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In this paper we develop general equations for the momentum transfer theory (MTT) for swarms of
particles in mixtures of gases including the effect of nonconservative (reactive) collisions. MTT equa-
tions for mean energy, drift velocity, diffusion tensor components, and rate coefficients are derived for
different degrees of approximation including the hydrodynamic limit and small swarm to gas particle
mass ratio. Specific formulas were developed for the criteria for negative differential conductivity
(NDC) in mixtures of gases with elastic collisions only and for a single gas with reactions. The criteria
and the numerical calculations are in excelient agreement, showing that NDC can be induced by light
atomic constituents in purely elastic collisions and also by ionization and attachment.

PACS number(s): 51.50.+v, 51.10.+y, 52.25.Fi, 05.20.Dd

I. INTRODUCTION
A. Momentum transfer theory

Momentum transfer theory (MTT) has been developed
as an approximate solution to transport equations that
gives an opportunity to develop analytic forms of various
transport coefficients and their relations. It consists of
applying Taylor expansion to the transport coefficients at
the appropriately determined value of the mean energy.
Because of its simplicity, which, however, allows reason-
able accuracy, it has become quite popular in discussing
the basic physical explanations of transport phenomena,
although it is usually not adequate for accurate transport
calculations and cross section fitting.

MTT has been developed for charged particle trans-
port in mixtures of gases having only elastic processes [1].
Results for the corrections of Blanc’s law [2,3] and the re-
lationship between diffusion coefficients and mobility [3]
were obtained. Inelastic collisions have been included in
the single gas MTT, and corresponding equations for en-
ergy, drift velocity and relationship between the mobility
and components of the diffusion tensor were developed.
Reactive collisions were included, in addition to inelastic,
and the corresponding effects of attachment, annihilation
[4], and ionization [5] on transport coefficients were dis-
cussed. In this paper we make a further generalization to
mixtures of gases having reactive processes.

B. Negative differential conductivity

Negative differential conductivity (NDC), which
should more appropriately be labeled negative differential
mobility, will for the purpose of this paper and in order
to follow the notation in the literature [6—10] be defined
as a decrease of the drift velocity with an increasing driv-
ing field. Several explanations of the NDC effect exist in
the literature [6~12] including the NDC effect in time
varying fields [13-15] and applications to diffuse
discharge switches [16—18]. The conditions for NDC
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summarized by Petrovié, Crompton, and Haddad [6]
(PCH), based on their model calculation and theory by
Robson [7], are the following:

(i) Inelastic processes are necessary.

(ii) Increasing momentum transfer cross section favors
NDC.

(iii) Decreasing inelastic cross section favors NDC.

(iv) Occurrence of NDC depends on relative magni-
tudes of factors (ii) and (iii).

(v) Superelastic processes will have a tendency to
reduce the NDC.

Here and in the remainder of this paper, Ref. [6] will be
referred to as PCH.

Conditions (ii) and (iii) have been erroneously inter-
preted as necessary conditions, which is clearly not so
when condition (iv) is taken into account. A more
justified disagreement with condition (i) was made in a
paper by Shizgal [8]. This author pointed out that his
calculations for the mixtures of rare gases for the condi-
tions when inelastic processes do not make a significant
contribution to the energy balance gave NDC when the
most abundant constituents were heavy gases with
Ramsauer-Townsend minimum (RTM), such as Xe and
Kr, and the lower mass, but mostly minor, constituent
was He. It was also noticed that the mass of gases plays
an important role. The criterion that was also developed
by Shizgal was in good qualitative but not quantitative
agreement with the results of his numerical calculations.
One of the basic aims of this paper is to extend the condi-
tions given by PCH and Robson and to explain the ap-
parent discrepancy with the results of Shizgal that makes
it necessary to develop NDC criteria for the gas mixtures.

Apart from the well established occurrences of the
NDQC, it also became obvious to us that the phenomenon
may occur under a wider range of situations. Those in-
clude the influence of the so-called “reactive’ collisions
[19], i.e., the processes that do not conserve the number
of electrons (particles whose transport is studied). Under

4012 "©1996 The American Physical Society



53 MOMENTUM TRANSFER THEORY OF NONCONSERVATIVE. ...

such conditions the NDC may be difficult to observe ex-
perimentally because they occur at high E /N, where
measurements of drift velocities are fewer because of ex-
perimental problems, or under conditions of high attach-
ment when there are few electrons.

In this paper we first develop the basic transport equa-
tions in Sec. II. Then we develop the NDC criteria in
Sec. III. Discussion of the results for electron drift veloc-
ity in mixtures of atomic gases and for the case of reac-
tive collisions is given in Sec. IV. A preliminary presen-
tation of the results from this paper was given by Vrho-
vac and Petrovié [20].

II. THEORETICAL EVALUATION

A. Formulation of the moment equations

Consider a swarm of particles of charge e and mass m
moving with velocity ¥ through neutral gas mixtures un-
der the mﬂuence of an applied electrostatic field E. The
term “swarm” has a connotation of electron or ion
swarms, but the analysis can be applied to neutral parti-
cles of positrons. Suppose that there are several (/)
species of neutral gases present. Let m, and ¥, be mass
and velocity of molecules of the ath neutral gas, respec-
tively. Let n(¥,¢) be the number density of swarm parti-
cles, and let n,(¥,¢) be the number density of the ath
neutral gas. Now we introduce the standard notation:

(number density of the gas mixture),

n0=2 Ry

o
e=mm,/{m +m,) (reduced mass),
M,=m,/(m+m,), MY=m/(m+m,),
v,.a-—v -7, (relatlve veloc1ty) and
€0 = +lUy, (energy measured in ‘the center-of-mass
reference frame).

Let f™%7,7,¢) and f™*(¥,7,) be the swarm and ath
neutral gas one-particle velocity distribution function in
the multicomponent mixture, respectively. By conven-
tion, all velocity distribution functions are normalized to
number densities.

Averaging operators used in the development of equa-
tions are defined as

(0,7, =—1— [ 5,00w,5,), O
n(7,t)
(o(v,7, )))mi*-—-*l—% d*vd*v,
ae n{7,t)n (7, ff v
MiX(F, T, 1) f T (F,0,,)0(0,7,), ()
where ®(V,7,) is any function of ¥ and ¥,,. For the sake

of brevity, we write £2=(( g, )) 2 STJ’m"—u —{(T)™x and
ef={daer}, where I;= {1 2,...,1} denotes an ap-
propriate finite set of indices.

