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RKKY interactions in the regime of strong localization
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We study the influence of strong nonmagnetic disorder on the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interactions between diluted magnetic moments in metals. We find that the probability distribution for the
RKKY interactions assumes strongly non-Gaussian form featuring long tails. Since such distributions cannot
be characterized by its moments, we define a fypical value of the interaction amplitude, which we find to be
exponentially suppressed in presence of Anderson localization. Our results present a plausible and physically
transparent picture describing how Anderson localization effectively eliminates the long range nature of the

RKKY interactions.
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I. INTRODUCTION

It has long been appreciated that localized magnetic mo-
ments in metals interact through indirect Ruderman-Kittel-
Kasuya-Yosida (RKKY) interactions mediated by the con-
duction electrons.! In a clean metal, the RKKY interaction
has a long-range oscillatory part, with an amplitude which
decreases as a power law of the distance between the impu-
rities, I(R)~ cos(2kzR)/R? (d is the dimensionality of the
system and kj the Fermi wave vector). This behavior is well
understood to be a direct consequence of the existence of a
sharp Fermi surface characterizing itinerant electrons.

In presence of impurities and disorder, this behavior may
be substantially modified. It is well known that sufficiently
strong disorder can lead to multiple-scattering processes
which can trap the electrons through the processes of Ander-
son localization. In this regime, one may expect that the
long-range character of RKKY interactions should be sup-
pressed, reflecting the reduced mobility of conduction elec-
trons. The essential physical question is how this process
precisely takes place as the disorder strength is gradually
increased and the system approaches the localized regime.

The influence of weak nonmagnetic disorder on the
RKKY interactions has been studied in considerable
detail,>® and is by now very well understood. These studies
have established that the main effect of weak disorder is to
randomly modify the phase of the RKKY oscillations due to
impurity-induced phase shifts of the electronic wave func-
tions. As a result, the RKKY interaction decreases exponen-
tially when averaged over disorder, (I(R))~ e ®, where [ is
the mean free path. Early work? thus predicted that the range
of RKKY interactions becomes essentially cut off at R~/
and can be neglected at larger distances. More careful
consideration*~® discovered that this naive argument is incor-
rect, essentially because most relevant quantities do not de-
pend on the average value of the interaction, but instead on
the typical value of its amplitude. Since this quantity is not
affected by the random phase shifts, it is essentially unaf-
fected by weak disorder and decreases with the distance R in
the same power-law fashion as in the clean system. There-
fore, the presence of weak disorder is not expected to lead to
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any significant changes in the physical properties which are
dominated by the RKKY interactions.

The influence of stronger nonmagnetic disorder on RKKY
interactions has been, however, so far poorly explored. In an
important study, Lerner examined the probability distribution
of the RKKY interactions in the metallic phase in the pres-
ence of strong disorder within generalized nonlinear o model
and 2+& expansion.” It was found that the quantum interfer-
ence corrections do not change the power-law decay of all
the even moments of the interaction distribution, which re-
mains the same as in the pure metal, but make the coeffi-
cients attached to these moments increase critically with dis-
order. As the Anderson localization regime is approached,
the higher moments increase much faster than the variance,
which therefore no longer represents a good characterization
of the typical interaction strength. Although this work clearly
points out to the importance of strong fluctuations of the
RKKY interactions, it does not explain how does the distri-
bution function evolve as one enters the regime of Anderson
localization.

Within an Anderson insulator, the electrons are bound to
impurities and thus can hardly be expected to generate the
long-range part of the RKKY interaction. How can we have
at the same time large moments of the distribution of RKKY
interactions, along with its fast decay with the distance? At
first glance, these two arguments seem inconsistent and the
situation confusing and paradoxical. Clarifying these issues
is an interesting and important problem, since one expects
the magnetic correlations to play a crucial role in the physics
of disorder-driven metal-insulator transitions in general.

