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Momentum-transfer theory has been used to obtain a relationship between the nth order tensorial
transport coefficients in a swarm experiment, the (n21)th derivative of the mobility, and the nth
derivative of the reaction rate coefficient. Elastic, inelastic, and reactive collisions for gas mixtures
have been taken into consideration. Numerical comparisons show that the results obtained from this
relationship are in good agreement with those obtained by solution of the Boltzmann equation.
Finally, we have analyzed the structure of the third-order tensorial transport coefficient by applying
momentum-transfer theory and group theory; both approaches show that in general there are three
independent components of this rank-three tensor. © 1999 American Institute of Physics.
@S0021-9606~99!50805-2#
I. INTRODUCTION

Higher order transport coefficients generally have been
ignored in the analysis of electron and ion swarm data. For
electrons, only one experimenter claims to have observed a
small effect from a higher order than diffusion.1 A separate
experiment2 was aimed at obtaining reliable data for drift
velocities, diffusion coefficients, and skewness, but failed3

because well-defined arrival time spectra of the electrons
could not be obtained. The theory developed to analyze the
data from that experiment and the corresponding Monte
Carlo simulations4 remain as the only published data on
skewness of electron swarms. The primary reason for the
lack of accurate experimental data for higher order transport
coefficients is that most experiments are designed to obtain
very accurate lower order coefficients and thus operate under
conditions where the effects of higher order coefficients are
negligible.5

A wealth of data now exists6–9 about ion transport coef-
ficients. These data can be accessed on the Internet10 at new-
ton.slu.edu once the username and password are obtained
from viehland@ions.slu.edu The database also includes hun-
dreds of sets of transport coefficients that have been calcu-
lated from accurate models of the ion–neutral interaction
potentials using Monte Carlo simulations11,12 and numerical
solutions13 to the Boltzmann equation. Nevertheless, littl e is
known about ion transport coefficients of higher order than
diffusion except for some speculations in a figure caption14

about the small difference between the shapes of the experi-
mental data and analytic forms of the arrival time spectra.

The transport coefficient that is one order higher than the
diffusion coefficient is the one most likely to be measured in
the near future. Numerical solutions of the Boltzmann equa-
tion wil l be necessary to compare such measurements with
predictions based on information about the ion–neutral col-
lision cross sections and interaction potentials. However, it is

a!Electronic mail: viehland@ions.slu.edu
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important to have analytical formulas available in order to
get a better physical insight, to analyze the structure of the
transport coefficient tensors on the basis of symmetry con-
siderations, and to guide both the experimental developments
and the analysis of the data. Providing such formulas and
testing them numerically are two of the purposes of this pa-
per. The third purpose is to understand the difference be-
tween the results of Koutselos, who found15 that there are
only two independent components in the transport coefficient
tensor one order higher than the diffusion coefficient, and
those of earlier analyses16,17 that predicted three independent
terms.

II. THEORETICAL EVALUATIO N OF HIGHER ORDER
TRANSPORT COEFFICIENTS

A. Background

Momentum transfer theory ~MTT! has been developed,
mostly through the efforts of Robson and co-workers,18,19 to
provide a simple method for obtaining analytical formulas
with reasonable numerical accuracy. The theory has been
applied to study ion transport in pure gases and mixtures,20,21

electron transport with conservative22 and nonconservative
collisions,18,19,23and even to describe muon transport.24 One
of the particular advantages of MTT is that it provides away
to develop generalized Einstein relations ~GERs! that are
analytic relations between diffusion coefficients and mobil-
ity.

Recently, two of the present authors have developed ~in
a paper25 hereafter designated as I! an extended version of
MTT that includes all of the elements required to describe
the transport of electrons or ions in mixtures of gases with
nonconservative processes. This MTT may be regarded as a
technique to simplify the calculation of the particle energy
distribution function and consequently of transport and rate
coefficients. The analytic forms that are obtained are more
general than the approximations involved in representing the
collisional frequencies and may be used with more accu-
3 © 1999 American Institute of Physics
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rately calculated or measured collision rates and other trans-
port data. Thus we claim that these forms, including the
GERs, have ageneral meaning that extends beyond the MTT
as a technique for calculation.