The Boltzmann equation for a swarm of particles mov-
ing through a gaseous multicomponent medium is [21]
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d . 0 e . d mlx
L5+ ZEF D —
at+v 8?+m (7 pe f
== 2 Jgi);(fmix’fgﬁx) , (3)

a€l;

where J™* is the collision operator, which represents the
rate of change of f™* due to the collisions between
swarm particles and molecules of the neutral gas a. In
the collision terms of the Boltzmann equation, only
binary collisions are considered.

The chain of moment equations is derived by multiply-
ing both sides of Eq. (3) by various powers of swarm par-
ticle velocity ¥ and integrating over velocity space. The
moment equations of interest correspond to those for
which powers of swarm velocity are equal to 1 (equation
of continuity), m?U (momentum balance equation), and
+mu? (energy balance equation) [22].

1. Collisions processes

To give a definite expression to the collisional terms of
the moment equation we make several assumptions above
collisional processes between swarm particles and gas
molecules. The collision processes that we investigate are
limited to elastic, inelastic, and reactive (which include
attachment and ionization) collisions of individual swarm
particles with normal gas molecules. We characterize all
these possible processes by respective collision frequen-
cies. A collision frequency v,(7,v,,t) for collisions be-
tween the swarm particles and molecules of species « is
related to the cross section o,(v,,) characterizing the
process by v, (7,v,,,f)=n,(F,t ), 0 (v,,), where T,, is
the relative velocity and n,(#,t) is the number density of
the ath neutral gas. We neglect the collisions of swarm
particles with other swarm particles, ions, and excited
molecules.

We take into account the momentum and energy loss
of the swarm particle in elastic collisions arising from the
finite mass of gas molecules. In the calculation of this
momentum and energy loss we assume that the actual
thermal energy of the molecules (each neutral gas has the
same nonzero temperature T™%) is not negligible com-
pared to the mean energy of the swarm particles. The
momentum transfer collision frequency for collisions be-
tween the swarm particles and molecules of species « is
denoted by v\"(7,v,,,1).

Let I'"™ be a set of indices that enumerates possible in-
elastic coihslons of a swarm particle with molecules of
the gas o, while v, (¥,0,,,t), s €™ is the corresponding
collision frequency. The threshold for these inelastic col-
lisions is denoted by AES, s€I'i" g&€I,. Momentum
exchange in inelastic processes is not ignored. The total
momentum transfer collision frequency is given by

(m)

VO F 0,00 )=V (F 0,0 t)+ S VU(F0,0,8)

sEIfzi“)
aEII N (4)

where v{" (7,v,,,t), s EI'™ denotes momentum transfer
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collision frequency of collision inducing inelastic process
serItim,

Reactlve collisions for electron swarms include
creation (ionization by electron impact) or loss (electron
attachment to electronegative gas molecules or positron
annihilation) of a swarm particle. Let v\2(7,v,,,t) be the
rate at which swarm particles are lost in collisions
through the attachment channel s€I'#). In the case of
electron ionization the incident electron collides with a
molecule and two electrons emerge after the collision,
one being the scattered incident electron and the other

. being the ejected electron,; it is a three body problem. In
approximation of a mass ratio of m /m, <<1, we can ig-
nore the motion of the molecule, so that the available
kinetic energy and momentum after the ionization are di-
vided between the two electrons. We consider only single
ionization with ionization energy sm but the resulting
ion can be left in any one of its internal excited states,
characterized by excitation energy AcD, s erd. Let

viX(7,0,,,) be the ionization frequency for sth 10nlzation
channel s€I. The total rates for attachment (4) and
ionization (I) are defined by formulas:

v ANF, V)= V(,,f)(T',Um,t) ,
serim

vg’(?,v,a,l‘): E V.(g{z)(?,vra!t)’ aEII M (5)
sEIfZ‘”
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2. Moment equations

We extend the moment equations derived by Robson
[4] and Robson and Ness [5] to include gas mixtures by
taking appropriately weighted sums of collision terms in
momentum equations. Using arguments similar to
Robson’s we find

Equation of continuity:

g 7 i 3 73y mix
atn(r,t)-l- P [n(F,e){T)™] .

=—n(Ft) S KvVANF,0,01) N mx
agl;

+n(7,1) 3, KviP(F0,,) N0, (6)

a€l)

Momentum balance equation:
D 1 mn (7,055 + 2 [ (7, 1) (7,5} )]
ot a7
—n(7,t)eE(F,t)

=—n(?’t) 2 lu'a« UraVOa)(r vra’ »mlx
o€l

—n(7,t)m 3, (v (F,0,,t) DD . (7)

a&l;

Energy balance equation:

(
]‘V m) (7, Urwt)) mix

9 %mn(?,t)(uz)mix]+—a_:- [-lz—mn(?,t)(vzf)’)mix —n (7, t)eE (7,1 ) (7)™
ot or
7S + ——{[mv*—mpi—(m—m o7
aEI a

—nFD Y 3 AP ) VIAEL —a(F,0)im S, (oA (F,0,,,¢) Hmin

a€l; sEIg“)

_n(r t) z «,V(D(r vrw »mlx (I)_n
aEl;

In the momentum balance equation [Eq. (13)], the tensor
{+,-} is a dyadic product of vectors, defined by

(4,B}C=4(BoC), C{4,B}=(Co4)B, )

where @ is the scalar product.

B. Momentum transfer approximation
Now let us replace the variables

vra_’8a=';'.u'avr2a’ aEIl (10)

in expressions for collisional frequencies,

Vo=V F,0,0,8) >V, =V (F,e,t), aEI . (11)

rar

a&l;

DS S (ADF v, NEAD | )

aEIl SE[‘”

When we expand Vo(F,€4t) in the Taylor series in the vi-
cinity of €0, we obtam

VAP €0 8 )= (T,e2, 1)+

AV, (F,e,t)
dEa €,

X(e,—el)+ole, —£2) , (12)

where the remainder consists of terms of higher-order
derivates of ¥,(¥,e,,t). We assume that the Taylor ex-
pans1on [Eq. (12)] converges rapidly in the neighborhood
of €%, with a provision for special modifications required
to make this approximation satisfactory for inelastic col-
lisions with a high threshold [5,7]. The extended momen-
tum transfer approximation consists of retention of



several terms in the Taylor expansion [4]. Momentum
and energy loss rates for attachment are calculated using
the first two terms on the right-hand side of Eq. (12) and
the assumption that the distribution function of swarm
particles is a shifted Maxwellian. We also assume that
the background gas is in the thermal equilibrium {charac-
terized by Maxwellian distribution and temperature
Tle)'

