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The percolation aspect of random sequential adsorption of extended objects on a triangular lattice is studied
by means of Monte Carlo simulations. The depositing objects are formed by self-avoiding lattice steps on the
lattice. Jamming coverage θjam, percolation threshold θ∗

p , and their ratio θ∗
p/θjam are determined for objects of

various shapes and sizes. We find that the percolation threshold θ∗
p may decrease or increase with the object size,

depending on the local geometry of the objects. We demonstrate that for various objects of the same length,
the threshold θ∗

p of more compact shapes exceeds the θ∗
p of elongated ones. In addition, we study polydisperse

mixtures in which the size of line segments making up the mixture gradually increases with the number of
components. It is found that the percolation threshold decreases, while the jamming coverage increases, with the
number of components in the mixture.
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I. INTRODUCTION

Percolation concerns the formation of long-range connec-
tivity in disordered systems [1] and has applications [2] in
many physical, chemical, and even sociological systems [3].
Numerous practical problems include conductivity in com-
posite materials, flow through porous media, polymerization,
and behavior of scale-free random networks such as the
Internet [4]. The problem of percolation is not a new one but
still attracts considerable interest [5–16], and some unsolved
questions remain.

In the classical site percolation model, the sites of a
d-dimensional lattice are randomly occupied with probability
p or remain empty with probability 1 − p. Neighboring
occupied sites form a cluster. When the occupation probability
is low, the occupied sites either are isolated or form very small
clusters. On the other hand, for sufficiently large p a lot of
occupied sites form one large cluster that reaches two opposite
sides of the lattice. The lowest concentration of occupied sites
for which there is a percolating cluster for an infinite lattice is
called the percolation threshold.

One of the applications of percolation theory is connected
to the study of physical and chemical properties of adsorbed
monolayers. Irreversible adsorption of particles on solid sur-
faces can be successfully studied using the random sequential
adsorption (RSA) model [17,18]. RSA is a process in which
the objects of a specified shape are randomly and sequentially
deposited onto a substrate. Excluded volume, or particle-
particle interaction, is incorporated by rejection of deposition
overlap, while particle-substrate interaction is modeled by the
irreversibility of deposition. Once an object is placed it affects
the geometry of all later placements, so the dominant effect
in RSA is the blocking of the available substrate area. The
deposition process ceases when all unoccupied spaces are
smaller than the size of an adsorbed particle. The system is
then jammed in a nonequilibrium disordered state for which the
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limiting (jamming) coverage θjam is less than the corresponding
density of closest packing.

The interplay between RSA and percolation is relevant
for description of various deposition processes and has been
discussed in several works [5,6,19–21]. In Ref. [5] results
for the percolation thresholds, the jamming coverages, and
their ratios are given for the deposition of line segments of
various lengths on a square lattice. The authors conclude that
the percolation threshold is a nonmonotonic function of the
line length �, having a minimum due to the parallel orientation
of the needles, at � = 13. The jamming coverage is found to
decrease to a nonzero constant with � as a power law, while
the ratio of the two thresholds is nonmonotonic. However, to
our knowledge, there are very few studies of such interplay for
lattices other than the square lattice and for objects of various
shapes.

Recently the irreversible deposition of large particles, such
as polymers and nanoparticles, has attracted much attention. In
Ref. [7] the temperature behavior of the percolation threshold
of a system of adsorbed flexible chains on a triangular
lattice was studied numerically. The flexibility of chains was
controlled by the temperature via the Boltzmann factor. It was
found that for the cold regime system characteristics coincide
with those of straight lines. For moderate temperatures the
percolation threshold drops significantly, attains a minimum at
the temperature unique for all chain lengths, and grows mono-
tonically up to an infinite-temperature limit (self-avoiding
random walk case). The impact of the composition of flexible
chains on the percolation properties was discussed in Ref. [8]
for both the square and the triangular lattice. Simulations were
performed for various chain lengths and the most favorable
compositions (for which the percolation threshold acquires its
minimal values) were identified. For longer and more bent
chains, a no-percolating regime was detected.

Polydispersity is a common feature of real physical systems.
Irreversible deposition in polydisperse systems was studied
for binary mixtures [22,23], for mixtures of particles obeying
various size distributions [24,25], and for polydisperse mix-
tures [26]. In Ref. [14] an approximate analytical approach is
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TABLE I. (Color online) Jamming coverage θ
(x)
jam and percolation

threshold θ (x)
p for various basic objects (x) of length �(x) on a

triangular lattice. Colors are associated with different orders n(x)
s of the

symmetry axis. For object x, m(x) is the number of first neighboring
sites on the lattice.

