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Abstract. Random sequential adsorption of binary mixtures of extended objects on a two-dimensional
triangular lattice is studied numerically by means of Monte Carlo simulations. The depositing objects
are formed by self-avoiding random walks on the lattice. We concentrate here on the influence of the
symmetry properties of the shapes on the kinetics of the deposition processes in two-component mixtures.
Approach to the jamming limit in the case of mixtures is found to be exponential, of the form: 6(¢) ~
Ojam — A0 exp(—t/o), and the values of the parameter o are determined by the order of symmetry of the
less symmetric object in the mixture. Depending on the local geometry of the objects making the mixture,
jamming coverage of a mixture can be either greater than both single-component jamming coverages or
it can be in between these values. Results of the simulations for various fractional concentrations of the
objects in the mixture are also presented.

PACS. 68.43.Mn Adsorption/desorption kinetics — 05.10.Ln Monte Carlo methods — 02.50.-r Probability

theory, stochastic processes, and statistics — 05.70.Ln

1 Introduction

Random sequential adsorption (RSA) has attracted con-
siderable interest due to its importance in many physi-
cal, chemical, and biological processes. In two dimensions
(2D), RSA is a typical model for irreversible and sequen-
tial deposition of macromolecules at solid/liquid inter-
faces. Some examples of the wide range of applicability of
this model include adhesion of colloidal particles, as well
as adsorption of proteins to solid surfaces, with relaxation
times much longer than the formation time of the deposit.
A comprehensive survey on RSA and cooperative sequen-
tial adsorptions is given by Evans [1]. Recent surveys in-
clude Privman [2,3], Senger et al. [4] and Talbot et al. [5].

The simplest RSA model is defined by the following
three rules: i) objects are placed one after another in ran-
dom position on the substrate; ii) adsorbed objects do not
overlap; and iii) adsorbed objects are permanently fixed
at their spatial positions (neither diffusion nor desorption
from the surface are allowed). When the surface is satu-
rated by adsorbed objects so that no further objects can
be placed, the system reaches the jamming limit. The RSA
models are broadly classified into continuum models and
lattice models on the basis of the nature of the substrate.
A quantity of central interest is the coverage 6(t), which is
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the fraction of the total substrate area occupied by the ad-
sorbed objects at time t. Asymptotic approach of the cov-
erage fraction 6(t) to its jamming limit 6,4, = 6(t — o0)
is known to be given by an algebraic time dependence for
continuum systems [6-8], and by exponential time depen-
dence for lattice models [9-12].

An important issue in RSA is the influence of the shape
of the depositing objects on the dynamics of irreversible
deposition. RSA of many different geometric objects has
been studied. For instance, Khandkar et al. [13] have stud-
ied RSA of zero-area symmetric angled objects on a con-
tinuum substrate for the full range (0°-180°) of values of
the arm angle ¢ and have observed that 04, —0(t) ~ t* as
expected. The value of the exponent « exhibits a crossover
near ¢ = 0° or 180°, and is significantly lower in the case
of the angled objects than in the case of needles. Wang
and Pandey [14] have studied the kinetics and jamming
coverage in RSA of self-avoiding walk chains on a square
lattice. They reported that the growth of the coverage 6(t)
to its jamming limit in the intermediate time regime can
be described by a power law 6(t) ~ 64, —c/t7. In contrast
to theoretical predictions for the RSA of polydisperse ob-
ject of regular shapes they find that the effective exponent
~ depends on the chain length. They observed a crossover
from a power law variation of the coverage fraction 6(t)
in the intermediate-time regime to an exponential growth
in the long time, especially for short chains. Budinski and
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Table 1. (Color online) Parameters Af and o determined using equation (1) for various shapes (z) of length ¢ on a triangular

lattice. The colors are associated with the different order nim

the last given digits.