Using the momentum transfer approximation, we find
from Eq. (6) the equation of continuity,

atn(r t)+— [n(7, 1) (v )™ix]

= —n (7, t W AT, ) +n(F,  W(F,e0, ), (13)

n(#,t) [%Hv)mh‘-% ](T)’)’“i"——n(?,t)ef(?,t)+divﬁmi"
r

=—n(7,t)m <r;>mi"a7§;"’(?, g
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where we introduced the notation
A7 =S #¥AFe1),
acl, 7
(14)

P70 )=

S WOF, ) .

a€l;

By substracting the products of m (7 )™* and 1m (v?)™*
with the equation of continuity [Eq. (6)] from Egs. (7) and
(8) and by using momentum transfer approximation, one
obtains a more useful form of the momentum and energy
balance equations:

0. 1)—n(7,t)m (T ymix[gmixg{ (7 &0 1)+ 5 D(7,e%,6)],  (15)

- i 3 miX._a_ i 2\ mix mix mix 2 mix | __ mix
n(r,t)lat—l-(v) 8?] 2m(v > - | Pmix(T) +2 n(7,1)eE (7,6 ){7)
=—pn(7,)[m (o)™ =3k T W (7,e%)—n(F,t) 3 3 VeulFrent)AES
a€l; s tin)
—n(F, 1)L [(vl)mlx_((v>m1x ]gmixv(l.!)(?,eo,t)_n(r t) 2 ~(I) EZI)
a€l;
—nF0S > HOFL DAL —n (7, 0im ()™ D (F,e%1) (16)
aEIisE[(”

In Egs. (15) and (16) the pressure tensor P™i* and vector
heat conductivity 0™ are defined as follows:

mtx_mn(r t)( {Sl_fmlx 8—>mm} )mix

lex_lmn(r t)(S mlx(ﬁ mm)2>m1x . (17)
We introduced the notation
~(m) ~(m) =
Vo (F,e't)= 3 M Voy (FiEpt) ,
a&l;
(18)
V&;’)= > MaMovf)';')(r e,t),
a€l;
HWAF,Ot)= 3 M 7 (7,e%1),
a&l,
(19)
dv A(F,e,,1)
~(A) __ a » S
)= |——""% _ , aEl
(I’ 8 ) dsa sa=£2 @ !
gmix_:%__%_m[(vz)mix_((U)miX)Z] . (20)

C. Hydrodynamic limit and transport coefficients

1. Hydrodynamic regime

We assume that the stage of evolution of the swarm is
the hydrodynamic limit (HDL). In the HDL, the space-

time dependence of all properties is carried by the num-
ber density n(7,t) and the swarm can be characterized by
time-independent transport coefficients.

The starting point of the hydrodynamic description is
the continuity equation for the number density,

on(7,t)

3 ; 21

coll

&l 7 9 . = 33 ymix | —
atn(r,t)+ po [n(F,1){7)™*]
which describes the change in n(7,t) due to a particle
flux n(7,t)0(7,t) and the production term [dn(F,t)/
dt].on. The assumption is made that both of these quanti-
ties can be expressed as power series in the gradient
operator V with constant coefficients. Equation (21) is
expressed as [23]

2+ 3 oMoV

n(7,t)=0. (22)
ot o

The constants »'* are tensorial transport coefficients of
the order k, and ® indicates a k-fold scalar product. By
truncating Eq. (22) at k =2, we obtain the familiar
diffusion equation

_a__+ ﬁ/mix 9

ﬁ mix
dt ar

— |n(#,t)=—a*n(¥,t),

ar]'a?

(23)
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where we identify o*= —0'® as the reaction rate,
Wmix—(a)m)?:l as the drift velocity, and D™*
=(0{")}}=1,1 as the diffusion tensor.

In the HDL, the momentum and energy balance equa-
tions [Eqs. (15) and (16)] become

—eE +kT™*G (7, t)= —m (T )™*pnix | 24
(7YX PG(F, 1)+ 2§™ G (F, 1) —eE (T ) ™*
=— |m(p?)mis—3kTm |5 — ¥ 3 ¥ AES
aEIstIg“)
_%m[(UZ)mix+((l—J*)mii)Z]gmix—v(lA')_’ E ’Vf,nsff)
aEI,
_ 2 E ~(I)A8(I)_1m(v2>m1x~(1) (25)

aE€l; sEI(I)

[N 1)

T G (Fyt)=—(m {p2 ymix — 3 Tmix jilm) 4y ( (7 ymix )2l
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where 7™ is the temperature tensor defined by

k?““"=———41 pmix (26)
n(7,t)
while
q»mix 'Q" (27)
n(r t)
G(7,1)=—1 —a;n(?,r) , 28)
n(¥,t) oF
and
(nlzx.._~(m)+§m1x~(z()_|_~(l) . (29)

If we take the product of {7 )™* with the momentum bal-
ance equation [Eq. (24)] and subtract from the energy bal-
ance equation [Eq. (25)], it can be written in an equivalent
form

2 E VS(ZAE‘SIZ

a€l; sEIg“)

_ 2 T/LI)SEII) 2 E ~(I)A8(I)_ m(UZ)mlx(é-mxx~(A)+~(I) m({7T >m1X)2(é—m1x (A)+2~(I)) . (30)
€, a€l 51l
We can rewrite Eq. (30) in terms of the average energies in the center-of-mass frame:
Ue NTx=M ,Lm (v2)m+ MO3kT™, g€, . (31)
When we substitute Eq. (31) into Eq. (30), we obtain the following set of equations:
. - - v 0
(e NF*=L1m ((TY™PM r™*+ IKT™*M , | = +s™ | —M Q" ~ M 3§™G(F,t)—, €I, (32)
a {e)
[
where we use the notations - - =
o (5)min =y (e, ({7 Ymix)2) | E — K pming (37)
._(el)x=2v m)+§m1x~( A)+~(D (33) e
~(m)_|_ m1x~(A)_|_2~(I) 2~(m) (( ))mix_. o .0 (—*)mix 2y __ mle
pmoix=— g gUix = Voo (34) €alla =y3(e" (v ) azq 1x’ a€l; .
— ? —mi ’ (e)
(e Vte)x :
. AMX ) ; o o (38)
lex ’ Amlx__ Am X 35) .
"f’:‘)" ag,{ - ( The functions ¢, and 5, ¢ €1;, of Egs. (37) and (38), re-
and spectively, are defined as follows:
. mixy2y— __ [ 39)
Amix_— saAES +~(I)8(I)+ (I)Aegg)’ = 11’1(5 ( ( v ) ¥)= iz ? (
* sE%"‘) SEEI”) : TV im) .
36) g(so,((B’)mi}l)2)=%m((F)MX)ZMarmlx
0
2. Transport coefficients -+ ; L Tmix M, . ]_ M, lex