(x) Shape n
(x)
s m(x) (x) θ

(x)
jam θ

(x)
p

(A) ............................... 2 8 1 0.9139 (5) 0.4841 (13)

(B) ...................................................................... ... 2 10 0.8362 (7) 0.4611 (9)

(C) ............................... .

............................... 1 10 2 0.8345 (8) 0.4585 (11)

(D) ............................... .

............................... 3 9 0.7970 (4) 0.5214 (9)

(E) ........................................................................................................ ....... 2 12 0.7886 (8) 0.4399 (12)

(F) .................................................................... ..... .

............................... 1 12 0.7653 (10) 0.4304 (12)

(G) ....................................................... ............ .

............................... 1 11 0.7739 (7) 0.4815 (11)

(H) ............................... .

...............................

...............................

2 12 3 0.7404 (9) 0.4369 (11)

(I) ............................... .

...............................

.

...............................

1 12 0.7226 (6) 0.4461 (5)

(J) ............................... .

...............................

.............................. .

2 10 0.7593 (4) 0.5387 (6)

(K) ............................... .

...............................

.............................................................

...............................

...............................

6 12 6 0.6695 (7) 0.5836 (11)

used to obtain the dependence of the percolation threshold in
polydisperse composites on the dispersion. However, not much
is known about the influence of the particle size dispersion on
the properties of composite materials and there are still many
questions to be answered.

For most real percolating systems, some important physical
properties depend on the detailed geometry of the substrate
and on the shape and size of the adsorbed particles [27].
Here we present the results of extensive simulations of
irreversible deposition of objects of various shapes and sizes
on a triangular lattice. Depositing objects are made by

directed self-avoiding random walks on the lattice [28] and
the percolation thresholds are determined for each type of
depositing object. We concentrate here on the influence of
shape on the percolation characteristics of the system. Effects
of object size on percolation properties are also studied.
Furthermore, in order to gain insight into the percolation
phenomena in complex systems, simulations are performed
for mixtures made of various objects and for polydisperse
mixtures containing depositing objects of various sizes. Our
recent works [26,29] on how the mixture composition affects
the approach to the jamming limit provide a starting point for
such exploration.

Section II describes the details of the simulations. Results of
the simulations for objects of various shapes and sizes are given
in Sec. III. Results for mixtures are also given in Sec. III A.
Finally, Sec. IV contains some additional comments and final
remarks.

II. DEFINITION OF THE MODEL AND
THE SIMULATION METHOD

Our model describes the irreversible deposition of large
complex objects onto a substrate. The percolation of nonover-
lapping extended objects is investigated using RSA on a two-
dimensional (2D) triangular lattice. The depositing objects
are made by directed self-avoiding random walks on the
lattice. On a triangular lattice, objects with a symmetry axis of
first, second, third, and sixth order can be formed. Rotational
symmetry of order ns , also called ns-fold rotational symmetry,
with respect to a particular axis perpendicular to the triangular
lattice, means that rotation by an angle of 2π/ns does not
change the object. For a small number of steps it is easy to find
all the shapes that may have different percolation properties.
We performed numerical simulations for all such shapes of
length � = 1, 2, and 3, covering two, three, and four lattice
sites, respectively. All these objects are shown in Table I. On
a triangular lattice it would also be interesting to examine the
behavior of a hexagon shown in Table I.

In addition to objects A–K, listed in Table I, percolation
properties were investigated for various sizes of basic objects
A, C, D, and K. In the case of the dimer (A) and the angled
object (C), objects of various sizes are made by repeating each

TABLE II. Illustration of the construction of objects larger than the basic ones. Larger objects are made by
repeating each step of the basic object the corresponding number of times. Simulations are performed for ten linear
segments (k-mers) of lengths � = 1,2, . . . ,10; ten angled objects of sizes s = 1.5,3, . . . ,15; five triangles of sizes
s = 1,2, . . . ,5; and five hexagons of sizes s = 2,4, . . . ,10.

k-mers Basic shape (C) Basic shape (D) Basic shape (K)

............................... = 1 ............................... .

............................... s = 1.5 ............................... .

............................... s = 1 ............................... .

...............................

.............................................................

...............................

...............................

s = 2

.................................................................. = 2 ................................................... .............. .

............................................................. s = 3 .......................................................... ......... .

