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Abstract. We construct asymptotic (long-time) solution of the linear Boltzmann equation using the time-
dependent perturbation theory generalized to non-Hermitian operators. We prove that for times much
larger than the relaxation time τ0, t � τ0, one-particle distribution function separates into spatio-temporal
and velocity dependent parts, and provide the explicit expression for the long-time solution of the linear
Boltzmann equation. Our analysis does not assume that relative density gradients n−1(∂/∂�r)n are small. It
relates the hydrodynamic form of the one-particle distribution function to spectral properties of operators
involved in linear Boltzmann equation.

PACS. 51.10.+y Kinetic and transport theory of gases – 05.20.Dd Kinetic theory

1 Introduction

An important problem in non-equilibrium statistical me-
chanics is the quantitative description of transport prop-
erties of an impurity immersed in a bath of fluid particles
and subjected to the action of one or more external fields.
The transport of impurities is a common non-equilibrium
problem and appears in various fields of physics. A typi-
cal example is the charged particle swarm in neutral gases.
The kinetic theory of charged particle swarms (electrons,
ions, positrons, muons, etc.) in the presence of electric and
magnetic fields has been developed substantially over the
last forty years. The reader is referred to the reviews of
Kumar et al. [1,2] and White et al. [3].

In recent years, intensive theoretical and numerical
studies of granular swarms have been carried out with the
aim of clarifying the form and validity of a hydrodynamic
description for granular gases [4–9]. Drift and diffusion of
impurities in a dilute granular gas is the simplest example
of non-equilibrium transport in a multicomponent gran-
ular gas. Understanding the transport theory of granular
swarms is a necessary step in describing rapid flows in real
granular mixtures.

The swarm particles may be subject to the gravita-
tional force and/or, if they are ions, to electric and/or
magnetic fields. We indicate with �F ext the total exter-
nal force acting on a swarm particle of mass m. Swarm
particle concentrations are assumed sufficiently low that
both the mutual interactions between the swarm particles
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and the influence of the swarm on the background fluid
can be neglected. Under these conditions (tracer limit),
the Boltzmann equation corresponding to the one-particle
distribution function f(�r, �v, t) of swarm particles can be
written as

[
∂

∂t
+ �v · ∂

∂�r
+ �a · ∂

∂�v

]
f(�r, �v, t) = J [f ](�r, �v, t). (1.1)

Here vector �a = �F ext/m is the acceleration on a particle
produced by external field, which is assumed to be both
space and time independent. The scalar operator J is local
in space and in time and accounts for the rate of change
of f due to various types of collisions between swarm par-
ticles and background fluid particles. By virtue of the low
swarm particle concentrations it is linear operator which
acts on f only through its �v dependence. This property
of linearity is shared by many systems studied in kinetic
theory such as neutron or radiation transport and Lorentz
gas model.

In swarm physics there are two timescales, a mean free
time, and a macroscopic time which is usually drift time.
Since energy is constantly being added by an external
field, these systems do not approach equilibrium. How-
ever, after several collision times the velocity distribution
relaxes to a ‘local steady state’, in which the energy gained
by the swarm from external field is balanced by the energy
loss due to collisions with the background fluid. This state
is called the hydrodynamic regime (HDR) by analogy with
the hydrodynamics of neutral gases.
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It is usually assumed that the space-time depen-
dence of swarm one-particle distribution function is given
by [1,2]:

f(�r, �v, t) =
∞∑

p=0

f̂ (p)(�v) �p

(
− ∂

∂�r

)p

n(�r, t). (1.2)

The coefficients f̂ (p)(�v) are velocity-dependent tensors of
rank p and �p indicates a p-fold scalar product. It should
be noted that the space-time dependence of f(�r, �v, t) in
HDR is entirely carried by the number density. In contrast,
the hydrodynamic regime of neutral gas is described by
a coupled set of equations for five fields (n, �u and T ).
The Chapman-Enskog method constructs these equations
in successive approximations (Euler, Navier-Stokes etc.),
where the linearized collision operator plays a distinctive
role. Similarly, a coupled set of equations can be derived
for f̂ (p)(�v) with the operator M = −�a · ∂/∂�v + J playing
a role similar to that of the linearized collision operator in
neutral gas theory.

Density gradient expansion (1.2) is a priori assumed for
one-particle distribution function f(�r, �v, t) in the HDR.
This form of functional relationship makes it possible
to derive transport coefficients which are independent of
time. Hydrodynamic regime does not pre-suppose small
relative gradients n−1(∂/∂�r)n, yet equation (1.2) can be
expected to hold only when density gradients are small.
Our aim is to construct the hydrodynamic form (1.2)
of one-particle distribution function from the more ba-
sic principles rather then to impose it. The question that
concerns us in the present paper is to reveal which in-
trinsic properties of the operators present in the kinetic
equation (1.1) are sufficient for the validity of the den-
sity gradient expansion (1.2). The starting point for this
work comes from Kumar [10], who related the character-
istic time of approach to HDR to the inverse of a gap in
the spectrum of the aforementioned operator M, i.e. to
the distance between the lowest eigenvalue and the rest of
the spectrum.

The analytical method used in the present paper
builds on our previous works on the transport theory
of swarm particles [11,6,12], where we have constructed
transport theory of swarm particles as an initial value
problem for a linear Boltzmann kinetic equation, using the
time-dependent perturbation theory generalized to non-
Hermitian operators. This general theory is used in this
paper to clarify the concept of a hydrodynamic description
of the swarms in its most general sense, and to establish
the sufficient conditions for its validity. Finally, we want
to mention that the problem of long-time behavior of one-
particle distribution function has been studied for some
special cases of linear kinetic equation [13]. However, our
approach is applicable for arbitrary linear kinetic operator
and requires usual assumptions on the spectral properties
of operators involved in kinetic equation.

