceptance rates generally decrease with Nτ and with the filling (chemical potential).
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Figure S3. Average time needed to propose (full symbols connected by solid lines) and accept (empty symbols connected
by dashed lines) a Monte Carlo update as a function of the chemical potential. FPQMC simulations are performed on a
4 × 4 square-lattice cluster with different numbers of imaginary-time slices Nτ . The remaining parameters are: U/J = 4,
T/J = 1.0408.
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B. U/J = 24, T/J = 1.0408
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Figure S4. Acceptance rates of individual moves as a function of the chemical potential. FPQMC simulations are performed on
a 4× 4 square-lattice cluster using (a) Nτ = 2, (b) Nτ = 4, and (c) Nτ = 6 imaginary-time slices. The remaining parameters
are: U/J = 24, T/J = 1.0408. Acceptance rates generally decrease with Nτ and with the filling (chemical potential).
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Figure S5. Average time needed to propose (full symbols connected by solid lines) and accept (empty symbols connected by
dashed lines) an MC update as a function of the chemical potential. FPQMC simulations are performed on a 4×4 square-lattice
cluster with different numbers of imaginary-time slices Nτ . The remaining parameters are: U/J = 24, T/J = 1.0408.
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SIV. ABQMC METHOD APPLIED TO EQUILIBRIUM SITUATIONS

Here, we derive the ABQMC method in equilibrium situations (Sec. SIVA) and present our implementation of the
method (Sec. SIVB). Since the ABQMC method is equally adept at calculating quantities in real and momentum
space, we complement the results presented in Fig. 7 of the main text by presenting the momentum distribution at
different fillings (Sec. SIVC). We conclude in Sec. SIVD by discussing acceptance rates and proposal/acceptance
times of MC updates introduced in Sec. SIVB.

A. ABQMC method in equilibrium: Basic equations

Dividing the imaginary-time interval [0, β] into Nτ slices of length ∆τ ≡ β/Nτ , employing the lowest-order STD,
and inserting the spectral decompositions of H0 and Hint, we find the following ABQMC approximant for the partition
function at temperature T = 1/β:

Z ≈
∑
C

D(C)e−∆τε(C). (S6)

The configuration

C = {|Ψk,1⟩, . . . , |Ψk,Nτ ⟩, |Ψi,1⟩, . . . , |Ψi,Nτ ⟩} (S7)

resides on the contour depicted in Fig. 1(a) of the main text and consists of Nτ Fock states |Ψk,l⟩ (l = 1, . . . , Nτ ) in
the momentum representation and Nτ Fock states |Ψi,l⟩ in the coordinate representation. D(C) is the product of 2Nτ

Slater determinants

D(C) ≡
Nτ∏
l=1

⟨Ψi⊕1,l|Ψk,l⟩⟨Ψk,l|Ψi,l⊖1⟩ (S8)

that stem from the sequence of basis alternations between the momentum and coordinate eigenbasis. The symbol
ε(C) stands for

ε(C) ≡
Nτ∑
l=1

[ε0(Ψk,l) + εint(Ψi,l)] . (S9)

The equilibrium expectation value an observable Aa diagonal in either coordinate (a = i) or momentum (a = k)
representation reads as

⟨Aa⟩ ≈
1

Z

∑
C

D(C)e−∆τε(C) 1

Nτ

Nτ∑
l=1

Aa(Ψa,l), (S10)

where

Aa(Ψa,l) ≡ ⟨Ψa,l|Aa|Ψa,l⟩. (S11)

The evaluation of Eq. (S10) using the importance-sampling MC procedure is complicated by the fact that D(C) is a
complex number defined by its modulus and phase. While the modulus can be included in the weight of configuration
C, the phase gives rise to the so-called phase problem, which is generally much harder to curb than the ordinary sign
problem. However, since the STD preserves the equality Z = Z∗,1 Eq. (S6) can be replaced by

Z ≈
∑
C

Re{D(C)} e−∆τε(C), (S12)

and we remain with the ordinary sign problem. Equation (S10) should then be replaced by

