
Compaction of Anisotropic Granular Materials: Symmetry Effects 

Lj. Budinski-Petković1, M. Petković2, Z.M. Jakšić3 and S.B. Vrhovac3,a 

1Faculty of Engineering, Trg D. Obradovića 6, Novi Sad 21000, Serbia and Montenegro 

2DMS group, Puškinova 9A, Novi Sad 21000, Serbia and Montenegro 

3Institute of Physics, P.O. Box 68, Zemun 11080, Belgrade, Serbia and Montenegro 

avrhovac@phy.bg.ac.yu 

Keywords: Granular Compaction, Granular Materials, Lattice Model. 

Abstract. We perform numerical simulation of a lattice model for the compaction of a granular 

material based on the idea of reversible random sequential adsorption. Reversible random 

sequential adsorption of objects of various shapes on a two−dimensional triangular lattice is studied 

numerically by means of Monte Carlo simulations. The growth of the coverage ρ(t) above the 

jamming limit to its steady−state value ρ∞ is described by a pattern ρ (t) = ρ∞ − ∆ρEβ[−(t/τ)
β
], 

where Eβ denotes the Mittag−Leffler function of order β ∈ (0, 1). For the first time, the parameter τ 

is found to decay with the desorption probability P− according to a power law τ = A P−
−γ
. Exponent 

γ is the same for all shapes, γ = 1.29 ± 0.01, but parameter A depends only on the order of symmetry 

axis of the shape. Finally, we present the possible relevance of the model to the compaction of 

granular objects of various shapes. 

Introduction 

A large variety of physical, chemical and biological processes can be modeled by random 

sequential adsorption (RSA) on a lattice [1]. In this process particles are adsorbed, one at a time, at 

randomly chosen sites of a d−dimensional lattice, subject to constraints imposed by interaction with 

previously deposited particles. The adsorbed particles are permanently fixed at their spatial 

positions and the deposition process ceases when all unoccupied spaces are smaller than the size of 

an adsorbed particle. For lattice models, the asymptotic approach of the density ρ (t) to its jamming 

limit ρjam is known to be given by exponential time dependence:  

 

ρ (t) ∼ ρjam − ∆ρ exp(−t/σ),                                                     (1) 

 

where ∆ρ and σ are parameters that depend on the shape and orientational freedom of de positing 

objects [1, 2]. 

 The deposition of proteins and colloids from solution onto solid surfaces often involves 

alternating adsorption/desorption steps. The kinetics of the reversible RSA is governed by the ratio 

of adsorption/desorption rate, K = k+/k− [3,4]. For large values of K, there is a rapid approach to 

density ρ ≅ ρjam, followed by a slow relaxation to a larger steady−state value ρ∞. At very early times 

of the process, when the coverage is small, the adsorption process is dominant and the coverage 

grows rapidly in time; for large enough densities (ρ > ρjam) the compaction mechanism requires the 

rearrangement of the increasing number of particles in order to open a hole large enough for the 

insertion of an additional particle, and the role of desorption is crucial. 

 Understanding the kinetics of irreversible/reversible RSA of shapes other than the line 

segments on a 1D lattice lacks rigorous results by analytical methods and the numerical simulations 

remain one of the primary tools for investigating these problems. The numerical analyses for the 

RSA of extended objects on the triangular lattice [5] establish that the coverage ρ (t) follows the 

exponential law (1) at long times with the rate σ dependent mostly on the order of symmetry of the 

shape. A number of papers [5-7] concerning irreversible or reversible RSA also confirm the crucial 
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role of the geometrical character of objects in RSA dynamics. In some numerical studies of RSA a 

power−law dependence is observed even on a discrete lattice [7,8]. To the best of our knowledge, 

there are no reports on reversible RSA of extended objects of shapes other than line segments [3, -

9] on a triangular lattice. 