The plan of the paper is as follows. In Section 2 we
briefly introduce the results from our earlier work, which is
than used in Section 3 to construct the long-time solution

of a linear Boltzmann equation. Finally, in Section 4 we
discuss the obtained results and present conclusions.

2 Time-dependent perturbation treatment
of linear Boltzmann equation

In this section we give a brief summary of the relevant
results from our earlier work [6,12].

The starting point for our theory is the Fourier trans-
form of equation (1.1)

∂

∂t
Φ�q(�v, t) = L�q Φ�q(�v, t), (2.1)

where Φ�q(�v, t) is the spatial Fourier transform of the one-
particle distribution function

Φ�q(�v, t) =
∫

d�r e−i�q·�rf(�r, �v, t). (2.2)

In equation (2.1) the operator L�q is

L�q = M + P�q, (2.3)

with

MΦ�q(�v, t) = −�a · ∂
∂�v
Φ�q(�v, t) + JΦ�q(�v, t), (2.4)

P�q Φ�q(�v, t) = −i�q · �v Φ�q(�v, t). (2.5)

It is convenient to interpret Φ�q(�v, t) as the velocity-space
representation of the corresponding proper vector |Φ�q(t)〉
in an abstract Hilbert space H, i.e., Φ�q(�v, t) = 〈�v|Φ�q(t)〉.
In Hilbert space H, the scalar (inner) product between
two arbitrary vectors |ϕ〉 and |ψ〉 is defined as

〈ϕ|ψ〉 =
∫

d�v
1

φ0(�v)
ϕ∗(�v)ψ(�v), (2.6)

where ϕ∗ denotes the complex conjugate of ϕ. Here
1/φ0(�v) is a suitably chosen weight factor.

Using formal correspondence between operators L�q, M
and P�q, and linear operators on Hilbert space H,

M → Ĥ0, P�q → Ĥ ′
�q, L�q = M+P�q → Ĥ�q = Ĥ0 + Ĥ ′

�q,
(2.7)

we formulate the transport problem of swarm particles as
an abstract initial value problem:

∂

∂t
|Φ�q(t)〉 = Ĥ�q |Φ�q(t)〉, |Φ�q(t0)〉 = |ΦI

�q〉, t � t0. (2.8)

Vector |ΦI
�q〉 represents initial state of swarm at time t = t0.

The formal solution of initial value problem (2.8)
is [6,12]:

|Φ�q(t)〉 =
∞∑

p=0

(−i�q)p �p ‖κ
(p)
�q (t)〉〉, t � t0, (2.9)
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where ∥∥∥κ
(0)
�q (t)

〉〉
= Û (0)(t, t0)

∣∣∣ΦI
�q

〉
, t � t0, (2.10)

∥∥∥κ
(p)
�q (t)

〉〉
=

∫ t

t0

dt1
∫ t1

t0

dt2 · · ·
∫ tp−1

t0

dtp Û (0)(t, t1)�̂v

× Û (0)(t1, t2)�̂v · · · Û (0)(tp−1, tp)�̂v Û (0)(tp, t0)|ΦI
�q

〉
,

t � t1 � t2 � · · · � tp−1 � t0, p � 1.
(2.11)

The quantities (−i�q)p and ‖κ
(p)
�q (t)〉〉 are tensors of rank p.

The Cartesian components α1, . . . , αp = 1, 2, 3, p � 1, of
the tensor (−i�q)p are C-numbers given by

[(−i�q)p]α1···αp
= (−i)pqα1qα2 · · · qαp , (2.12)

while the components of tensors ‖κ
(p)
�q (t)〉〉 are vectors of

Hilbert space H given by

[∥∥∥κ
(p)
�q (t)

〉〉]
α1···αp

=
∫ t

t0

dt1
∫ t1

t0

dt2· · ·
∫ tp−1

t0

dtp

× Û (0)(t, t1)v̂α1 Û
(0)(t1, t2)v̂α2 · · · Û (0)(tp−1, tp)v̂αp

× Û (0)(tp, t0)|ΦI
�q〉 ∈ H,

t � t1 � t2 � · · · � tp−1 � t0, p � 1.
(2.13)

The symbol �p denotes the appropriate p-fold scalar prod-
uct. Operator Û (0)(t, t0) is the evolution operator corre-
sponding to the unperturbed operator Ĥ0. It satisfies the
following differential equation:

∂

∂t
Û (0)(t, t0) = Ĥ0Û

(0)(t, t0) = Û (0)(t, t0)Ĥ0,

Û (0)(t0, t0) = Î , t � t0. (2.14)

Tensors ‖κ
(p)
�q (t)〉〉 obey the following hierarchy of coupled

differential equations [6,12]:

∂

∂t

∥∥∥κ
(0)
�q (t)

〉〉
=Ĥ0

∥∥∥κ
(0)
�q (t)

〉〉
,

∥∥∥κ
(0)
�q (t0)

〉〉
=

∣∣∣ΦI
�q

〉
, t � t0,

(2.15)

∂

∂t

∥∥∥κ
(p)
�q (t)

〉〉
= Ĥ0

∥∥∥κ
(p)
�q (t)

〉〉
+ �̂v

∥∥∥κ
(p−1)
�q (t)

〉〉
,∥∥∥κ

(p)
�q (t0)

〉〉
= 0, t � t0, p � 1. (2.16)

We define the transport coefficients by [6,12],

∂

∂t
N̂ (p)(�q, t) = ω̂

(p)
�q (t)N̂ (0)(�q, t)

+
p−1∑
r=0

ω̂
(r)
�q (t) ⊗ N̂ (p−r)(�q, t), p � 0, (2.17)

where ω̂
(r)
�q (t) denote tensor transport coefficients of

rank r, and the quantities N̂ (p)(�q, t) are analogous to

the spatial moments of the number density n(�r, t) [2] de-
fined as

N̂ (p)(�q, t) =
〈
φ0

∥∥∥κ
(p)
�q (t)

〉〉
, p � 0. (2.18)

The symbol ⊗ denotes the standard symmetrized outer
tensor product (see Eq. (3.7) in [12]).