⟨Aa⟩ ≈
∑

C Re{D(C)} e−∆τε(C) 1
Nτ

∑Nτ

l=1 Aa(Ψa,l)∑
C Re{D(C)} e−∆τε(C) . (S13)
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Defining the weight w(C) of configuration C as

w(C) ≡ |Re{D(C)}|e−∆τε(C), (S14)

Eq. (S13) is rewritten as

⟨Aa⟩ ≈

〈
sgn(C) 1

Nτ

∑Nτ

l=1 Aa(Ψa,l)
〉
w

⟨sgn(C)⟩w
(S15)

where ⟨. . . ⟩w denotes the weighted average over all C with respect to the weight w(C); sgn(C) ≡ Re{D(C)}/|Re{D(C)}|
is the sign of configuration C, while |⟨sgn⟩| ≡ |⟨sgn(C)⟩w| is the average sign of the ABQMC simulation.

B. ABQMC method in equilibrium: Monte Carlo updates

Apart from previously introduced updates change r local and change r global in real space (Sec. SI) and add q
and exchange q in momentum space (Sec. SII), we need updates that insert/remove a particle, which are different
from their counterparts in Sec. SI.

The ABQMC move add particle/remove particle adds/removes one electron from the configuration. These
two moves are inverses of one another. While analogous moves are relatively simply implemented in the FPQMC
algorithm, here, special care is to be exercised because of the particle-number and momentum conservation. In more
detail, the spin σ of the electron added to/removed from the imaginary-time slice l = 1 fixes that an electron added
to/removed from the remaining imaginary-time slices l = 2, . . . , Nτ must have the same spin σ. Furthermore, the
momentum q of the electron added to/removed from the imaginary-time slice l = 1 fixes that momentum change
upon addition/removal of an electron in the remaining imaginary-time slices l = 2, . . . , Nτ must be precisely q. This
requirement may be realized in many different ways. One trivial possibility is to add/remove the electron to/from
the state (σ,q) if this state is empty/occupied. On the other hand, we may add/remove the electron to/from state
(σ,k), in which case we should find another electron (σcomp,kcomp) (of arbitrary spin σcomp) to compensate for the
difference in the momentum change from ±q, where +/− sign is for electron addition/removal. The electron in the
state (σcomp,kcomp) that may receive the momentum difference ±(q− k) will be termed the compensating electron.
The situation is relatively simple when the spin of the compensating electron is σ because the added electron and the
compensating electron may be distinguished by their spins. When the spins of the added and compensating electrons
are both equal to σ, these two electrons cannot be distinguished in the sense that their roles (added/compensating)
may be reverted. Special care should thus be taken to avoid double counting. An elaborate analysis reveals that the
double counting is avoided by ordering the momenta of:

(add) the added electron k and the compensating electron kcomp + q− k after the compensation;

(rmv) the removed electron k and the compensating electron kcomp before the compensation.

The ordering is the same as in the update exchange q.
While the above discussion regards the momentum-space states |Ψn

k,l⟩ → |Ψn+1
k,l ⟩, the situation with the real-space

states |Ψn
i,l⟩ → |Ψn+1

i,l ⟩ is far less complicated because only the particle-number conservation should be satisfied. The

spin of the electron to be added to/removed from from each |Ψn
i,l⟩ is determined by the spin of the electron added

to/removed from |Ψn
k,0⟩. The ratio of the backward and forward proposal probabilities for the real-space parts of the

configuration may be directly computed as:

(add)

(
W prop

n+1→n

W prop
n→n+1

)
i,l

=
Nc −Nσ

1 +Nσ
,

(rmv)

(
W prop

n+1→n

W prop
n→n+1

)
i,l

=
Nσ

Nc −Nσ + 1
,

where Nσ is the number of electrons of spin σ in all the states |Ψn
i/k,l⟩ (before the update).

There are also some differences in the move spin flip, in which we randomly choose spin σ and attempt to
increase/decrease the number of electrons of spin σ/σ by one.