of symmetry axis. The typical statistical errors are estimated to

(z) shape n{™ | 4@ Gsz)m Af o
(A) . 2 | 1 |09139| 0105 3.12
(B) — . 2 08362 | 0.134  2.94
(©) ./ 1 2 | 0.8345 | 0.0813  5.78
(D) AN 3 0.7970 | 0.115  1.96
(E) — 2 0.7886 | 0.0944  3.12
(F) ./ 1 0.7653 | 0.0813  5.74
(G) —\ 1 0.7739 | 0.0602  5.98
(H) / 2 0.7404 | 0.0973  3.03
(I) _/ 1 | 3 | 07651 | 0.0805 5.75
(J) _> 1 0.7226 | 0.0573  5.84
(K) 7 2 0.7593 | 0.0590  2.93
(L) i 1 0.7744 | 0.0578  6.04
(M) l 1 0.7742 | 0.0608  5.96
(N) — . 2 | 4 | 07587 | 0115  2.87
(o) I 0.7372 | 0.0837  3.02
(P) ﬁ 3 0.7210 | 0.0944  1.99
- ’
@) 6 0.5740 | 0.0707  0.986
(R) _._/ 1 0.6758 | 0.0829  5.81
(S) e o2 0.7212 | 0.0954 2.84
(T) 7 6 0.6695 | 0.0773  0.994
./ i
(U) 1 0.6443 | 0.0721  6.07

Kozmidis [11,12] have carried out the extensive simula-
tions of single-layer irreversible deposition using objects of
different sizes and rotational symmetries on a square and
triangular lattice. They fitted the asymptotic approach of
the coverage fraction 0(t) to its jamming limit 6,4, by the
exponential time dependence:

0(t) ~ Ojam — Al exp(—t/o), (1)
where Af and o are parameters that depend on the shape
and orientational freedom of depositing objects [11,12].
The shapes with the symmetry axis of a higher order have
lower values of o, i.e., they approach their jamming limit
more rapidly. The parameter A decreases with the ob-
ject size for the same type of shape. Later, by studying a
reversible RSA of extended objects on a triangular lattice,

Budinski et al. [15] showed that the growth of the coverage
0(t) above the jamming limit to its steady-state value 6,
is described by a pattern 0(t) = 0., — AOEs[—(t/7)7],
where Eg denotes the Mittag-Leffler function of order
B € (0,1). The parameter 7 is found to decay with
the desorption probability P_ according to a power law
7 = A P~". Exponent ~ is the same for all the shapes,
but parameter A depends only on the order of symmetry
axis of the shape. This confirms the crucial role of the ge-
ometrical character of the objects in deposition dynamics.

In comparison to the irreversible deposition of pure
depositing objects, very little attention has been given to
the RSA of two or more species of different shape and/or
size although the latter problem is inherent in many ex-
perimental situations [16,17]. The role of polydispersity
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has been studied numerically in a wide variety of con-
ditions. Examples include, binary mixtures [18,19], mix-
tures of particles obeying a uniform size distributions [18],
mixtures with Gaussian size distributions [18,20], power
law size distributions [21], etc. Theoretical works were
restricted only to a binary mixtures of particles with
very large size differences [22-24], power law size distribu-
tions [25,21], or general continuous size distributions [26].
The motivation of our present work comes from Barker
and Grimson [27], who investigated the adsorption of mix-
tures of lattice objects of different shapes but of the same
size on a square lattice by means of computer simulation.

In this paper we study the irreversible deposition of
two-component mixtures of extended objects on a 2D
triangular lattice by Monte Carlo simulations. Simula-
tions are performed for objects of various shapes. The
depositing shapes are modeled by directed self-avoiding
walks on 2D triangular lattice. A self-avoiding shape of
length ¢ is a sequence of distinct vertices (wy, .. .,w;) such
that each vertex is a nearest neighbor of its predecessor,
i.e., a walk of length ¢ covers £+ 1 lattice sites. Examples
of such walks for £ = 1,...,6 are shown in table 1. On
a triangular lattice objects with a symmetry axis of first,
second, third, and sixth order can be formed. Rotational
symmetry of order ng, also called n-fold rotational
symmetry, with respect to a particular axis perpendicular
to the triangular lattice, means that rotation by an angle
of 2w /ns does not change the object. Here we focus our
interest on the influence of the order of symmetry axis of
the shape on the kinetics of the deposition processes in
two-component mixtures.

The paper is organized as follows. Section 2 describes
the details of the simulations. We give the simulation re-
sults and discussions in Section 3. Finally, Section 4 con-
tains some additional comments and final remarks.

