
Eur. Phys. J. B (2013) 86: 461
DOI: 10.1140/epjb/e2013-40455-x

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Fractional kinetic model for granular compaction
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Abstract. We present an approach to granular compaction based on subordination of stochastic processes.
In order to imitate, in a very simplified way, the compaction dynamics of granular material under tapping,
we impose that particles switch stochastically between the two possible orientational states characterizing
the average volumes of the grain in the presence of other grains. The main physical idea of our approach
is that the interaction of grains with their environment is taken into account with the aid of the temporal
subordination. Accordingly, we assume that the time intervals between the consecutive grain’s reorienta-
tions are governed by a certain waiting-time distribution ψ(t). It is demonstrated how the presence of the
trapping events leads to the macroscopic observation of slow compaction dynamics, described by an exact
fractional kinetic equation. We also perform numerical simulations to examine our analytical result. In
addition, we reproduce the memory effects numerically by considering the response of the system to the
abrupt change in the external excitation.

1 Introduction

Granular compaction describes the phenomenon in which
granular materials undergo an increase in the bulk density
as a result of the action of external perturbations, such as
shaking and periodic shear deformation. A typical density
relaxation experiment consists of well-separated acceler-
ations, or taps, of a vertical cylindrical tube holding the
granular material. Given that the system relaxes following
each tap, reorganization of the grains occurs only during
the agitated state. The ability of granular materials to
undergo density changes is an inherent property that is
not well understood, and thus it remains an open area of
research [1].

Different laws have been proposed for the evolution
of the volume fraction ρ as a function of the number t
of taps. The first experiments on compaction have been
carried out by Chicago group for both spherical [2] and
anisotropic grains [3]. These experiments have been re-
alized in a long tube with a small diameter compara-
ble with the particle size, giving rise to ordering of the
grains near the lateral wall. The compaction dynamics of
the strongly confined granular material is described by
the inverse logarithmic dependence on the tapping num-
ber, ρ(∞) − ρ(t) ∼ 1/ ln(t) [2]. The final density, ρ(∞),
is a monotonic decreasing function of the dimensionless
vibration intensity, Γ = A/g, where A is the peak ac-
celeration in a tap, and g is the gravity. More recently,
studies by the Rennes group [4–6] have shown that the
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compaction dynamics is consistent with the stretched ex-
ponential law ρ(∞) − ρ(t) ∼ exp [−(t/τ)α]. This experi-
ment has been realized in geometrical configuration that
allows only negligible wall effects, unlike to the experi-
mental setup of the Chicago group [2,3]. Moreover, in the
Rennes group’s experiment, convection has been observed
in the whole packing, and the compaction dynamics is
attributed to a convection mediated mechanism. The cor-
responding steady state density is suggested to be deter-
mined by the dynamical balance between convection and
compaction.

Many other experiments have been carried out in
quite different systems. Experimental studies of Lumay
and Vandewalle [7,8] for two-dimensional granular systems
suggested that the slow compaction dynamics is related to
the crystallization driven by the diffusion of defects in the
packing. Nicolas et al. [9,10] have studied the compaction
of a granular assembly of spheres under a periodic shear
deformation. They showed that crystalline arrangements
are created in the bulk during the compaction, indicat-
ing that the order is not wall-induced. They have sug-
gested that when the compaction occurs towards crystal-
lization, previously proposed fits, like inverse logarithmic
or stretched exponential function, do not provide a satis-
factory description of the time evolution of density. The
general conclusion is that different shaking procedures
and geometrical constraints give rise to intrinsically dif-
ferent compaction behaviors, driven by different dynami-
cal mechanisms. To the best of our knowledge, there is no
consensus concerning the temporal behavior of the density
change (see, e.g. Table I in Ref. [8]).
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In our previous studies [11,12] we carried out the
extensive simulations of the compaction dynamics for
a two-dimensional system of frictional mono-sized hard
disks, subjected to vertical shaking. We analyzed the com-
paction dynamics and the microstructural properties of
the packing configurations for various values of friction
coefficient and coefficient of normal restitution. It was
shown that the relaxation behavior of the system strongly
depends on the material properties of the grains. Further-
more, we have shown that the compaction dynamics in our
simulation is consistent with the Mittag-Leffler law (cor-
responding mathematical definitions are provided later in
the text; see, Eqs. (23)–(25)). Note that the Mittag-Leffler
function is one of the most frequently used phenomeno-
logical fitting functions for relaxation processes in many
complex disordered systems such as glasses, ferroelectric
crystals, and dielectrics [13]. It is noticeable that such tem-
poral evolution of the packing fraction shares some sim-
ilarities with the coverage growth observed in the two-
dimensional lattice based reversible random sequential
adsorption (RSA) model [14]. The adsorption-desorption
model can reproduce qualitatively the densification ki-
netics [15], memory effects [16,17] and other features of
weakly vibrated granular materials. Results of the numer-
ical simulations of reversible RSA on a triangular lattice
obtained for a wide variety of object shapes [14] showed an
excellent agreement of the relaxation dynamics with the
Mittag-Leffler function (Eq. (23)). In addition, we pro-
duced a very good Mittag-Leffler fit (23) to the data from
the Rennes group’s experiment (see Fig. 4 in Ref. [14]).