...............................

.............................. ..

...............................

s = 2 · · · s = 4

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · = 10 · · · s = 15 · · · s = 5 · · · s = 10
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step of a basic shape corresponding number of times. On the
other hand, triangles and hexagons of larger sizes occupy all
comprised sites on lattice. The construction of larger objects
is illustrated in Table II. The size s is taken as the greatest
dimension of the object, i.e., as the greatest projection of the
object in one of the six directions. Thus the size of a dot is
s = 0, the size of a one-step walk is s = 1, and, for example,
the size of the first angled object in Table II is s = 1.5 in lattice
spacing.

Monte Carlo simulations are performed on a triangular
lattice with linear size L up to Lmax = 1000 sites. Hard
boundary conditions are used in the horizontal direction, in
which the onset of percolation is detected. This means that, in
the horizontal direction, the objects may touch the edge of the
lattice but they cannot stick out of it. The periodic boundary
conditions are applied in the other directions. The data are
averaged over 100 independent runs for each depositing object.

At each Monte Carlo step a lattice site is selected at random.
If the selected site is unoccupied, deposition of the object
is tried in one of the six orientations. We fix the beginning
of the walk that makes the shape at the selected site and
search whether all successive � sites are unoccupied. If so, we
occupy these � + 1 sites and place the object. If the attempt
fails, a new site and a new direction are selected at random.
The coverage of the surface is increased in the process up to
the percolation threshold, when a cluster that extends through
the whole system appears. We say that a percolating cluster
arises in the system when the opposite edges of the system are
connected via some path of nearest neighbor sites occupied
by the particles. Here we check the connectivity between the
left and the right edges of the lattice. The tree-based union and
find algorithm was used to determine the percolation threshold
[30]. Each cluster of connected sites is stored as a separate
tree, having a single “root” site. All sites in the cluster possess
pointers to the root site, so it is simple to ascertain whether
two sites are members of the same cluster. When a deposited
object connects two separate clusters, they are amalgamated
by adding a pointer from the root of the smaller cluster to
the root of the larger one. This procedure is repeated until the
percolation threshold is reached. Another quantity of interest
is the jamming limit θjam, which is reached when no more
depositing objects can be placed in any position on the lattice.
Details of these simulations are given elsewhere [26,29].

In the case of a mixture, the objects making the mixture
are deposited onto the lattice with equal probability. In each
deposition attempt one of the objects is selected at random,
a lattice site is selected at random, and deposition of the
object is tried in one of the six possible orientations. The
values of percolation thresholds are determined and the data
are averaged over 100 independent runs for each mixture of
the objects.

III. RESULTS AND DISCUSSION

It is known [1] that the finite-size scaling theory describes
correctly the dependence of the effective percolation threshold
θp (the mean value measured for a finite lattice) and its standard
deviation σ on the linear size L of the lattice. It appears from
the scaling theory that the effective percolation threshold θp

approaches the asymptotic value θ∗
p (L → ∞) via the power

FIG. 1. Finite-size scaling of the percolation threshold θp against
L−1/ν with ν = 4/3 for (a) line segments (k-mers) of lengths � =
k − 1 = 1, 3, 7, 11; (b) angled objects (C) of sizes s = 1.5, 3, 6, 9,
15; (c) triangles (D) of sizes s = 1, . . . ,5 (see Table II). For clarity,
data for k = 8 are shifted vertically downward by 0.02.

law

θp − θ∗
p ∝ L−1/ν . (1)

For 2D systems the theoretical value for the correlation length
exponent is ν = 4/3. The latter relationship allows us to
extrapolate the threshold for an infinite system, L → ∞.

Simulations were performed for lattices of various sizes,
ranging from L = 30 to L = 500 for smaller objects (s � 3)
and from L = 100 to L = 1000 for the largest ones (s > 3).
Plotting the mean value θp of the threshold for various lattice
sizes against L−1/ν , we confirm the validity of the finite-size
scaling in the system and determine the asymptotic value of
the percolation threshold θ∗

p . Finite-size scaling of the lattice
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FIG. 2. Finite-size scaling of the percolation threshold θp against
L−1/ν with ν = 4/3 for objects H–K from Table I. For clarity, the
data for object H are shifted vertically downward by 0.02.

threshold θp against L−1/ν for ν = 4/3 is illustrated in Fig. 1
for k-mers [Fig. 1(a)], angled objects (C) [Fig. 1(b)], and
triangles (D) of various sizes [Fig. 1(c); also, see Table II]. Such
plots are also shown in Fig. 2 for objects F–K from Table I.
Values of the obtained percolation thresholds θ∗

p for various
objects are given in Table I together with the corresponding
jamming coverages θjam.