2 Definition of the model and the simulation
method

In order to make a systematic approach to this problem
and to be able to compare the results for the mixtures
to the results for the single-component systems, the
simulations were also performed for pure shapes shown
in table 1. The results are obtained for all the shapes
that may have a different long-time behavior of 6(t) and
different jamming coverages 6;,,, for the lengths of the
walks ¢ = 1,2 and 3. The number of different shapes
increases very fast with the length of the walk [28] and
for the greater lengths we investigated a few charac-
teristic objects for each length. We made at least two
representative objects for each order of symmetry.

At each Monte Carlo step a lattice site is selected at
random. If the selected site is unoccupied, one of the six
possible orientations is chosen at random and deposition
of the object is tried in that direction. We fix the beginning
of the walk that makes the shape at the selected site and
search whether all successive £ sites are unoccupied. If so,
we occupy these £ + 1 sites and place the object. If the
attempt fails, a new site is selected, and so on. After long

enough time a jamming limit is reached when there is no
more possibility for a deposition event.

It should be noted that the results in table 1 differ
from the estimates given in [12]. In the present work we
deal with the above-described conventional model of RSA,
while in reference [12] the end-on model of RSA has been
used. In the end-on model the depositing object always
checks all possible directions from the selected site. If the
object cannot be placed in any of the six orientations, the
site is denoted as inaccessible. The jamming limit for the
end-on model is slightly larger than for the conventional
model and the approach to the jamming limit is faster.

The set of binary mixtures used in our simulations is
shown in table 2. Each mixture (z) + (y) is composed
of two lattice objects (A)—(U) from table 1. In the case of
mixtures, at each Monte Carlo step a lattice site is selected
at random, one of the objects that make the mixture is
selected at random and deposition of the selected object
is tried in one of the six orientations. If the attempt fails,
a new site and a depositing object is selected at random.
The jamming limit is reached when neither of the objects
can be placed in any position on the lattice.

The Monte Carlo simulations are performed on a
triangular lattice of size L = 120. Periodic boundary
conditions are used in all directions. The time is counted
by the number of attempts to select a lattice site and
scaled by the total number of lattice sites. The data are
averaged over 500 independent runs for each shape and
each mixture of shapes.

3 Results and discussion

For all the objects from table 1 and for all the mixtures
from table 2 plots of In(fjem — 6(t)) vs. t are straight
lines for the late stages of deposition. These results are in
agreement with the exponential approach to the jamming
limit of the form (1), with parameters o, A and 0, that
depend on the shape of the depositing object, i.e. on the
combination of the objects making the mixture.

Some of the plots for the pure objects are shown in
Figure 1. We can notice that there are four groups of
lines with different slopes, corresponding to shapes with
different order of symmetry. The values of the parameter
o are determined from the slopes of the lines and they
are given in table 1. According to o, all shapes can be
divided into four groups:

a) shapes with a symmetry axis of first order with
o ~5.9,

b) shapes with a symmetry axis of second order with
o~ 3.0,

c¢) shapes with a symmetry axis of third order with
o~ 2.0,

d) shapes with a symmetry axis of sixth order with
o~ 0.99.

This means that the rapidity of the approach to the
jamming limit depends on the order of symmetry of
the shape and the approach is slower for less symmetric
shapes. The symmetry properties of the shapes have a
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Table 2. (Color online) Coverage fraction 9;-(“”
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for various binary mixtures (z) + (y) of shapes (A)—(U) from table 1. The

colors are associated with the different order n'* of symmetry axis. The typical statistical errors are estimated to the last given

digits.