Generalized diffusion equation (GDE) follows immedi-
ately from definitions (2.17) and (2.18) [6,12]:

∂

∂t
n�q(t) −

∞∑
p=0

(−i�q)p �p ω̂
(p)
�q (t)n�q(t) = 0, (2.19)

where n�q(t) = 〈φ0|Φ�q(t)〉 is the spatial Fourier trans-
form of the number density n(�r, t). It describes the tem-
poral evolution of the n�q(t) in terms of an infinite set
{ω̂(p)

�q |p � 0} of transport coefficients.
Combining the definition relations (2.17), and hierar-

chy of equations (2.15)–(2.16) we can write [6,12]:

ω̂
(0)
�q (t) =

1〈
φ0

∥∥∥κ
(0)
�q (t)

〉〉〈
φ0

∣∣∣Ĥ0

∥∥∥κ
(0)
�q (t)

〉〉
, (2.20)

ω̂
(p)
�q (t) =

1

〈φ0‖κ
(0)
�q (t)〉〉

[
〈φ0|�̂v ‖κ

(p−1)
�q (t)〉〉

+ 〈φ0|Ĥ0‖κ
(p)
�q (t)〉〉

−
p−1∑
r=0

ω̂
(r)
�q (t) ⊗ 〈φ0‖κ

(p−r)
�q (t)〉〉

]
, p � 1. (2.21)

These expressions give transport coefficients in terms of
solutions of the kinetic equations (2.15)–(2.16).

3 Long-time behavior of solution

In this section we explore solution to the linear Boltzmann
equation and characterize its hydrodynamic form. This is
done through a formal analysis of eigenvalue problem for
the associated linear operator.

Very little is known about the nature of the spectrum
of Ĥ0 for collision operators corresponding to real interac-
tions. Of the two operators of which it is a sum (Eq. (2.4)),
operator −�a · ∂/∂�v has a continuous spectrum and its
eigenfunctions are not square integrable. The main fea-
tures of the spectrum of collision operator J , but not all
of its detailed properties are known for the hard sphere
potential, and for r−s repulsive potentials [14,15]. The
r−4 potential (Maxwell molecules) is the only potential
for which the spectrum is known completely [16]. Almost
nothing is known for the potentials having an attractive
component.

For simplicity we assume that the spectrum of Ĥ0 is
entirely discrete. This assumption is not essential one, and
is introduced to avoid cumbersome notation. The same
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formal results can be obtained without requiring the dis-
creteness of the spectrum of Ĥ0. Consider than the unper-
turbed eigenvalue problem

Ĥ0

∣∣∣ψ(0)
nλ

〉
= Λ(0)

n

∣∣∣ ψ(0)
nλ

〉
, (3.1)

where |ψ(0)
nλ 〉 is an eigenvector and Λ(0)

n the corresponding
eigenvalue. The index λ distinguishes between different
eigenvectors belonging to some degenerate eigenvalue.

The operator Ĥ0 is not Hermitian, and as a conse-
quence the eigenvectors |ψ(0)

nλ 〉 are not orthogonal. It is
then useful to introduce the adjoint eigenvalue problem

Ĥ†
0

∣∣∣ψ̃(0)
nλ

〉
= Λ̃(0)

n

∣∣∣ ψ̃(0)
nλ

〉
. (3.2)

The sets {|ψ(0)
nλ 〉} and {|ψ̃(0)

nλ 〉} can always be made
biorthonormal: 〈

ψ̃
(0)
nλ |ψ(0)

n′λ′

〉
= δnn′δλλ′ . (3.3)

In addition, we assume that these sets are complete, i.e.
∑
nλ

∣∣∣ψ(0)
nλ

〉〈
ψ̃

(0)
nλ

∣∣∣ = Î , (3.4)

where Î is the unit operator. The problem of justifying
this simplifying assumption for actual operators Ĥ0 is not
considered in this paper.

In our case, when Ĥ0 is time independent, the evolu-
tion operator Û0(t′, t′′) (Eq. (2.14)) becomes simply

Û0(t′, t′′) = e(t
′−t′′)Ĥ0

=
∑
n,λ

e(t
′−t′′)Λ(0)

n

∣∣∣ψ(0)
nλ

〉〈
ψ̃

(0)
nλ

∣∣∣ , t′ � t′′ � t0.

