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Abstract: Faraday and resonant density waves emerge in Bose-Einstein condensates as a result of
harmonic driving of the system. They represent nonlinear excitations and are generated due to
the interaction-induced coupling of collective oscillation modes and the existence of parametric
resonances. Using a mean-field variational and a full numerical approach, we studied density waves
in dipolar condensates at zero temperature, where breaking of the symmetry due to anisotropy of the
dipole-dipole interaction (DDI) plays an important role. We derived variational equations of motion
for the dynamics of a driven dipolar system and identify the most unstable modes that correspond
to the Faraday and resonant waves. Based on this, we derived the analytical expressions for spatial
periods of both types of density waves as functions of the contact and the DDI strength. We compared
the obtained variational results with the results of extensive numerical simulations that solve the
dipolar Gross-Pitaevskii equation in 3D, and found a very good agreement.

Keywords: Bose-Einstein condensate; pattern formation; dipole-dipole interaction; parametric
resonance; interaction effects

1. Introduction

After pioneering experiments that realized Bose-Einstein condensates (BEC) in systems with weak
contact interactions, it took a decade of work on improvements of experimental techniques to enable
measurement of effects of the dipole-dipole interaction (DDI) that exist between atoms or molecules
with a permanent or induced electrical or magnetic dipole moment. The very first such experiment
was realized in 2005 with chromium atoms 52Cr [1], followed by the experiments with atoms with
much larger magnetic moments, such as dysprosium 164Dy [2] and erbium 168Er [3]. Furthermore,
the dipolar BECs comprised of polar molecules with much stronger electrical [4] and magnetic [5]
dipole moments were also realized. While the contact interaction is symmetric and has a short-range,
the DDI between atoms or molecules is anisotropic and long-range. These features are responsible for
a whole series of new phenomena that appear in ultracold dipolar gases [6]. If we take into account
that the strength of the contact interactions can be varied over many orders of magnitude using the
Feshbach resonance [7] technique, and that the DDI strength can be also tuned using a fast rotating
magnetic or electric field [8,9], it is easy to see that such a versatility of dipolar quantum gases is
unparalleled and makes them an obligatory element in a toolbox for engineering quantum devices
and sensors.

Bose-Einstein condensates are usually termed quantum fluids, which encompasses a broader
range of physical systems where quantum effects are either dominant or very much pronounced.
Despite their name, some of quantum fluids do not share the trademark property of classical fluids,
incompressibility. In fact, the BECs are made of rarefied gases, but their fluid-like behavior stems from
the quantum coherence of such systems. Therefore, while in classical fluids density modulations can
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be excited only under extreme conditions, in quantum fluids the density waves represent one of the
natural collective excitations. They appear due to nonlinearity in ultracold quantum gases, and can
be induced by a harmonic modulation of the trap frequencies or interaction strengths. However,
the motivation for study of such excitations comes from the classical phenomenon of Faraday waves,
which may appear on the surface of the shallow layer of liquid under certain conditions. Namely,
if the container with the liquid is harmonically oscillated in a vertical direction, the wave patterns may
emerge, depending on the ratio of the liquid depth and the container size, as well as depending on the
modulation frequency. This phenomenon was first studied and described by Michael Faraday at the
beginning of 19th century [10]. The interest for this type of excitations arose again during the 1980s,
as a consequence of the study of nonlinear liquids. In the context of ultracold gases, Faraday waves
were first investigated theoretically in 2002 by Staliunas [11]. After these theoretical and numerical
results for the systems with contact interaction, where it was assumed that the interaction strength is
harmonically modulated, the Faraday waves were first measured in BEC experiments with 87Rb in
2007 by Engels [12], and more recently with 7Li by Hulet and Bagnato [13,14]. In the first experiment,
the radial part of the harmonic trap was modulated, while the other two experiments have modulated
the contact interaction strength. However, qualitatively, this leads to the same type of density waves.

Parametric driving of system parameters can lead to pattern formation not only in BECs, where
Faraday waves are experimentally observed in cigar-shaped condensates [12–14], but also in helium
cells [15]. The actual experimental observation of this phenomenon in 2007 was preceded by numerical
studies starting in 2002 [11,16–20], all focusing on systems with short-range, contact interactions.
More recently, Faraday waves have been studied in dipolar [21–23] and two-component condensates,
including the systems with spatially-dependent contact interaction [24,25]. Numerical studies of
Faraday waves have also been extended to mixtures of Bose and Fermi gases [26], as well as Fermi
gases exhibiting superfluid behavior [27,28].

Faraday waves in ultracold gases are a consequence of the existence of parametric resonances
in the system. While the spatial period of these waves depends on the geometry of the system and
other parameters, the frequency of their oscillations is constant and is two times smaller than the
modulation frequency. This is a characteristic of all parametric resonant phenomena, and in the
variational approach leads to the Mathieu’s differential equation [29], which gives the observed ratio
of the frequency of Faraday waves and the modulation. The Faraday density waves with half of the
modulation frequency are not the only nonlinear excitation of the system. In a driven system, there are
always excitations with the same frequency as the modulation. However, they become resonant when
the modulation frequency corresponds to one of the collective modes or the trap frequencies, or their
linear combination. The resonant waves develop in the system and grow exponentially [30], faster
than the Faraday waves. Therefore, these two phenomena can be easily distinguished, not only by
comparing their frequencies, but also the corresponding onset times. We note that resonant behavior
can appear not only due to the modulation of the interaction strength or the trapping potential, but also
due to its spatial modulation [31–40].