In each imaginary-time slice l = 1, . . . , Nτ , we explicitly enumerate the momentum states (σ,k) ∈ |Ψn
k,l⟩ such

that (σ,k) /∈ |Ψn
k,l⟩. This is the simplest possible update that changes the spin of an electron and yet keeps the
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total momentum of the configuration fixed. The state |Ψn+1
k,l ⟩ is then obtained from the state |Ψn

k,l⟩ by removing the

electron in the state (σ,k) and adding the electron in the state (σ,k). The inverse move proceeds in an analogous
manner: we explicitly enumerate momentum the states (σ,k′) ∈ |Ψn+1

k,l ⟩ such that (σ,k′) /∈ |Ψn+1
k,l ⟩.

In each imaginary-time slice l = 1, . . . , Nτ , we choose an electron of spin σ at position r from the real-space state
|Ψn

i,l⟩ and construct the real-space state |Ψn+1
i,l ⟩ by changing the electron’s position r → s and spin σ → σ. The ratio

of the proposal probabilities in the real space can be directly computed as

(
W prop

n+1→n

W prop
n→n+1

)
i,l

=
Nσ(Nc −Nσ)

(1 +Nσ)(Nc −Nσ + 1)
,

where Nσ and Nσ are numbers of electrons of spin σ and σ in |Ψn
i/k,l⟩.

C. ABQMC method in equilibrium: Numerical results

Within the ABQMC method, coordinate and momentum bases are treated symmetrically, meaning that the method
should be equally adept at calculating quantities diagonal in these two bases. As an example applications in the
momentum space, in Fig. S6 we show the momentum distribution, 1

2

∑
σ⟨nkσ⟩, in the same setup as in Fig. 4 of the

main text (U/J = 4, T/J = 1.0408).
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Figure S6. Momentum distribution, 1
2

∑
σ⟨nkσ⟩, for different fillings ρe (half filling is ρe = 1) computed using the equilibrium

ABQMC approach on a 4 × 4 square-lattice cluster. Model parameters are U/J = 4, T/J = 1.0408, while µ/J is varied from
2 to −5. The pathway through the irreducible Brillouin zone is summarized in the inset. Cited values of ρe are from Ref. 2.
Dotted lines serve as guides to the eye. Statistical error bars are generally smaller than symbol size.
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D. ABQMC method in equilibrium: Acceptance rates and proposal/acceptance times

1. U/J = 4, T/J = 1.0408
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Figure S7. Average time needed to propose (black circles) and accept (red squares) one Monte Carlo update as a function
of the ABQMC electron density. The averaging is performed over all updates used in ABQMC simulations to evaluate the
equation of state: add particle, remove particle, spin flip, add q, exchange q, change r local, and change r global.
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Figure S8. Acceptance rates of individual Monte Carlo updates as a function of the ABQMC electron density. Being inverses
of one another, the acceptance rates of moves add particle and remove particle are mutually equal. The acceptance rates of
moves add particle, remove particle, spin flip, add q, and exchange q exhibit weak dependence on the filling, while moves
involving changes in the real-space part of configurations tend to be accepted less frequently as the filling is increased.
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2. U/J = 24, T/J = 1.0408
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Figure S9. Average time needed to propose (black circles) and accept (red squares) one Monte Carlo update as a function
of the ABQMC electron density. The averaging is performed over all updates used in ABQMC simulations to evaluate the
equation of state: add particle, remove particle, spin flip, add q, exchange q, change r local, and change r global.
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Figure S10. Acceptance rates of individual Monte Carlo updates as a function of the ABQMC electron density. Being inverses
of one another, the acceptance rates of moves add particle and remove particle are mutually equal. The acceptance rates of
moves add q and exchange q exhibit weak dependence on the filling, while moves add particle, remove particle, spin flip,
change r local, and change r global tend to be accepted less frequently as the filling is increased.
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SV. FPQMC METHOD FOR TIME-DEPENDENT DENSITIES: ADDITIONAL RESULTS