The same relaxation law (23) was also obtained in the
simulation study of compaction by thermal cycling [18,19]
in a three-dimensional packed bed using thermal particle
dynamics (modified discrete element simulation method).
Recently, the role that dilation plays in the granular com-
paction has been experimentally studied [20]. Confining
force was used to limit the amount of dilation of a verti-
cally shaken granular pack. These experiments have shown
that the compaction is greatly reduced in the presence of
a confining force so that the steady-state regime was in-
accessible with this experimental methodology. Since it
cannot be found experimentally, the steady-state pack-
ing fraction was determined by fitting the compaction
behavior to the Mittag-Leffler functional form (23).

It is intriguing that the Mittag-Leffler law (23) has
been shown to describe the relaxation of granular materi-
als under very different modes of external excitation. Ac-
tually, it is not clear whether equation (23) is just a con-
venient fitting expression with four parameters or it has
a more fundamental meaning, associated to some peculiar
dynamical events which are dominant in the density re-
laxation. We would like to elucidate this point more thor-
oughly in order to develop a model of granular compaction
based on the stochastic fractional process that captures
this relaxation dynamics.

A number of different approaches have been proposed
in order to connect a very slow compaction of granular ma-
terials with the intrinsic properties of granular packings,
such as excluded volume effect and presence of cooperative

structures (arches or bridges). Most of the studies have
been performed for the (off-lattice) reversible adsorption-
desorption or parking lot model [15,21,22], frustrated lat-
tice gas models [23–26], cellular-automaton models [27]
and one-dimensional lattice models with short-range dy-
namical constraints [28–31]. Here we imagine an artificial,
but instructive model of a powder similar to the “two-
volume” model proposed by Edwards and Grinev [32]. We
suppose that there are only two possible configurations
of grains. Grain in the “down” state is “well oriented”,
which means that the surrounding void space is minimal;
conversely, when the grain is in the “up” state, or “not
well oriented”, the free volume is maximal. In order to
imitate, in a very simplified way, the compaction dynam-
ics of a granular material under weak tapping, we impose
that the particles switch stochastically between the two
orientational states. By appropriately choosing this ran-
dom process, one can provide the essential ingredients in
our model to reproduce the slow compaction dynamics
and memory effects [9,33].

During the external tapping of real granular materi-
als, a rearrangement will occur between those grains in
the packing whose configuration and neighbors produce
a force which is overcome by the external disturbance.
The magnitude of the forces between particles in contact
and their confinement determine whether the particle will
move or not. This implies that there are regions in the
sample in which the contact network changes and those
which are unperturbed. For example, mutually stabilized
sets of particles, such as arches or bridges are long-lived
during the tapping [11,34–36]. Furthermore, the particle
motion observed during the compaction is not diffusive,
but exhibits a transient cage effect. The cage changes in-
volve complex cooperative processes associated with mod-
ifications in the force network [10,37]. Such properties of
the individual motion of the grains may be related to the
non-Markovian nature of the stochastic process present in
the granular packing submitted to tapping.

Starting with the description of the two-state system
evolution as a Markovian process, we develop the analysis
on subordinated random process. The process differs from
the Markovian ones by the temporal variable becoming
random. The subordination of a random process is a start-
ing point for the continuous time random walk approach
(CTRW) [38]. Actually, in our model the evolutions of
the number of objects in the states “up” and “down” are
subordinated by another random process. Recall that a
subordinated process Y [U(t)] is obtained by randomizing
the time clock of a random process Y (t) using a random
process U(t). The latter process is referred to as the ran-
domized time. The new clock generalizes the determinis-
tic time clock of the kinetic equation for the Markovian
process. This generalization is of a stochastic origin and
produces the fractional operator in the resulting evolution
equation of density, i.e. the inclusion of memory. The evo-
lution equation is capable of reproducing a wide range of
known experimental behavior. We think that the success
of the model in emulating the experiments indicates that
the dominant physical mechanisms have been correctly
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Fig. 1. Schematic picture of the compaction model described
in the text.

identified. Even though the model is simple enough as to
be analytically tractable, the theoretical results are cor-
roborated by numerical simulations of the corresponding
stochastic fractional processes.

The layout of this work is organized as follows. Defi-
nition of the model and discussion on the physical inter-
pretation of the model parameters are given in Section 2.
In Section 3 results of numerical simulation are presented,
discussed, and wherever possible compared with analyti-
cal results. In addition, we reproduce the memory effects
numerically by considering the response of the system to
the abrupt change in the external excitation. Finally, we
summarize our findings in Section 4.

2 The model and its properties

We consider a one-dimensional lattice of width bN (b > 0),
with N noninteracting “grains” located at its lattice
points. Each “grain” is a rectangle with sides a and b
(a < b), whose midpoint is located at a grid site. They
can take two possible orientations, referred to as down
(“well oriented”) and up (“not well oriented”). Our one-
dimensional lattice model can be regarded as a very simple
picture of a horizontal section of a real granular system
(see Fig. 1). Horizontally aligned grains (“well oriented”)
result in a fully packed section of height a. Vertical orienta-
tions generate voids; each “not well oriented” grain leaves
a void of size v0 = a(b − a) in the horizontal section of
height a (Fig. 1). A configuration of the system is uniquely
defined by N orientation variables {σn|n = 1, . . . , N},
with σ = +1 denoting a horizontal grain, and σ = −1
denoting a vertical grain.