Following a procedure similar to Robson’s [4], Egs.
(24) and (32) can be written as

aEIl . (40)
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If the heat flux on the right-hand side of Eq. (38) is
neglected, then both (7)™ and (e, )™, a €1, depend
on E and G through the combination E —(k/ e)T ™G, If
functions & ™*= _"m"(E ) and em"‘—sm"‘(E ), a €1, satis-
fy the following system of equations:

FNE) =5 )aer, (@™ P)E , (41)
B E)=95((e8)ee, (@™)), a€l}, (42)
we can write
(g)mixzamix E__%?mixé‘ 43)
{ g, Yy mix = gmix E——f"“‘"G a€l, . (44)
Functions @ ™* and em"‘ a & 1,, are, respectively, average
!

velocity and energy in spatially uniform conditions and
are found from the solution of Eqs. (41) and (42). The re-

action rate p* =54 —ptD is also a function of

E—(k /e)T™*G:

P =qg* [E - -f?m“é 45)

The calculation of transport coefficients of swarm par-
ticles in gas mixtures proceeds in a similar manner as in
Robson [4]. In the hydrodynamic regime |G| is small.
We expand functions & ™* [Eq. (43)] and a* [Eq. (45)] to
first and second order in G, respectively. Substituting
these expansions into the equation of continuity [Eq. (21)]
leads after some algebra to the diffusion equation [Eq.
(23)], where

o - . “F
W B )= (B — L prix 82 (E) (46)
e oE
is the drift velocity and
le—-_ E tmlx a WHHX 2
€ =1
da*
X
] ,

i,j=1,2,3 (47)

is the diffusion tensor. Net average reaction rate is evalu-
ated from

a*(E)=v*[e%AE)]=%V[e%E)]—¥D[eAE)]. (48)

The temperature tensor 7™*= ()} 13—1 ; must be evalu-
ated from higher-order moment equations. Equation (47)
shows that the generalized Einstein relation [4] is satisfied
for reacting swarm particles if the reaction rate_"f/* is in-
dependent of energy. As the diffusion tensor D™* is sym-
metric, the coordinate axes can be chosen to lie along its
principal axis. Thus diffusion tensor ™" is diagonal,
and Eq. (47) reduces to the equation for transverse
diffusion coefficient,

4017
mix — Tix mix l kT mlx 1 da*
Di [K Y2 E 4 |’ (49)
and the equation for longitudinal diffusion coefficients,
k mix mix mix 2. %
mix — “ mix d InK I d o
Dj K I+ dInE 2 e dE?
(50)

In these expressions T7* and T'”“i" are transverse and
longitudinal components, respectively, of tempera-
ture tensor Pmix  Mobility K™* js defined by
Wmlx(E)=Kmix(E)E.

The procedure for finding transport coefficients for
reacting swarm particles in gas mixtures is as follows:

(i) Find 1-+3 functions w,’;‘”‘, q=x,y,z, €M%, a €1, by
solving the system of nonlinear equations [Eqs. (41) and
(42)] for the given value of the electric field.

(ii) Find the reaction rate o* from Eq. (48).

(iii) Find TT* and mex from higher-order moment
equations.

(iv) Find Wwmix, D"“", and Dm”‘ from Egs. (46), and (49),
and (50).

3. Light, charged swarm particles

We now consider light, charged (g =e) swarm particles
so that m/m,<<1, a=1,...,I. The small mass ratio
enables certain s1mp11fy1ng assumptions to be made in the
above expressions. It is clear that M, ~1, M3 <1, and
e =el=(1/2)m (v?)™* a=1, ,I. We can also as-
sume that (v2) >> ({7 )mix)? (random motion dominates
directed motion along the applied electric field if E /n, is
not too large) and hence

§mix

2
~ 2 ~=
~iim (v?) ™= 3 gmr . (51)
Our approximations are the following:
- (i)
Vém)( 8n{iX) S>3 A)(Emix‘)’ VEJM)(EmiX) >>T/(I)( mIX) ,

mix—i-;(lA)( emiX) . (52)

V})m)( smi);) > é-mixv(lA)(smiX) ~ %‘8
(ii) Distribution of electron velocities is very nearly iso-
tropic for small enough E /n,,.

Hence, TT* ~ Tm”‘ ~(%)k ~1gmix, where TT* and T““x
denote diagonal cornponents of the temperature tensor.

Using the above assumptions, we can simplify Egs. (41)
and (42),

& ™ E )=, (™, (0™*)E , (53)
DN E ) =1h,(e™, (0™)?) | (54)
where
Plem)=—fee S 59)
m 3 o
&l
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¢2( smix, ( wmix )2 )

_m(mmx)()Zz 2 g;)'i‘ 3kTmlx~mlx z Kgix
_ a€l; aE[I
»V:lix+ 2 ~(A)+ 2 V&I)
a€l; a€l;
(56)
and
WE=2 3 M ME~2 3 v (57)
a€l; a&l; mgy

Equations (53) and (54) are to be solved for & B ™% and g™i*
for a given value of the field E.

Drift velocity W™* and transverse and longitudinal
diffusion coefficients D““x and D;I’“", respectively, can be
calculated from [see Egs. (46)—(50)]

Whir=@™XE)+AW™* , (58)
inix =%%8mix 'Kmix EAWmm l (59)
mix ___ll mix mix d InK mix
s KM i mE

1 i d | AW™
T X , (60)
where
. s *
AR — L2 guix da(E) -

e 3 dE

IIL. NDC CRITERION

Several criteria for NDC can be obtained by
differentiation of Eq. (54) [7], depending on the chosen
simplifying assumptions. In all cases, however, mean en-
ergy monotonically increases with the increasing field. A
general complete solution can be obtained numerically
but not in an elegant analytical form. Thus we choose
two cases relevant to our further discussion and exam-
ples, one dealing with mixtures of gases that have only
elastic processes and the other for a single reactive gas.