(3.5)

Replacing the evolution operators in equations (2.10)
and (2.11) with corresponding expansions in series of non-
orthogonal projectors (Eq. (3.5)), one finds

‖κ
(0)
�q (t)〉〉 =

∑
n,λ

c
I(0)
nλ (�q)|ψ(0)

nλ 〉e(t−t0)Λ
(0)
n , (3.6)

‖κ
(p)
�q (t)〉〉 =

∑
n,λ

c
I(0)
nλ (�q)

∑
n1,λ1

∑
n2,λ2

· · ·

×
∑

np,λp

〈ψ̃(0)
npλp

|�̂v|ψ(0)
np−1λp−1

〉 · · ·

· · · 〈ψ̃(0)
n2λ2

|�̂v|ψ(0)
n1λ1

〉〈ψ̃(0)
n1λ1

|�̂v|ψ(0)
nλ 〉|ψ(0)

npλp
〉
∫ t

t0

dt1
∫ t1

t0

dt2· · ·

· · ·
∫ tp−1

t0

dtpe(tp−t0)Λ(0)
n e(tp−1−tp)Λ(0)

n1 · · ·

× e
(t1−t2)Λ(0)

np−1 e(t−t1)Λ
(0)
np ,

t � t1 � t2 � · · · � tp−1 � t0, p � 1.
(3.7)

Here
c
I(0)
nλ (�q) = 〈ψ̃(0)

nλ |ΦI
�q〉. (3.8)

Further discussion requires additional assumptions about
the spectral properties of the operator Ĥ0.
Assumption I: There exists an isolated eigenvalue Λ(0)

n̄

such that
Re Λ(0)

n < Re Λ(0)
n̄ , ∀n 	= n̄. (3.9)

Let
1
τ0

= d0 = inf
n�=n̄

∣∣∣Re Λ(0)
n − ReΛ(0)

n̄

∣∣∣ . (3.10)

Assumption I was confirmed for the wide class of strictly
repulsive potentials proportional to r−s with s > 2, in-
cluding the hard-sphere limit s→ ∞. Namely, Pao [14,15]
has proved that for the class of power law potentials
the spectrum of linearized collision operator is purely
discrete and has no accumulation point. In kinetic the-
ory of neutral gases, such an assumption is always im-
plicit in any calculation of transport coefficients. This is
a sufficient condition for the existence of hydrodynamics.
Physically, it implies [17] a separation of the relaxation
time scale τ0 ∝ (d0)−1, and the hydrodynamic time scale
τh ∝ (q(kBT )1/2)−1, where τh is the time a gas parti-
cle needs to travel the length of macroscopic gradients,
and kBT is the mean random energy of a gas particle.

Next we consider the long-time behavior of formal so-
lution (2.9). We will examine the asymptotic limits of vec-
tor |Φ�q(t)〉 for times t� τ0 and arbitrary values of �q. This
will be carried out using Assumption I (Eq. (3.9)). It will
be shown that for the long-time limit, vector |Φ�q(t)〉 can
be transformed into hydrodynamics form (1.2).

First let us find vectors ‖κ
(p)
�q (t)〉〉 for times t−t0 � τ0.

For simplicity we put t0 = 0. We present here the detailed
calculation of ‖κ

(0)
�q (t)〉〉, ‖κ

(1)
�q (t)〉〉 and ‖κ

(2)
�q (t)〉〉 for long

times t� τ0. From equations (3.6) and (3.7), we have

‖κ
(0)
�q (t)〉〉 =

∑
n,λ

c
I(0)
nλ (�q)etΛ(0)

n |ψ(0)
nλ 〉, (3.11)

‖κ
(1)
�q (t)〉〉 =

∑
n,λ

c
I(0)
nλ (�q)tetΛ(0)

n 〈ψ̃(0)
nλ |�̂v|ψ(0)

nλ 〉|ψ(0)
nλ 〉

+
∑
n,λ

c
I(0)
nλ (�q)

∑
n1 �=n,λ1

1

Λ
(0)
n − Λ

(0)
n1

×
(
etΛ(0)

n − etΛ(0)
n1

)
〈ψ̃(0)

n1λ1
|�̂v|ψ(0)

nλ 〉|ψ(0)
n1λ1

〉, (3.12)

and

‖κ
(2)
�q (t)〉〉 = ‖K1(�q, t)〉〉 + ‖K2(�q, t)〉〉 + ‖K3(�q, t)〉〉

+ ‖K4(�q, t)〉〉 + ‖K5(�q, t)〉〉 + ‖K6(�q, t)〉〉, (3.13)

where

‖K1(�q, t)〉〉 =
∑
n,λ

c
I(0)
nλ (�q)

t2

2
etΛ(0)

n 〈ψ̃(0)
nλ |�̂v|ψ(0)

nλ 〉〈ψ̃(0)
nλ |�̂v|ψ(0)

nλ 〉|ψ(0)
nλ 〉,

(3.14)
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‖K2(�q, t)〉〉 =
∑
n,λ

c
I(0)
nλ (�q)

∑
n2 �=n,λ2

[
1

Λ
(0)
n − Λ

(0)
n2

tetΛ(0)
n

− 1(
Λ

(0)
n − Λ

(0)
n2

)2 e
tΛ(0)

n +
1(

Λ
(0)
n − Λ

(0)
n2

)2 e
tΛ(0)

n2

]

× 〈ψ̃(0)
n2λ2

|�̂v|ψ(0)
nλ 〉〈ψ̃(0)

nλ |�̂v|ψ(0)
nλ 〉|ψ(0)

n2λ2
〉, (3.15)

‖K3(�q, t)〉〉 =∑
n,λ

c
I(0)
nλ (�q)

∑
n1 �=n,λ1

1

Λ
(0)
n − Λ

(0)
n1

tetΛ(0)
n

× 〈ψ̃(0)
nλ |�̂v|ψ(0)

n1λ1
〉〈ψ̃(0)

n1λ1
|�̂v|ψ(0)

nλ 〉|ψ(0)
nλ 〉, (3.16)

‖K4(�q, t)〉〉 =

∑
n,λ

c
I(0)
nλ (�q)