The phenomenon of compaction results from the ex-
istence of packing defects, such as voids, in a randomly
packed granular material. Physically, a major mechanism
of compaction of weakly vibrated granular materials is
the gradual collapse of long-lived bridges, resulting in the
disappearance of the void space which is trapped in the
arches (“bridge collapse”) [34,36,39]. Shaking of the mate-
rial causes rearrangement of grains and interstitial voids,
and the granular material “jumps” between different, but
related, grain configurations. The dynamic response of the
granular system to forcing excitation is such as to mini-
mize the void space locally. This can be accomplished in
the model by means of the elimination of holes.

From the phenomenological point of view, we can try
to model the above, naively, by a continuous-time stochas-
tic dynamics, described by the following general kinetic

equations:

dp(d)

dt
= ωdup

(u)(t) − ωudp
(d)(t) (1)

dp(u)

dt
= ωudp

(d)(t) − ωdup
(u)(t), (2)

where p(u)(t) and p(d)(t) are the probabilities for finding
the object in the states “up” and “down” at time t, re-
spectively. Here ωdu and ωud represent, respectively, the
constant transition probability rate from the state “up”
to the state “down”, and from the state “down” to the
state “up”. The term ωdup

(u) describes transition into the
state “down” from state “up”, and ωudp

(d) corresponds
to transition out of the “down” into the other state “up”.
Thus we write the packing fraction ρ(t) as:

ρ(t) = ρdp
(d)(t) + ρup

(u)(t)

= ρu + (ρd − ρu)p(d)(t). (3)

We have two limits: p(d) = 1 when ρ = ρd (free volume is
minimal), and p(d) = 0 when ρ = ρu (free volume is max-
imal). Without loss of generality we assume that ρd = 1
and ρu = a/b < 1 in our model. Setting dp(d)

dt

∣
∣
∣
t→∞

= 0

and dp(u)

dt

∣
∣
∣
t→∞

= 0 in equations (1) and (2) they become
a set of two algebraic equations whose solution provides
the steady-state values of the packing fraction ρ(∞):

ρ(∞) = ρdp
(d)(∞)+ρup

(u)(∞) = (ρdωdu+ρuωud)/ω, (4)

where ω = ωdu + ωud is the total transition probability
rate. This steady state will be reached by the system from
any initial configuration. Assume that for t = 0 the states
“up” dominate, i.e.

p(u)(0) =
Nu(t = 0)

N
= 1, p(d)(0) =

Nd(t = 0)
N

= 0,

(5)
where Nu and Nd are the number of objects in the states
“up” and “down”, respectively. The solution of equa-
tions (1) and (2) with initial conditions (5) is straight-
forward. Accordingly, the packing fraction of the system
(Eq. (3)) grows exponentially in time towards the steady
state value:

ρ(t) = ρ(∞) − [ρ(∞) − ρ(0)] exp(−ωt), (6)

where ρ(0) = ρdp
(d)(0) + ρup

(u)(0) = ρu. Not unexpect-
edly, our simplified model does not describe the behavior
of a real granular material during the compaction appro-
priately; i.e., it is not a good approximation for the com-
paction dynamics. Furthermore, in the present model the
future evolution of the packing fraction ρ(t) after time
t0 depends only on ρ(t0). However, the behaviour of a
weakly vibrated granular material depends on its entire
tapping history, and not only on the instantaneous, initial
value of the property under study. Mathematically, this
phenomenon implies that the time evolution of the pack-
ing fraction does not obey a closed system of first-order
ordinary differential equations.
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Our model requires substantial addition and extension
in order to have the ability to properly capture the dy-
namics of compaction and memory effects observed for a
discontinuous shift in tapping intensity. Before we make
a step further in the modeling, several important facts
should be mentioned about the structural transformations
of the granular packing during the compaction. One of the
most distinctive features in the structure of granular pack-
ings is the presence of arches or bridges [34,36,39]. An arch
is a set of particles such that we can trace a path of con-
nected particles between any pair in the set [34]. A great
number of particles are involved in such structures. Arches
are responsible for the voids that determine the volume
fraction of packing [39]. This multi-particle structure is
stable thanks to the contributions of every particle in it.
Should any particle of the bridge be removed, the entire
bridge would collapse under gravity. During the tapping,
the grains in the bulk experience the external perturba-
tion as a random force. The grains have some freedom
to rearrange their positions relative to their neighbors.
Therefore, the change of a certain configuration occurs
due to the cooperative rearrangement of free volume be-
tween the neighboring grains. If the intensity of vibration
is sufficiently small, some grains are not able to break
away from their clusters, so structures such as bridges are
long-standing even during tapping. A bridge, once being
formed, usually lasts during a great number of taps [11].
Hence, during the compaction the grains spend most of the
time trapped in localized regions or “cages” and occasion-
ally exhibit longer displacements [10,37,40]. As the pack-
ing progressively densifies, the time which grains spend
in a cage becomes longer and longer and the grains move
around a fixed position. The relaxation process in such
dense systems is characterized by the temporally nonlocal
behavior arising from the disorder which produces obsta-
cles or traps which delay the motion of the particles and
introduce memory effects into the motion. The main phys-
ical idea of our approach is that the time intervals between
the consecutive grain’s reorientations are governed by a
certain waiting-time distribution ψ(t). That function gov-
erns the random time intervals between single microscopic
jumps (“up” ↔ “down”) of the particles.

