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Optimization of the monolayer growth in adsorption-desorption processes
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(Received 4 July 2013; revised manuscript received 23 October 2013; published 22 November 2013)

Kinetics of the deposition process of dimers in the presence of desorption is studied by Monte Carlo method
on a one-dimensional lattice. The aim of this work is to investigate how do various temporal dependencies of
the desorption rate hasten or slow down the deposition process. The growth of the coverage θ (t) above the
jamming limit to its steady-state value θ∞ is analyzed when the desorption probability Pdes decreases both
stepwise and linearly (continuously) over a certain time domain. We report a numerical evidence that the time
needed for a system to reach the given coverage θ can be significantly reduced if Pdes decreases in time. Finally,
a self-consistent optimization procedure, when the probability Pdes depends on the current coverage density θ (t),
is formulated and tested. The present model reproduces qualitatively the densification kinetics and the memory
effects of vibrated granular materials. Our results suggest that the process of vibratory compaction of granular
materials can be optimized by using a time dependent intensity of external excitations.
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I. INTRODUCTION

Over the past two decades considerable scientific effort
has been devoted to the development and understanding of
the random sequential adsorption (RSA) model [1–3]. In RSA
processes particles are randomly, sequentially, and irreversibly
deposited onto a substrate. The dominant effect in RSA is the
blocking of the available substrate area since the particles
are not allowed to overlap. Within a monolayer deposit, each
adsorbed particle affects the geometry of all later placements.
If the adsorbed particles are permanently fixed at their spatial
positions, the deposition process ceases when all unoccupied
spaces are smaller than the size of an adsorbing particle.
The system is then jammed in a nonequilibrium disordered
state for which the limiting (jamming) coverage θjam is less
than the corresponding density of the closest packing. The
kinetic properties of a deposition process are described by
the time evolution of the coverage θ (t), which is the fraction
of the substrate area covered by the adsorbed particles. On
the basis of the nature of the substrate, the RSA models are
broadly classified into continuum models and lattice models.
The approach to the jamming coverage θjam is known to be
asymptotically algebraic for continuum systems [4–7] and
exponential for the lattice models [8–12].

The possibility of desorption makes the process reversible
and the system ultimately reaches an equilibrium state when
the rate of desorption events becomes comparable to the
rate of adsorption events. The density of particles in the
steady state depends only on the desorption or adsorption rate
ratio [13,14]. The approach of the coverage to its equilibrium
value is very slow for low desorption probabilities. For
the adsorption-desorption processes on a one-dimensional
lattice a stretched exponential approach toward the steady state
value of the coverage was found [15], while in two dimensions
the Mittag-Leffler function gave a very good agreement with
the simulation results for objects of various shapes [16].
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Recently, interest in the field has expanded towards the
modeling of the densification kinetics and other features of
weakly vibrated granular materials [17–20]. The phenomenon
of granular compaction involves the increase of the density
of a granular medium subjected to shaking or tapping. The
underlying dynamics is a subject of great interest in recent
years [21]. Experiments have shown that when a granular
material is submitted to vertical vibration or tapping, it slowly
approaches a steady state of higher packing fraction [22–26].
The final steady state density is a decreasing function of the
vibration intensity [26]. The relaxation dynamics is extremely
slow, taking many thousands of taps to approach the steady
state, and it slows down for lower vibration intensities.

Geometric exclusion effects characteristic for granular
materials can be taken into account by reversible RSA, or
adsorption-desorption processes. The adsorption-desorption
model describes the kinetics of densification of a given layer
of the granular material, perpendicular to the tapping force.
As a result of a tapping event, particles leave the layer at
random. On the other hand, they fall back into the layer under
the influence of gravity, filling the opened empty locations
and making the layer more compact in time. In the model, the
ratio of desorption to adsorption rate K = k−/k+ plays a role
similar to the vibration intensity � in real experiments [17].

Within the framework of the adsorption-desorption model
it was shown in [18] that the increase of packing fraction
can be accelerated by changing the desorption rate during
the adsorption-desorption process. Actually, the problem of
how various time dependencies of the desorption rate hasten
or slow down the deposition process was formulated by
Talbot and co-authors [18]. The determination of the optimum
densification strategy, which has significant applications to
vibratory compaction of granular materials, is still an open
problem. The aim of this work is to investigate the way that
the temporal dependence of the ratio K = k−/k+ influences
the slow dynamics of deposition.