According to the scaling theory the standard deviation σ

of the percolation threshold measured for a finite lattice L

satisfies the power law

σ ∝ L−1/ν . (2)

In Fig. 3 the standard deviation σ vs L is shown on a
double-logarithmic scale for a dimer (A) [Fig. 3(a)], an angled
object (C) [Fig. 3(b)], a triangle (D) [Fig. 3(c)], and a hexagon
(K) [Fig. 3(d)]. For all objects we obtained confirmation of
the power law in Eq. (2), with the value of the exponent
1/ν ranging from 0.714 ± 0.018 to 0.765 ± 0.015. Therefore,
apart from a slight deviation for the hexagon (K), these results
are in good agreement with the universal value 1/ν = 3/4.

Let us first consider the values of percolation threshold for
objects E–J in Table I. All of these shapes have the same length,
� = 3. The largest thresholds are observed for objects G and J,
while objects E, F, H, and I have significantly lower thresholds
(which are in fact very similar to each other). It is obvious that
the symmetry order ns of the shape is not correlated with the
percolation threshold for various objects. However, we observe
that object J, with the largest threshold, has the smallest number
m of the first neighboring sites on the lattice, i.e., m = 10.
For the second object (G), we have m = 11, while for all
other objects of length � = 3, m = 12. Shape J is surrounded
by the smallest number of neighboring sites and therefore
we can say that it is more compact than other shapes of the
same length. In addition, among the shapes of length � = 2,
shape D is the most compact (m = 9) and therefore has the
highest percolation threshold. This strongly suggests that, for
various objects of the same length, the percolation threshold

FIG. 3. Standard deviations σ of the percolation threshold on a
double logarithmic scale for (a) a dimer (A); (b) an angled object (C);
(c) a triangle (D); and (d) a hexagon (K). Straight lines correspond
to the best fit according to the power law in Eq. (2) and with
the exponents 0.765 ± 0.015, 0.754 ± 0.017, 0.755 ± 0.017, and
0.714 ± 0.018 for objects A, C, D, and K, respectively.

θ∗
p of more compact shapes exceeds the θ∗

p of elongated ones.
Qualitatively, we could say that the value of θ∗

p depends on the
object’s capability to make connections with other depositing
objects. The number of nearest neighbors m seems to be a
quantity that is closely related to the connectivity, and it is
included in Table I. It can be seen that the percolation threshold
decreases with m for objects of the same length.

In Fig. 4 the percolation threshold θ∗
p and the jamming

θjam, as well as their ratio θ∗
p/θjam, are plotted against the

number k of sites covered by a k-mer. The jamming coverage
monotonically decreases with k, while the percolation thresh-
old decreases for shorter k-mers, reaches a value θ∗

p ≈ 0.40
for k = 12, and, after a smooth minimum, grows for longer
k-mers. Consequently, the ratio θ∗

p/θjam increases. In addition,
the inset in Fig. 4 shows that the values of θjam, as a function of
the length of the line segments, decrease according to a power
law approaching the asymptotic value θ∞

jam = 0.56 ± 0.01. The
same kind of dependence was found for the deposition of
needles on a square lattice [5,31], but with a different value of
θ∞

jam.
Dependence of the percolation threshold θ∗

p , the jamming
coverage θjam, and their ratio θ∗

p/θjam on the size s of the
angled objects (C) from Table II is shown in Fig. 5. We can
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FIG. 4. (Color online) Dependence of the percolation threshold
θ∗
p , the jamming coverage θjam, and their ratio θ∗

p/θjam on k for k-mers
of various lengths (� = k − 1). Inset: Dependence of θjam − θ∞

jam on
the length � of the line segments on a log-log scale for θ∞

jam = 0.56 ±
0.01. Here and in the following figures, symbols are the actual data
and lines are just a guide for the eye.

see that for the angled objects both the jamming coverage
and the percolation threshold monotonically decrease with the
size of the objects, but their ratio increases. It is interesting
that in the case of triangles (D) from Table II the percolation
threshold monotonically increases with the size s (see Fig. 6).
We observe percolation, especially for large compact objects,
very close to the jamming limit. This makes an important
difference between the deposition of anisotropic and that of
rounder objects on a triangular lattice. The appearance of this
unexpected feature is connected with a change in the geometry

FIG. 5. (Color online) Dependence of the percolation threshold
θ∗
p , the jamming coverage θjam, and their ratio θ∗

p/θjam on the size s of
the angled objects (C). Objects of a larger size are made by repeating
each step of a basic shape the corresponding number of times. The
size s is taken as the greatest projection of the object in one of the six
directions.