Assume that the interaction of grains with their en-
vironment is taken into account with the aid of subor-
dination in time. We shall consider the evolution of the
number of objects in the states “up” and “down”. These
are parent random processes in the sense of subordination.
Consider a sequence Ti, i = 1, 2, . . . of non-negative, in-
dependent, identically distributed random variables which
represent the waiting time intervals between consecutive
reorientations of objects. If the waiting times Ti belong
to the strict domain of attraction of an α-stable distribu-
tion (0 < α < 1), their sum n−1/α

∑n
i=1 Ti, n ∈ N con-

verges in distribution to a stable law with the same index
α [41,42]. The continuous limit of the discrete counting
process {Nt}t≥0 = max{n ∈ N|∑n

i=1 Ti ≤ t} is the hit-
ting time process S(t) (also called the first passage time).
We choose the nondecreasing random process S(t) for a
new time clock (stochastic time arrow). The probability

density of the process S(t) has the following form [43]:

pS
α(t, τ) =

1
2πj

∫

Br

uα−1 exp(ut− τuα)du = t−αFα

( τ

tα

)

,

(7)
where Br denotes the Bromwich path and j =

√−1. The
function Fα(z) can be expanded as a Taylor series:

Fα(z) =
∞∑

k=0

(−z)k

k! Γ (1 − α− kα)
, (8)

where Γ (·) is the gamma function. The probability den-
sity pS

α(t, τ) determines the probability to be at the in-
ternal time (or so-called operational time) τ on the real
time t [44].

The stochastic time arrow can be applied to the ki-
netic equations (1) and (2). Take the process S(t) as a
subordinator. It accounts for the amount of time when
an object does not change its orientation. If p(d)(τ) and
p(u)(τ), taken from equations (1) and (2) as probability
laws of the parent process, depend now on the local time
τ , then the resulting probabilities p(d)

α (t) and p(u)
α (t) after

the subordination are determined by the integral relations:

p(d)
α (t) =

∫ ∞

0

dτ pS
α(t, τ)p(d)(τ) (9)

p(u)
α (t) =

∫ ∞

0

dτ pS
α(t, τ)p(u)(τ). (10)

Now the compaction of the system is defined by two
stochastic processes, random waiting times between ran-
dom reorientations. The ratio of objects in the state “up”
and another in the state “down” is subordinated by the
process S(t). In other words, the compaction process
(Eqs. (9) and (10)) is obtained by randomizing the time
clock of the continuous-time stochastic dynamics (Eqs. (1)
and (2)) using the random process S(t) [44].

The equation describing the present model takes the
form similar to equations (1) and (2), but the derivatives
of first order become fractional of order 0 < α < 1 de-
termined by the index of the process S(t). Let us present
equations (1) and (2) in compact form:

d

dt
p(t) = ω̂ p(t), (11)

where p(t) =
[

p(d)(t) p(u)(t)
]T

, and ω̂ denotes the
transition rate operator:

ω̂ =
[−ωud ωdu

ωud −ωdu

]

. (12)

It is important to note that the operator ω̂ is independent
of time. Equation (11) can be written in the integral form

p(t) = p(0) +
∫ ∞

0

dτ ω̂ p(τ). (13)

The Laplace transform of equation (13) gives the relation

ω̂ p̃(s) = sp̃(s) − p̃(0), (14)
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where the Laplace transform L is defined as:

Lp(t) ≡ p̃(s) =
∫ ∞

0

dt exp(−st)p(t). (15)

In the Laplace space the probabilities pα(t) =
[

p
(d)
α (t) p(u)

α (t)
]T

(see, Eqs. (9) and (10)) take the most
simple form

p̃α(s) = sα−1p̃(sα), (16)

since p̃S
α(s, τ) = sα−1 exp(−τsα) [45]. When operator ω̂

acts on the Laplace image p̃α(s) (Eq. (16)), we obtain

ω̂p̃α(s) = sα−1ω̂p̃(sα) = sα−1 (sαp̃(sα) − p̃(0))

= sαp̃α(s) − sα−1p̃(0). (17)

The inverse Laplace transform L−1 of the latter expres-
sion (17) gives the abstract partial differential equation
with the fractional derivative of time:

pα(t) = p(0) + 0D
−α
t ω̂ pα(t). (18)

Here we use the fractional Riemann-Liouville integral
operator defined via the formula

0D
−α
t f(t) =

1
Γ (α)

∫ t

0

dτ (t− τ)α−1f(τ), 0 < α < 1,

(19)
with the convenient property L[ 0D−α

t f(t)] =
s−αf̃(s) [46]. Using equation (18) and taking into
account that ρ(t) = ρdp

(d)
α (t) + ρup

(u)
α (t), we obtain that

the deviation Δρ(t) = ρ(∞)− ρ(t) of the packing fraction
ρ(t) from its steady-state value ρ(∞) obeys the fractional
differential equation

Δρ(t) = Δρ(0) − ω
[

0D
−α
t Δρ(t)

]