In the context of dipolar BECs, the study of Faraday waves was limited mostly to their excitation
spectrum in one-dimensional and two-dimensional systems [21], while the properties of resonant
waves, to the best of our knowledge, have not been studied yet. In Section 2, we develop a mean-field
variational approach for the dynamics of a driven dipolar BEC at zero temperature and identify the
instability of the system leading to the emergence of Faraday and resonant waves. Using this approach,
we derive analytic expressions for the dependence of density wave properties on the strength of the
contact and the dipole-dipole interaction. In Section 3, we numerically study how such waves develop
and can be characterized in ultracold systems of three experimentally relevant magnetic dipolar species:
chromium 52Cr, erbium 168Er, and dysprosium 164Dy. In Section 4, the analytically obtained expressions
for the spatial period of Faraday are compared to results of the extensive numerical simulations, which
solve the full three-dimensional mean-field equations for a dipolar BEC. The emergence of resonant



Symmetry 2019, 11, 1090 3 of 18

waves and comparison of the corresponding analytical and numerical results is given in Section 5.
Finally, Section 6 summarizes our conclusions and presents outlook for future research.

2. Variational Approach

We consider the system in an experimentally-inspired setup, where the condensate is confined
into a cigar-shaped harmonic trap, with the equilibrium frequencies ωx = 2π× 7 Hz, ωy = ωz = Ω0 =

2π × 160.5 Hz. These are typical values taken from Reference [12]. The dipole moments of the atoms
are assumed to be oriented along z direction, i.e., orthogonal to the weak-confinement axis x (which
we refer to as the longitudinal axis), since this maximizes the stability of the system. To ensure stability
of the system, we consider the condensate to have N = 104 atoms for all three species. The driving of
the system is achieved by harmonic modulation of the radial (y− z) part of the trap,

ωy(t) = ωz(t) = Ω0 (1 + ε sin ωmt) , (1)

where ε = 0.1− 0.2 is the modulation amplitude and ωm is the modulation frequency.
For a variational study of Faraday and resonant waves in dipolar condensates, we use

a modification of the Gaussian ansatz [16–20,23–25,30,41,42] to capture the induced density waves in
the longitudinal, weak-confinement direction x,

ψ(x, y, z, t) = A e
− x2

2u2
x
− y2

2u2
y
− z2

2u2
z
+ix2φx+iy2φy+iz2φz

[1 + (α + iβ) cos kx] , (2)

where the normalization of the wave function to unity is ensured by the prefactor

A ≡ A(ux, uy, uz, α, β, k) =
1

π3/4√uxuyuz

√
2√

2 + α2 + β2 + 4α e−k2u2
x/4 + (α2 + β2) e−k2u2

x

. (3)

The above variational ansatz involves eight variational parameters {ui, φi, α, β}, which are
functions of time. The parameters ui represent the condensate widths, while φi are the conjugated
phases, which are necessary to properly describe the system’s dynamics. Note that these phases can be
omitted when we are interested only in the ground state. The multiplicative factor 1 + (α + iβ) cos kx
describes the density modulation along x direction, and the variational parameters α and β represent
the real and the imaginary part of the amplitude of the wave. The wave vector k, which is related to
the spatial period ` of the density waves by ` = 2π/k, is not treated here as a variational parameter.
We determine its value from the condition for the instability emergence, which leads to Faraday or
resonant waves.

The use of the Gaussian variational ansatz corresponds to the weak interaction regime with low
density of atoms, while the Thomas-Fermi profile is more appropriate for systems with high particle
density. Although the emergence of Faraday and resonant waves leads to higher particle densities,
we still use the Gaussian ansatz in all regimes. This is done since we are mostly interested just in
the onset of longitudinal density modulations, but also for mathematical convenience. Let us note
that tunability of all variational parameters may improve the accuracy of the applied approximation.
Nevertheless, the use of this ansatz can be fully justified only a posteriori, by comparison with
numerical results [16].