Figure S11(a) summarizes the evolution of charge densities on initially unoccupied sites of a half-filled 4×4 cluster,
on which the electrons are initially arranged as summarized in the inset of Fig. S11(b) [the so-called (π, π) density
wave]. Figure S11(b) summarizes the extent of the dynamical sign problem, which appears to be somewhat more
severe than in the case of the (π, 0) density wave discussed in Figs. 8(a) and 8(b) of the main text.
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Figure S11. (a) Time-dependent population of sites occupied in the initial CDW state of a 4× 4 cluster, which is schematically
depicted in the inset of panel (b). FPQMC results using Nt = 2 real-time slices (4 slices in total) are shown for five different
interaction strengths (symbols) and compared with the noninteracting result (solid line). (b) Magnitude of the average sign as
a function of time for different interaction strengths. Color code is the same as in panel (a).
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In equilibrium and in the weak-interaction regime, we concluded that the sign problem becomes more pronounced
with the filling, see Fig. 4(b) of the main text. Motivated by this finding, we finally study the dynamics of local
densities at a smaller filling, see Figs. S12(a1)–S12(b2), which permits us to perform FPQMC simulations on an 8× 4
cluster. While the average sign displayed in Fig. S12(a2) is somewhat enhanced with respect to the values reported
in Fig. S11(b) and Fig. 8(b) of the main text, the simulated dynamics retains the above-described problems. The
average sign decreases with the cluster size, compare the average signs for the noninteracting electrons in Figs. S12(a2)
and S12(b2).
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Figure S12. (a1) and (b1) Time-dependent population of sites occupied in the initial state of a 4×4 (a1) and 8×4 (b1) cluster,
which is schematically depicted in the inset of panels (a2) and (b2), respectively. FPQMC results using Nt = 2 real-time slices
(4 slices in total) are shown for five different interaction strengths (symbols) and compared with the noninteracting result (solid
line). (a2) and (b2) Time-dependent average sign of the FPQMC simulation for different interaction strengths. Color code is
the same as in (a1) and (b1), respectively. Statistical errors are generally smaller than the symbol size.
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SVI. ABQMC METHOD FOR TIME-DEPENDENT SURVIVAL PROBABILITY: ADDITIONAL RESULTS

A. Applicability of the ABQMC method to a 4× 4 cluster with Nt = 4 real-time slices

This section addresses the applicability of the ABQMC method to compute the survival probability of the 16-
electron CDW-like/SDW-like state depicted in Fig. 10(a) of the main text when the number of real-time slices is
increased from Nt = 2 to Nt = 4. In Fig. S13 we compare the behavior of the average sign for Nt = 2, when we make
3.87 × 1010 steps, and Nt = 4, when we make 1.16 × 1010 steps. Increasing the number of real-time slices from 2 to
4 decreases |⟨sgn⟩| after 1010 MC steps by an order of magnitude. With Nt = 4, the stabilization of the average sign
takes much more than 1010 MC steps, and its overall decrease as the simulation proceeds may be very well described
by a power law with the exponent of −1/2, see the dashed line in Fig. S13.
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Figure S13. Magnitude of the average sign as a function of the number of MC steps during the ABQMC simulation of the
survival probability of the 16-electron CDW/SDW state on a 4 × 4 square-lattice cluster using Nt = 2 and Nt = 4 real-time
slices. The overall behavior of |⟨sgn⟩| for Nt = 4 may be fitted very well by the function 5/

√
NMC that is shown by the dashed

line.
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B. Applicability of the ABQMC method to an 8× 4 cluster with Nt = 2 real-time slices

This section addresses the applicability of the ABQMC method to compute the survival probability of a 16-electron
initial state on an 8× 4 cluster with Nt = 2 real-time slices. The initial CDW-like state is schematically depicted in
Fig. S14(a), while Fig. S14(b) shows the evolution of the average sign during the MC simulation. We perform 1010