, (20)

where ω = ωdu + ωud is the total transition probability
rate and ρ(∞) is defined by equation (4). In equation (20),
the fractional derivative on the r.h.s. describes a process
which is subordinated to the simple orientational switch-
ing; the subordination is defined by the α-stable waiting
time distribution. By differentiating equation (20) with
respect to time and with the help of the formula [46]

d

dt
0D

−α
t f(t) = 0D

1−α
t f(t), (21)

it is found that

d

dt
Δρ(t) = −τ−α

r 0D
1−α
t Δρ(t), (22)

where τr = ω−1/α. Equation (22) is an integro-differential
equation. The Riemann-Liouville operator 0D

1−α
t intro-

duces a convolution integral with the power-law kernel
M(t) ∝ tα−2. Therefore, the fractional equation (22) in-
volves a slowly decaying memory, so the present packing
fraction ρ(t) of the system depends strongly on its his-
tory ρ(t′), t′ < t. This is in accordance with the fact that
granular materials are intrinsically non-local in time [1].

The parameter τr may be interpreted as a generalized
relaxation time. Indeed, the solution of equation (22) can
be expressed in terms of the Mittag-Leffler function Eα of
order α via [46,47]

Δρ(t) = Δρ(0)Eα

[

−
(
t

τr

)α]

. (23)

Mittag-Leffler function is defined by the following inverse
Laplace transform:

Eα [−(t/τ)α] = L−1
{

(u+ τ−αu1−α)−1
}

, (24)

from which the series expansion

Eα [−(t/τ)α] =
∞∑

n=0

(−(t/τ)α)n

Γ (1 + αn)
(25)

can be deduced [47].
Two important questions are still not answered. First,

the model just outlined is incomplete as it does not incor-
porate the experimentally controlled parameter Γ . Map-
ping the model on to the experiment, “up”→“down” event
is associated with the annihilation or filling of a void
within the horizontal section, whereas a “down”→“up”
event is associated with the creation of a void. The crucial
parameter which determines the final steady-state pack-
ing fraction ρ(∞) and controls the dynamics, is the ratio
γ = ωud/ωdu and within a model plays a role similar to
that of the intensity of vibration Γ in real experiments.
According to equation (4), the steady-state value of the
packing-fraction ρ(∞) is determined by:

ρ(∞) =
ρd + ρuγ

1 + γ
. (26)

The packing fraction ρ(∞) is a decreasing function of the
parameter γ ≥ 0 and varies between ρu = a/b (γ → ∞)
and ρd ≤ 1(γ = 0).

Second, it is important to note that the coefficient α
is not independent as far as its functional dependence on
the “tapping intensity” γ is concerned. We postulate that
parameters 0 < α < 1 and γ > 0 obey a simple relation:

α =
1

1 + 1/γ
. (27)

The value of parameter α increases monotonically toward
unity as a function of the “tapping intensity” γ. This rela-
tionship can be justified by the following phenomenolog-
ical argument. Since the waiting-time intervals Ti belong
to an α-stable distribution (0 < α < 1), the probability
that Ti is greater than some number t > 0 (tail probabil-
ity) is asymptotically power law, i.e. P (Ti > t) ∝ t−α as
t→ ∞ [41]. Accordingly, decreasing of the parameter α in
the range (0, 1) increases the contribution of long waiting-
time intervals Ti during the compaction process. This is
in accordance with the fact that during the low-intensity
tapping some cooperative structures in the packing are
long-standing, while for the high-intensity tapping regime,
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cooperative structures form and disappear rapidly. Analo-
gously, in the present model, “up” and “down” states are
preserved for longer times for the lower tap intensities. It
is important to notice that the “tapping intensity” γ in-
fluences the compaction dynamics indirectly through the
parameter α (Eq. (27)). But, the parameter α does not
affect the value of the steady-state packing fraction ρ(∞).
Furthermore, in the next section by virtue of equation (27)
it will be shown that the relaxation time τr versus γ fol-
lows an Arrhenius behavior τr ∝ exp(γ0/γ) [5]. Note that
Arrhenius-like forms have already been reported in some
previous studies on the granular compaction under tap-
ping [1,4,48,49]. Such a relaxation law is also found for
strong glasses. The Arrhenius-like process describes the
escape probability of a thermally or mechanically acti-
vated particle from a potential well. In granular systems,
thermal effects are negligible, and we hypothesize that the
mechanical excitation plays the role of a thermal energy
source.

3 Numerical simulation and results

Here we compare the theoretical predictions described in
the previous section with the results of the numerical sim-
ulations of the present compaction model. The numerical
simulations are based on the numerical algorithm for the
simulation of fractional Fokker-Plank dynamics described
in more detail in references [50,51]. Let us briefly describe
the algorithm used in our numerical simulation.