∑
n1 �=n,λ1

∑
n2 �=n,λ2

[
1

Λ
(0)
n − Λ

(0)
n1

1

Λ
(0)
n − Λ

(0)
n2

etΛ(0)
n

− 1

Λ
(0)
n − Λ

(0)
n1

1

Λ
(0)
n − Λ

(0)
n2

etΛ(0)
n2

]

× 〈ψ̃(0)
n2λ2

|�̂v|ψ(0)
n1λ1

〉〈ψ̃(0)
n1λ1

|�̂v|ψ(0)
nλ 〉|ψ(0)

n2λ2
〉,

(3.17)

‖K5(�q, t)〉〉 = −
∑
n,λ

c
I(0)
nλ (�q)

∑
n1 �=n,λ1

1

Λ
(0)
n − Λ

(0)
n1

tetΛ(0)
n1

× 〈ψ̃(0)
n1λ1

|�̂v|ψ(0)
n1λ1

〉〈ψ̃(0)
n1λ1

|�̂v|ψ(0)
nλ 〉|ψ(0)

n1λ1
〉,

(3.18)

‖K6(�q, t)〉〉 =

−
∑
n,λ

c
I(0)
nλ (�q)

∑
n1 �=n,λ1

∑
n2 �=n1,λ2

[
1

Λ
(0)
n − Λ

(0)
n1

1

Λ
(0)
n1 − Λ

(0)
n2

etΛ(0)
n1

− 1

Λ
(0)
n − Λ

(0)
n1

1

Λ
(0)
n1 − Λ

(0)
n2

etΛ(0)
n2

]

× 〈ψ̃(0)
n2λ2

|�̂v|ψ(0)
n1λ1

〉〈ψ̃(0)
n1λ1

|�̂v|ψ(0)
nλ 〉|ψ(0)

n2λ2
〉. (3.19)

For t � τ0, using the Assumption I (see Eq. (3.9)), we
obtain from equations (3.11)–(3.13),

‖κ
(0)
�q (t)〉〉 
 c

I(0)
n̄ (�q)etΛ

(0)
n̄ |ψ(0)

n̄ 〉, t� τ0, (3.20)

‖κ
(1)
�q (t)〉〉 
 c

I(0)
n̄ (�q)etΛ

(0)
n̄ 〈ψ̃(0)

n̄ |�̂v|ψ(0)
n̄ 〉|ψ(0)

n̄ 〉+cI(0)
n̄ (�q)etΛ

(0)
n̄

×
∑

n1 �=n̄,λ1

1

Λ
(0)
n̄ − Λ

(0)
n1

〈ψ̃(0)
n1λ1

|�̂v|ψ(0)
n̄ 〉|ψ(0)

n1λ1
〉, t� τ0,

(3.21)

and

‖κ
(2)
�q (t)〉〉 
 ‖L1(�q, t)〉〉 + ‖L2(�q, t)〉〉 + ‖L3(�q, t)〉〉

+ ‖L4(�q, t)〉〉, t� τ0, (3.22)

where

‖L1(�q, t)〉〉 = c
I(0)
n̄ (�q)

t2

2
etΛ

(0)
n̄ 〈ψ̃(0)

n̄ |�̂v|ψ(0)
n̄ 〉〈ψ̃(0)

n̄ |�̂v|ψ(0)
n̄ 〉|ψ(0)

n̄ 〉,
(3.23)

‖L2(�q, t)〉〉 = c
I(0)
n̄ (�q)tetΛ

(0)
n̄ 〈ψ̃(0)

n̄ |�̂v|ψ(0)
n̄ 〉

∑
n2 �=n̄,λ2

1

Λ
(0)
n̄ − Λ

(0)
n2

× 〈ψ̃(0)
n2λ2

|�̂v|ψ(0)
n̄ 〉|ψ(0)

n2λ2
〉,

(3.24)

‖L3(�q, t)〉〉 = c
I(0)
n̄ (�q)tetΛ

(0)
n̄

∑
n1 �=n̄,λ1

1

Λ
(0)
n̄ − Λ

(0)
n1

× 〈ψ̃(0)
n̄ |�̂v|ψ(0)

n1λ1
〉〈ψ̃(0)

n1λ1
|�̂v|ψ(0)

n̄ 〉|ψ(0)
n̄ 〉, (3.25)

‖L4(�q, t)〉〉 =

c
I(0)
n̄ (�q)etΛ

(0)
n̄

[ ∑
n1 �=n̄,λ1

∑
n2 �=n̄,λ2

1

Λ
(0)
n̄ − Λ

(0)
n1

1

Λ
(0)
n̄ − Λ

(0)
n2

×
〈
ψ̃

(0)
n2λ2

|�̂v|ψ(0)
n1λ1

〉〈
ψ̃

(0)
n1λ1

|�̂v|ψ(0)
n̄

〉
|ψ(0)

n2λ2

〉

−
〈
ψ̃

(0)
n̄ |�̂v|ψ(0)

n̄

〉 ∑
n2 �=n̄,λ2

1(
Λ

(0)
n̄ − Λ

(0)
n2

)2

×
〈
ψ̃

(0)
n2λ2

|�̂v|ψ(0)
n̄

〉
|ψ(0)

n2λ2

〉]
.