Paper I allows us to consider high-order gradients of the
number density, and high-order transport coefficients. There
is adegree of confusion in labeling the transport coefficient
that is one order higher than the diffusion coefficient. It has
been called the ‘‘third-order diffusion’’ coefficient in recent
literature,15 but this term is confusing because it implies that
it is the coefficient two orders beyond diffusion. We shall use
the term third-order transport coefficient because it is a ten-
sor of rank three and because it is the coefficient of the third
gradient of the number density in the extension of the diffu-
sion equation to high orders. ~The drift velocity is the coef-
ficient of the first gradient and the diffusion tensor of rank
two is the coefficient of the second gradient.!

Confusion also arises about the meaning of the term
skewness. Here we shall use this term to refer exclusively to
one of the components of the third-order transport coeffi-
cient. This meaning is completely different from that used in
the ion transport literature11,12 and the previously mentioned
database,10 where skewness describes the asymmetric distor-
tion of the ion distribution function that occurs at high elec-
tric field strengths but in the absence of ion density gradients.

The analogues of the GERs derived in this paper should
not be confused with some apparently similar rela-
tions11,12,26–28 obtained by expanding the transport coeffi-
cients in powers of the square of the electric field strength.
Our relations consider only Fickian higher-order transport
coefficients, but the electrostatic field E may be arbitrarily
large and the mobility K and all components of the higher-
order transport tensors may depend strongly on E.

B. Basi c equations

Consider a swarm of particles of charge e and mass m
moving through a l-component gas mixture of number den-
sity n0 under the influence of E. The collision processes of
interest are limited to elastic, inelastic, and reactive ~which
include attachment and ionization! collisions of individual
swarm particles with neutral gas molecules. As in I, it is
assumed that the stage of evolution of the swarm is the hy-
drodynamic limi t ~HDL!. In the HDL, the space ~r ! and time
~t! dependence of all properties is carried by the number
density, n(r ,t), of the charged particles and the swarm can
be characterized by time-independent transport coefficients.

The starting point of the hydrodynamic description is the
continuity equation,

]

]t
n~r ,t !1

]

]r
•@n~r ,t !^v&mix#52n~r ,t !ñ* , ~1!

which describes the change in n(r ,t) due to the nonreactive
particle flux, n(r ,t)^v&mix, and the reaction described by
2n(r ,t) ñ* . The assumption is made that both of these quan-
tities can be expressed as power series in the gradient opera-
tor ]/~]r ! with coefficients that are constant, except for
possible dependence upon E that is left implicit for the mo-
ment. Equation ~1! may then be expressed as29
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The quantitiesv̂(k) are tensorial transport coefficients of or-
der k, and ( indicates a k-fold scalar product. By truncating
Eq. ~2! at k53, we obtain
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1Wmix
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2D̂mix
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1Q̂mix(

]
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]

]r

]

]r Gn~r ,t !

52r* n~r ,t !, ~3!

where we identify r* 52v̂(0) as the reaction rate, Wmix

5v̂(1) as the drift velocity, D̂mix5v̂(2) as the diffusion ten-
sor and Q̂mix5v̂(3) as the third-order transport coefficient
tensor.

The momentum balance equation in HDL with a gas
mixture is Eq. I-~43!,

^v&mix5vmixS E2
kB

e
T̂mix

•GD , ~4!

where the quantity in braces is the argument of the function
vmix. The energy balance equation for charged particles col-
liding with molecules of type a is Eq. I-~44!,

^^ea&&a
mix5ea

mixS E2
kB

e
T̂mix

•GD , a51,..,l , ~5!

where the quantity in braces is the argument of the function.
In these equations kB is Boltzmann constant and

G~r ,t !5
1

n~r ,t !

]

]r
n~r ,t !, ~6!

is the ~logarithmic! number density gradient. The tempera-
ture tensor T̂mix appearing on the right side of Eqs. ~4! and
~5! is defined by

kBT̂mix5m^~v2^v&mix!~v2^v&mix!&mix. ~7!