At each Monte Carlo step one lattice site is selected
at random, and one of the two possible transitions be-
tween the two different states of the object is chosen at
random. The choice of the transition from the state “up”
to the state “down” occurs with probability pdu, and from
the state “down” to the state “up” with probability pud.
The transition probabilities obey the normalization condi-
tion pdu + pud = 1, and determine the “tapping intensity”
γ. When the attempted process is an “up” → “down”
transition, and if randomly chosen object is in the “up”
state, its state switches form “up” to “down”. On the con-
trary, if randomly chosen object is in the “down” state the
attempt is abandoned. When the attempted process is a
“down” → “up” transition, and provided that the selected
object is in the “down” state, the object state is changed
from the “down” to “up”. Otherwise, we reject the re-
orientation trial. Reorientation processes are assumed to
happen instantaneously or at least in negligible time. The
random time τ between two reorientation attempts is ex-
tracted from a residence time distribution ψ(τ). A suitable
possible choice for ψ(τ) is a Mittag-Leffler distribution
defined by:

ψ(τ) = − d

dτ
Eα(−(τ/ν)α), (28)

where the constant ν is the time-scaling parameter, and
the parameter α is determined by relation (27). The basic
role of the Mittag-Leffler waiting time probability den-
sity in the time fractional continuous time random walk

(CTRW) has become well known by the seminal paper of
Hilfer and Anton [52]. Fulger et al. [53] paid special atten-
tion to its use as a waiting time law in the CTRW simu-
lation. The probability density ψ(τ) for the waiting times
can be numerically calculated by series expansion (25).
This method produces a pointwise representation of the
density on a finite interval. Random numbers can then
be produced by rejection, most efficiently with a look-up
table and interpolation. More convenient is the following
inversion formula by Kozubowski and Rachev [54]:

τ = −ν lnu
(

sin(απ)
tan(απv)

− cos(απ)
)1/α

, (29)

where u, v ∈ (0, 1) are independent uniform random num-
bers, ν is the scale parameter, and τ is a Mittag-Leffler
random number. For α = 1, equation (29) reduces to
the inversion formula for the exponential distribution, i.e.
τ = −ν lnu. In each computational step the time t and the
packing fraction ρ are updated, t→ t+τ and ρ→ ρ+Δρ,
whereΔρ ∈ {±(1−a/b)/N, 0}. Reiterating this algorithm,
the full density growth above the initial packing fraction
ρ(0) = ρu = a/b to the steady-state limit ρ(∞) (Eq. (4))
can be computed.

The time-scaling parameter ν in equation (29) is cal-
culated using the procedure detailed in references [50,51].
The quantities ωdu = (pdu/N)ν−α and ωud = (pud/N)ν−α

in the fractional kinetic equation (20) are referred to
as the fractional “up” → “down” and “down” → “up”
rates. Using the normalization condition for the transi-
tion probabilities, i.e. pdu + pud = 1, one obtains that:

pdu =
ωdu

ωdu + ωud
, pud =

ωud

ωdu + ωud
, (30)

and
ν = (N(ωdu + ωud))

−1/α
. (31)

In that case, the results of simulations are independent of
the number of objects in the system. The fractional rates
can be chosen as:

ωdu = ω
1

1 + γ
, ωud = ω

γ

1 + γ
, (32)

where γ = pud/pdu. We impose that parameter ω > 0 in
equation (32) depends only on the micromechanical prop-
erties of the granular system. In fact, the form (32) of the
fractional rates ensures that the total rate ωdu + ωud =
ω �= f(γ) is independent on the tapping intensity γ.

All numerical simulations were performed on a system
of N = 100 rectangles with aspect ratio a/b = 1/3; more-
over, the parameter ω was chosen as ω = 10−2, so that
ν = 1. Figure 2 shows a single realization of the tempo-
ral evolution of the packing fraction ρ(t) for two values
of “tapping intensity”, γ = 2/3 (α = 0.4) and γ = 3/2
(α = 0.6). Obviously, with smaller γ (or, equivalently,
with smaller α) the waiting times become longer. Similar
curves are obtained with different values of γ.

In order to sufficiently diminish statistical fluctuations,
it is necessary to average over many independent runs for
each value of the parameter γ. Therefore, curves of the
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Fig. 2. A single realization of the temporal evolution of the
packing fraction ρ(t) for two values of tapping intensity, γ =
2/3 (α = 0.4) and γ = 3/2 (α = 0.6). The dashed lines show
the Mittag-Leffler behavior (Eq. (23)), and serve as a guide to
the eye.

density relaxation reported here are averages of K = 1000
independent simulations. To compute the average pack-
ing fraction, we introduce a time array tm = t

(m−1)/M
f ,

m = 1, 2, . . . ,M + 1, where tf is the final time, and
log tm+1 − log tm = log tf/M = const. Each density curve
ρ(k)(t), k = 1, . . . ,K is separately evolved with time, un-
til the final time tf is reached, t ≥ tf . As the kth density
curve ρ(k)(t) reaches a measurement time tm, the packing
fraction ρ(k)(tm) will be computed as a mean value of the
packing fractions {ρ(k)(t)|tm ≤ t ≤ tm+1}. Then, all cor-
responding packing fractions ρ(k)(tm), m = 1, 2, . . . ,M+1
will be saved for this kth run. After evolving all the
K density curves ρ(k)(t), the average packing fraction
ρ(tm) at the fixed time tm is computed by normalization
ρ(tm) =