A. Gas mixtures: Elastic collisions only

Here we assume no inelastic or reactive (ionization and
attachment) collisions. Equations (53) and (54) can thus
be simplified:

i eE
omix=—E2 N )
m 3w
aEl;
~{m)
> Voer
. . a€l; .
M= L (™% ) 3k T (63)
m _(m)
3 s
a€l; a
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By differentiation of Eq. (63) with respect to E, we obtain
the criterion for NDC under the specified circumstances:

_ 3
e 3 mix a&l,
i— {1_ Zemix d;inirflmx 2 Irn (m) <0
— ¥,
a€l; My *
(64)

For binary gas mixtures, this criterion [Eq. (64)] becomes

1__1_ eE mia | T |
2 (~(m)+~(m))2 d€ m °
Vo1 m) b _(m)
) ot Vo2
2
(65)

From Eq. (64) one can find the conditions for the left-
hand side (lhs) of the equation to be negative. The
derivate with respect to the energy has the collision fre-
quencies in the numerator and the mass normalized col-
lision frequencies in the denominator. The different ener-
gy dependencies of collision frequencies are required with
quite different masses as well, which would reduce or am-
plify the difference in the denominator. The NDC will
not occur for low mean energies close to the thermal
equilibrium because of the first bracket in the second
term of Eq. (64).

For binary mixtures with m; <<m, and %7 ~const, a
rapid increase of ¥y’ with E will tend to induce a nega-
tive slope of W versus E, i.e., an NDC, if ng /ng, is
sufficiently small. In the case that collisional frequencies
for both gases have the same energy dependence,
WM ~const XWP, or that m,~m,, the derivate with
respect to energy will be zero. In addition the NDC will
not occur for a single gas with elastic scattering only be-
cause of cancellation of collision frequencies, which are
the only source of energy dependence required to make
the lhs of Eq. (64) negative. This case is covered by
Robson’s criterion, but a relatively straightforward exten-
sion of Robson’s theory with a limited expansion of the
physical interpretation is required to explain the NDC in
mixtures of rare gases.

B. Single gas: Elastic, inelastic,
and reactive collisions

Equations (53) and (54) written for a single pure com-
ponent are

o= 2 | (66)
mvy
( mow +3kT)'V ——

g=- —, 67

~(I) ~(A)
v, +v ' +%

where ¥, and A are given by Egs. (57) and (36). By
differentiation of Eq. (67) with respect to E, we obtain the
criterion for the negative slope of the average velocity o
versus E /N as
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a
%[s’s‘i“]-l— d; <0, (68)
where
=t (6
ve
and
awr=2 - (70)
v

In previous calculations we assumed that [see Eq. (52)]

l (I)+2 (A)I<,V . (71)

Finally, from Egs. (58) and (61) we see that the criterion
for NDC,i.e., for dW /dE, is

de da
dE dE

da d’a

1B <0. (72)

dE  dE e3

In Eq. (68), we would designate €5°*' as the “reactive
term” and QO '*' as the “inelastic term.” The derivate of
the “reactive term” is equal to 1 in the absence of non-
conservative collisions. The “inelastic term’ appears to
be identical to that of Robson [7] in his Eq. (19). There is
nevertheless a dlﬁ?erence in the presence of the additional
ionization term in Q *) and a different meaning of col-
lisional frequencies calculated from the MTT that in-
cludes a more complete energy and momentum balance.

If, however, one uses separately calculated or measured’

collision rates, Eq. (68) with its “reactive term” set to 1,
the criterion is identical to that of Robson both in form
and in final results. The “inelastic term” in Eq. (68) does
not contain attachment. The “reactive term” contains
attachment as the first derivate of the collisional frequen-
cy, so ionization and attachment are not equivalent in in-
ducing NDC [see Eq. (19)].

The most important difference between the NDC cri-
terion of Robson and the one presented here for reactive
gases is in the presence of the first term on the Lh.s. of
Eq. (68). The first term of Eq. (68) can be written as

~(I)+2 ~(A) ~(I)+2 ~(A) ]

Ve

d
P

*)
_1+_.__—
< (et = 4

(73)

A sufficient condition for decreasing the ‘“‘reactive term”
with E /n, is a decrease of ionization and decrease of the
slope of attachment collisional frequency with mean ener-
gy. Decreasing ionization frequency is not likely to occur
for the relevant mean energies, so the issue of the shape
of the ionization cross section is purely academic. How-
ever, the attachment rate may have the appropriate shape
that would induce the negative slope of average velocity
o versus E /N. Observation of such an effect may not be
easy because of a larger effect of attachment on the num-
ber density in swarm experiments, but this effect is in
principle possible. The NDC effect may also affect mea-
surement of attachment rates in mixtures of attaching
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and nonattaching gases when the assumption that the
drift velocity is not affected by the momentum transfer of
the attaching gas is made [16-18,24,25].

If we assume no ionization and inelastic collisions, the
criterion for dw/dE <0 becomes d(e3.*’)/de <0, i.e.,

%s 4 d %-GV(IA)
+e——-
Y] de

e

<0. (74)

Ve

We can see that NDC can also occur in the absence of in-
elastic collisions. It is clear that if the reaction # 4’ is in-
dependent of energy, then %‘",A) is equal to zero in Eq. (74)
and attachment has no influence on the NDC.

The criterion has been developed for the average veloc-
ity in Eq. (68). When reactive collisions are present and
their rate is dependent on the energy (i.e., da/dE#0),
the actual drift velocity W is not equal to the average ve-
locity @. In this case, the decrease of the ionization col-
lision frequency will again favor the NDC, amplified by
the usually rapidly increasing mean energy as a function
of E/N. As for the attachment, the opposite is true.
However, in this case the overall criterion [Eq. (72)] also
has a term dependent on the second derivate of the
effective average loss rate a. The occurrence of NDC
will be decided between the effect of the average velocity
and the effect related to the first and the second derivate
of the net average reaction rate. The NDC due to these
effects, even due to ionization only, may become realiz-
able in practical situations.

One should bear in mind that the definition of the col-
lisional frequencies for the inelastic processes in Eq. (36)
also includes the superelastic collisions. The superelastic
processes will reduce the likelihood of NDC when they
significantly affect the energy balance, but depending on
the shape they will be able to contribute positively also
toward NDC under appropriate circumstances, depend-
ing on the shape of the cross sections. The influence of
superelastic processes on the NDC has been discussed as
a part of a wider range of effects of excited states on elec-
tron transport in a separate paper [13] (see also PCH).

IV. MODEL CALCULATION AND DISCUSSION

A. On the NDC in mixtures of atomic gases

As mentioned in the Introduction the calculations of
Shizgal [8] have yielded the NDC effect in the mixtures
of atomic gases, which under the conditions of calcula-
tion have only elastic processes that affect the electron
transport. In the paper by PCH, a simple criterion has
been developed for gases that have inelastic processes,
and thereby the energy loss in the elastic collisions has
been neglected. This term has been originally included
[12], and a more general but complex formula for the
NDC criterion has been derived [7,12] but has been ap-
plied to single gas situations only. When such a theory is
applied to situations described by Shizgal, NDC is pre-
dicted in good agreement with calculations [8].