MC steps, during which the magnitude of the average sign shows no signals of stabilization, but steadily decreases in a
power-law fashion with the exponent −1/2, see the dashed line in Fig. S14(b). Even though the final stages of our MC
simulation may suggest that |⟨sgn⟩| stabilizes on the level of ∼ 4×10−5, a very noisy behavior of |⟨sgn⟩| throughout the
simulation casts doubts on such a conclusion. We observe in Fig. S14(b) that |⟨sgn⟩| displays pronounced dips whose
duration may be as long as a couple of billions of steps, which is in stark contrast with the rather smooth decrease
of |⟨sgn⟩| observed, e.g., in Fig. S13. These dips suggest that there may be problems with the configuration-space
sampling. The dimension of the configuration space of our ABQMC method is much larger than the dimension of
the Hilbert space of the model, which is astronomically large for the Hubbard model on an 8× 4 cluster. To further
illustrate the last point, in Fig. S14(c) we present the survival probability of the initial state in the noninteracting
case. In contrast to the 4×4 cluster, for which perfect collapses and revivals in P (t) are observed already on relatively
short time scales, there is no such a regular behavior on the 8 × 4 cluster, see Fig. S14(c). On general grounds, the
noninteracting system is bound to display perfect collapses and revivals in P (t), while the time scale on which the
pattern in P (t) repeats itself is inversely proportional to the dimension of the system’s Hilbert space.
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Figure S14. (a) Schematic view of the 16-electron initial state on an 8 × 4 square-lattice cluster whose survival probability is
computed. (b) Magnitude of the average sign as a function of the number of MC steps during the ABQMC simulation of the
survival probability of the initial state depicted in (a). Nt = 2 real-time slices are used. The overall behavior of |⟨sgn⟩| may be
fitted very well by the function 2/

√
NMC that is shown by the dashed line. (c) Time dependence of the survival probability of

the initial state depicted in (a) in the noninteracting case U = 0. The dimensionality of the system’s Hilbert space is so large
that no perfect revival in P (t) (which is bound to occur since U = 0) is observed up to Dt = 250.
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C. ABQMC results for the survival probability near the atomic limit

Figure S15 shows P (t) for the 16-electron initial state schematically depicted in Fig. 10(a) of the main text in
regimes that are close to the atomic limit. In these regimes, the natural energy unit is U , so that the time is measured
in units 1/U . The time range is chosen on the basis of the results in Figs. (d1)–(e2), which suggest that the ABQMC
method with Nt = 2 real-time slices produces a qualitatively correct behavior of P (t) up to times Ut ≈ 6. P (t)
exhibits oscillations whose amplitude decreases in time. There is almost no difference between P (t) for D/U = 0.05
and 0.1 during the first oscillation, while P (t) for D/U = 0.2 is at all times below P (t) for stronger U . While for
the strongest U the maxima reached by P (t) are always close to 1, the maxima for weaker U are smaller than 1 and
decrease with time. All these observations can be rationalized by an increased importance of the kinetic over the
interaction term as U/D is decreased.
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Figure S15. (Color online) Survival-probability dynamics of the 16-electron initial state schematically depicted in Fig. (a) for
three values of the interaction strength that are close to the atomic limit.
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SVII. ABQMC METHOD TO EVALUATE TIME-DEPENDENT EXPECTATION VALUES ALONG THE
KELDYSH–KADANOFF–BAYM CONTOUR

We start from

⟨Aa(t)⟩ =
Tr

(
e−βH(0) eiHt Aa e

−iHt
)

Tr
(
e−βH(0)

) (S16)

where H is the Hubbard Hamiltonian, while H(0) additionally contains terms that modulate charge or spin density.
For example, to simulate the response recorded in Ref. 3, the following H(0) may be appropriate:

H(0) =
∑
kσ

ε̃k nkσ + U
∑
r

nr↑nr↓︸ ︷︷ ︸
H

−
∑
rσ

vrnrσ (S17)

where vr is the external harmonic potential that modulates electron density, e.g.,

vr = V0 cos(q · r). (S18)

Inspired by Ref. 3, we assume that q = qex, i.e., we assume that the electron density is modulated along one direction
with the wavelength λ = 2π/q. We also assume that λ ≤ Nx and that Nxmodλ = 0, i.e., the cluster’s linear dimension
along x axis is spanned by an integer number of wavelengths.

There are at least two manners in which the ABQMC method in the presence of external density-modulating
potential (at t < 0) can be formulated. They differ by the choice of the contributions that are diagonal in the
coordinate and momentum representations.