The resolution of this puzzle is, in fact, quite simple, as
we explain in this paper. We find that in the presence of
strong disorder and localization, the distribution function de-
velops a strongly non-Gaussian form featuring long tails. In
such cases, it is well known that all moments of the distri-
bution can assume very large values while, at the same time,
a typical width of the distribution can remain very small.
Instead of the arithmetic average (i.e., standard deviation of
the distribution), we find that the typical value of the inter-
action is better characterized by the geometric average of the

distribution, 7,,,,(R) = e("/ 2m{IRF) This quantity is exponen-
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tially suppressed in the presence of Anderson localization,
explaining how the long-range part of the RKKY interaction
is suppressed.

To illustrate these ideas and obtain quantitative and reli-
able results, we numerically study the distribution of the
RKKY interactions within the Anderson insulator phase. Al-
though our numerical results are obtained within one dimen-
sional model, we argue that the same concept of the typical
value of the RKKY interaction can be used to physically
explain the qualitative change of the form of RKKY interac-
tions from long ranged to short ranged during the disorder-
driven metal-insulator transition in general dimensions. In
the rest of this paper, we present a detailed description of the
model, followed by the numerical results and discussion.

II. RKKY INTERACTIONS IN A DISORDERED
METAL

The interaction energy between two local moments S; and
S, embedded in the metallic host at r; and r,, respectively, is
given by the Hamiltonian

Hint:_JZSl'SZX(rlerz), (1)

where y is the zero frequency nonlocal electronic suscepti-
bility and J is the exchange coupling constant. Therefore, the
calculation of the interaction between diluted magnetic im-
purities reduces to the calculation of the susceptibility which,
expressed through the Matsubara Green’s functions, is given
by

2
x(ry.r;y) = EE G, (r;,r)G,, (ry,ry). 2)

@p

Here, w, is the fermionic Matsubara frequency, and 3 is the
inverse temperature.

In the clean case, i.e., in the absence of the nonmagnetic
disorder, in three dimensional system, and for R much larger
than the lattice spacing, the susceptibility is equal to

2mky cos(2kgR)

2m)R3 ’ )

XO(R) ==
where R=|r,-r,| and m is the effective mass.
In the presence of weak disorder, the phase of x(R) be-
comes random, and y(R) averaged over the disorder configu-
rations is exponentially suppressed,

(X(R) = x,(R)e~™", (4)

where [ is the mean free path.>® The second moment (vari-
ance) of the probability distribution, however, remains long
ranged and has the same power-law dependence as in the
clean system,*~¢

2
mkp } 1 )

(C(R)) = 3{ om | 7

Jagannathan et al.® have found that the square root of the
fourth moment of the distribution, N/<X_4>’ is comparable in
magnitude to the second moment. Therefore, the susceptibil-
ity distribution is non-Gaussian, but its typical value is well
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characterized by the square root of its second moment. The
same remains true in two dimensions as well.%

This statement is, however, not valid in the regime of
strong disorder. As shown by Lerner,” using the generalized
nonlinear o model and performing a 2+¢ expansion, further
increase of the disorder results in very rapid increase of all
the even cumulants of the distribution. More precisely, for
the cumulant {(}*)) of the order n,

X'R)
~e

R—nd ’ (6)

where the parameter u=1 as the disorder is increased and
the system approaches the Anderson transition.” In this case,
the typical value of the distribution cannot be determined by
the value of its moments.

III. NUMERICAL RESULTS

In order to examine the form of the RKKY interactions in
the regime of strong disorder, we proceed to a numerical
study. We consider a tight binding model

H=- tE (c:f(,cj(,+ He)+ D sicj(,cm (7)
({ij)o io

with nearest neighbor hopping ¢ and on-site random potential
g;, which is distributed uniformly in the interval
[-W/2,W/2]. We calculate the interaction between the mag-
netic impurities embedded into this system at distance R.
From Egs. (1) and (2), we see that all the information that we
need is contained in the single particle Green’s functions
G, (r;,r;). In the matrix notation, the Green’s function

G(w,) = (iw, - H)™', (8)

and the problem reduce to the numerical summation of the
corresponding matrix elements over Matsubara frequencies
w,, which will be done in the zero temperature limit. In order
to obtain good statistics with a large number of disorder re-
alizations and to reduce the finite size effects, we now con-
centrate to a one dimensional system.