Here we present the results of extensive numerical simula-
tions of the reversible RSA of dimers on the one-dimensional
(1D) lattice. First, we focus on the process of reversible RSA
with a constant value of desorption probability and determine

052131-11539-3755/2013/88(5)/052131(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.052131
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the minimal time needed for a system to reach the given
coverage θ > θjam. The possibility to hasten the dynamics
of reversible RSA is studied by decreasing the desorption
probability in time. We report a numerical evidence that
both stepwise and linear decay in the desorption probability
over a certain time domain may be used to enhance the
packing efficiency. In addition, we develop and analyze a self-
consistent optimization protocol of deposition in which the
optimal value of the desorption probability Pdes is determined
by the current coverage fraction θ (t). This work provides a
closer insight into the deposition process with a time-varying
desorption rate. Our model is a lattice based model, and in
this sense it is not a realistic microscopic model of granular
materials, but it does reproduce the complex phenomenology
of granular media. Our results suggest that the process of
vibratory compaction of granular materials can be optimized
by using a time dependent vibration intensity.

The paper is organized as follows: Section II describes
the details of the simulations. We give the simulation results
and discussions in Sec. III. Finally, Sec. IV contains some
additional comments and final remarks.

II. SIMULATION METHOD

The Monte Carlo simulations of adsorption-desorption
processes are performed on a one-dimensional lattice of size
L = 105 with a periodic boundary condition. The adsorbing
objects are dimers covering two sites. Adsorption and desorp-
tion attempts are statistically independent and they perform
sequentially with corresponding probabilities. The time t is
counted by the number of adsorption attempts and scaled by
the total number of lattice sites L. The data are averaged over
100 independent runs.

At each Monte Carlo step adsorption is attempted with
probability Pa and desorption with probability Pdes. In the case
of adsorption-desorption processes the kinetics is governed
by the ratio of desorption to adsorption probability Pdes/Pa

[13,15,27]. Since we are interested in the ratio Pdes/Pa , in order
to save computer time, it is convenient to take the adsorption
probability to be Pa = 1. For each of these processes a lattice
site is selected at random. In the case of adsorption, we try to
place the dimer with the beginning at the selected site, i.e., we
search whether adjacent site in a randomly chosen direction
is unoccupied. If so, we place the dimer. Otherwise, we reject
the deposition trial. When the attempted process is desorption,
and if the selected site is occupied by a dimer, the object is
removed from the lattice.

Here we consider the case of rapid adsorption and slow
desorption (Pdes/Pa � 1). Then there exist two time scales
controlling the evolution of the coverage θ (t). The first stage
of the process is dominated by adsorption events and the
kinetics displays an RSA-like behavior. With the growth of
the coverage the desorption process becomes more and more
important. Increasing the coverage θ (t) over the jamming limit
θjam is possible only due to the collective rearrangement of
the adsorbed particles in order to open a hole large enough
for the adsorption of an additional particle. We are interested
in the time evolution of the coverage θ (t) in this later,
postjamming time range.
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FIG. 1. (Color online) Temporal behavior of the coverage θ (t)
for various desorption probabilities Pdes. Red (solid) lines corre-
spond to values Pdes = 0.010 + n · 0.005, n = 0,1,2, . . . ,8. Blue
(dashed) lines correspond to values Pdes = 0.0010 + n0.0005, n =
0,1,2, . . . ,17. The equilibrium coverage θeq is found to decrease
with the desorption probability Pdes. The horizontal line represents
the jamming coverage for dimers, θjam = 0.8766.

III. RESULTS

Simulations of the adsorption-desorption processes of
dimers were performed for a wide range of desorption
probabilities Pdes = 0.001–0.050. In Fig. 1 the coverage is
plotted as a function of time for different values of Pdes.
Notice that the curves for different values of Pdes always
cross. This means that, for the reversible RSA model, the
coverage is not always monotonic in Pdes. In Fig. 1, for
example, the system with Pdes = 0.030 has a higher coverage
than the system with Pdes = 0.010 for 15 � t � 500; above
t ≈ 500 coverage is higher for the lower value of desorption
probability, Pdes = 0.010. As already discussed in the context
of the parking lot model [18], the existence of a minimum
in the insertion probability (the fraction of the substrate that
is available for the insertion of a new particle) is a sufficient
condition for this phenomenon. It follows that for a given finite
time, the densification can be made more efficient by changing
the desorption probability Pdes during the deposition process.