1. The part diagonal in the momentum representation is

[H(0)]mom =
∑
k

εknkσ,

while the part diagonal in the coordinate representation

[H(0)]coord = U
∑
r

nr↑nr↓ −
∑
rσ

µrnrσ

contains position-dependent chemical potential µr = µ + vr. Such a decomposition provides exact results in
the atomic limit (J = 0) and is expected to provide reasonable results when the electron–electron interaction
dominates over the electronic hopping.

2. The part diagonal in some momentum representation is

[H(0)]mom =
∑
kσ

ε̃k nkσ − V0
2

∑
kσ

(
c†(kx+q,ky)σ

c(kx,ky)σ + c†(kx−q,ky)σ
c(kx,ky)σ

)
while the part diagonal in the coordinate representation is

[H(0)]coord = U
∑
r

nr↑nr↓.

Such a decomposition provides exact results in the noninteracting limit (U = 0) and is expected to provide
reasonable results when the electronic hopping dominates over the electron–electron interaction. Our further
developments will be focused on this decomposition.

The external harmonic potential introduces the coupling between different k states which results in a reduction of the
Brillouin zone along x axis by a factor of λ. The wave vector k in the full Brillouin zone [0, 2π)× [0, 2π) is not a good

quantum number anymore. Its role is taken by the wave vector k̃ in the reduced Brillouin zone [0, 2π/λ) × [0, 2π),

whose x projection k̃x may assume any of the nq = Nx div λ allowed values in the interval [0, 2π/λ) (p × 2π/Nx,

where p = 0, . . . , nq − 1) and whose y projection k̃y may assume any of the Ny allowed values in the interval [0, 2π)

(p × 2π/Ny, where p = 0, . . . , Ny − 1). In addition to k̃, there is another degree of freedom that will be denoted by
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νx and that may assume values 0, . . . , λ − 1. The Hamiltonian Hmom has a block-diagonal structure and the blocks

defined by the wave vector k̃ can be diagonalized separately. There are nqNy such blocks and the dimension of each
of them is λ× λ.

The Hubbard Hamiltonian H appears in combination eiHt . . . e−iHt, meaning that the chemical-potential term
−µ

∑
rσ nrσ = −µ

∑
kσ nkσ is not effective (we assume that Aa conserves the total particle number, which is a

reasonable assumption) and there is no ambiguity regarding the part Hmom or Hcoord to which it should be associated.
Therefore, the partition of the Hubbard Hamiltonian in parts that are diagonal in the momentum and coordinate
representation is the same as in the main body of the paper

Hmom =
∑
kσ

εknkσ, Hcoord = U
∑
r

nr↑nr↓.

Let us now exploit symmetries to develop as efficient as possible ABQMC algorithm to evaluate Eq. (S16). Since
H(0) is not invariant under the bipartite lattice symmetry, we use only the time-reversal symmetry, according to
which ⟨Aa(−t)⟩ = ⟨Aa(t)⟩. Furthermore, we note that both the numerator and the denominator of Eq. (S16) are
purely real. Using the strategy described in the main text, one may derive the ABQMC counterpart of Eq. (S16)

⟨Aa(t)⟩ =
∑

C Re{D(C)} e−∆τεM(C) cos {[∆ε0(C) + ∆εint(C)]∆t} Aa(Ψa,la)∑
C Re{D(C)} e−∆τεM(C) (S19)

The configuration C consists of 2Nt +Nτ many-body states |Ψk,l⟩ (l = 1, . . . , 2Nt +Nτ ) composed of single-particle
momentum eigenstates and 2Nt + Nτ many-body states |Ψi,l⟩ composed of single-particle coordinate eigenstates.
While momenta of states |Ψk,1⟩, . . . , |Ψk,2Nt

⟩ are defined in the full Brillouin zone, states |Ψk,2Nt+1⟩, . . . , |Ψk,2Nt+Nτ
⟩

have their momenta defined in the reduced Brillouin zone. The symbols D(C), ∆ε0(C), and ∆εint(C) are defined as in
the main text, while εM(C) is the sum of energies of 2Nτ states along the Matsubara part of the contour, i.e.,