FIG. 6. (Color online) Dependence of the percolation threshold
θ∗
p , the jamming coverage θjam, and their ratio θ∗

p/θjam on the size s of
the triangles (D). Triangles of a larger size also occupy all comprised
sites. The size s is taken as the greatest projection of the object in one
of the six directions.

of the configurations due to excluded volume effects. Blocking
of the substrate area is enhanced by the growth of the k-mer
length, making the surface more porous (unoccupied sites can
form open and large pores). This results in lower values of
percolation thresholds. The porosity of the surface is also
responsible for the low values of the percolation thresholds
in the case of angled objects, for which there exists a greater
probability for blocking the comprised sites. On the other hand,
round objects, such as triangles and hexagons, tend to form
compact, isolated islands on the lattice. Then the connectivity
in the system is poor at low coverages and percolation sets in
at larger values of the coverage fraction.

Percolation thresholds θ∗
P vs the length � of the walk that

makes the depositing object are given in Fig. 7 for the line

FIG. 7. Dependence of the percolation threshold θ∗
p on the length

� of the walks that make the objects.
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segments, angled objects, and triangles from Table II. For
compact objects, such as triangles, the percolation threshold
increases with �. In the case of line segments, θ∗

p decreases
with � for shorter lines and, after a smooth minimum at about
� = 11, grows slowly for longer k-mers. Deposition of angled
objects is characterized by a relatively high probability for
blocking their neighboring sites and the percolation threshold
decreases with �. It must be stressed that the difference between
the percolation threshold for a compact object and that for
an elongated object of the same length increases with their
length.

Snapshots of the percolating clusters shown in Fig. 8 can
help us to explain qualitatively the behavior of the percolation
threshold for various depositing objects. In fact, Fig. 8 shows
typical snapshot configurations at the percolation threshold
obtained for line segments of length � = 10 [Fig. 8(a)],
angled objects of length � = 10 [Fig. 8(b)], and hexagons
of length � = 6 [Fig. 8(c)] from Table II. At very early
times in the process deposited objects do not “feel” the
presence of the others and are adsorbed in any of the six
orientations with equal probability. However, in the late
stages of deposition the objects must fit into small empty
regions, which favors the formation of clusters. Deposition
of elongated objects is characterized by domains of parallel
objects and large islands of unoccupied sites. A large number
of nearest neighbors enhances the connectivity of these objects,
and percolation is reached at coverages much lower than
the corresponding jamming coverages. On the other hand,
compact objects such as hexagons cover the surface more
efficiently, at the same time having a lower connecting
probability. This results in a percolation threshold close to the
jamming limit, while for larger objects percolation cannot be
reached.

Compact objects of larger sizes can show a no-percolating
behavior. Here we present only the results for the objects and
lattice sizes for which, in all N = 100 runs, percolation was
reached. However, for larger sizes of compact objects such as
D, J, and K, a no-percolation regime was observed. This effect
is most pronounced for hexagons, for which no percolation was
found for objects larger than the basic ones. Speaking to the
length of the walks, only basic hexagons (K) of length � = 6
percolate, while for hexagons of length � = 18 percolation
cannot be reached. The smallest no-percolating objects (J)
are made by � = 24 steps, and the smallest no-percolating
triangles (D), by � = 27 steps. Absence of percolation was
not detected for any of the less compact objects considered.
These results are in good agreement with the results presented
in Ref. [8], where the maximal length for which the most bent
particles percolate is a = 13, while for particles that are not
fully bent the maximal length is about a = 22. The absence of
percolation has also been reported in studies of RSA of large
rectangular particles [32], squares [33], and bent particles [8]
on a square lattice.