Note that we use the dimensionless units, where a chosen referent frequency ωr defines the length
scale through the harmonic oscillator length

√
h̄/(mωr), where m is the mass of the corresponding

atomic species, the time scale as 1/ωr, and the energy scale as h̄ωr. The trapping frequencies are also
expressed in units of ωr through the trap aspect ratios γ = ωx/ωr, ν = ωy/ωr, and λ = ωz/ωr, as well
as the modulation frequency ηm = ωm/ωr. We choose below the value ωr = Ω0, corresponding to
ν = λ = 1, but for now we keep all three aspect ratios as free parameters, for generality.
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If we insert the modified Gaussian ansatz (Equation (2)) into the Lagrangian density that yields
the dipolar Gross-Pitaevskii equation, we can express the Lagrangian of the system as a sum of five
terms. The first term reads

L1(t) =
i
2

∫
dr (ψ∗ψ̇− ψψ̇∗) = −1

2

(
u2

xφ̇x + u2
yφ̇y + u2

z φ̇z

)
− αβ̇− βα̇

2 + α2 + β2 , (4)

while the kinetic and the potential energy terms yield, respectively,

L2(t) =
1
2

∫
dr ψ∗∆ψ = −1

4

(
1

u2
x
+

1
u2

y
+

1
u2

z
+ 4u2

xφ2
x + 4u2

yφ2
y + 4u2

zφ2
z

)
− (α2 + β2) k2

2(2 + α2 + β2)
, (5)

L3(t) = −
∫

dr
(

1
2

γ2x2 +
1
2

ν2y2 +
1
2

λ2z2
)
|ψ|2 = −1

4

(
γ2u2

x + ν2u2
y + λ2u2

z

)
. (6)

The contact interaction term corresponds to

L4(t) = −2πNas

∫
dr |ψ|4 = − Nas√

2π uxuyuz

(
1 +

α4 + 16α2 + 2α2β2 + β4)

2(2 + α2 + β2)2

)
, (7)

where as is the s-wave scattering length of atoms, expressed in units of the harmonic oscillator length.
The Lagrangian term that corresponds to the DDI energy is given by

L5(t) = −
3Nadd

2

∫
dr dr′ ψ∗(r)ψ∗(r′)Udd(r− r′)ψ(r′)ψ(r) , (8)

where the dipolar potential reads Udd(r) = (1 − 3 cos2 θ)/r3, θ is the angle between the dipoles’
orientation (z axis) and vector r, and add is the DDI interaction strength, that depends on the dipole
moment of atoms d and their mass m as add = µ0md2/(12πh̄2). Note that it is conveniently expressed
in units of length and cast into a dimensionless quantity as outlined above. However, due to the spatial
modulation term in the modified Gaussian ansatz, it is not possible to perform exact integration and
obtain L5(t). Using the convolution theorem, the DDI term can be written as

L5(t) = −
3Nadd

2 (2π)3

∫
dkF [Udd] (k)F

[
|ψ|2

]2
(k) , (9)

where F stands for the Fourier transform, and

F
[
|ψ|2

]
(k) = B(kx, ux, α, β, k) e−

1
4 (k

2
xu2

x+k2
yu2

y+k2
zu2

z) . (10)

The coefficient B can be explicitly calculated and reads

B(kx, ux, α, β, k) =
4 + 4(e−

k
4 (k−2kx)u2

x + e−
k
4 (k+2kx)u2

x ) α + (2 + e−k(k−kx)u2
x + e−k(k+kx)u2

x ) (α2 + β2)

2
[
2 + 4 e−

1
4 k2u2

x α + (1 + e−k2u2
x ) (α2 + β2)

] .

(11)
To proceed further, we take into account that the condensate width in the weak confinement

direction is large compared to the other widths, as well as compared to the spatial period of the density
waves, such that kux � 1. We also take into account that the wave amplitude is small immediately
after the waves emerge, such that α, β � 1. Since the integral over k in Equation (9) cannot be
analytically performed even using these approximations, we replace B2, stemming from the square of
the Fourier transform F

[
|ψ|2

]
, by its average over kx, and neglect all terms proportional to e−k2u2

x/8

and its powers, as already argued that kux is a large quantity. The integration over k can now proceed
smoothly, yielding
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L5(t) =
Nadd√

2π uxuyuz
f
(

ux

uz
,

uy

uz

)(
1− 8α2

(2 + α2 + β2)2

)
, (12)

where f is the standard dipolar anisotropy function [43].
Now that we have the explicit expression for the Lagrangian of the system L(t) = ∑5

i=1 Li(t),
we can derive the corresponding Euler-Lagrange equations. We assume that the wave amplitudes α

and β are small, such that their quadratic and higher order terms can be neglected in the equations
of motion. The three equations for the phases yield φi = u̇i/(2ui) and can be used to eliminate the
phases φi from the corresponding set of equations for the condensate widths ui, which have the form
of the second order differential equations,

üx + γ2ux −
1

u3
x
−
√

2
π

N
u2

xuyuz

[
as − add f

(
ux

uz
,

uy

uz

)
+ add

ux

uz
f1

(
ux

uz
,

uy

uz

)]
= 0 , (13)

üy + ν2uy −
1

u3
y
−
√

2
π

N
uxu2

yuz

[
as − add f

(
ux

uz
,

uy

uz

)
+ add

uy

uz
f2

(
ux

uz
,

uy

uz

)]
= 0 , (14)

üz + λ2uz −
1
u3

z
−
√

2
π

N
uxuyu2

z

[
as − add f

(
ux

uz
,

uy

uz

)
− add

ux

uz
f1

(
ux

uz
,

uy

uz

)