εM(C) =
2Nt+Nτ∑
l=2Nt+1

[ε0(Ψk,l) + εint(Ψi,l)] . (S20)

The slice on which the expectation value Aa(Ψa,la) = ⟨Ψa,la |Aa|Ψa,la⟩ is evaluated depends on the representation
a = i, k in which the observable Aa is diagonal, so that li = Nt + 1 and lk = Nt.
The structure of Eq. (S19) is intuitively clear as it is a combination of the ABQMC formula for thermodynamic

quantities [Eq. (17) of the main text] and the ABQMC formula for the time-dependent expectation value along
the Keldysh contour [Eq. (26) of the main text]. However, since we cannot exploit the bipartite lattice symme-
try in this setup, the time-dependent part of the numerator in Eq. (S19) is cos {[∆ε0(C) + ∆εint(C)]∆t} instead of
cos[∆ε0(C)∆t] cos[∆εint(C)∆t]. Configuration weight may be chosen as w(C) = |Re{D(C)}| e−∆τεM(C) and Eq. (S19)
is recast as

⟨Aa(t)⟩ =
⟨sgn(C) cos {[∆ε0(C) + ∆εint(C)]∆t} Aa(Ψa,la)⟩w

⟨sgn(C)⟩w
. (S21)

Markov-chain MC evaluation of Eq. (S21) suffers from the sign problem that does not depend on time t (it is
not dynamical). Still, it becomes more pronounced when the cluster size Nc or the number of slices (Nt and Nτ )
are increased. Similarly to equilibrium ABQMC calculations, the weight w(C) depends on all model parameters
(U, T, µ, V0, t). Therefore, the calculations for different values of these parameters have to be performed using
different Markov chains, which is different from the computation of P (t) or ⟨Aa(t)⟩ starting from a pure state |ψ(0)⟩.
The application of conservation laws on the Kadanoff–Baym contour is somewhat more involved than on simpler

contours studied in the main body of the paper. The particle-number conservation demands that all the many-body
states constituting configuration C have the same number of spin-up and spin-down electrons. We discuss the mo-
mentum conservation under the assumption that the observable Aa is diagonal in the coordinate representation (e.g.,
Ai =

∑
σ nrσ). From the main text, we know that the momentum conservation along the horizontal parts of the con-

tour (Keldysh branch) is broken into two conservation laws that are satisfied separately on the forward and backward
branch. In other words, the momenta (in the full Brillouin zone!) of Nt momentum-space states |Ψk,1⟩, . . . , |Ψk,Nt

⟩ on
the forward branch are all equal to Kfwd, while the momenta of Nt momentum-space states |Ψk,Nt+1⟩, . . . , |Ψk,2Nt

⟩
on the backward branch are all equal to Kbwd. In contrast to the situation encountered in the main text, Kfwd and
Kbwd are not completely independent because states |Ψk,1⟩ and |Ψk,2Nt

⟩ are “in contact” with states |Ψk,2Nt+Nτ
⟩

and |Ψk,2Nt+1⟩ on the Matsubara branch. Therefore, the relation between Kfwd and Kbwd is determined by the
momentum-conservation law along the Matsubara branch, which is formulated in the reduced Brillouin zone. Namely,
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the momenta (in the reduced Brillouin zone!) of Nτ momentum-space states |Ψk,2Nt+1⟩, . . . , |Ψk,2Nt+Nτ ⟩ are all equal
to K̃M. The momenta Kfwd, Kbwd, and K̃M are related as follows:

Kfwd · ey = Kbwd · ey = K̃M · ey,

Kfwd · ex
2π/Nx

mod
Nx

λ
=

K̃M · ex
2π/Nx

,
Kbwd · ex
2π/Nx

mod
Nx

λ
=

K̃M · ex
2π/Nx

Due to the more complicated momentum-conservation law, MC updates presented in Sec. SI have to be amply
modified. Instead of describing modified MC updates in detail, we demonstrate the correctness of our implementation
by benchmarking it on small clusters. Motivated by Ref. 3, we limit the discussion to the electron occupation dynamics
on individual sites.