In this paper, however, we develop a similar criterion
on the basis of a more complete MTT developed quite
generally for the mixtures of gases. A simple physical ex-
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planation can be developed on the basis of both ap-
proaches. Helium, which is the gas with a lower abun-
dance in the mixtures with krypton or xenon, controls
the mean energy by elastic collisions, as mentioned by
Shizgal. Thus the electron to helium mass ratio, which is
much more favorable for the energy transfer than that of
heavier gases, acts in such a way that the elastic collisions
with helium play the role of inelastic collisions in the
theory of PCH and Robson. This fact has been con-
sidered independently of our work [20] by Garscadden
and co-workers [26], who have taken advantage of this
effect to measure drift velocities in helium—heavier rare
gas mixtures—and thus obtain data for determination of
the accurate cross sections for heavier gases based on the
accurate cross sections for helium. In these mixtures,
helium effectively replaces hydrogen or nitrogen, often
used to moderate electrons.

We have made a number of model calculations for the
pairs of gases chosen by Shizgal [8] in order to verify the
simple explanation given above and to test the MTT
theory and the corresponding criterion given in the
present paper. Calculations have been performed with a
standard two-term-theory-based numerical solution
[12,27,28] and with the cross sections for rare gases from
the recommendations of the JILA Data Center [29].

In addition to the Boltzmann equation (BE) solutions
described in the previous paragraph, we have performed
a numerical solution to the MTT equations [Egs. (53) and
(54)] and also of the L.h.s. of the NDC criterion. While
developed on the basis of the same theory, thus having
the same built-in assumptions and approximations, the
criterion and the solution based on MTT equations
should be viewed as separate entities that can be used to
check each other. The criterion is an analytical tool for
understanding the physics behind the NDC. In principle,
experimental data or BE-solution-based rate coefficients,
which are more accurate than the MTT-based
coefficients, can be used as an input into the criterion. In
principle it is best to compare the applicability of the cri-
terion against a single complete set of results, drift veloci-
ties and the rate coefficients coming from the same
source.

W [103 m/s]

102 10 100 10t
E/N [Td}

FIG. 1. Drift velocities in He-Xe mixture for the abundance
of He equal to 10-70 %.
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In Fig. 1 we show the drift velocities, calculated by us-
ing MTT, for different abundances of He in He-Xe mix-
tures. The NDC is observed for a wide range of abun-
dances of He less than 60%, similar to the results of Shiz-
gal.

The importance of the mass of helium being different
from that of the other atomic gas in the mixture is shown
in Fig. 2(a), where we vary the mass of the lighter atom,
and in Fig. 2(b), where we vary the mass of the heavier
atom. In both cases, the effect of NDC disappears when
masses of the two atoms move closer together. The ob-
servation is in agreement with both the analytical form of
the NDC criterion and the general qualitative explana-
tion offered in this paper.

Finally, we vary the cross section (Fig. 3). Atoms can
have either their original cross sections or that of the oth-
er atom. When both atoms have the cross sections of
helium, the effect of Xe on overall transport becomes
very small because of its larger mass and small energy ex-
change. Thus one essentially obtains behavior charac-
teristic of pure helium, the gradually increasing drift ve-
locity. When both gases have the cross section of the xe-
non, there is a strong effect of helium’s energy exchange
in the region of the Ramsauer-Townsend minimum,
whereby the drift velocity increases very rapidly and then
levels off without the NDC. This is, of course, in agree-

W [105 m/e]

W [108 m/s]

102 T 10t 100 10

E/N [Td}

..FIG. 2. (a) Drift velocities for the He-Xe mixture (abundance
of He equal to 10%) with variation of the mass of the lighter
gas: my.=4, 7, 14, 24, and 54 amu. (b) Drift velocities for the
He-Xe mixture (abundance of He equal to 10%) with variation
of the mass of the heavier gas: my,=131.29, 55, 30, 15, 10, and
5 amu.
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FIG. 3. Drift velocities for different cross sections assigned
to constituents; solid line: o(He), o(Xe)=oc(He); dotted line:
o(He)=o0(Xe), o(Xe); dashed line: o(He), o(Xe).

ment with the predictions of the criterion [Eq. (65)],
whereby the two collisional frequencies cancel each oth-
er, and even through the drift velocity suddenly increases
no NDC will occur.

When the NDC criterion of the Eq. (65) is calculated,
there is an excellent agreement between the NDC range
obtained in numerical calculations of drift velocities and
region when the NDC condition becomes negative. For
example, we found from solution of Boltzmann’s equa-
tion, using the ELENDIF code [29], that the NDC effect in
He-Xe mixture (0.1% He) occurs for E /ng in the range
~0.17-2.4 Td. The NDC interval obtained using the
criterion [Eq. (65)] is =0.15-0.25 Td. The agreement
(=5%) exceeds the accuracy of obtaining the drift veloci-
ties by MTT (= 10-20 %), which indicates that the cri-
terion is more general than the application of MTT itself
in obtaining the transport data. An even better agree-
ment is obtained if the Boltzmann equation collision fre-
quencies are applied in the criterion.

Similar behavior of the calculated data has been ob-
served for He-Kr mixtures, and no effect has been ob-
served for other studied combinations of rare gas atoms.
As we have not used identical sets of cross sections and as
there is an additional inaccuracy induced by the applica-
tion of the MTT, the results presented here are not in
agreement in all details with those of Shizgal [8] concern-
ing the magnitude of the drift velocities and the NDC
range. However, a good qualitative agreement exists. An
even better agreement exists for the drift velocities when
a two-term Boltzmann equation is used to calculate col-
lision frequencies. It should also be noted that when the
Boltzmann code used by PCH is applied, the same NDC
effect in the similar mixtures is observed. Thus it appears
unlikely that the explanation offered by Shizgal, that
PCH failed to predict the NDC because they used a basis
but incomplete two-term formula for the drift velocity, is
correct. In fact the “Condition 1” of PCH was based on
the criterion developed by Robson, and both criteria did
not depend on the form of the formula used to calculate
the drift velocity from the energy distribution function.
In this paper we have shown that the theory of Robson as

4021

applied to gas mixtures, and the simple theory of PCH if
extended to include energy exchange in elastic collisions
[12], would both predict the effects observed by Shizgal.
The NDC criterion developed by Shizgal did not give
quantitative agreement with the calculations by the same
author [8]. The criterion indicated the importance of
different masses on the slope of the cross section but not
as directly as our formula [Eq. (65)]. The presently de-
rived theory produces a criterion together with a simple

~_physical explanation and with direct numerical applica-
.. bility leading to good quantitative comparisons.