− add
uy

uz
f2

(
ux

uz
,

uy

uz

)]
= 0 ,

(15)

where f1 and f2 are partial derivatives of the anisotropy function with respect to the first and the
second argument. The Euler-Lagrange equation for the variational parameter β yields β = 2α̇/k2,
which we use to eliminate β from the corresponding equation for the parameter α, as was done with
the phases. With this, the equation for α turns out to be the second order differential equation,

α̈ +

[
k4

4
+

√
2
π

N
uxuyuz

(
as + add f

(
ux

uz
,

uy

uz

))
k2

]
α = 0 . (16)

In the context of variational analysis of Faraday and resonant waves, the above equation of motion
for the wave amplitude α is usually cast into the form of the Mathieu-like equation [29]

α̈ + [a(k) + εb(k) sin 2τ] α = 0 . (17)

This equation can be solved perturbatively in the small modulation amplitude ε. Assuming
a solution in the form of a harmonic oscillator

α(τ, ε) = P(ετ) cos
(

τ
√

a(k)
)
+ Q(ετ) sin

(
τ
√

a(k)
)

, (18)

we obtain that functions P and Q are exponentials of the form e±iξετ , where ξ is a complex number.
The existence of the imaginary part of ξ leads to the instability, i.e., to the exponential growth of
the wave amplitude, which yields Faraday or resonant waves. It was shown in Reference [29] that
the nonvanishing imaginary part of ξ appears for a(k) = n2, where n ∈ N, and this represents the
mathematical form of the instability condition.

To cast Equation (16) into the Mathieu-like form (Equation (17)), we need to take into account that
the radial trap frequencies are modulated, such that the corresponding trap aspect ratio is given by
ν(t) = λ(t) = λ0(1 + ε sin ηmt), where λ0 = Ω0/ωr. This generates the dynamics of the system and
we need to obtain approximate expressions for the condensate widths in order to get explicit form of
the quantities a(k) and b(k). We assume that the condensate width ux slowly varies, and can be taken
to be constant at the onset of instability. We also assume that second derivatives of the radial widths
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uy and uz, with respect to time, can be neglected, since they are proportional to the small modulation
amplitude ε. Furthermore, for simplicity, we assume uy ≈ uz ≡ uρ, which now satisfies the modified
Equation (14) or (15) in the form

λ2(t)u4
ρ = 1 +

√
2
π

N
ux

[
as +

add
2

fs

(
uρ

ux

)
− add f ′s

(
uρ

ux

)]
, (19)

where fs(x) = f (x, x). On the right-hand side of the above equation, we assume that the ratio uρ/ux

is constant and equal to the corresponding ratio for the ground state, which can be calculated from
Equations (13)–(15). If we express u2

ρ from Equation (19), and use it to estimate the quantity uyuz ≈ u2
ρ

in Equation (16), we obtain the equation for the variational parameter α in the form

α̈ +

[
k4

4
+

Λk2

4
λ(t)

]
α = 0 , (20)

where Λ is given by

Λ =
4
√

2
π N

[
as − add

2 fs

(
uρ

ux

)]
ux

{
1 +

√
2
π

N
ux

[
as +

add
2 fs

(
uρ

ux

)
− add f ′s

(
uρ

ux

)]}1/2 . (21)

After inserting the explicit form for λ(t) into Equation (20), we still need to make a variable
change ηmt→ 2τ in order to transform it into the Mathieu-like Equation (17). This finally yields the
expressions for the coefficients a(k) and b(k),

a(k) =
k4

η2
m
+

λ0Λk2

η2
m

, b(k) =
λ0Λk2

η2
m

. (22)

As previously discussed, the instability condition for the Faraday waves reads a(k) = 1, which
can be used to calculate the wave vector of density waves shortly after their emergence,

kF =

√√√√−λ0Λ
2

+

√
λ2

0Λ2

4
+ η2

m . (23)

This represents our analytical result for the wave vector kF and the spatial period `F = 2π/kF of
the Faraday waves, which can be directly compared with numerical or experimental results. Let us also
stress that the above analysis is consistent with the main characteristic of the Faraday waves, namely,
that their oscillation frequency is half that of the driving frequency. This can be concluded according
to τ = ηmt/2 and Equation (18), where we see that indeed the solution of the derived Mathiue-like
equation oscillates with the frequency whose aspect ratio is ηm/2, i.e., with the frequency ωm/2.

If the modulation frequency is close to one of the characteristic oscillation modes of the system,
it will exhibit resonant behavior, which is suppressed for an arbitrary value of the modulation frequency.
While the system’s dynamics will certainly include the Faraday mode at the frequency ωm/2 even
close to a resonance, the resonant mode with the frequency ωm will have a larger amplitude and will
develop much faster. Although it is clear that the above analysis would break down, the condition for
the emergence of resonant waves still corresponds to a(k) = 22, i.e., the wave vector of the resonant
wave is given by

kR =

√√√√−λ0Λ
2

+

√
λ2

0Λ2

4
+ 4η2

m . (24)
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In that case, according to τ = ηmt/2 and Equation (18), the resonant density wave will oscillate
with the frequency whose aspect ratio is (ηm/2)

√
22 = ηm, i.e., with the frequency ωm. Depending

on the system’s parameters, higher resonant modes can also appear corresponding to the conditions
a(k) = n2, where n is an integer, corresponding to the oscillation frequencies nωm/2.