() + (y) shapes n{ + 0 | @) 4w | g gD Y A9 o

(A) + (B) et e 2 42 1+2 | 09202 | 05401 03801 | 0.125 | 5.52
(A) + (E) —t 242 143 | 09191 | 05833 0.3358 | 0.129 | 5.66
(A) + (N) —t 242 144 | 09196 | 0.6144 0.3052 | 0.131 | 5.77
(A) + (0) —t 2 + 2 145 | 09195 | 0.6143 0.3052 | 0.135 | 5.73
(A) + (S) —t 242 146 | 09198 | 0.6553 0.2645 | 0.157 | 5.76
(B) + (C) et 241 2+2 | 08526 | 04191 0.4335 | 0.0365 | 11.42
(B) + (D) —t 243 2+2 | 08591 | 04330 0.4261 | 0.0781 | 5.51
() + (D) S+ A\ 143 2+2 | 0.8624 | 04406 0.4218 | 0.0493 | 11.62
(D) + (P) N+ A 3+3 245 | 08211 | 0.4946 0.3265 | 0.0983 | 3.95
(E) + (F) + ../ 241 3+3 | 07876 | 0.3903 0.3973 | 0.0354 | 11.84
(E) + (K) + .7 242 343 | 08109 | 0.3917 0.4192 | 0.0620 | 5.87
(F) + (K) S+ 7 142 3+3 | 08140 | 0.3960 0.4180 | 0.0523 | 11.55
(0) + (P) + N\ 2+3 545 | 07647 | 0.3415  0.4232 | 0.0639 | 5.41
0) + (@) +Q 246 545 | 06791 | 0.3608 0.3183 | 0.0534 | 5.54
(0) + (R) + / 241 545 | 07086 | 0.3612 0.3474 | 0.0460 | 11.21
(P) + (Q) ,_A,l+/.:> 3+6 545 | 06833 | 0.3998 0.2835 | 0.0686 | 3.98
(P) + (R) é+ J 3+ 1 545 | 07485 | 04156 0.3329 | 0.0420 | 11.74
(@) + (R) /:> + J 6+ 1 545 | 06822 | 0.3227 0.3595 | 0.0429 | 12.07
@) + (T) D +% 6+6 546 | 06222 | 0.2873 0.3349 | 0.0758 | 0.985
(S) + (T) +% 246 6+6 | 07125 | 0.3218 0.3907 | 0.0344 | 5.76
(S) + (U) + / 241 6+6 | 06833 | 0.3533 0.3300 | 0.0437 | 11.22
(T) + (U) % + __/ 6+ 1 6+6 | 0.7087 | 0.3955 0.3132 | 0.0450 | 11.57

crucial influence on the filling of small isolated targets on
the lattice that are left for deposition in the late times
of the process. Namely, a shape with symmetry axis of
higher order has a greater number of possible orientations
for deposition into an isolated location and an enhanced
probability for the adsorption.

Kinetics of the irreversible deposition of mixtures is
illustrated in Figure 2 where the plots of In(6;4, — 0(t))
vs. t are given for some combinations of the shapes from
table 1. These plots are straight lines for the late times
of deposition, suggesting that in the case of mixtures the
approach to the jamming limit is also exponential. In Fig-
ure 2 lines with four different slopes can be noticed. The

value of the parameter o is determined by the order of
symmetry of the less symmetric object in the mixture and
the values are:

a) o ~ 11.6 for the mixtures including an object with a
symmetry axis of first order,

o ~ 5.65 for the mixtures that contain at least one ob-
ject with symmetry axis of second order and no objects
with symmetry axis of first order,

o ~ 3.97 for the mixtures that contain at least one ob-
ject with symmetry axis of third order and no objects
with symmetry axis of lower order,

o ~ 0.985 for the mixtures of the objects with symme-
try axis of sixth order.

b)

c)
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Fig. 1. (Color online) Plots of In(6;am — 0(t)) vs. t for various
objects from table 1. Different slopes correspond to different
symmetry orders.
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Fig. 2. (Color online) Plots of In(6;am — 0(t)) vs. t for various
mixtures from table 2. The slopes are determined by the order
of symmetry of the less symmetric object in the mixture.

In the late stages of deposition the less symmetric objects
have to try all possible orientations, so they are respon-
sible for the approach to the jamming limit. Deposition
of mixtures is slower in comparison to the deposition of
pure objects, except for the objects with symmetry axis
of sixth order for which the parameter o has the same
values for the pure shapes and for the mixture. The retar-
dation of the adsorption shows that each of the islands of
the connected unoccupied sites is specific to a particular
shape. If we imagine an island of unoccupied sites such
that an adsorption of shape () is possible, prior to a suc-
cesful (x)-shape adsorption there will probably be some
rejected attempts of (y)-shape adsorption. Therefore the
overall process will proceed more slowly than each of the
individual adsorption processes.