B. NDC induced by reactive collisions

In this section we discuss the possibility that the NDC
may be induced by the reactive collisions by showing ex-
amples based on model cross sections. It is clear that the
best choice of the examples are those starting from the
cross sections that satisfy the basic NDC conditions of
PCH, yet in such a degree that the plateau in drift veloci-
ty dependence on E/N is produced, not the negative
slope. Under such conditions, however, including attach-
ment or changing the character of one of the inelastic
processes into nonconservative ionizing collisions leading
to production of new electrons may induce the NDC.

As the initial set of cross sections we choose one of the
models of PCH, which is on the verge of allowing NDC
and is shown in Fig. 4. We incorporate a ‘“‘smoothing
factor” [7,30] in the expression for average collision fre-
quency if the cross section varies rapidly near its thresh-
old. First, we study the effect of ionization. In Fig. 5(a)
we show the calculated drift velocities for the model gas
when both inelastic processes are conservative. Under
those circumstances the average velocity o is equal to the
drift velocity W [see Egs. (58) and (61}]. When, however,
one of the processes is allowed to produce new electrons,
then both the average velocity of the swarm and the
effective drift velocity W show NDC, though at quite
different values of E/N [Fig. 5(a)]. The effect for o is
more interesting as its mechanism is similar to that of the
conservative case; i.e., the NDC is not induced because of

ot - momentum-transfer
odn) - inelastic
Tr | = oM,atn - jonization or inelastic

g st
3
S 4
5 s oln v 102
g .
«l
g 2
&} i oM,ctn x 103
1 e -
! H
! 1
0 -4 L -
0.0 0.5 ~1.0 1.5, 2.0 25 3.0

Energy [eV]

FIG. 4. Model cross sections with ionization.
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the effects of transition from the average velocity to the
drift velocity. The condition for NDC developed with
the MTT and given in Eq. {68) describes the effect on o,
and in Fig. 5(b) we show the calculation of the criterion
in Eq. (68) for nonconservative and for conservative
cases. In the latter there is no NDC, while in the former
the NDC occurs between 1.8 and 4.6 Td, in excellent
agreement with the MTT calculations of the drift veloci-
ty. The extension of the criterion to the calculation of W
is straightforward, and the effect described in the cri-
terion [Eq. (72)] is bigger but more directly predictable
from the knowledge of the shape of the cross sections.

In a similar model (the slope of the momentum transfer
cross section has the value 0.45) we further show the
influence of the magnitude of the cross section by varying
the cross section for the nonconservative process [Fig.
6(a)]. When its magnitude is decreased tenfold, there is a
minute effect on the drift velocity and the introduction of
the nonconservative character of the process does not
affect the drift velocity [see Figs. 5(a) and 6(a)]. When,
however, the magnitude is increased ten times, even in
the conservative case the NDC is induced, which can be
expected, but the effect is considerably higher in the non-
conservative case [Fig. 6(b)]. When the NDC criterion
[Eq. (68)] is applied to all these cases, the agreement

145 - e m L m e LTI T
@ v o (a)
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Average or Drift Velocity [1 02 mvs]

Lh.s. of Eq. (68)

N
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FIG. 5. (a) Calculated average and drift velocities: (a) ioniza-
tion is present; (b) two inelastic processes. (b) The criterion for
NDC [see Eq. (68)]. The region between vertical lines corre-
sponds to the negative slope of average velocity versus E /N,
where the inequality (68) holds: (a) ionization is present; (b) two
inelastic processes.
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among the calculated NDC region, the degree of NDC,
and the predictions of the condition in Eq. 68 is excellant,
much better than the accuracy of drift velocities calculat-
ed by MTT. The NDC induced in the drift velocity [Fig.
6(c)] is larger still, and the NDC range and magnitude are
in accordance with those calculated from the criterion in

Eq. (72).
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FIG. 6. (a) Average velocities with variation of the magni-
tude of ionization cross section: solid curve, o‘'=0.01 Az; dot-
ted curve, 0'"=0.001 A% dashed curve, o*?=0.0001 A2 (b)
The influence of ionization collisions on the ayverage velocity:
solid curve, ionization is present, o*?=0.01 A% dotted curve,
two inelastic processes, 0™=0.01 A%, (¢) Drift velocities with
variation of the magnitude of ionization cross section: solid

curve, o'7=0.01 13;5 dotted curve, o'?=0.001 A% dashed
curve, o*'=0.0001 A",
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The same model (Fig. 4) is taken as the basis for the
study of the influence of attachment except that this time
we have only one inelastic process. The model does not
predict the NDC, though it is on the verge, and we intro-
duce the attachment cross section identical in shape to
the second cross section of the ionization model but with
different cross section amplitudes. The results of calcula-
tions based on the MTT equations and on the MTT cri-
terjon are shown in Figs. 7(a) and 7(b). We must stress
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FIG. 7. (a) Average velocities with variation of the magni-
tude of attachment cross section: solid curve, o'4=0.001 A®
dotted curve, o4>=0.0016 A’ dashed curve, o4'=0.0024 A2,
(b) Drift velocities with variation of the magnitude of attach-
ment cross section: solid curve, o4'=0.001 A"; dotted curve,
o' 4=0.0016 A% dashed curve, c'=0.0024 A%, (c) Criterion
for negative slope of average velocity including the influence of
magnitude of attachment cross section: solid curve,
o' 4=0.001 :kz; dotted curve, o'4'=0.0016 AZ; dashed curve
o' 4=0.0024 A%
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that the influence of the attachment is not merely
affecting the number density and thus the overall mobili-
ty, which will occur separately. The influence also affects
the average and the drift velocities, and the effect is
significant. Again, in this range of examples, the NDC
prediction of the criterion agrees extremely well with the
calculated drift velocities [Fig. 7(c)].