(3.26)
Now we introduce the tensor quantities

ω̂
(0)
∗ = 〈ψ̃(0)

n̄ |Ĥ0‖χ(0)
n̄ 〉〉, ω̂

(p)
∗ = 〈ψ̃(0)

n̄ |�̂v ‖χ(p−1)
n̄ 〉〉, p � 1,

(3.27)
where

‖χ(0)
n̄ 〉〉 = |ψ(0)

n̄ 〉, ‖χ(1)
n̄ 〉〉 = [ω̂(0)

∗ − Ĥ0]−1Q̂ �̂v ‖χ(0)
n̄ 〉〉,

‖χ(p)
n̄ 〉〉 = [ω̂(0)

∗ − Ĥ0]−1Q̂

×
[
�̂v ‖χ(p−1)

n̄ 〉〉 −
p−1∑
r=1

ω̂
(r)
∗ ⊗ ‖χ(p−r)

n̄ 〉〉
]
, p � 2.

(3.28)

Operator
Q̂ = Î −

∣∣∣ψ(0)
n̄ 〉〈ψ̃(0)

n̄

∣∣∣ , (3.29)

is projector (but not orthogonal) onto subspace comple-
mentary to the subspace spanned by basic eigenvector
|ψ(0)

n̄ 〉. Since operator ω̂(0)
∗ − Ĥ0 is singular, it is clear

that the inverse operator [ω̂(0)
∗ − Ĥ0]−1 cannot be defined

on the whole Hilbert space H. In equations (3.28) opera-
tor [ω̂(0)

∗ − Ĥ0]−1 is well defined because the range of Q̂
does not contain the vectors of the kernel of ω̂(0)

∗ − Ĥ0,
imQ̂ ∩ ker(ω̂(0)

∗ − Ĥ0) = ∅. Furthermore, from the closure
relation (3.4) and definition (3.29), it is obvious that the
operator [ω̂(0)

∗ − Ĥ0]−1Q̂ can be written in the form of a
series of elementary, non-orthogonal projectors:[

ω̂
(0)
∗ − Ĥ0

]−1

Q̂ =
∑
n�=n̄

∑
λ

1

ω̂
(0)
∗ − Λ

(0)
n

∣∣∣ψ(0)
nλ 〉〈ψ̃(0)

nλ

∣∣∣ .
(3.30)
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Explicit expressions for the tensors ω̂(p)
∗ and vectors ‖χ(p)

n̄ 〉〉
(Eqs. (3.27) and (3.28)) in terms of solutions of the eigen-
value problems (3.1) and (3.2) can be derived by using
the spectral decomposition of operator [ω̂(0)

∗ − Ĥ0]−1Q̂
(Eq. (3.30)). Inserting decomposition (3.30) into defini-
tion equations (3.27) and (3.28) we find that the vectors
‖χ(p)

n̄ 〉〉, p = 1, 2 can be expressed as

∥∥∥χ(1)
n̄

〉〉
=

∑
n�=n̄,λ

1

ω̂
(0)
∗ − Λ

(0)
n

〈
ψ̃

(0)
nλ

∣∣∣�̂v
∣∣∣ψ(0)

n̄

〉 ∣∣∣ψ(0)
nλ

〉
, (3.31)

∥∥∥χ(2)
n̄

〉〉
=

∑
n�=n̄,λ

∑
n1 �=n̄,λ1

1

ω̂
(0)
∗ − Λ

(0)
n

1

ω̂
(0)
∗ − Λ

(0)
n1

×
〈
ψ̃

(0)
nλ

∣∣∣�̂v
∣∣∣ψ(0)

n1λ1

〉〈
ψ̃

(0)
n1λ1

∣∣∣�̂v
∣∣∣ψ(0)

n̄

〉∣∣∣ψ(0)
nλ

〉

−
〈
ψ̃

(0)
n̄

∣∣∣�̂v
∣∣∣ψ(0)

n̄

〉 ∑
n�=n̄,λ

1(
ω̂

(0)
∗ − Λ

(0)
n

)2

〈
ψ̃

(0)
nλ

∣∣∣�̂v
∣∣∣ψ(0)

n̄

〉∣∣∣ψ(0)
nλ

〉
,

(3.32)

and that tensors ω̂(p)
∗ , p = 1, 2, 3 have the form

ω̂
(1)
∗ =

〈
ψ̃

(0)
n̄

∣∣∣�̂v∣∣∣ψ(0)
n̄

〉
, (3.33)

ω̂
(2)
∗ =

∑
n�=n̄

∑
λ

1

ω̂
(0)
∗ − Λ

(0)
n

〈
ψ̃

(0)
n̄

∣∣∣�̂v
∣∣∣ψ(0)

nλ

〉〈
ψ̃

(0)
nλ

∣∣∣�̂v
∣∣∣ψ(0)

n̄

〉
,

(3.34)

ω̂
(3)
∗ =

∑
n�=n̄

∑
λ

∑
n′ �=n̄

∑
λ′

1

ω̂
(0)
∗ − Λ

(0)
n

1

ω̂
(0)
∗ − Λ

(0)
n′

×
〈
ψ̃

(0)
n̄

∣∣∣�̂v
∣∣∣ψ(0)

nλ

〉〈
ψ̃

(0)
nλ

∣∣∣�̂v
∣∣∣ψ(0)

n′λ′

〉〈
ψ̃

(0)
n′λ′

∣∣∣�̂v
∣∣∣ψ(0)

n̄

〉

−
〈
ψ̃

(0)
n̄

∣∣∣�̂v
∣∣∣ψ(0)

n̄

〉 ∑
n�=n̄

∑
λ

1(
ω̂

(0)
∗ − Λ

(0)
n

)2

×
〈
ψ̃

(0)
n̄

∣∣∣�̂v
∣∣∣ψ(0)

nλ

〉〈
ψ̃

(0)
nλ

∣∣∣�̂v
∣∣∣ψ(0)

n̄

〉
. (3.35)

The case of higher order tensors can be treated in an anal-
ogous way.