One should note that the temperature tensor is assumed to be
symmetric with components Ti j

mix in an arbitrary orthonormal
basis (e1 ,e2 ,e3) of a three-dimensional Euclidean space.
Moreover, functionsvmix andea

mix are, respectively, the av-
erage velocity and energy ~in the center-of-mass frame with
respect to speciesa! under spatially uniform conditions
these quantities are found by solving the system of nonlinear
equations, Eqs. I-~41! and I-~42!, for a given value of the
electric field. Since the reaction rate ñ* depends only upon
the set of energiesea

mix , a51,..,l , it also is a function ofE
2(kB /e)T̂mix

•G; it is given by Eq. I-~45!,

ñ* 5a* S E2
kB

e
T̂mix

•GD . ~8!

Further information about these basic equations is available
in paper I.

C. Highe r orde r transpor t coefficients

Our first aim is to derive relationships between experi-
mentally measured quantities. In particular, the aim is to ob-
tain semiquantitative relations between the third- and the
lower-order transport coefficients in HDL, where G is small.
ll Rights Reserved.
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Therefore, we expand functions vmix and a* in a Taylor
series and keep only the terms in second and third order in
G, respectively. Substituting these expansions into the equa-
tion of continuity, Eq. ~1!, leads, after some mathematics
given in the Appendix, to the extended diffusion equation,
Eq. ~3!, and to specific expressions for the drift velocity,
diffusion tensor, and third-order transport coefficient tensor.
The components of the drift velocity become

Wi
mix~E!5v i

mix~E!2
kB

e (
j 51

3

Ti j
mix ]

]Ej
a* ~E!. ~9!

Similarly, the components of the diffusion tensor become

Di j
mix~E!5

kB

e (
k51

3

Tik
mix ]

]Ek
v j

mix~E!2
1

2 S kB

e D 2

3 (
k51

3

Tik
mix(

l 51

3

Tjl
mix ]

]El

]

]Ek
a* ~E!, ~10!

which may be expressed in terms of the drift velocity as

Di j
mix~E!5

kB

e (
k51

3

Tik
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]Ek
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]
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]El
a* ~E! D
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]Ek

]

]El
a* ~E!G . ~11!

Finally, the components of the third-order transport coeffi-
cient tensor become
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1
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which may be expressed in terms of the drift velocity as
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1
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]
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2Tkn
mix ]
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]
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]

]En
a* ~E!G . ~13!

It should also be noted that the net average reaction rate is
evaluated from
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r* 5a* ~E!5 ñ* ~e1
mix~E!,..,e l

mix~E!!

5 ñ ~A!~e1
mix~E!,..,e l

mix~E!!

2 ñ ~ I !~e1
mix~E!,..,e l

mix~E!!, ~14!

whereñ (A) and ñ (I ) denote the total rates for attachment ~A!
and ionization ~I! @see Eqs. I-~5! and I-~14!#.

Equation ~11! is a generalized Einstein relation appropri-
ate to reacting particleswarms, whileEq. ~13! plays thesame
role for the third-order transport coefficient that the GERs
play for diffusion. Equation ~13! establishes the form of the
relationship between Q̂mix, Wmix anda* ; it is also possible to
give a similar equation for the relationship of the third-order
transport coefficient to the diffusion tensor and reaction
rates. Relations ~11! and ~13! are most useful in an empirical
context: From measurements of the drift velocity Wmix and
the reaction rate a* as a function of reduced electric fiel
E/n0 , it is possible to predict the diffusion coefficients and
skewness, as long as the temperature tensor T̂mix can be
evaluated from higher order moment equations. The reactive
term can be simplified further, both for D̂mix and Q̂mix, if we
assume that T̂mix is independent of E; then Eq. ~11! becomes
identical to Eq. ~5.24! of Robson.18

Using a similar procedure as above, the following rela-
tion for the tensorial transport coefficient of the order k.1
can be obtained:

v i l¯ i k
~k! ~E!5

1

~k21!! S kB

e D k21

(
j 151

3

Ti 1 j 1

mix
¯

3 (
j k2151

3
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mix ]

]Ej 1

¯

]

]Ej k21

Wi k
mix~E!