The numerical results for the clean system, Fig. 1, repro-
duce the well known oscillatory form of the electronic sus-
ceptibility with the power-law decay with the distance,
X(R) ~ cos(2kiR)/R. Here, the power-law exponent is equal
to 1 since we are working within one dimensional model.
(The disorder strength W and the chemical potential w are
measured in units of half the bandwidth 2¢, and the distance
R in units of the lattice spacing. Our system had 500 lattice
sites.) We then consider the susceptibility (x(R)) in the pres-
ence of weak disorder averaged over hundreds of disorder
configurations. The average susceptibility weakens as the
disorder is increased.

In Fig. 2, we remove the 1/R dependence by multiplying
the average value () by R. For weak disorder, (x)R follows
an exponential decay as predicted long time ago by de
Gennes.> However, what we are really interested in are the
probability distributions of the electronic susceptibility in the
presence of stronger disorder.
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FIG. 1. (Color online) The average susceptibility as a function
of distance R in the presence of weak disorder of strength W. The
chemical potential is u=-0.96.

Figure 3 shows the probability distribution of the scaled
susceptibility P(xR) in the presence of strong disorder and
for several values of R. As in the remaining part of the paper,
the results are obtained by averaging over hundreds of dis-
order configurations on the lattice with 500-1000 Ilattice
sites. The width of the distributions are dependent on R.
More importantly, cursory examination of the data indicates
that the distributions are distinctly non-Gaussian. This fea-
ture is important for the following analysis, since the non-
Gaussian shape of the distribution prevents us from using the
standard deviation as a measure of the width of the distribu-
tions. Instead, we define a typical value of the width as the
geometrical average,

Xigp(R) = 210, ©)
Figure 4 shows a comparison of standard deviation and x,y,
for describing the width of the same distribution. We can see
that the standard deviation is influenced by the long tails and
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FIG. 2. (Color online) Scaled average susceptibility R{x(R)).
With the 1/R dependence gone, we can see that disorder introduces
a damping factor to the average interaction strength.
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FIG. 3. (Color online) Probability distribution P(yR) for
W=0.35 and u=-0.96. The distribution width is clearly dependent
on R.

is far too large to be a useful description of the width. x,,,
however, gives a good estimate of the width of the distribu-
tion.

Examining ¥,,, for different strengths of disorder (Figs. 5
and 6), we find that for each value of the disorder W,

RXyp(R) ~ e RE (10)

for sufficiently large R, where & defines the localization
length. Therefore, if we define an adjusted susceptibility,

Xa(R) = Re®éx(R), (11)

the distributions of y,(R) for large R will be entirely inde-
pendent of R within each disorder strength.

Comparing Figs. 3 and 7 shows how the use of this ad-
justed susceptibility causes these distributions to collapse to
a single scaling function. We then combine the data for sev-
eral distances R and thereby obtain more precise distribu-
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FIG. 4. (Color online) Distribution P(y) (full black line) for
R=100 and W=0.2. Gaussian (blue dotted line) is taken to have the
same standard deviation as P(x). X,y, (red dashed line) is a better
measure of the distribution width than its standard deviation.
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FIG. 5. (Color online) Ry, on linear axes. The width of the
distributions decreases with increasing R.