∑K
k=1 ρ

(k)(tm)/K.
Now, we present and discuss results regarding the tem-

poral evolution of the packing fraction ρ(t). The varia-
tion of the packing fraction ρ(t) with time for several
tapping intensities γ is presented in Figure 3. The sim-
ulation curves are in good qualitative agreement with the
experimental data obtained in experiments with a reduced
lateral confinement [4,5]. We have observed that the com-
paction dynamics gets slower when the tapping intensity
γ decreases. Actually, when a small tapping intensity is
applied, the evolution of the packing fraction toward the
steady-state value ρ(∞) takes place on much wider time
scale and finally a larger value of the asymptotic pack-
ing fraction is achieved. In the same figure, the relax-
ation curves obtained analytically by equation (23) are
also given, demonstrating that the Mittag-Leffler law (23)
is excellently obeyed in our simulations. For large values
of γ, there is a rapid approach to the steady-state density
ρ(∞), and consequently the parameter α reaches a value
close to 1 (see Eq. (27)). Since Eα[−(t/τr)α] → exp(−t/τr)
when α → 1, the slow (“glassy”) relaxation feature
disappears in the regime of strong tapping intensities.
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Fig. 3. Temporal evolution of the packing fraction ρ(t)
obtained through Monte-Carlo simulations (solid lines) and
analytically (dashed lines) for various tapping intensities
γ = 3/7, 2/3, 1, 3/2.
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Fig. 4. The steady-state packing fraction ρ(∞) and the gen-
eralized relaxation time τr, as functions of the tapping inten-
sity γ. Squares are the simulation results for ρ(∞) at γ =
3/7, 2/3, 1, 3/2. Circles are the corresponding values of the
relaxation time, τr ≡ ω−1/α = 4.64×106 , 105, 104, 2.15×103.
The descending solid curve (left axis) shows the analytic re-
lation between the steady-state packing fraction ρ(∞) and
γ (see Eq. (26)). The dashed superimposed line (right axis)
corresponds to the Arrhenius law τr ∝ exp(γ0/γ), where
γ0 = ln(1/ω) ≈ 4.6.

In Figure 4 the values of the steady-state packing frac-
tion ρ(∞) versus the control parameter γ are reported
for the simulation results shown in Figure 3. As it can
be seen, the decrease of the steady-state packing frac-
tion ρ(∞) follows an algebraic dependence (26). In ad-
dition, we have carried out the annealing procedure ana-
log to the experiment described in [55,56]: the tapping
intensity is continuously increased, then decreased, and
increased again. Using our model and the same protocol,
we only recover the reversible branch which coincides with
the solid line in Figure 4. The steady-state density only
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depends on the tapping intensity and not on the initial
conditions. This can be explained by the fact that the
number of taps used in simulations is large enough to al-
low our system to reach stationarity. The absence of irre-
versible branch was also observed in the Rennes group’s
experiments on granular compaction [6]. Thus, aging and
irreversible-reversible behaviors are observed only when
the steady-state is not reached.

Also, the values of the generalized relaxation time τr =
ω−1/α for γ = 3/7, 2/3, 1, 3/2 are given in Figure 4.
Using the values γ0 = ln(1/ω) and τ0 = 1/ω, we plot the
Arrhenius law

τr = τ0 exp(γ0/γ), (33)

as the dashed curve in Figure 4. In fact, the decay of τr
with γ can be accurately described by the Arrhenius
law (33). Indeed, inserting expressions γ0 = ln(1/ω) �=
f(γ) and τ0 = 1/ω �= f(γ) into equation (33), and elim-
inating γ with the help of the relation (27), we can ob-
tain the expression for the generalized relaxation time,
τr = ω−1/α (see Eq. (22)).

Memory effects

In this subsection we focus on the response of the present
model to sudden perturbation of the tapping intensity γ.
In the compaction experiment [9,33], the tapping inten-
sity (or the shear amplitude) was instantaneously changed
from a value Γ1 to another Γ2 at a given time tw. For a
sudden decrease in Γ (Γ1 > Γ2) it was observed that on
short-time scales the compaction rate increases, while for
a sudden increase in Γ (Γ1 < Γ2) the system dilates for
short times. This behavior is transient, and after several
taps the usual compaction rate is recovered. In our model
the random time interval of n reorientation attempts is
given by T (n) =

∑n
i=1 Ti, T (0) = 0. Therefore, the sim-

plest way to mimic the experimental procedure is to im-
pose the following conditions on the parameters γ and α
(see, Eq. (27)):

γ = γ1, α = α1 = (1 + 1/γ1)−1, if T (n) ≤ tw, (34)

γ = γ2, α = α2 = (1 + 1/γ2)−1, if T (n) > tw. (35)

For each independent run, there exists an index n such
that T (n) ≤ tw < T (n + 1). Consequently, the waiting
time T (n + 1) − T (n) is extracted from a residence time
distribution ψ(τ) (Eq. (28)) which depends on the param-
eters γ1 and α1. Similarly, the waiting times T (k+1)−T (k)
for k > n are determined by the parameters γ2 and α2.