1
1

k! S kB

e D k

(
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3

Ti 1 j 1

mix
¯ (

j k2151

3

Ti k21 j k21

mix

3 (
j k51

3 Fk
]

]Ej 1

¯

]

]Ej k21
S Ti kj k

mix ]

]Ej k

a* ~E! D
2Ti kj k

mix ]

]Ej 1

¯

]

]Ej k

a* ~E!G , i 1 ,¯,i k51,2,3.

~15!

This result leads to the general conclusion that kth order
transport coefficient tensor (k>2) depends upon the (k
21)th derivative of the drift velocity and the kth derivative
of the reaction rate coefficient with respect to the electric
field.

In the derivation of Eqs. ~4! and ~5! in paper I, it was
assumed that the heat flux in the energy balance equation can
be neglected. Since this assumption is decreasingly valid as
the swarm particles have larger mass, one may expect that
Eqs. ~11!, ~13!, and ~15! are not correct in cases where the
mass of the swarm particle is comparable with the mass of
the gas atoms. Using MTT, Robson30 has established that Eq.
~11! is inadequate for an accurate description of the ion
transport in such cases. He showed that an additional factor
ll Rights Reserved.
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involving the heat flux must appear in the GER for diffusion.
By similar arguments, a correction for Eq. ~13! may be de-
veloped, but this wil l not be attempted here.

III. CALCULATION S FOR ELECTRONS IN RARE
GASES

The components of the third-order transport coefficient
tensor Q̂mix can be evaluated from knowledge of the drift
velocity, diffusion coefficients, and reaction rate coefficients
using Eq. ~13!. The only data for Q̂mix available in the litera-
ture are the calculations for electrons in He, Ne, and Ar
performed by Penetrante and Bardsley.4 Therefore, in this
section we wil l present calculation of the third-order trans-
port coefficients for electrons in these pure gases in which
reactions do not occur.

We consider values of E/n0 for which the mean electron
energies are well below the first inelastic threshold. In this
case, the distribution of electron velocities is nearly isotro-
pic. This observation allows us to greatly simplify Eq. ~13!
by dropping the references to mixtures and setting

Ti j 5Td i j '
2e

3kB
d i j ,  ~16!

wheree'(m/2)^v2&. This simplifies Eq. ~13! to

Qi j k5
1

2 S kBT

e D 2 ]

]Ej

]

]Ei
Wk .  ~17!

If the electric field E is aligned with the positive e3 axis, then
the ion drift velocity is directed along the negative e3 axis
and the longitudinal component of the third-order transport
coefficient ~the skewness! is obtained from Eq. ~17! as

QL[Q33352
1

2 S kBT

e D 2 ]2W

]E2 . ~18!

Finally, combining Eqs. ~16! and ~18! yields

QL52
2e2

9e2

]2W

]E2 . ~19!

In the first, most straightforward, application of the re-
sults in this section we consider light swarm particles in a
cold gas, neglect inelastic and reactiveprocesses, and assume
~the hard-sphere model! a constant elastic cross section,
s (el)5s0/4p. Following the procedure in Sec. II of paper
for finding transport coefficients, the drift velocity can be
written in the analytical form:

W5e1/2S m1m0

mm0
2 D 1/4S E

n0s0D 1/2

. ~20!

Differentiating Eq. ~20! with respect to the electric field E
and inserting the result in Eq. ~19! gives

n0
2QL5

e1/2m0
2

72 S m1m0

mm0
2~s0!2D 5/4S E

n0
D 1/2

. ~21!

