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Electron-electron interactions generally reduce the low temperature resistivity due to the screening of
the impurity potential by the electron gas. In the weak-coupling limit, the magnitude of this screening
effect is determined by the thermodynamic compressibility which is proportional to the inverse
screening length. We show that when strong correlations are present, although the compressibility is
reduced, the screening effect is nevertheless strongly enhanced. This phenomenon is traced to the same
nonperturbative Kondo-like processes that lead to strong mass enhancements, but which are absent in
weak-coupling approaches. We predict metallicity to be strongly stabilized in an intermediate regime
where the interactions and the disorder are of comparable magnitude.
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Transport in disordered metals has been studied for
many years, and substantial theoretical and experimental
understanding has been achieved [1] in the case of weak
disorder and in the regime of weak electron-electron
interaction. Much less is known about situations with
strong electronic correlations; here, most research has
concentrated on clean systems.

Recent experiments on two-dimensional (2D) electron
gases in the zero magnetic field [2] have led to consid-
erable renewed interest in electronic systems close to
metal-insulator transitions (MITs). In these systems,
well-defined metallic behavior (positive temperature
coefficient of resistivity, dp/dT > 0) has been observed
in the low density regime, and is characterized by a
surprisingly large (up to a factor of 10) drop of resistivity
at low temperatures. Here, the electron-electron in-
teractions represent the largest energy scale in the
problem [2]; this is emphasized by recent reports of
substantial mass enhancement from several complemen-
tary experiments [3].

Some simple microscopic mechanisms that can pro-
duce such a resistivity drop relate to temperature-
dependent screening [4—7] of the random potential. This
effect obtains even in the simplest Hartree-Fock (HF)
treatment of interactions, which represents the basis for
the standard (Lindhard) screening theory, and applies
equally well to both short-range [6] and long-range [4]
forces. In this picture, the screening length is inversely
proportional to the thermodynamic compressibility of the
system, which therefore controls the magnitude of disor-
der screening. This observation immediately brings into
question the relevance of such mechanisms in the regime
of strong correlation, in particular, close to interaction-
driven MITs. Here, one expects substantial mass en-
hancements, but at the same time a significant decrease
of the compressibility [8]. Then, if applicable, standard
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screening theory (as in HF) would predict weak disorder
screening precisely where mass is enhanced—in contrast
to experiments, where the resistivity drop persists in that
region (see Fig. 3, below).

In this Letter, we examine the screening of the impu-
rity potential by focusing on a model where a reliable and
controlled treatment of strong correlations is available.
This is possible within dynamical mean-field theory
(DMFT) [8], which is formally exact in the limit of large
coordination. To investigate the regime of strong correla-
tion, we examine a disordered Hubbard model in the
vicinity of the Mott transition, a model which has re-
cently been argued [6,9-11] to provide an appropriate
description of interaction effects near the 2D-MIT. Our
results demonstrate the following: (i) If DMFT equations
are solved within the HF approach, we reproduce the
results of standard screening theory in qualitative and
even semiquantitative detail; in this picture, screening
is strongly suppressed close to the Mott transition. (ii) A
more accurate solution agrees with HF results far from
the Mott transition, but finds diametrically opposite re-
sults in the regime of strong correlation. Here, while
compressibility is reduced, both the disorder screening
and the effective mass are strongly enhanced. (iii) The
enhanced screening strongly stabilizes metallic behavior
in the intermediate regime where the disorder and inter-
actions are of comparable magnitude.

We consider a disordered Hubbard model described by
the Hamiltonian

— 1
H= _Ztijcia'cjo' + Zsinw + UZnﬂnil. (1)
ijo ioc i
Here 1;; are the hopping matrix elements, ¢ and ctare
fermionic creation and annihilation operators, n = cleis

the number operator, and o labels the spin projection. U
represents the Hubbard on-site repulsion, and the disorder
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is introduced by random site energies ¢;, as specified by a
distribution function P(g;).

Disorder renormalization (screening)—Within DMFT
[8], a quasiparticle is characterized by a self-energy
function 3 (w), which is assumed to be purely local (mo-
mentum independent). In a random system [12], this
quantity, though still local, is now site dependent
3(w) = 2(w, &;) which explicitly depends only on the
corresponding local site energy ¢; [13]. The renormalized
disorder potential (as seen by the quasiparticle at the
Fermi energy) can thus be defined by

vi(e)) = & + 2i(w = 0) — u — dp, 2
where w is the chemical potential. These renormalized
energies are defined with respect to a reference energy
& chosen such that ; = [ de; P(g;)v(g;) = 0, i.e., that
their site average vanishes. In a case of particle-hole
symmetry 6w = 0. Since there are no vertex corrections
within DMFT, the T = 0 dc resistivity [8,12] depends
only on the variance of this renormalized disorder,
viz. p ~ v2. The self-energies X;(w) must be calculated
by solving an ensemble of Anderson impurity problems
supplemented by a self-consistency condition [8,12].