Fig. 3. (Color online) a) Snapshots of patterns formed during
the RSA of mixture (B) + (D) correspond to jamming state;
(B)-red, (D)-green. b) Snapshots of patterns formed during
the RSA of mixture (S) + (T") correspond to jamming state;
(S)-red, (T')-green. c) Snapshots of patterns formed during the
RSA of mixture (S) + (U) correspond to jamming state; (S)-
red, (U)-green.
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Jamming configurations consist of clusters of objects of
the same type. A few typical jamming configurations are
shown in Figures 3a)—c). These clusters are more promi-
nent for elongated and for symmetric objects. Namely, at
very early times of the process the depositing objects do
not “feel” the presence of the already deposited ones and
are adsorbed randomly onto the surface. However, in the
late stages of deposition the depositing objects must fit
into small empty regions that favors the formation of clus-
ters. If one examines the evolution of domains in the case
of mixture (S) + (U) (Fig. 3c)), it can be observed that
growth of domains precipitated during early growth is sub-
stantially frustrated in the case of angled object (U). This
is the cause of the severe limitation on the size of domains
in the case of angled objects (U) as compared to those in
the case of k-mers (95).

Value of 04, for a mixture depends on the local ge-
ometry of the objects making the mixture. Values of the
jamming coverage for different combinations of depositing
objects are given in table 2. Qualitatively, we could say
that it depends on the probability that the neighboring
sites of an adsorbed object would be blocked by another
adsorbing object from the mixture. For the same types of
shapes the jamming coverage decreases when the size of
the objects increases.

For RSA of mixtures of k-mers of various lengths ¢,
and fo on a square lattice it was found [29] that the jam-
ming coverage for a mixture 0%17:@) is always greater than
either of the jamming coverages for the lengths £; and /5.
Comparing the results from table 1 and table 2 we can see
that for the mixtures of objects of various shapes this is
not always the case. For a number of combinations of de-
positing objects given in table 2 the jamming coverage for
a mixture has greater values than the jamming coverages
for the pure shapes making the mixture. However, there
are also mixtures such as (E) + (F), (O) + (Q), (O) +
(R), (P)+ (@), (S)+ (T), (S)+ (U) that have a lower
jamming coverage than one of the components. The jam-
ming coverage of the mixtures is still greater than the
jamming coverage of the other component. The mutual
feature of these mixtures is that the jamming coverages of
their components differ significantly.

We have also performed extensive simulations in or-
der to investigate the deposition processes for various
fractional concentrations r(*) and 7(¥) of the shapes (z)
and (y) in the reservoir, i.e. for various probabilities for
choosing one of these shapes for a deposition attempt.
As an illustration, here we give the results for the jam-
ming coverages and for the parameter o for a few combi-
nations of the objects and for various fractional concen-
trations of depositing objects. In Figures 4a)—c) jamming
coverages obtained for various compositions of mixtures
(2) + (y) = (B) + (D), (S) + (T),(T) + (U) are shown
vs. the fractional concentration r(*) (r) =1 — 7)), We
can see that 6;,,, varies monotonously with the fractional
concentration of one of the objects, growing with the con-
centration of the object with greater jamming coverage of
the pure shapes. Depending on the combination of the ob-
jects and on their fractional concentrations it can be either
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Fig. 4. a) Jamming coverage for the mixture (B)+ (D) vs. the
fractional concentration r®). The dotted and the dashed lines
represent the jamming coverages for the single-component de-
position of shapes (B) and (D), respectively. b) Jamming cov-
erage for the mixture (S)+ (7') vs. the fractional concentration
7). The dotted and the dashed lines represent the jamming
coverages for the single-component deposition of shapes (5)
and (7'), respectively. ¢) Jamming coverage for the mixture
(T) 4 (U) vs. the fractional concentration (™). The dotted and
the dashed lines represent the jamming coverages for the single-
component deposition of shapes (T") and (U), respectively.
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Fig. 5. a) Values of the parameter o for the mixture (B)+ (D)
vs. the fractional concentration r®). The dotted and the
dashed lines represent the values of o for the single-component
deposition of shapes (B) and (D), respectively. b) Values of the
parameter o for the mixture (S) + (7) vs. the fractional con-
centration r(*). The dotted and the dashed lines represent the
values of o for the single-component deposition of shapes (.5)
and (T), respectively. ¢) Values of the parameter o for the mix-
ture (T')+ (U) ws. the fractional concentration 7). The dotted
and the dashed lines represent the values of o for the single-
component deposition of shapes (T') and (U), respectively.