3. Faraday Waves in Chromium, Erbium, and Dysprosium Condensates

To study Faraday waves in dipolar condensates, we performed extensive numerical simulations of
the real-time dynamics and solved the dipolar Gross-Pitaevskii equation using the programs described
in References [44–52]. The parameters of these simulations match the physical parameters of BECs of
chromium 52Cr, erbium 168Er, and dysprosium 164Dy, which, respectively ,have the dipole moments
d = 6µB, d = 7µB, and d = 10µB, where B is the Bohr magneton. The corresponding background
s-wave scattering lengths are as = 105a0, as = 100a0, and as = 100a0, where a0 is the Bohr radius.
We used these interaction strengths, unless otherwise specified.

As discussed previously, Faraday waves are expected as a main excitation mode of the system
when the modulation frequency ωm does not match any of the characteristic frequencies of the
system. For this reason, we used the value ωm = 200× 2π Hz, for which we verified that these
conditions are satisfied. To characterize the density waves, we typically analyze their FFT spectra in the
time-frequency and spatial-frequency domains. However, instead of directly analyzing their density
profiles, for FFT, it is advantageous to have a clearer signal, which can be obtained by considering
only the density variations compared to the initial state, i.e., the ground state of the system, before
the modulation is switched on. Therefore, Figure 1 shows time dependence of the integrated density
profile variations in the weak confinement direction δn(x, t) = n(x, t)− n(x, t = 0). Here, n(x, t) is
the column density profile calculated by integrating the 3D condensate density |ψ|2 over the radial
coordinates y and z.

The emergence of spatial patterns is clearly visible for all three atomic species after around 150 ms.
This is consistent with earlier experimental observations [12–14] and theoretical results [16,24,25].
The density waves in x direction from Figure 1 take time to develop and are a result of the transfer of
energy from the modes that are directly excited in the radial directions, where the trap is modulated.
On the other hand, the density waves in the radial directions (which are not shown here) emerge
immediately after the modulation is switched on at t = 0, and their frequency is equal to the modulation
frequency. By looking at Figure 1, we can even estimate the main oscillation frequency, e.g., counting
the number of maxima or minima in a given time interval. For instance, in the last 50 ms in each of the
panels in Figure 1, we count five periods, which corresponds to the frequency 100× 2π Hz = ωm/2.
This is a distinguishing characteristic of Faraday waves, and therefore we can directly determine that
in this case the system develops this type of collective oscillations.

However, this way we can determine only the main excitation modes. The dynamics of the system
contains other modes as well, and over the time they can develop and even start to dominate the
behavior of the system. Therefore, it is important to analyze the spectra in more detail. This is done in
Figure 2 for all integrated density profile variations, separately for each spatial direction. For simplicity,
the FFT analysis is performed for the profiles at the trap center. As expected, in the weak confinement
direction (left column of Figure 2), the main excitation mode has a frequency ωm/2. In addition to
this, we observe two other modes, at ωm and 3 ωm/2. This is expected from the theoretical analysis in
Section 2, but could not be discerned directly from the density profiles or their variations.
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Figure 1. Time evolution of the integrated density profile variation δn(x, t) in the weak-confinement
direction for a BEC of chromium 52Cr (top), erbium 168Er (middle), and dysprosium 164Dy (bottom),
for the modulation frequency ωm = 200× 2π Hz and amplitude ε = 0.2, and the system parameters
given in Section 2.

In the Fourier spectra of the integrated density profile variations in the radial directions (middle
and right columns of Figure 2), we see a somewhat richer set of excitation modes. In addition to the
main mode corresponding to the trap modulation at ωm, we see that also the breathing mode is excited
at the frequency ωB ≈ 321× 2π Hz. This value can be calculated by linearizing the equations of
motion from Section 2. The spectra prominently contain the second modulation harmonic at 2 ωm as
well. We also see some other peaks, for instance the small peak at around 120× 2π Hz, which can be
due to the linear combination of the modes ωB −ωm. However, such an identification would require
further theoretical and numerical analysis, which is out of the scope of the present paper.
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Figure 2. The Fourier spectrum in the time-frequency domain of the integrated 1D density profile
variations of Faraday waves at the trap center δn(x = 0, t) in x direction (left column), δn(y = 0, t)
in y direction (middle column), and δn(z = 0, t) in z direction (right column) for a BEC of chromium
52Cr (top row), erbium 168Er (middle row), and dysprosium 164Dy (bottom row). Vertical blue lines
represent theoretical predictions, where ωm/2 corresponds to Faraday waves, ωm, 3ωm/2, and 2 ωm to
resonant waves, and ωB is the variational result for the breathing mode frequency, which is obtained
by linearization of the equations of motion from Section 2.