Figure 5 shows typical memory effects in our model af-
ter an abrupt change of the tapping intensity γ. The simu-
lation data we present therein on the packing fraction ρ(t)
are averaged over 104 runs. In Figure 5a the tapping in-
tensity γ is switched from γ1 = 3/2 (α1 = 0.6) to γ2 = 3/7
(α2 = 0.3) at tw = 104. We observe that after the tran-
sient interval the “anomalous” response ceases and there
is a crossover to the “normal” behavior, with compaction
rate becoming the same as in the constant forcing mode. In
Figure 5b we show the response of the system to the tap-
ping intensity shift from γ1 = 2/3 (α1 = 0.4) to γ2 = 3/2
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(a) γ1 = 3/2 → γ2 = 3/7

Mittag-Leffler law:
γ1 = 3/2
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(b) γ1 = 2/3 → γ2 = 3/2

Mittag-Leffler law:
γ1 = 2/3

Fig. 5. Memory effects in the present model. Time evolution of
the packing fraction ρ(t) when the tapping intensity is switched
(a) from γ1 = 3/2 to γ2 = 3/7 (α1 = 0.6 → α2 = 0.3)
at tw = 104 (upper solid curve), and (b) from γ1 = 2/3 to
γ2 = 3/2 (α1 = 0.4 → α2 = 0.6) at tw = 2 × 105 (lower
solid curve). The dashed curves obtained analytically by equa-
tion (23) correspond to the processes at constant γ1 = 3/2 (a),
and γ1 = 2/3 (b). Simulation results come from an average
over 104 simulations.

(α2 = 0.6) at a time tw = 2 × 105. We observe a memory
effect opposite to the previous case, i.e. we find that the
system dilates immediately following tw. Both results are
opposite to what could be expected from the long-time
behavior at constant γ.

Memory effect implies that the system can be found in
states, characterized by the same packing fraction ρ, that
evolve differently under further tapping with the same in-
tensity γ. This is illustrated in Figure 6. For the tapping
intensities γ = 3/2 (α = 0.6) and 11/9 (α = 0.55) our
system achieves the packing fraction ρw = 0.5624 at the
same time tw = 1.654× 104. First, the system was driven
to the same packing fraction ρw with two different tap-
ping intensities, γ1 = 3/2 and γ2 = 11/9. After the pack-
ing fraction ρw was achieved at time tw, the system was
always tapped with the same intensity, γ2. The time evo-
lution of the packing fraction is shown in Figure 6a. In the
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Fig. 6. Time evolution of the packing fraction for a system,
which was tapped up to the same packing fraction ρw = 0.5624
using two different tapping intensities, γ1 = 3/2 (α1 = 0.6)
and γ2 = 11/9 (α2 = 0.55). Afterwards, the system was al-
ways tapped with (a) γ2 = 11/9, and (b) γ1 = 3/2. Solid
line presents the results of simulation in which there is a
change in the tapping intensity γ at time tw = 1.654 × 104:
(a) γ1 = 3/2 → γ2 = 11/9, and (b) γ2 = 11/9 → γ1 = 3/2. The
curve corresponding to a constant tapping intensity is plotted
for reference (dotted line). The dashed curves obtained analyt-
ically by equation (23) correspond to a processes at constant
γ1 = 3/2 and γ2 = 11/9. Simulation results come from an av-
erage over 104 simulations. The evolution for t > tw depends
on the prehistory of the system.

second case, the tapping intensity γ2 was switched to γ1 at
time tw (see Fig. 6b). Note that in all the plotted curves
the jump of the compaction rate has an opposite sign than
the variation of the tapping intensity. Figures 6a and 6b
clearly show that the two systems prepared at the same
packing fraction but in different ways display different be-
haviors if the same tapping acceleration is applied to them.
In other words, the density after the perturbation of the
tapping intensities depends not only on the density ρw,
but also on the previous tapping history.

4 Final remarks

In this paper, a one-dimensional model for compaction in
granular media has been presented. Trying to mimic what
is done in real experiments, the evolution of a two-state
system was modeled as a stochastic fractional process. The
general probabilistic formalism treats the compaction pro-
cess of a granular system regardless of the precise nature
of local interactions. Within our approach we model the
compaction dynamics in terms of a suitable waiting-time
distribution between the attempted changes of state. The
stochastic time clock has a clear physical sense; a grain
interacts with a disordered environment in random points
of time. The model has shown to share many of the char-
acteristic features of granular materials under tapping. We
have derived the empirical relaxation law (Eq. (23)) and
its macroscopic equation (Eq. (22)). In particular, we have
shown that the generalized relaxation time τr can be ac-
curately described by means of the Arrhenius law (33).

The validity of our fractional kinetic approach to the
situation when the tapping intensity is abruptly increased
or decreased is proved by comparison to numerical simu-
lations of the corresponding system. The numerical sim-
ulations confirm that the packing fraction alone is not
sufficient to describe the state of the system, because the
future evolution of the density depends not only on its cur-
rent value, but also on the previous tapping history. The
linear response of an ensemble of random walkers perform-
ing CTRWs to a changing external field has been previ-
ously investigated in several works [57–59]. The response
depends on the delay between the time of measurement
and the time at which the system was prepared in a given
state, i.e. the CTRW process displays aging. The behav-
ior of such systems depends much on the early history
of the system. It should be noted that the memory ef-
fects are a direct consequence of the random time steps
τ belonging to the long-tailed waiting-time distribution
ψ(τ) (28). Completely expected, granular compaction is
an example of a non-local temporal phenomena in which
a different kind of calculus, i.e. fractional calculus, should
play a central role.

This work was supported by the Ministry of Education, Sci-
ence and Technological Development of the Republic of Serbia,
under Grant Nos. ON171017 and III45016.
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12. S. Živković, Z.M. Jakšić, D. Arsenović, L. Budinski-
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