Definition of the model and the simulation method 

In this paper we present the results for the Monte Carlo simulations of the reversible RSA of 

extended objects on a triangular lattice. The depositing objects are formed by self−avoiding random 

walks and we concentrate on the influence of the shape on the kinetics of the adsorption−desorption 

process. For a small number of steps it is easy to find all the shapes that may show different time 

behavior of ρ (t), which enables a systematic approach to this problem. We performed numerical 

simulations for all such shapes of length l = 1, 2 and 3, covering two, three and four lattice sites, 

respectively. On a triangular lattice shapes with a symmetry axis of first, second, third and sixth 

order can be formed. The simulations are also performed for a few more objects of greater lengths, 

including one more object with a symmetry axis of third order and two objects with symmetry axis 

of sixth order. All these objects are shown in Table 1. The Monte Carlo simulations are performed 

on a triangular lattice of size L = 120. Periodic boundary conditions are used in all directions and 

objects are not allowed to overlap. At each Monte Carlo step, adsorption is attempted with 

probability P+ = 1 and desorption with probability P−. The time t is counted by the number of 

adsorption attempts per lattice site. 

Results and Discussion 

The time behavior of the density ρ (t) for various objects in Table 1 is illustrated in Fig. 1, where a 

relatively low value of P− has been used (P− = 0.0005). We have tried to fit different functional 

forms to the simulation data in Fig. 1, looking in particular at the relaxation functions proposed in 

the experimental and numerical studies of complex systems [10]. We have found that the commonly 

claimed stretched exponential relaxation does not hold for many objects, especially for those with 

the symmetry axis of higher order (ns ≥ 3). Instead, the most suitable functional form for our data is 

a Mittag−Leffler function, which is a natural generalization of the exponential function [11]. The 

fitting function that we have used is: 

 

ρ (t) = ρ∞ − ∆ρ Eβ [−(t/τ)
β
],   ∆ρ =ρ∞ − ρ0,                                               (2) 

 

where ρ∞, ρ0, τ, and β are the fitting parameters. Eβ denotes the Mittag−Leffler function of order β. 

The Mittag−Leffler function interpolates between the initial stretched exponential form ∼ 

exp[−(t/τ)β/Γ(1+β)], t << τ, and the long−time power−law behavior ∼ (t/τ)−β/Γ(1−β), t >> τ. This 

property of Mittag−Leffler function enables us to rewrite Eq. (2) as 

 

ρ (t) = ρ∞ − ∆ρ exp[−(t/τ)β/Γ(1+β)], t << τ,                                               (3) 

ρ (t) = ρ∞ − ∆ρ (t/τ)
−β
/Γ(1−β), t >> τ.                                                        (4) 

 

 The solid lines through the data in Fig. 1 are fits to Eq. (2). All fits have been performed for  

ρ (t) ≥ ρjam. As it can be seen, the intermediate−long time behavior can be accurately fitted by the 

Mittag−Leffler function (2). The fitting parameters τ and β are given in Table 1 for two values of 

desorption probability: P− = 0.0005, 0.001. The parameter ρ∞ is the equilibrium value of ρ (t) when 

t → ∞, and ρ0 ≈ ρjam. The accurate estimates for the jamming coverages ρjam can be found in [5]. 

 According to τ, all shapes from Table 1 can be divided into four groups. In particular, when 

P− = 0.0005 we distinguish: (i) shapes with a symmetry axis of first order, ns = 1, with τ ≤ 764; (ii) 

shapes with a symmetry axis of second order, ns = 2, with τ ∈ [807 − 1198]; (iii) shapes with a 

symmetry axis of third order, ns = 3, with τ ∈ [833 − 1500]; and (iv) shapes with a symmetry axis of  

Recent Developments in Advanced Materials and Processes356



sixth order, ns = 6, with τ ≥ 1550. We notice that the time τ physically signals the crossover from a 

stretched exponential scaling (3) to a power law behavior (4). If only β ≠ 1, the relaxation has an 

algebraic decay. The shapes of higher order of symmetry ns have higher values of τ. This means that 

the dynamics gets drastically slower when ns increases. The crossover time τ is also sensitive to 

variations of desorption probability P− and decreases with increasing P− for the same type of shape.  

The data for k−mers (objects 1, 2, 5, 14, 15, and 19 in Table 1) suggest that the parameter τ 

is almost independent on the size of the shape. However, the fitting parameter β strongly depends 

on both the symmetry order and the size of the object. The parameter β decreases with the size and 

with the order of symmetry axis of the shape, which means that the evolution towards the 

steady−state density ρ∞ takes place on a much wider time scale. 