greater than both jamming coverages of the pure shapes
making the mixture or it can be lower than the higher
single-component jamming coverage, but still higher than
the other. When there is a large difference in the jamming
coverages for the single-component depositions, such as in
the case of the mixture (S) + (T") (Fig. 4b)), the jamming
coverage for the mixture can be in between these cover-
ages, especially for the high fractional concentrations of
the object with lower single-component ¢4y, .

Dependence of the parameter o on the fractional con-
centration 7(*) is shown in Figure 5. The behavior of o
differs from case to case. For example, for the mixture
(B) + (D) (Fig. 5a)), o has a minimal value for frac-
tional concentration 7(*) ~ 0.6 and the process slows down
when one of the fractional concentrations grows at the ex-
pense of the other. On the other hand, for the combination
(T)+(U), the value of o increases with the fractional con-
centration of the more symmetric object (T') (Fig. 5¢)). At
first sight, this is somewhat surprising, since object (7')
has a symmetry axis of sixth order and the lowest value
of o in the case of a single-component deposition, and ob-
ject (U) has a symmetry axis of first order and the highest
value of o in the case of a single-component deposition.
Indeed, the more symmetric objects reach their jamming
coverage for a short time, but there are still left some small
empty regions where the deposition of the less symmetric
objects is possible. The lower is the fractional concentra-
tion of the latter objects, the longer is the time necessary
to find all these empty regions left for the deposition. De-
spite these differences, the value of o has larger values
for a mixture than for the pure shapes for all fractional
concentrations of the components, so we can generally say
that the deposition process is always slower for a mixture
than for the pure shapes making the mixture.

4 Concluding remarks

Kinetics of irreversible deposition of mixtures on a trian-
gular lattice has been studied by Monte Carlo simulations.
A systematic approach has been made by examining a
wide variety of shapes and their combinations. The ap-
proach to the jamming limit was found to be exponential
for all the shapes and all the mixtures. The rapidity of the
approach depends only on the symmetry properties of de-
positing objects. For two-component mixtures the value of
the parameter o is determined by the order of symmetry
of the less symmetric object in the mixture.

It was shown that the kinetics of irreversible deposition
fastens with the increase of the order of symmetry of the
shape. On the contrary, the adsorption-desorption process
of asymmetric shapes is faster than the same process of
more symmetric shapes [15]. The reason for both effects
lies in the filling of small empty regions in the late stages of
the processes. In the case of irreversible deposition, objects
with symmetry axis of higher order have greater number of
possibilities for deposition into fixed small empty regions
in the late stages of deposition, while in the reversible
case the enhanced rate of single particle adsorption prolon-
gates the approach to the steady-state coverage. Namely,
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in the reversible case, when the value 0;4,, is reached, the
rare desorption events are generally followed by immediate
readsorption. These single-particle events do not change
the total number of particles. However, when one badly
placed particle desorbs and two particles adsorb in the
opened location, the number of particles is increased by
one. These collective events are responsible for the density
growth above 6;4,,. The increase of the order of symme-
try of the depositing object enhances the rate of single-
particle readsorption. This extends the mean waiting time
between consecutive two-particle events and the approach
to the steady state coverage is slower.

Jamming configurations for RSA of mixtures consist
of clusters of blocked sites and of clusters of objects of the
same type. The dimensions of these clusters are greater for
elongated and for symmetric objects. Jamming coverage
for a mixture is always greater than the jamming coverage
of the component with lower 64, and it is often greater
than either of the jamming coverages of the components
making the mixture.

When the fractional concentration of one component
grows at the expense of the other component in the
mixture, the jamming coverage varies monotonously.
It increases when the concentration of the object with
greater single-component jamming coverage increases.
On the other hand, the rapidity of the approach to the
jamming coverage does not always show a monotonic
behavior. For many combinations there is a minimal value
of o, i.e. the jamming limit is reached in the shortest
time, for a certain value of fractional concentration of one
of the components making mixture.
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