A. Percolation in the case of mixtures

RSA of binary mixtures of line segments on a square
lattice has been discussed in Ref. [34]. Results of numerical
simulations indicate that the mixtures cover the lattice more
efficiently than either of the species separately. For binary

FIG. 8. (Color online) Typical configurations of deposited objects
at the percolation threshold for (a) line segments of length � =
10; (b) angled objects (C) of length � = 10; and (c) hexagons
(K) of length � = 6 from Table I. Different colors correspond to
clusters of connected sites, and the percolating clusters are clearly
shown.

mixtures of objects of various shapes it was found that this
was not always the case [29]. For a number of combinations of
depositing objects, including k-mers, the jamming coverage
for a mixture has greater values than the jamming coverage
for the pure shapes making up the mixture. However, there
are also mixtures that have a lower jamming coverage than
one of the components. The mutual feature of these mixtures
is that the jamming coverages of their components differ
significantly.
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FIG. 9. Percolation threshold θ∗
p for two-component mixtures of

dimers and k-mers vs the number of sites covered by the k-mer, k > 2
(filled squares). Circles show the percolation threshold for k-mers and
the dashed line shows the percolation threshold for dimers.

In order to examine the percolation properties of mixtures,
we performed simulations for two-component mixtures on a
triangular lattice. Binary mixtures are made of dimers and
k-mers covering various numbers of lattice sites. Results of
these simulations are presented in Fig. 9. Percolation thresh-
olds θ∗

p for the mixtures of dimers and k-mers are represented
by squares. Circles show the percolation thresholds for k-mers,
and the dashed line shows the percolation threshold for dimers.
We can see that the percolation threshold for dimers is lowered
by adding longer objects. The value of θ∗

p for the mixture
decreases with the length of the k-mers combined with dimers,
but it is always greater than the percolation threshold for the
corresponding k-mer.

Another interesting situation is the combination of no-
percolating objects and objects that percolate. For example,
when hexagons of sites greater than the basic one are combined
with percolating objects, for example, k-mers, the system
percolates. We have performed simulations for a large variety
of combinations of percolating and no-percolating objects and
the system always percolates. The values of the percolation
thresholds for the mixtures are greater than the values for the
pure percolating shapes.

Effects of polydispesrsity on the percolation properties are
studied for mixtures of increasing numbers of k-mers of var-
ious lengths. The two-component mixture consists of k-mers
covering k = 2 and k = 3 lattice sites, the three-component
mixture is made by adding a k-mer covering k = 4 lattice sites,
and so on. An n-component mixture contains k-mers covering
k = 2,3, . . . ,n + 1 lattice sites, and all of them are adsorbed
with equal probability. Percolation thresholds are shown vs the
number of components n in Fig. 10, together with the corre-
sponding jamming coverages. We can see that for the mixture
of k-mers, the percolation threshold decreases with the number
of components in the mixture. On the other hand, the jamming
coverage increases with n, despite the fact that the number of
components is always increased by adding a k-mer of a greater
length.

FIG. 10. Dependence of the percolation threshold θ∗
p (filled

squares) and the jamming coverage θjam (open circles) on the number
of components n making up the mixture. The number of components
in a mixture is always increased by adding a k-mer of a greater length.

IV. CONCLUDING REMARKS

We have investigated percolation and jamming phenomena
for random sequential deposition of objects of various shapes
and sizes on a 2D triangular lattice. The shapes are made by
self-avoiding lattice steps. A systematic approach is made by
examining a wide variety of object shapes and their mixtures.

It has been shown that, for elongated shapes, such as k-mers
and angled objects, the percolation threshold monotonically
decreases with the size of the objects. However, in the case
of more regular and compact shapes the percolation threshold
monotonically increases with the object size. We have also
shown that the ratio of percolation and jamming thresholds
increases with object size for all examined objects. We have
pointed out that for various objects of the same length, the
percolation threshold of more compact shapes exceeds the
percolation threshold of elongated ones. It must be stressed
that the percolation thresholds for k-mers deposited on a
square lattice [27] exceed the corresponding thresholds on
a triangular lattice by ≈15% for short k-mers and ≈10% for
longer ones (k � 8). This difference is due to the orientational
freedom of depositing objects. In the square lattice case, the
objects can adsorb in four possible directions. On a triangular
lattice there are six possible directions for adsorption. Hence,
on a triangular lattice there is a greater number of possible
orientations and an enhanced probability for the formation of
frozen defects of blocked sites.

We have analyzed polydisperse mixtures in which the size
of line segments making up the mixture gradually increases
with the number n of components. The percolation threshold
for a mixture of line segments (Fig. 10) is slightly greater than
the percolation threshold of the longest component making
the mixture (Fig. 4). For mixtures with a large number of
components, i.e., for n � 7, this difference is negligible since
anisotropic constraints lead to the increased contribution of
the longer k-mers in the total coverage fraction of the mixture.
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