This formula, obtained by a different technique, is explicitly
given in Ref. 5. Thus we may conclude that the GER for
skewness under the standard assumptions produces the well-
established formula for the constant collision cross section.
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As the second example we calculate the skewness QL as
a function of E/n0 for electrons in He, Ne, and Ar, using the
cross sections for rare gases from the recommendations of
the JILA ~Joint Institute for Laboratory Astrophysics of the
University of Colorado, Boulder! Data Center.31 Results
based on Eq. ~19! are compared with those obtained4 from
solutions of the Boltzmann equation in Fig. 1. In general, the
agreement is good, especially since the present results are
obtained by numerically differentiating two times the drift
velocities. The general shape of the E/n0 dependence is pre-
served but one may conclude that the accuracy of the MTT-
derived relationship for skewness is lower than the accuracy
of the GERs for the diffusion coefficients, mostly due to the
double differentiation problem. In addition, we were not able
to get the exact tabulation of the cross sections used by Pen-
etrante and Bardsley, but have attempted to select the closest
match; better agreement is obtained when we digitize the
data in the figures for the drift velocities in their paper.4 In
the case of argon the agreement becomes almost exact, but in
the case of neon a visible discontinuity in the graph for the
drift velocity produces alarge difference in skewness.

It is interesting to note that the best agreement is
achieved for argon, which has a cross section that varies
significantly with energy. In the case of neon, the cross sec-
tion has some variation with energy and the skewness is still
significant and in good agreement with the MTT. The poor-
est agreement is achieved for helium where the skewness is
very small and the results are strongly dependent on the nu-
merical procedures employed. In any event, these results in-
dicate that the skewness is especially dependent on the struc-
ture in the cross sections and may be avaluable addition to
the list of transport coefficients used to obtain cross sections
by comparison of calculated and measured values. In particu-
lar, the effect of inelastic cross sections close to their thresh-
olds may help resolve some of the ongoing controversies32

and may prove asufficient incentive for the development of
the experimental apparatus needed to measure the skewness
for electron swarms.

As a final note about these calculations, experimental
data and theoretical data obtained by Monte Carlo calcula-
tions or by solution of the Boltzmann equation are, in prin-
ciple, more accurate than the MTT-based drift velocities we

FIG. 1. Comparison of the skewness coefficients calculated by solving the
Boltzmann equation ~points! and by using Eq. ~19! ~lines!.
ll Rights Reserved.
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have used. Therefore, if they are used as an input into Eq.
~19!, much better results should be obtained.

IV. THE STRUCTURE OF THE TENSOR FOR THE
THIRD-ORDER TRANSPORT COEFFICIENT

A. MTT theor y of the tensoria l transpor t coefficients
of order k 53

Earlier studies16 found that the 27-component tensor
Q̂mix has only three independent components. The procedure
followed by Koutselos,15 on theother hand, leads to only two
independent components. In this section we investigate this
situation by applying Eq. ~13! to obtain the components of
the third-order transport coefficient. The procedure that we
use is similar to the procedure used by Robson18,19to analyze
the diffusion tensor. The analysis is made assuming that
there is no magnetic field and that the reaction rate is zero.
Inclusion of these effects would increase the complexity of
the skewness tensor, not reduce it.

If E is aligned with the e3 axis of the coordinate system,
the temperature tensor has the diagonal structure33

Ti j
mix5@Tperp

mix ~d i11d i2!1Tpara
mixd i3#d i j .  ~22!

If we write Wmix5KmixE, where the mobility, Kmix, is im-
plicitly a function of the magnitude of the field, then

]

]Ek
Wj

mix~E!5dk jK
mix1~Kmix!8

EkEj

E
~23!

and

]

]El

]

]Ek
Wj

mix~E!5dk j~Kmix!8
El

E
1~Kmix!9

ElEkEj

E2

1~Kmix!8
~dklEj1d l j Ek!E

22EkEjEl

E3 .

~24!

Assuming the diagonal form of Eq. ~22! for the temperature
tensor, we find that Eqs. ~13!, ~23!, and ~24! lead to the
following form for the components of the third-order trans-
port tensor:

Qi j k
mix5

1

2 S kB

e D 2F 0 0 TperpTparaK8

0 0 0

TperpTparaK8 0 0
G ~k51!,

~25!