The first important step is to determine the desorption
probability Pdes(θ ) for which the time needed for a system to
reach a given coverage θ > θjam is minimal. On the basis of the
results presented in Fig. 1, we have examined the dependence
of the time tθ needed for a system to reach the given coverage
θ > θjam on the desorption probability Pdes. These results are
summarized in Fig. 2, where we show the time tθ as a function
of the desorption probability Pdes for several coverage fractions
θ . The linear trends at sufficiently low desorption probabilities
Pdes in Fig. 2 show that the time tθ (Pdes) starts to follow a
power-law behavior, tθ (Pdes) = A(θ ) P

−γ

des . The exponent γ

remains nearly constant, γ = 0.892 ± 0.005, regardless of the
value of the coverage fraction θ . When coverage θ increases,
this power-law behavior is restricted to smaller and smaller
desorption probabilities Pdes. For each coverage θ > θjam,
a nonmonotonic Pdes dependence is observed for the curve
tθ (Pdes); it goes through a minimum tmin

θ and tends to definite
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FIG. 2. The time tθ needed for a system to reach the given
coverage θ > θjam depends on the value of desorption probability
Pdes. From bottom to top, lines tθ = tθ (Pdes) correspond to coverages
θ = 0.880 + n0.005, n = 0,1,2, . . . ,21.

value which corresponds to the time needed for a system to
reach the coverage θ , but as the equilibrium coverage θ∞
for an appropriate value of Pdes. Determined values for the
equilibrium coverage θ∞, resulting from the reversible RSA
of dimers onto a 1D lattice, are given in Table I. Figure 3 allows
us to determine the minimal time tmin

θ needed for a system to
reach a given coverage θ > θjam in the process of reversible
RSA with the constant value of desorption probability P min

des (θ ).
In the same figure, probabilities P min

des (θ ) needed for the system
to reach a given coverage θ in the shortest period of time tmin

θ

are displayed.
The purpose of this paper is to extend the analysis described

above to the deposition processes in which the desorption
probability Pdes changes in time. We address the following
questions: (1) How does the temporal dependence of the
probability Pdes influence the slow dynamics of deposition?
(2) What is the optimum densification strategy, i.e., how do
various time dependencies of the probability Pdes hasten or
slow down the deposition process? Our approach can provide
some answers to such questions. In the next section it will

TABLE I. Equilibrium coverage fraction θ∞ for various desorp-
tion probabilities Pdes.

Pdes θ∞ Pdes θ∞

0.0010 0.9882 0.0080 0.9728
0.0015 0.9876 0.0085 0.9719
0.0020 0.9864 0.0090 0.9710
0.0025 0.9851 0.0095 0.9701
0.0030 0.9836 0.0100 0.9694
0.0035 0.9823 0.0150 0.9622
0.0040 0.9809 0.0200 0.9561
0.0045 0.9798 0.0250 0.9510
0.0050 0.9786 0.0300 0.9453
0.0055 0.9777 0.0350 0.9409
0.0060 0.9765 0.0400 0.9355
0.0065 0.9756 0.0450 0.9319
0.0070 0.9744 0.0500 0.9279
0.0075 0.9738
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FIG. 3. Plot of the minimal time tmin
θ (empty circles) needed

for a system to reach the given coverage θ in the reversible
deposition process with a constant value of desorption probability
P min

des (θ ). The full circles are plotted against the right-hand axis
and give the probabilities P min

des (θ ) needed for a system to reach
the given coverage θ in the shortest period of time tmin

θ . The solid
superimposed line (right axis) represents the exponential fit of
the form P min

des (θ ) = P1 + P2 exp(−λθ ), with P1 = −5.915 × 10−2,
P2 = 32.30, and λ = 6.393.

be shown that the time needed for a system to reach a given
coverage θ can be reduced if Pdes decreases in time.