While the Fourier analysis in the time-frequency domain can be used to determine the character
of the induced density waves (Faraday, collective, and resonant), the analysis in the spatial-frequency
domain enables us to characterize the density patterns and calculate their spatial period. This is
illustrated in Figure 3 for Faraday waves for all three considered atomic species. The integrated
density profile variations are analyzed at appropriate times, which are determined to correspond to
the evolution stage when Faraday waves have fully emerged, but the system is still far from the violent
dynamics that inevitably follows after the long driving period.

In all three panels of Figure 3, the main peak corresponds to the wave vector kF of the Faraday
waves, and we see significant differences: for 52Cr, we obtained kF = 0.57µm−1, yielding the spatial
period `F = 2π/kF = 11.02µm; for 168Er, we obtained kF = 0.98µm−1 and `F = 6.41µm; and, for
164Dy, we obtained kF = 1.10µm−1 and `F = 5.71µm. The variational analysis presented in Section 2
yields results which are in good agreement with the numerical ones, namely kF = 0.51µm−1 for 52Cr,
kF = 0.91µm−1 for 168Er, and kF = 1.06µm−1 for 164Dy. These variational results are shown in Figure 3
by vertical blue lines, which illustrate their agreement with the Fourier analysis. The presented spectra
also contain some additional peaks that correspond to other geometrical features of the analyzed
density profile variations, such as the condensate widths and their higher harmonics, as well as the
higher harmonics of the Faraday waves periods, and linear combinations of all of these. However,
they are not of interest for our analysis and we did not study them further.
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Figure 3. The Fourier spectrum in the spatial-frequency domain of the integrated 1D density profile
variations of Faraday waves in x direction δn(x, t = 272 ms) for 52Cr (left), δn(x, t = 225 ms) for
168Er (middle), and δn(x, t = 193 ms) for 164Dy (right) BECs with N = 104 atoms. The corresponding
density profile variations are shown in Figure 1. Vertical blue lines represent theoretical predictions for
the wave vector kF of the Faraday waves, Equation (23).

Note that the spatial period of Faraday waves can also be determined by directly looking at the
density profile variations in Figure 1, and estimating the spacing between the consecutive minima or
maxima at the appropriate evolution time. For instance, for chromium, we count three minima over
the spatial extent of 30 µm, yielding an estimate `F ≈ 10µm, and similarly for other species. Obviously,
such estimates are not as precise as the Fourier analysis results, and therefore we rely on FFT spectra
to systematically determine the spatial periods of Faraday waves and their functional dependencies on
the contact and the DDI strength.

4. Interaction Effects and Properties of Faraday Waves

In the previous section, we show how the Fourier analysis can be used to calculate the spatial
period of Faraday waves. Next, we systematically studied the interaction effects, namely how the
contact and the DDI strength affect the properties of generated density waves. First, we explored the
influence of the contact interaction on the emergence time and the spatial period of Faraday waves for
a fixed value of the DDI strength. In experiments, this can be achieved by employing the Feshbach
resonance technique, which allows tuning as by changing the external magnetic field, thus changing
the electronic structure of atoms and their scattering properties.

The existence of Faraday waves is a consequence of nonlinearity of the system, i.e., the presence of
the contact and the DDI terms in the Hamiltonian. In a linear system, described by the pure Schrödinger
equation, the harmonic modulation of the trap in the radial direction would not be transferred into the
longitudinal direction. Therefore, the emergence time of Faraday waves (and other types of density
waves in the longitudinal direction) critically depends on the strength of interatomic interactions.
However, if interaction strengths become sufficiently large, the emergence time is less sensitive to their
changes. Since the DDI is strong in erbium and dysprosium, we can expect that the emergence time of
Faraday waves significantly depends on the contact interaction strength only in chromium, where add
is small.

This is illustrated in Figure 4, where we see the density profile variations for chromium for three
different values of as. Let us first note that the amplitude of density variations is much smaller in
the top panel for as = 60 a0 than in the middle panel for as = 80 a0, and significantly smaller than
in the bottom panel for as = 150 a0. This is also evident from the fact that in the top and middle
panel we can clearly see the quadrupole collective oscillation mode, which has a frequency of around
ωQ = 12× 2π Hz. This can be estimated from the figure and compared to the variational value of ωQ,
which can be obtained by linearizing the equations of motion in Section 2. When the interaction is
sufficiently large, the amplitude of Faraday waves is much larger than those of the collective modes,
and they cannot be even discerned in the bottom panel in Figure 4. Only for a weak interaction the
amplitude of the Faraday waves is comparable to the amplitude of the collective modes, and this is
why we can see them all for small values of as.
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Figure 4. Emergence of Faraday waves for different strengths of the contact interaction: as = 60 a0

(top), as = 80 a0 (middle), and as = 150 a0 (bottom) for a BEC of 52Cr. We observe that Faraday waves
emerge faster as the contact interaction strength increases.