Qi j k
mix5

1

2 S kB

e D 2F 0 0  0

0 0 TperpTparaK8

0 TperpTparaK8 0
G ~k52!,

~26!

Qi j k
mix5

1

2 S kB

e D 2F Tperp
2 K8 0 0

0 Tperp
2 K8 0

0 0 Tpara
2 ~2K81EK9!

G
~k53!. ~27!

Here the superscript ‘‘mix’ ’ has been omitted for brevity.
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These equations show that Q̂mix has at most three inde-
pendent components. Fewer components are possible, de-
pending upon the transverse and/or longitudinal components
of the temperature tensor and on the first and/or second de-
rivatives of themobility. Equations ~25!–~27! can be reduced
to the equations of Koutselos provided that we assume that
the temperature tensor is effectively isotropic, i.e., Ti j

mix

5Td i j .

B. Symmetr y considerations

The analysis in this section is more general than the
previous analysis and makes no assumptions that depend on
the mass ratio of the swarm particles. The transport of trace
amounts of charged particles moving through adilute neutral
gas under the influence of a homogeneous electrostatic field
is characterized by a steady drift velocity, W, and a super-
posed diffusional motion. The ion flux, J, may then be writ-
ten as

J5n~r ,t !W~E!2D̂~E!•
]

]r
n~r ,t !

1Q̂~E!:
]

]r

]

]r
n~r ,t !1¯ , ~28!

and the transport coefficients extracted from acomparison of
the experimental ion flux with Eq. ~28!. Whealton and
Mason16 found that Q̂ should have three independent com-
ponents, whereas Koutselos15 found that there are only two.
Koutselos based his calculations and theoretical arguments
on the following definition:34

Q̂K5
1

3!

1

t
^dnrdnrdnr &n, t→`. ~29!

Here the the brackets represent an average defined as

^c~r !&n5
1

N E drc~r !n~r ,t !, ~30!

with

N5E drn~r ,t !, ~31!

and

dnr5r2^r &n . ~32!

This microscopic definition is certainly appealing, based on
its close analogy to a similar definition of D̂. However, the
following analysis shows that Q̂K does not have the same
symmetry properties as Q̂ and hence that the two cannot be
equated, even though the microscopic and macroscopic defi-
nition of D are equivalent.

Since Q̂ and Q̂K are tensors of rank three in a three-
dimensional space, they have 27 components labeled by
three indices. From the work of Coope, Snider, and
McCourt,35 this means that each of them can be represented
in terms of seven independent, irreducible tensors con-
structed from its components; one must be of weight 0, three
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of weight 1, two of weight 2, and one of weight 3. Thus,
there are at most seven independent components for Q̂ and
Q̂K .

The weight 0 irreducible tensors must be proportional to
ê, the completely antisymmetric third-rank unit tensor. How-
ever, Q̂K is completely symmetric, so the proportionality
constant between it and ê must be 0. Moreover, J is related
to Q̂ by Eq. ~28!, where the order of differentiation of n is
irrelevant. This means that Qi j k5Qikj . However, e i j k is
equal to the negative of e i kj . Since Q̂ and ê have different
symmetries, the proportionality constant between them must
be 0. We have thus shown that neither Q̂ nor Q̂K is propor-
tional to a weight 0 irreducible tensor, and hence that there
are at most six independent components for these tensors.

The same type of reasoning as in the previous paragraph
shows, after considerably more mathematical argument, that
neither Q̂ nor Q̂K can be proportional to any weight 2 irre-
ducible tensor. This reduces the maximum number of inde-
pendent components to four for each tensor.

The weight 3 irreducible tensor is formed from a rank
three tensor in a three-dimensional space by symmetrizing
and making the result traceless. It is given for an arbitrary
tensor by Eq. ~39! of Ref. 35. Since none of the symmetry
properties of Q̂ or Q̂K contradicts the properties of such a
weight 3 irreducible tensor, we have accounted for one inde-
pendent component of each tensor.