Weak coupling (Hartree-Fock) solution.—In the HF
approximation for the Hubbard model, 3;(w) = U(n;);
here (- - -) represents the quantum average (for a given
disorder configuration). Within DMFT, the local occupa-
tion (n;) depends only on the local (renormalized) site
energy, and for moderate disorder [6] we find

72
=0 +Ux]I> 3)

i

where y;; = —d{(n;)/de; is the local compressibility [14].
This result, although based on a local approximation,
proves to provide qualitative and even semiquantitative
agreement with more standard screening theory. Just as in
Refs. [4-6], for reasonable values of the interaction
strength (U =< bandwidth), the screening of the random
potential cannot be very large (resistivity drop by a factor
of 2 at most [4]).

Strongly correlated regime—We approach a T =0
Mott transition at half filling. In general, the DMFT
equations cannot be solved in closed form, but extensive
work [8] has shown that most qualitative and even quan-
titative features of the T = 0 solution can be reproduced
using simple analytical approximations. Here, we use
the four-boson mean-field method of Kotliar and
Ruckenstein (KR) [15], which is equivalent to the well-
known Gutzwiller variational approximation, but can be
readily generalized to disordered systems. This approach
provides a parametrization of the low-energy (quasipar-
ticle) part of the local Green function which, in our case,
takes the form (A =c = 1)

Zi

Gilwn) = iw, — & — ZAw,)

“

Here, the local quasiparticle weight Z; = 2[1 — (e? —
066603-2

d?)?]1 Ye; + d,)*[1 — (e? + d?)], as well as parameters
e;, d;, and E;, are site-dependent [14] quantities, deter-
mined by the KR equations [15]
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Half filling can be enforced by the requirement e? = a.
Finally, a self-consistency condition [12] determines the
“hybridization function” A(w) = A, [w — 3., (w)] de-
scribing the environment of a given site. Here A (w) =
o+ u—[G,(0)]!, G,(w) being the lattice Green’s
function corresponding to no disorder and U = 0. The
“average” self-energy 3,,(w) is defined via the disorder-
averaged Green’s function G(w) = [de; P(e;)G;(w):
G(w) =G,[lo =3, (0)]. Thus, 3,(0) =+ u—
Alw) — [G(w)] L. It follows that Su =
[de; P(g;)§;/Z;, and v; = &,/Z; — Sp.

Phase diagram.—These equations can be easily solved
for an arbitrary band structure and distribution of disor-
der, but such details do not affect the qualitative form of
the solution, which proves to depend only on the presence
or absence of particle-hole symmetry. We first examine
the particle-hole symmetric situation, and as an illustra-
tion we concentrate on a model with a semicircular band
of width 4 at half filling, and site energies uniformly
distributed in the interval (—W/2, W/2). The resulting
T = 0 phase diagram, as obtained from a full numerical
solution, is shown in Fig. 1. The Mott insulating phase is
completely suppressed for W > U, since the disorder
tends to fill in the Hubbard-Mott gap. The phase boundary
separating the correlated metal and the Mott insulator
(full line) is identified by the simultaneous vanishing of
the quasiparticle weights Z; on all lattice sites. All quan-
tities display simple critical behavior close to this phase
boundary, the form of which can be analytically obtained
for weak disorder, but which proves to remain qualita-
tively correct along the entire critical line. To second
order in g;, we find Z; = Zy(1 + Ce?), where Z, =
Zi(g; =0)=2(1 —U/U,) linearly goes to zero at the
critical interaction U, (W) = U(1 + 2Cz?). This corre-
sponds to the well-known effective mass enhancement
(m* ~1/Z) in the strongly correlated regime. Here the
constant C = 10/(U%)?, and U? = 64t/3 for the con-
sidered band structure.

Scattering rate—To determine the effects of correla-
tions on transport, we calculate the scattering rate 1/7 =
1/7=—-2Im3,, (0 = 0) = —2Im G,(0)v?. We find that
scattering is strongly reduced near the Mott transi-
tion, corresponding to correlation-enhanced screening.
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FIG. 1. DMEFT phase diagram of the Hubbard model with
random site energies. The Mott insulator can be suppressed by
sufficiently strong (bare) disorder W > U. Also shown is an
estimate of the regime where Anderson localization effects are
important, as obtained by comparing the Fermi energy Er to
bare disorder W (dotted line) or screened disorder W (dashed
line). Localization is strongly suppressed by correlation effects
in the intermediate regime where the disorder is comparable to
the on-site repulsion U.

To show this analytically, we note that in the critical
regime the spectral weight corresponding to A(w) is of
the order of Z,. We expand Eq. (7) with respect to &;/Z;:
To leading order, &;/Z; ~ —e? + d? ~ O(Z;). Therefore
&/Z,=v;,~Z;— 0 as U— U,W), and we conclude
that random site energies are perfectly screened at the
metallic side of the Mott transition [16]. The same con-
clusion remains valid even for an asymmetric distribution
of disorder, in which case particle-hole symmetry is
restored as the transition is approached. For weak disor-
der, we obtained a simple formula for the scattering rate
close to the Mott transition:

1  2[3mt U\T?
= ==(1-=] &%
r t[4Uc< Uﬂ K ®

Typical numerical results obtained for disorder ranging
from weak to strong are shown in Fig. 2(a). We find that
disorder is strongly screened even relatively far from the
transition, for U/U (W) = 0.5.