As with all other excitations, Faraday waves start to develop immediately after the modulation
is switched on. The question on their emergence time is related to their amplitude, which is
time-dependent and grows exponentially, as can be seen from the solution (Equation (18)) of the
Mathieu-like equation that describes the dynamics of the Faraday density oscillations. The imaginary
part of the parameter ξ in Equation (18) is responsible for the exponential growth of the Faraday waves’
amplitude, which is not the case for collective modes. Therefore, in practical terms, the definition
of the emergence time of Faraday waves is always arbitrary and can be expressed as a time needed
for the density variations to reach a certain absolute or relative (compared to the total density) value.
One can even relate this to the experimental point of view, where there is a threshold for the density
variations that can be observed, due to measurement errors. However, in numerical simulations, there
are no such limitations and one can easily use an arbitrary definition to estimate the emergence time of
density waves. The more relevant quantity to study would be the exponent that governs the growth of
the wave amplitude, which depends on the interaction strength.

Now, we turn our attention to spatial features of the Faraday waves. Figure 5 presents the
dependence of the wave vector kF on the s-wave scattering length as for all three considered species.
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We also show the variational results for the dependence kF(as) derived in Section 2. The agreement is
very good, with errors of the order of 10–15%. We stress that the derived variational expression closely
follows the numerical results not only by their values, but, more importantly, also their functional
dependence properly.
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Figure 5. Wave vector of the Faraday waves kF as a function of the contact interaction strength for a BEC
of 52Cr (left), 168Er (middle), and 164Dy (right), for a fixed DDI strength. Red upper triangles were
numerically obtained values using the FFT analysis as in Figure 3, and blue lines are the variational
results according to Equation (23).

Next, we studied the effects of the DDI strength for a fixed value of the contact interaction. Figure 6
shows the corresponding dependence of kF on add. In contrast to the contact interaction dependence,
where kF is a decreasing function of as, here we see that kF increases as the DDI strength is increased.
Figure 6 also shows the variational results, where the level of agreement with the numerically obtained
results is different, with errors as small as 7% for chromium and up to around 25% for erbium and
dysprosium for largest values of add. Due to complex approximations made in the derivation of
variational results, in particular those related to the DDI term, the obtained functional dependence is
not as good as in the case of contact interaction, but still provides reasonable estimates of the wave
vector values for the Faraday waves.
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Figure 6. Wave vector of the Faraday waves kF as a function of the DDI strength for a BEC of 52Cr
(left), 168Er (middle), and 164Dy (right), for a fixed contact interaction strength. Red upper triangles
represent numerically obtained values using the FFT analysis as in Figure 3, and blue lines are the
variational results according to Equation (23).

5. Resonant Waves

In the presence of interactions, various excitation modes in dipolar BECs are coupled and the
energy pumped into the system by periodic driving can be transferred from the driving direction to
other, orthogonal directions. In the previous section, we show this for non-resonant driving, when
the harmonic modulation in the radial direction was transferred to the longitudinal direction in the
form of Faraday waves, which were the main excitation mode generated. The main distinguishing
property of these excitations is halving of the oscillation frequency, i.e., the induced density waves
have the frequency ωm/2. Next, we studied the other important case, when the modulation frequency
is resonant, such that the induced density waves have the same frequency. This happens when ωm is
close to one of the characteristic frequencies of the system, e.g., one of the frequencies of the collective
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oscillation modes or one of the trap frequencies. Although Faraday waves and all other collective
oscillation modes are also excited in this case, the largest amplitude corresponds to resonant waves
with the frequency ωm. When generated, these resonant waves dominate the behavior of the system
and make all other excitations negligible for the dynamics.

Figure 7 shows the integrated density profile variation of 168Er for a resonant wave induced
by a harmonic modulation of the radial part of the trapping potential at ωm = Ω0, i.e., when the
modulation frequency coincides with the radial trapping frequency. The density waves in this case
develop much more quickly than for the non-resonant modulation and are clearly visible already after
55 ms. Due to a violent dynamics that emerges in the system very quickly, it is not easy to estimate
the frequency of the waves directly from Figure 7, as was possible before. Therefore, we relied on the
Fourier analysis in the time-frequency domain, as presented in the left panel of Figure 8. The obtained
FFT spectrum clearly shows that the main excitation mode has the frequency equal to ωm. We also see
that the spectrum is continuous, practically without distinct individual peaks, and only the second
harmonic at 2ωm = 321× 2π Hz yields a small local maximum. This demonstrates that the system is
far from the regime of small perturbations, where individual excitation modes can be observed.

In the right panel of Figure 8, we see the Fourier spectrum in the spatial-frequency domain, which
yields the wave factor kR of resonant waves. The FFT results give the value kR = 1.59µm−1 and
the corresponding spatial period `R = 2π/kR = 3.95µm for 168Er. In the figure we also present the
variational result kR = 1.40µm−1, calculated using Equation (24). The agreement is again quite good,
which indicates that the variational approach developed in this paper can be reliably used not only for
the Faraday waves, but also for the resonant waves.