One weight 1 irreducible tensor is given by Eq. ~28! of
Ref. 35, and the other two follow by replacing the subscript
1 by 2 and 3. Since Q̂K is completely symmetric, the coeffi-
cients relating this tensor to the three weight 1 irreducible
tensors must be exactly the same, leaving us with only two
independent components, one relating Q̂K to the weight 3
irreducible tensor and the other relating it to these weight 1
irreducible tensors.

To analyze Q̂ further, we can again make use of the
independence of the order of differentiation in Eq. ~28!. The
weight 1 irreducible tensors that involve the second and third
indices in Q̂ must be identical, but there is no necessary
relationship between these two and the weight 1 irreducible
tensor involving the first index. Consequently, we have ac-
counted for three independent components of Q̂, one relating
it to the weight 3 irreducible tensor, a second relating it to
the weight 1 irreducible tensor along the field direction and a
third relating it to the weight 1 irreducible tensor perpendicu-
lar to the field.

In this section we have given a more abstract proof of
the arguments used by Whealton and Mason16 to claim that
there are three independent components of Q̂. The same ar-
guments show that Q̂K has only two independent compo-
nents, since it is more symmetric than Q̂. Hence, the micro-
scopic third-order diffusion coefficient analyzed by
Koutselos15 is not identical with the macroscopic third-order
diffusion coefficient analyzed by Whealton and Mason16 and
used in the other parts of this article.

The equations used in paper I in formulating the MTT
and used as the foundation for the analysis in this section are
consistent with the following definition of the third-order
transport coefficient @see Eq. ~9d! of Ref. 29#;
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Q̂5
1

3!

d

dt
^dnrdnrdnr &n . ~33!

Although this equation appears at first glance to become
identical to Eq. ~29! at long times, the symmetries of the two
equations are different. There is no difference between divid-
ing by time in direction of the field and perpendicular to it
but the first derivatives may differ in the two directions. Such
a difference in the theoretical expression for the third-order
transport coefficient is generally necessary, since different
transport coefficients in the two directions ordinarily wil l be
exploited in matching Eq. ~28! to arrival time spectrum. Note
that in the absence of an anisotropic temperature ~which was
covered in the preceding section! or an anisotropic derivative
~as in Ref. 29!, our symmetry argument would lead to the
two weight-1 irreducible tensors being identical and, there-
fore, ~as found by Koutselos! there would be only two inde-
pendent components of third-order transport coefficient.

V. CONCLUSION

Application of the momentum transfer theory ~MTT! in
a quite general case of elastic, inelastic, and reactive colli-
sions ~including mixtures of gases as well! allowed us to
derive a generalized form of the relationship between the
components of the third-order diffusion tensor and the com-
ponents of the temperature tensor and mobility. A general
conclusion is that the GER for the kth order transport coef-
ficient wil l depend on the (k21)th derivative of the mobility
and the kth derivative of the reaction rate coefficient. The
formulas were, for simplicity, derived for the case of light
swarm particles but may be generalized to an arbitrary mass
ratio by using the same procedure as that developed by
Robson18,19 for the diffusion tensor.

Application of the theory to electron skewness in rare
gases reveals that the skewness is very sensitive to the shape
of the cross section. The best results were obtained for argon.
For helium the value of the skewness is very small and,
therefore, it is strongly affected by the inadequacies in the
data used for differentiation.

Comparison with the values calculated by Penetrante
and Bardsley4 indicates a reasonable qualitative agreement
with the predictions of the MTT-derived formulas. The com-
parison is not direct since we could not make sure that the
identical cross sections were used ~in this case details of
tabulation and interpolation become important! and it is hard
to define such comparisons for tabulated cross-section sets.
The best direct comparison would involve application of the
theory to analytic sets of cross sections; then each technique
could define a best suited numerical procedure that would
give the required accuracy.

In any case, MTT-derived formulas can be used with
either calculated or experimental data to give qualitative and
semiquantitative information about the skewness and other
components of the third-order transport coefficient. Such
analysis may be useful in the development of experimental
techniques for accurately measuring the higher-order trans-
port coefficients.