Finally, from equations (3.20)–(3.22) and using equa-
tions (3.31)–(3.35), we obtain the following asymptotic
formulae for the first three vectors:∥∥∥κ

(0)
�q (t)

〉〉

 c

I(0)
n̄ (�q)etω̂(0)

∗
∥∥∥χ(0)

n̄

〉〉
, t� τ0, (3.36)

∥∥∥κ
(1)
�q (t)

〉〉

 c

I(0)
n̄ (�q)etω̂(0)

∗
[
tω̂

(1)
∗

∥∥∥χ(0)
n̄

〉〉
+

∥∥∥χ(1)
n̄

〉〉]
, t� τ0,

(3.37)∥∥∥κ
(2)
�q (t)

〉〉

 c

I(0)
n̄ (�q)etω̂(0)

∗

[
t2

2
ω̂

(1)
∗ ⊗ ω̂

(1)
∗

∥∥∥χ(0)
n̄

〉〉

+tω̂(1)
∗ ⊗

∥∥∥χ(1)
n̄

〉〉
+ tω̂

(2)
∗ ‖χ(0)

n̄

〉〉
+

∥∥∥χ(2)
n̄

〉〉]
, t� τ0.

(3.38)

The calculation of asymptotic expressions for the vectors
of the order higher than two is cumbersome. We present

the final result only:
∥∥∥κ

(3)
�q (t)

〉〉

 c

I(0)
n̄ (�q)etω̂(0)

∗

[
t3

6
ω̂

(1)
∗ ⊗ ω̂

(1)
∗ ⊗ ω̂

(1)
∗

∥∥∥χ(0)
n̄

〉〉

+
t2

2
ω̂

(1)
∗ ⊗ ω̂

(1)
∗ ⊗

∥∥∥χ(1)
n̄

〉〉
+
t2

2
ω̂

(1)
∗ ⊗ ω̂

(2)
∗

∥∥∥χ(0)
n̄

〉〉

+ tω̂
(1)
∗ ⊗

∥∥∥χ(2)
n̄

〉〉
+
t2

2
ω̂

(2)
∗ ⊗ ω̂

(1)
∗

∥∥∥χ(0)
n̄

〉〉

+tω̂(2)
∗ ⊗

∥∥∥χ(1)
n̄

〉〉
+ tω̂

(3)
∗

∥∥∥χ(0)
n̄

〉〉
+

∥∥∥χ(3)
n̄

〉〉]
, t� τ0.

(3.39)

Substituting the above asymptotic expressions for
‖κ

(p)
�q (t)〉〉 into equation (2.9), after a suitable rearrange-

ment of the terms, gives the following form of |Φ�q(t)〉
for t� τ0:

|Φ�q(t)〉 

∞∑

p=0

‖χ(p)
n̄ 〉〉 �p (−i�q)pc

I(0)
n̄ (�q)etω̂(0)

∗ Ω�q(t), (3.40)

where

Ω�q(t)=1+(−i�q) �1 ω̂
(1)
∗ t

+(−i�q)2 �2 ω̂
(1)
∗ ⊗ ω̂

(1)
∗
t2

2
+ (−i�q)2 �2 ω̂

(2)
∗ t

+ (−i�q)3 �3 ω̂
(1)
∗ ⊗ ω̂

(1)
∗ ⊗ ω̂

(1)
∗
t3

6

+ (−i�q)3 �3 ω̂
(1)
∗ ⊗ ω̂

(2)
∗
t2

2

+ (−i�q)3 �3 ω̂
(2)
∗ ⊗ ω̂

(1)
∗
t2

2
+ (−i�q)3 �3 ω̂

(3)
∗ t+ · · ·

(3.41)

Using the multiplication formula for infinite series
(
∑∞

n=0 an) (
∑∞

n=0 bn) =
∑∞

n=0

∑n
k=0 akbn−k, we readily

obtain

Ω�q(t) =
[
1 + (−i�q) �1 ω̂

(1)
∗ t+

1
2
(−i�q)2 �2 ω̂

(1)
∗ ⊗ ω̂

(1)
∗ t2

+
1
6
(−i�q)3 �3 ω̂

(1)
∗ ⊗ ω̂

(1)
∗ ⊗ ω̂

(1)
∗ t3 + · · ·

]

×
[
1 + (−i�q)2 �2 ω̂

(2)
∗ t+

1
2
(−i�q)4 �4 ω̂

(2)
∗ ⊗ ω̂

(2)
∗ t2 + · · ·

]

×
[
1 + (−i�q)3 �3 ω̂

(3)
∗ t+ · · ·

]
[1 + · · · ] · · ·

(3.42)

By induction, it is easy to verify that

Ω�q(t) =
∞∏

s=1

{
1 +

∞∑
r=1

1
r!

[
(−i�q)s �s ω̂

(s)
∗

]r

tr

}

=
∞∏

s=1

e(−i�q)s�sω̂(s)
∗ t. (3.43)

Substituting the expression (3.43) into equation (3.40)
leads to

|Φ�q(t)〉 

∞∑

p=0

‖χ(p)
n̄ 〉〉 �p (−i�q)pn̄

(0)
�q (t), t� τ0, (3.44)
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where

n̄
(0)
�q (t) = c

I(0)
n̄ (�q)e

∑∞
s=0(−i�q)s�sω̂(s)

∗ t. (3.45)

Thus we have found the explicit expression for arbitrary
Fourier mode |Φ�q(t)〉 of one particle distribution function
|f(�r, t)〉 in the limit of long times, t� τ0.