Figure 7. Time evolution of the integrated density profile variation in the weak confinement direction
for a BEC of 168Er, with the modulation frequency equal to the weak confinement frequency, ωm = Ω0.
We observe resonant behavior corresponding to the first harmonic of the resonant frequency Ω0, which
sets in after around 55 ms.

This can also be concluded from Figure 9, which presents the results for the dependence of
the resonant wave vector kR on the contact and the DDI strength. The agreement between the
numerical and variational results is of the order of 10% over the whole experimentally relevant domain.
We see similar behavior for the resonant waves as for the Faraday ones, namely the wave vector
decreases as the contact interaction strength increases, while the opposite is true for the DDI. Again,
the functional dependence obtained from the variational approach properly describes the numerical
results, thus confirming that Equation (24) can be used to calculate spatial period of resonant waves.
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Figure 8. The Fourier spectrum of the integrated 1D density profile variations δn(x, t) at the trap center
in the time-frequency domain (left), and of the density profile variations in x direction δn(x, t = 68 ms)
in the spatial-frequency domain (right) of resonant waves for a BEC of 168Er. Vertical blue line in
the left panel represents the modulation frequency ωm, while in the right panel it corresponds to the
theoretical prediction for the wave vector kR of the resonant waves, Equation (24).
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Figure 9. Wave vector of the resonant waves kR as a function of the contact (left) and the DDI
(right) strength for a BEC of 168Er. The results in the left panel are obtained for a fixed DDI strength,
and similarly in the right panel a fixed contact interaction strength is used. In both panels, red upper
triangles represent numerically obtained values using the FFT analysis as in the right panel of Figure 8,
and blue lines are the variational results according to Equation (24).

It is interesting to note that resonant behavior appears not only under conditions mentioned
above, when ωm is equal to one of the characteristic frequencies, but also when it matches their higher
harmonics. Figure 10 illustrates this for 168Er, which is harmonically modulated at twice the radial
trapping frequency, ωm = 2Ω0 = 321× 2π Hz. In this case, the amplitude of the resonant mode grows
even more quickly and significant density variations can be observed already after 30 ms. Therefore,
we see that the modulation at the second harmonic yields even more violent dynamics than the first
harmonic. The Fourier analysis in the time-frequency domain reveals that the main excitation mode
again has a frequency of Ω0, but the mode at ωm = 2Ω0 is also present. From the experimental point
of view, resonant driving is very dangerous and leads to the destruction of the system in a matter of
tens of milliseconds. While numerical simulations can be performed for longer time periods, the atoms
leave the condensate due to a large, resonant transfer of energy to the system. As the condensate is
depleted, the mean-field description of the system breaks down and it can no longer be simulated by
the dipolar Gross-Pitaevskii equation.
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Figure 10. Time evolution of the integrated density profile variation in the weak confinement direction
for a BEC of 168Er. The modulation frequency is equal to twice the weak confinement frequency,
ωm = 2Ω0. We observe resonant behavior corresponding to the second harmonic of the resonant
frequency Ω0, which sets in more quickly than the first harmonic, already after around 30 ms.

6. Conclusions

We investigated here the Faraday and resonant density waves in ultracold dipolar Bose-Einstein
condensates for experimentally relevant atomic species with the permanent magnetic dipole moment:
chromium 52Cr, erbium 168Er, and dysprosium 164Dy. The interplay of the contact and the dipole-dipole
interaction in such systems is a hot research topic today, but detailed understanding of their dynamics
and even their stability is still lacking. Our results contribute to variational and numerical description
of driven dipolar systems and their properties, which are important for ongoing experiments, and will
be of particular interest as the strongly dipolar regime becomes experimentally available.

To describe the dynamics of the Faraday and resonant waves in dipolar BECs, we relied here
on the variational approach introduced in Ref. [16] (and references therein), which was already used
in various setups [17–20,23–25,30,41,42]. This approach is based on the Gaussian variational ansatz
and includes the condensate widths and the conjugated dynamical phases as parameters. The ansatz
also includes the density modulations in order to capture the dynamics of density waves. Using our
variational approach, the obtained equations for the dynamical evolution of the system are cast into the
form of the Mathieu-like differential equation. This allowed us to identify the most unstable solutions
of the Mathieu’s equation with the Faraday and the resonant waves, which we observed numerically.
Based on this idea, we derived analytical expressions for the periods of these two types of density
waves. Performing the FFT analysis of the results of extensive numerical simulations, we were able
to calculate the corresponding periods numerically, as functions of the contact and the dipole-dipole
interaction strength. The comparison of variational and numerical results shows very good agreement
and demonstrates that the derived analytical expressions provide full understanding of the properties
of density waves in dipolar condensates.

In the future, we plan to study onset times for the emergence of Faraday and resonant waves,
and in particular the corresponding exponents and their dependence on the contact and the DDI.
It is well known that the periodic driving of a dipolar system may lead to its collapse, and we plan
to investigate if recently observed quantum droplets, that appear as a result of stabilization due to
quantum fluctuations, may also appear in a scenario which leads to Faraday waves.
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