Our analysis of the components of the third-order trans-
port coefficient gives explicit analytic results and indicates
ll Rights Reserved.
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that in general there are three independent and seven nonzero
components. The conclusion15 that there are only two inde-
pendent components was based on the use of a third-order
transport coefficient that was defined microscopically34 in
terms of the mean displacement of the swarm particles. Such
tensorial transport coefficient cannot be the same as the
third-order transport coefficients defined macroscopically in
terms of the extended diffusion equation or the equation for
the ion flux. Our analysis, therefore, confirms the necessity
for the three independent components of the third-order
transport coefficient unless, for a limited range of low E/n0

values, the temperature tensor reduces to a scalar.
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APPENDIX

When we expand the functions vmix, Eq. ~4!, and a* ,
Eq. ~5!, in a Taylor series in the vicinity of E to second and
third order in G, respectively, we obtain the following equa-
tions:

^v&mix5vmixS E2
kB

e
T̂mix

•GD
5vmix~E!2

kB

e (
i 51

3

~ T̂mix
•G! i

]

]Ei
vmix~E!1

1

2 S kB

e D 2

3(
i 51

3

(
j 51

3

~ T̂mix
•G! i~ T̂mix

•G! j

]

]Ei

]

]Ej
vmix~E!

~A1!

and
ñ* 5a* S E2
kB

e
T̂mix

•GD5a* ~E!2
kB

e (
i 51

3

~ T̂mix
•G! i

]

]Ei
a* ~E!1

1

2 S kB

e D 2

(
i 51

3

(
j 51

3

~ T̂mix
•G! i~ T̂mix

•G! j

]

]Ei

]

]Ej
a* ~E!

2
1

6 S kB

e D 3

(
i 51

3

(
j 51

3

(
k51

3

~ T̂mix
•G! i~ T̂mix

•G! j~ T̂mix
•G!k

]

]Ei

]

]Ej

]

]Ek
a* ~E!. ~A2!
Substituting these expansions into equation of continuity, Eq.
~1!, we obtain

]

]t
n~r ,t !1k12k21k352n~r ,t !a* ~E!, ~A3!

where

k15vmix~E!•
]n

]r
2

kB

e (
i 51

3 S T̂mix
•

]n

]r D
i

]

]Ei
a* ~E!,

~A4!

k25
kB
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]
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•(

i 51

3 S T̂mix
•
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]r D
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]

]Ei
vmix~E!

2
1

2n~r ,t ! S kB

e D 2

(
i 51

3

(
j 51

3 S T̂mix
•
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]r D
i

3S T̂mix
•
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]Ei
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]Ej
a* ~E!, ~A5!
k35
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•F 1
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j 51

3 S T̂mix
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3S T̂mix
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S T̂mix

•
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]r D
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3
]

]Ei

]

]Ej

]

]Ek
a* ~E!. ~A6!

Equation ~A4! can be rearranged to give

k15Wmix~E!•
]

]r
n~r ,t !, ~A7!

where the drift velocity is given by Eq. ~9!.
In order to simplify Eq. ~A5!, we assume that the tem-

perature tensor is spatially homogeneous and that

1

n~r ,t !

]n

]r i

]n

]r j
'

]

]r i

]

]r j
n~r ,t !. ~A8!

Using these assumptions, we can rearrange Eq. ~9! to give

k25(
i 51

3

(
j 51

3

Di j
mix~E!

]

]r i

]

]r j
n~r ,t !, ~A9!
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where the diffusion tensor is given by Eq. ~10!.
Similar to Eq. ~A8! is the approximation

1

n2~r ,t !

]n

]r i

]n

]r j

]n

]r k
'

]

]r i

]

]r j

]

]r k
n~r ,t !. ~A10!

With this approximation, Eq. ~10! becomes

k35(
i 51

3

(
j 51

3

(
k51

3

Qi j k
mix~E!

]

]r i

]

]r j

]

]r k
n~r ,t !, ~A11!

where the third-order transport coefficient is given by Eq.
~12!.

It is obvious from Eqs. ~3! and ~A2! that the net average
reaction rater* is given by Eq.~14!.
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