Fourier inversion of the equation (3.44) gives

|f(�r, t)〉 

∞∑

p=0

∥∥∥χ(p)
n̄

〉〉
�p

(
− ∂

∂�r

)p

eω̂(0)
∗ t

×
∫

d�q cI(0)
n̄ (�q) e+i�q·�r

∞∏
s=1

e(−i�q)s�s ω̂(s)
∗ t, t� τ0.

(3.46)

Coefficients c
I(0)
n̄ (�q) = 〈ψ̃(0)

n̄ |ΦI
�q〉 depend on �q through

their dependence on the initial state of the swarm |ΦI
�q〉.

Our approach strongly suggests that solution (3.46) of lin-
ear Boltzmann equation (1.1), obtained for arbitrary ini-
tial condition, properly describes long-time behavior of a
swarm of charged particles with arbitrary varying inho-
mogeneities.

Finally, let us consider the long-time behavior of the
transport coefficients ω̂(p)

�q (t), p � 0. We are interested
in times t � τ0. Introducing asymptotic expressions
for vectors ‖κ

(p)
�q (t)〉〉 (see Eqs. (3.36)–(3.39)) into equa-

tions (2.20) and (2.21), we obtain that

ω̂
(p)
�q (t) 
 ω̂

(p)
∗ , t� τ0, p � 0. (3.47)

The present derivation, valid for any �q, shows that all
time-dependent transport coefficients ω̂(p)

�q (t) achieve their

hydrodynamic values ω̂(p)
∗ (Eq. (3.27)) in the same char-

acteristic time.
The gradient expansions (1.2) and (3.46) are still not

identical, but are equivalent in a sense of separation of ve-
locity and space-time dependence of the one-particle dis-
tribution function. In order to bring them into an identical
form we use the expression (3.47) to solve GDE (2.19) in
the asymptotic regime t� τ0, and obtain

n�q(t) 
 n�q(0) e
∑∞

s=0(−i�q)s�sω̂(s)
∗ t, t� τ0. (3.48)

Inserting equation (3.48) into (3.45) we get

n̄
(0)
�q (t) =

c
I(0)
n̄ (�q)
n�q(0)

=

〈
ψ̃

(0)
n̄

∣∣∣ΦI
�q

〉
〈
φ0

∣∣∣ΦI
�q

〉 n�q(t). (3.49)

This expression is valid for any arbitrary initial condition.
However, in the physically interesting case where initial
state |ΦI

�q〉 = |f0〉 n�q(0) separates velocity and space-time

dependence, we find that n̄(0)
�q (t) and n�q(t) are propor-

tional:

n̄
(0)
�q (t) =

〈
ψ̃

(0)
n̄

∣∣∣f0
〉

〈
φ0

∣∣∣f0
〉 n�q(t). (3.50)

The constant of proportionality can be absorbed into the
definition of coefficients f̂ (p)(�v), and, for a class of ini-
tial conditions |ΦI

�q〉 = |f0〉 n�q(0), the asymptotic solu-
tion (3.46) reduces to the hydrodynamic form (1.2).

4 Concluding remarks

In the present paper we have demonstrated that the As-
sumption I is sufficient to obtain the expression equa-
tion (3.46) for the one-particle distribution function in
a long-time regime t � τ0. In addition, we have shown
that in this limit (t � τ0) all transport coefficients ω̂(p)

�q (t)
become time and �q independent in the same character-
istic time and reach their hydrodynamics values ω̂

(p)
∗ .

Transport coefficients ω̂(p)
∗ are explicitely given by the mi-

croscopic expressions (3.33)–(3.35) (see also Eq. (3.27))
in terms of solutions of the eigenvalue problems (3.1)
and (3.2). All these results are not restricted to small gra-
dients in the density of swarm particles.

Analogous results can be obtained for small values of
wave vectors �q and for long times t � τ0 by using the
Résibois method of derivation of linear transport coeffi-
cients [11,16]. Résibois treated the eigenvalue problem as-
sociated to the linear generalized Boltzmann equation [18]
by stationary perturbation method in powers of the uni-
formity parameter q. In the long-wavelength limit �q → 0,
the usual expressions for the transport coefficients in neu-
tral gases come out as qp-coefficients of the eigenvalues.
Résibois method requires assumption of upper semiconti-
nuity of spectrum [16,19]:
Assumption II The small perturbation Ĥ ′

�q shifts slightly
the eigenvalues of Ĥ0, but assumption (3.9) remains valid
for eigenvalues Λn(�q) of Ĥ�q in the long-wavelength limit
�q → 0:

Re Λn(�q) < Re Λn̄(�q), ∀n 	= n̄; �q → 0. (4.1)

This assumption states that perturbation Ĥ ′
�q, for small

values of the wave vector �q, makes a small effect on the
spectrum of the operator Ĥ0. Hence, spectrum of the
perturbed operator Ĥ�q (at least for sufficiently small �q)
also has an isolated eigenvalue separated from the rest
of the spectrum along the real axis. Assumption of up-
per semicontinuity of the spectrum is not explicitly used
in our analysis. However, this assumption is an essential
one in order to ensure convergence of perturbative expan-
sion (2.9).

In conclusion, in this work we have not limited our
analysis to weakly inhomogeneous swarms (i.e. small rela-
tive density gradients n−1(∂/∂�r)n). Also, we have demon-
strated the separation of one particle distribution function
into the spatio-temporal and velocity part for arbitrary
initial conditions. Presented results depend only on in-
trinsic properties of the operators occurring in the linear
kinetic equation, rather than the detailed form of colli-
sion operator. Consequently, it is expected that the im-
plications of our analysis are applicable to wide class of
collision operators with appropriate spectral properties.
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