Particle-hole asymmetry—For a particle-hole asym-
metric model (generally appropriate for realistic mate-
rials), we find that for U — U.(W) the energies v; remain
finite, although still much smaller than W. The disorder
screening nevertheless remains very strong, which per-
sists even in the case of fairly strong particle-hole asym-
metry and strong disorder. Typical numerical results are
shown in Fig. 2(b), where the full line corresponds to the
symmetric semicircular density of states, and the dashed
line is obtained for the particle-hole asymmetric lattice
described by the Green function G,,(w)=[w —
2G,(w + a)]™!. In this plot, the asymmetry parameter
a is chosen to be 0.15D (strongly asymmetric lattice),
where D is the bandwidth. For weak disorder and mod-
erate particle-hole asymmetry, we were able to obtain a
quantitative estimate of the screening effect, and we find
that close to the transition the scattering rate approaches a
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FIG. 2. Scattering rate normalized with the noninteracting
value. (a) From the lower to the upper curves: W = 0.1, 1, 2, 4.
(b) Results close to U, for the particle-hole symmetric lattice
(full line), and the asymmetric lattice (dashed line), with
W = 1. The inset shows the density of states in these two cases.

very small asymptotic value 1/7 ~ (Su)*g} ~ W?, in-
stead of 1/7 ~ W? as for weak interactions. In addition,
for any realistic lattice at half filling, du is a small
number ( = 0.1), explaining the smallness of the scatter-
ing rate.

Breakdown of conventional theory—In the strongly
correlated regime our DMFT results are in sharp discrep-
ancy with results obtained within Hartree-Fock, as
shown in Fig. 3. For small U, both methods give similar
results, but closer to the transition HF theory (dashed
line) predicts a reduced disorder screening, while full
DMFT (full line) shows that the screening remains
strongly enhanced. The reduction of screening found in
HF reflects the decrease of the compressibility near the
Mott transition. This is a result of a Stoner instability
in the magnetic HF solution, which sets in for U =
1/po(0) = wD/2 as a precursor to a gap opening at the
transition [17]. We emphasize that the direct relation
between compressibility and screening as in Eq. (3) is a
general feature of weak-coupling approaches, and its
applicability is seriously limited in the strongly corre-
lated regime.

Enhanced screening as ‘“Kondo pinning”—In the
DMFT approach [8] that we use, the solution of the full
Hubbard model is mapped to solving an ensemble [12]
of auxiliary Kondo-Anderson impurity problems.
Accordingly, the approach to the Mott transition can be
described as the decrease of the local Kondo temperature,
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FIG. 3. Normalized scattering rate for weak disorder as a
function of U, from the full DMFT solution (full line), and
the corresponding Hartree-Fock (HF) approximation (dashed
line). For moderate interaction both methods predict the same
screening, but diametrically opposite results are obtained in the
strongly correlated regime, where DMFT predicts enhanced
screening, while a strong suppression is obtained within HF
theory.

corresponding to the reduction of the local quasiparticle
weight. In this language, the renormalized energy level v;
can be identified as the position of the Kondo resonance,
which is well known to “pin” to the Fermi energy in the
Kondo limit Z; — 0. We can thus interpret the surprising
enhancement of disorder screening in the strongly corre-
lated regime as reflecting the nonperturbative Kondo
physics captured by our DMFT method, but not by stan-
dard weak-coupling theories. This mechanism is very
closely related to the Kondo enhancement of resonant
tunneling through quantum dots, as observed in recent
experiments [18]. Our discussion makes it clear why site
randomness is strongly suppressed, but also indicates that,
if additional hopping randomness [12] is introduced, the
same mechanism would not apply, as we have verified by
explicit calculations. In realistic systems, we expect the
disorder to be strongly but not perfectly screened even in
the vicinity of the Mott transition.

Screening and localization—The DMFT approach is
too simple to describe Anderson localization effects,
which cannot be neglected for strong enough randomness.
Nevertheless, it is interesting to estimate the disorder
strength necessary for localization. In the absence of
interactions, localization is expected [1] to set in when
the disorder scale W is comparable to the kinetic (i.e.,
Fermi) energy, as indicated by a dotted line in Fig. 1.
However, we have shown that correlations lead to strong
screening, with a renormalized disorder scale W ~
(v?)'/? < W, which we can numerically compute for
any U and W, and analytically in several limits. In
particular, in the atomic limit (Er — 0), we find W~
(1 — U/W)3/2 In the presence of interactions, the onset of
localization should be estimated by comparing W to Ep,
and the resulting boundary is shown by a dashed line in
Fig. 1. Interestingly, the metallic phase is found to be
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strongly stabilized by screening in the intermediate re-
gime W ~ U. Of course, such interplay of correlation and
localization should be studied in more detail by exten-
sions of DMFT which can explicitly incorporate the lo-
calization effects [19], but this fascinating issue remains a
challenge for future work.
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