tions for each value of disorder W. For each disorder
strength, there is now a single characteristic distribution (in-
dependent of R) as shown in Fig. 8. Interestingly, the prob-
ability distributions are quite asymmetric in the presence of
stronger disorder, with ferromagnetic interactions being
much more probable than the antiferromagnetic ones. In the
strongly localize regime, we expect, in fact, the interactions
to be ferromagnetic for R smaller or of the order of the
localization length. The obtained distributions show this be-
havior even for R much larger that the localization length.
We then plot the tails of the distributions and find that for
very strong disorder, they become very long, as shown in
Fig. 9. The tails of the distribution appear to converge to a
universal power law form in the limit of, strong disorder. The
form of the tails is qualitatively the same for positive and
negative sides of the distribution. The existence of such long
tails indicates that the width of the distributions for higher
disorder cannot be accurately characterized by their mo-
ments. The moments of such a distribution are extremely
large, while the typical value is, in fact, very small. There-
fore, the long-range part of the RKKY interactions is
strongly suppressed in the strong localization regime.
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FIG. 6. (Color online) Ry, on semilogarithmic axes. Ry, fea-
tures an exponential decay with R.
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FIG. 7. (Color online) Scaled P(x,) for W=0.350. After scaling,
the distributions collapse.

We have also compared our result for the mean free path
1, obtained from Eq. (4), and the localization length &, from
Eq. (10). Plotting / and £ as a function of W, see Fig. 10, we
find that / and ¢ are both proportional to W=2 and find that
&/1=3.685, which is in a good agreement with the analytical
result &£/1~4.8 This analysis further confirms the consistency
of our interpretation of &, as determined from the decay of
the typical RKKY interaction amplitude, with the localiza-
tion length of the electronic system.

IV. CONCLUSION

In this paper, we have examined how the distribution
function for RKKY interactions becomes modified due to
Anderson localization effects. We demonstrated that the es-
sential effect of localization is to exponentially suppress the
typical amplitude of RKKY interactions on distances longer
then the localization length, in agreement with intuitive ex-
pectations. The distribution, nevertheless, remains “broad” in
the sense that it develops long tails which dominate the sta-
tistics. Our numerical results thus confirm the analytical pre-
dictions of Lerner that all even moments of the distribution

P(x,)
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FIG. 8. (Color online) P(x,) for several values of W. The dis-
tributions are strongly peaked for higher disorder.
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FIG. 9. (Color online) Tails of distributions on log-log axes. For
higher disorder, the tails become increasingly long.

diverge within an Anderson insulator.

Our results portray an interesting physical picture with
potentially far-reaching consequences. In the metallic re-
gime, the RKKY interactions remain long ranged even in
presence of weak disorder, and thus a given magnetic mo-
ment effectively interacts with many others. In this regime,
one may expect a well developed collective behavior of the
spin system, leading to magnetic ordering at low tempera-
ture. When the Anderson-localized regime is approached, the
situation is quite different. The RKKY interaction between a
typical pair of distant spins is now significantly suppressed
or even negligibly small. Very occasionally, a pair of distant
spins will interact strongly due to rare disorder configura-
tions producing long tails in the distribution function. If the
resulting RKKY interaction is antiferromagnetic, then such a
pair can be expected to lock in a tightly bound singlet—thus
forming an essentially inert molecule that practically de-
taches from the rest of the spin system. Such processes are
precisely what one expects within the random singlet
phases®'>  which feature quantum  Griffiths phase
anomalies.!? Alternatively, a ferromagnetic interaction will
lead to the formation of a bound triplet state, essentially a
spin S=1 magnetic moment. It is interesting to note a degree
of asymmetry of the distribution of the RKKY interactions
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FIG. 10. (Color online) The mean free path / and the localiza-
tion length ¢ as a function of the disorder strength. Both / and & are
found to be proportional to W=2.

that we have found at strong disorder. This finding seems to
indicate that ferromagnetic correlations may effectively com-
pete with the tendency for singlet formation, possibly leading
to nanoscale ferromagnetism'# coexisting with a random sin-
glet phase.

We thus anticipate that Anderson localization processes
generically destabilize spin glass ordering in disordered met-
als, which is instead replaced by an appropriate quantum
Griffiths phase. Precisely how these processes take place in
the vicinity of realistic metal-insulator transitions remains a
fascinating open direction for future study.
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