We start from the noninteracting electrons, where already Nτ = 1 imaginary-time slice and 2Nt = 2 real-time slices
(2Nt +Nτ = 3 slices in total) are expected to reproduce the exact result. Trivial as they may seem, the benchmarks
on the noninteracting case are quite important, because densities of individual sites are expected to display nontrivial
oscillatory behavior. The fact that our ABQMC results reproduce these oscillations quite accurately strongly suggests
that our implementation is correct. In Fig. S16 we present results for the Hubbard dimer initially subjected to the
external density-modulating field vrx = V0 cos(πrx) with rx = 0, 1. Figure S17 displays results for the Hubbard
tetramer initially subjected to the external density-modulating field of wavelength λ = 4, vrx = V0 cos(πrx/2), with
rx = 0, 1, 2, 3. Figure S18 displays results for the Hubbard tetramer initially subjected to the external density-
modulating field of wavelength λ = 2, vrx = V0 cos(πrx), with rx = 0, 1, 2, 3.
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Figure S16. Time-dependent site populations of the Hubbard dimer with the following values of model parameters: µ/D =
1.3, V0/D = 2, U = 0, T/D = 0.57. The external potential at t < 0 is vrx = V0 cos(πrx) with rx = 0, 1.



22

0 2 4 6 8 10
Time (1/D)

0

0.5

1

1.5

2

E
le

c
tr

o
n
 p

o
p
u
la

ti
o
n

r
x
=0

r
x
=1 and r

x
=3

r
x
=2

symbols: ABQMC
lines: exact results

Figure S17. Time-dependent site populations of the Hubbard tetramer with the following values of model parameters: µ/D =
0.65, V0/D = 1, U = 0, T/D = 0.285. The external potential at t < 0 is vrx = V0 cos(πrx/2) with rx = 0, 1, 2, 3.
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Figure S18. Time-dependent site populations of the Hubbard teteramer with the following values of model parameters: µ/D =
0.65, V0/D = 1, U = 0, T/D = 0.285. The external potential at t < 0 is vrx = V0 cos(πrx) with rx = 0, 1, 2, 3.

We conclude this section by applying the ABQMC algorithm to interacting electrons. We first discuss the Hubbard
dimer in the canonical ensemble, where we can obtain converged results with as many as 2Nt+Nτ = 12 slices in total
at half-filling (N↑ = N↓ = 1). The results are presented in Fig. S19. We observe that ABQMC results qualitatively
reproduce the exact result in the whole time window considered. The quantitative agreement is reasonable up to
Dt ≈ 2. Figure S20 presents results for the Hubbard tetramer in the grand-canonical ensemble, where we obtain
converged results using only Nt = 1 and Nτ = 2. Further increase in Nt reduces the average sign by orders of
magnitude: for Nt = 1, Nτ = 2 we obtain |⟨sgn⟩| = 1.2 × 10−2, while for Nt = 2, Nτ = 2 we find |⟨sgn⟩| ∼ 10−4.
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While Nτ = 2 is enough to reproduce equilibrium populations in the external field at t = 0, a single real-time slice
leads to the quantitative agreement between the ABQMC and exact results only at shortest times.
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Figure S19. Dynamics of electron populations on individual sites of the Hubbard dimer that at t < 0 is subjected to the
density-modulating potential vrx = V0 cos(πrx) with rx = 0, 1. We work in the canonical ensemble with N↑ = N↓ = 1. The
model parameters assume the following values: V0/D = 1, U/D = 0.6, T/D = 0.45.
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Figure S20. Dynamics of electron populations on individual sites of the Hubbard tetramer that at t < 0 is subjected to the
density-modulating potential vrx = V0 cos(πrx) with rx = 0, 1, 2, 3. We work in the grand-canonical ensemble with Nt = 1,
Nτ = 2 (2Nt +Nτ = 4 slices in total), and the following values of model parameters: µ/D = −0.325, V0/D = 0.5, U/D = 0.5,
T/D = 0.5.
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