When the attachment cross section is extended be-
tween the threshold at 0.1 eV to the higher energies, the
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FIG. 8. (a) Average velocities where the attachment cross
sections (0'9=0.0024 A% cutoffs have these values: solid
curve, 1 eV; dotted curve, 2 eV; dashed curve, 2.5 eV. (b) Drift
velocities where the attachment cross section (o4'=0.0024 A%
tutoffs have these values: solid curve, 1 eV; dotted curve, 2 eV;
dashed curve, 2.5 eV. (c¢) Criterion for negative slope of average
velocity where the attachment cross section (of4'=0.0024 A?
cutoffs have these values: solid curve, 1 eV; dotted curve, 2 eV;
dashed curve, 2.5 eV,
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effect of attachment on average and drift velocity in-
creases significantly [Figs. 8(a) and (b)]. The shape of the
average velocity under those circumstances is shown in
Fig. 8(a). The predictions of the criterion [Eq. (68)] agree
very well Fig. 8(c) with the calculated average velocity.
The effect of attachment is sufficiently large to produce a
local minimum even in the drift velocity dependence on
the E /N with a second NDC due to the additional terms
in the criterion for drift velocity [Eq. (72)].

" V. CONCLUSION

In this paper we have developed MTT for electron
transport in mixtures of reactive gases. The previous
work of Robson [4] has been limited to the transport in a
single reactive gas, and some extensions to mixtures are
not trivial. The theory takes a more complete inclusion
of momentum transfer in inelastic collisions as well.
Equations have been developed that upon solution yield
MTT values of drift velocity and mean energy, which can
be further used to obtain rate coefficients and diffusion
coefficients or characteristic energies. Finally, on the
basis of the developed equations, we have derived the cri-
teria for the NDC in two cases, but further derivations
are possible depending on specific simplifying assump-
tions.

In the case of gas mixtures the criterion does not in-
clude the reactive collisions, as it has been derived for the
specific case of inelastic processes only. However, an ex-
tension to include the inelastic processes is relatively sim-
ple. The criterion predicts the occurrence of NDC in
mixtures of gases even when only elastic processes occur.
In this case NDC is the result of the fact that light atom-
ic gas controls the energy. The elastic collisions of light
atoms act as a substitute for inelastic process in Robson’s
theory. With this provision, the basic conclusions of the
criterion are the same as those of PCH and Robson. The
mixture situation adds to the requirements that the
masses and the cross sections of the atoms controlling the
momentum transfer and energy transfer be considerably
different; the preference for the former is that they have
increasing cross section, with the energy in the relevant
E /N range. The criterion that was developed here agrees
well with the calculations of Shizgal and shows that the
simple physical explanation developed by PCH and Rob-
son, with the extension to mixtures of atomic gases, is
correct.

However, the criteria developed by PCH and Robson
do not predict the NDC induced by reactive collisions,
and we show this process in the case of a single reactive
gas. Development of a general criterium for arbitrary
mixtures in a simple analytical form appears to be impos-
sible, but the basis for numerical predictions in a form
simpler than calculating the drift velocities as a function
of E /N exists. ,

The influence of reactive collisions (in the case of elec-
trons), of the ionization, and of the attachment is two-
fold: on the mean energy and on the effective drift veloci-
ty. There is a definite influence on the mean electron en-
ergy, which can be described by a simple NDC criterion.
It is a generalized form of the criterion of Robson and
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reduces to it under the identical conditions. Thus all the
conclusions of PCH and Robson are included in that cri-
terion. The reactive extension is given by the term shown
in Eq. (68), which in case of Robson’s theory is equal to 1.

The drift velocity, however, under the influence of
reactive collisions, is different from the average electron
velocity {4]. The simple form of the drift velocity W is
given by Eq. (58). Thus the criterion for the NDC for W
will have an extension to that for the average velocity be-
cause of E /N dependence of the ionization and attach-
ment rates. The effect of those two is larger in general
than that for the average velocity, yet under some condi-
tions the NDC in the average velocity may be directly
visible in the drift velocity versus E /N dependence, as
has been shown. The conditions under which ionization
affects the average velocity to produce the NDC may ap-
pear to be unphysical since ionization cross sections usu-
ally do not decrease rapidly or decrease for sufficiently
high energies so that the redistribution of energy in elas-
tic collisions may be the dominant energy loss process.
Yet under those conditions the elastic scattering cross
section may become quite small, and further study is
needed to check how drift velocities behave at very high
E /N if such knowledge is required. Under those condi-
tions it is more likely that nonequilibrium transport will
develop with its own, quite different physical basis
[31,32]. In any case NDC induced by nonconservative
nature of ionization in drift velocity is possible in realistic
situations, even when such an effect in the average veloci-
ty is not likely.

The question of the influence of the attachment is,
however, less academic; it is directly relevant to such
studies in which very strong NDC has been observed in
otherwise very difficult experiments wherein attachment
reduces the number of electrons significantly and makes
it difficult to determine the drift velocity [25,33]. A rela-
tively large effect of attachment on inducing the NDC
has been noticed and described for the model cross sec-
tions, which are not too different from the realistic cross
sections.

The measurements of drift velocity at moderate and
high values of E /N, where reactive effects may be expect-
ed to be important, are scarce. This is due to difficulties
in determining the transient time of electrons with high
mean energies and in achieving a system without
significant influence of the boundaries over a large
volume. The data are, however, needed in many aspects
of discharge modeling and used on the basis of calcula-
tions that usually do not take reactive collisions into ac-
count. With a large number of devices whose mere appli-
cation depends on a good knowledge of the drift velocity
or even on the occurrence of NDC, it appears justified,
beyond the academic interest, to invest further effort into
understanding the transport of electrons (and other types
of swarms) under high driving field conditions in the
presence of reactive collisions.

Finally, having failed once before to make a complete
set of requirements for the NDC, we only state that a
more complete set of requirements for the NDC has been
described, which in conjunction with the work of PCH
and Robson describes all the known cases of NDC, and
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the criteria as analytical forms that give a better physical
insight can be used quite generally outside the realms of
the MTT. The quantitative agreement of the NDC
ranges and relative importance of the effect obtained
from the criteria are excellent in all cases. It is, however,
still possible that a new mechanism driving the NDC
may exist. The present theory, while describing all the
known cases of NDC, may not be able to describe the
NDC that may arise in circumstances in which a complex
structure of the electron energy distribution functions
(EEDF) develops and changes in such way as to promote
NDC (as has been suggested by Garscadden and Nagpal
[26]). However, we are yet to find a good example that
would not meet the description based on the MTT. In
addition, none of the conditions that favor NDC as listed
by PCH and discussed by Robson and the present paper
should be taken as necessary. Those are just separate
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driving mechanisms that favor the NDC, and whether it
will occur or not depends on the absolute magnitudes of
those mechanisms and of the mechanisms working
against the NDC. The presently developed criteria, as
well as those of Robson, give a more direct description of
the balance of the mechanisms and give good quantitative
predictions and physical insight into the effect of NDC.
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