 

Table 1 Parameters τ and β determined using Eq. (2) for various shapes on a triangular lattice and 

for two different values of P−. The colors (online only) are associated with the different order ns of 

symmetry axis. 
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Fig. 1 (Color online) Temporal behavior of density ρ(t) for desorption probability P− = 0.0005 for 

various shapes from Table 1: 4 (Ο), 9 (�), 17 (◊), 18 (∆) and 19 (∇). Continuous curves are the 

Mittag−Leffler fits of Eq. (2), with the parameters given in Table 1. 

 

 In order to gain a better understanding of the symmetry effects, we investigated the 

dependence of the fitting parameters τ and β on desorption probability P−, in detail. The data for τ 

and β vs P− for various objects are plotted in Fig. (2). The increase of β with P− is more pronounced 

for objects with higher order of symmetry axis. For large values of P−, parameter β reaches a value 

close to 1. Since Eβ [−(t/τ)
β
] → exp(−t/τ) when β → 1, the multi−stage relaxation feature disappears 

in the regime of strong desorption. It is remarkable that the parameter τ, for a given symmetry 

order, seems to be a simple power law of the desorption probability P−: 

 

τ = A(P−)
−γ
                                                                              (5) 

 

with the same exponent γ = 1.29 ± 0.01 for all shapes. 

 The dependence of the fitting parameters τ and β on the desorption probability P− is shown 

in Fig. 3 for the reversible deposition of k−mers (k=2−7). The first observation is the collapse of the 

τ vs P− curves. This means that the parameter A of the power law (5) can be considered as almost 

independent of the size of k−mers. As seen in Figs. 2 and 3, the parameter A depends only on the 

order of symmetry axis of the shape. We have obtained that A = 0.038, 0.058, 0.076, 0.083 for ns = 

1, 2, 3, 6, respectively. 
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Fig. 2 (Color online) Parameters τ (empty symbols) and β (full symbols) of fit (2) vs desorption 

probability P− for several shapes from Table 1. Triangles, squares, circles and diamonds correspond 

to shapes (1), (3), (4) and (20) in Table 1, respectively. 
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Fig. 3 Parameters τ (lines) and β (symbols) of fit (2) vs desorption probability P− for k−mers (k = 2, 

3, 4, 5) on the triangular lattice. Triangles, squares, circles and diamonds (or solid, dashed, dotted 

and dot−dashed lines) correspond to k = 2, 3, 4, 5, respectively. 
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It is now useful to explore the possible reason for slowing down of the deposition dynamics 

with increasing order of symmetry of the shape. When a value ρjam is reached, the rare desorption 

events are generally followed by immediate readsorption. The total number of particles is not 

changed by these single particle events. However, when one bad sited object desorbs and two 

particles adsorb in the opened good locations, then the number of particles is increased by one. 

Likewise, if two good-sited objects desorb and a single object adsorbs in their stead, the number of 

particles is decreased by one. These collective events are responsible for the density growth above 

ρjam. The symmetry properties of the shapes have a significant influence on the filling of small 

isolated targets on the lattice. Indeed, there is only a restricted number of possible orientations in 

which an object can reach a previously opened location, provided the location is small enough. For 

a shape with symmetry axis of higher order there is a greater number of possible orientations for 

deposition onto an isolated location and an enhanced probability for readsorption. Hence, the 

increase of the order of symmetry of the shape enhances the rate of single particle readsorption. 

This extends the mean waiting time between consecutive two−particle events and causes a slowing 

down of the densification. 

Conclusion 

We have performed extensive simulations of reversible RSA using objects of different sizes and 

rotational symmetries on a triangular lattice. A systematic approach is made by examining a wide 

variety of object shapes. The large number of examined objects represents a good basis for testing 

various fitting functions and finding a universal functional type that describes the time coverage 

behavior ρ (t) in the best way. We have fitted the time dependences of the coverage fraction above 

the jamming limit ρjam with the Mittag−Leffler function (2). Simulation shows that the coverage 

kinetics strongly depends on the symmetry properties of the shapes. It has been also shown that the 

dynamical behavior is severely slowed down with the increase of the order of symmetry of the 

shape. We have also pointed out the importance of collective events for governing the time 

coverage behavior of shapes with different rotational symmetry. 

 As an open possibility for the future, we think that the two−dimensional model presented in 

this work can be generalized to mixtures of several kinds of objects [5]. This would allow us to 

study the compaction process in polydisperse granular systems under tapping [12]. 
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