A. Stepwise decrease of the desorption probability Pdes

In the following, the possibility to hasten the dynamics
of reversible RSA is studied by decreasing the desorption
probability from P

(I )
des = 0.050 to P

(F )
des = 0.010 in a stepwise

manner. Starting from an empty lattice, the system evolves at
fixed desorption probability P

(I )
des = 0.050 up to the coverage

θ (I ) above the jamming coverage θjam. Then, the desorption
probability is abruptly lowered at fixed time intervals �tc.
Those time intervals follow each other directly without any
gap. We always use an instantaneous drop of �Pdes = 0.005
for a change of the desorption probability Pdes, so that the
final probability of P

(F )
des = 0.010 is reached after eight abrupt

changes of Pdes. The final desorption probability P
(F )
des does not

change further in time.
In Fig. 4, we demonstrate that the deposition process can

be made much more efficient by decreasing the desorption
probability Pdes in time. Here, the time dependence of the
coverage θ (t) is shown for different choices of the time interval
�tc between two successive abrupt changes of desorption.
Several horizontal arrows are inserted in Fig. 4 and placed at
certain values of the coverage θ in the range [0.890, 0.955].
These arrows show how much more time is needed for a
system to reach a given coverage θ in the case when the
desorption probability has the constant value P min

des (θ ) in time
(for comparison, see Fig. 3). For coverages above θ ≈ 0.92
these differences are greater than 50%.

The interpretation of these results is quite straightfor-
ward using the results of [18,20,28,29]. At a certain time
t0, desorption probability changes from P

(1)
des to another

value P
(2)
des = P

(1)
des − �Pdes. For P

(1)
des > P

(2)
des we find that the
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FIG. 4. (Color online) Temporal behavior of the coverage θ (t)
when the desorption probability Pdes decreases from P

(I )
des = 0.050

to P
(F )
des = 0.010 in a stepwise manner. The desorption probability

is abruptly lowered by �Pdes = 0.005 at fixed time intervals �tc =
10, 25, 50, 75, 100, as indicated in the legend. Vertical coordinates
of arrows are θ = 0.953, 0.950, 0.945, 0.940, 0.935, 0.930, 0.925,
0.920, 0.91, 0.9, 0.89, from top to bottom. Arrows show how much
more time is needed for a system to reach the given coverage θ in
the case when desorption probability has the constant value P min

des (θ )
in time (e.g., see Fig. 3). The horizontal line represents the jamming
coverage for dimers, θjam = 0.8766.

compaction rate increases on short-time scales (Fig. 4). Note
that for P

(1)
des < P

(2)
des = P

(1)
des + �Pdes we observe a short-term

effect opposite to the previous case [18,20]. The compaction
rate just before t0 is determined by the desorption probability
Pdes(t0 − 0) and by the fraction of the substrate, �(t0 − 0), that
is available for the insertion of a new particle. The quantity
�(t0 − 0) (the insertion probability) strongly depends on the
state of the system, but it is not unambiguously determined by
the coverage fraction θ (t0 − 0) at the same instant [18,20].
When Pdes is abruptly lowered, the first effect is that the
particles tend to decrease the fraction of the substrate that is
available for deposition of new particles, and the layer becomes
more compact. Therefore the rate of compaction first increases
with respect to the unperturbed case. At larger times, however,
the compaction is slowed down by the creation of a denser
substrate and smaller fraction of the layer that is available for
the insertion of a new particle.

B. Linear decrease of the desorption probability Pdes

The comparison of the coverage relaxations at various
abrupt changes in the desorption probability shows that the
amplitude of the jump in the compaction rate is larger for
a larger jump of desorption probability [20]. However, it is
important to consider the case when the desorption probability
varies continuously over a certain time domain. Here we show
that the linear decay in the desorption probability as a function
of time may be used to hasten the deposition process.

Similar to the procedure described in Sec. III A, the system
first evolves at a fixed desorption probability P

(1)
des , up to

the intersection point of relaxation curves, corresponding
to the coverage θ (1) ≈ 0.8783 > θjam at time t1 = 12 (see
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FIG. 5. (Color online) Temporal behavior of the coverage θ (t)
when the desorption probability Pdes decreases linearly with time
from P

(I )
des = 0.050 to P

(F )
des = 0.010. The final probability of P

(2)
des

is reached during the time interval �t . Curves (A)–(L) cor-
respond to various time intervals �t ranging from 0 to 2 ×
104, as indicated in the legend. Vertical coordinates of arrows
are θ = 0.9578(H), 0.9518(G), 0.9405(F), 0.9297(E), 0.9153(D),
0.9068(C), 0.8994(B), 0.8944(A), from top to bottom. Arrows show
how much more time is needed for a system to reach the given
coverage θ in the case when desorption probability has the constant
value P min

des (θ ) in time (e.g., see Fig. 3). The horizontal line represents
the jamming coverage for dimers, θjam = 0.8766.

Fig. 1). Then, the desorption probability starts to decrease
linearly with time according to Pdes(t) = K(t − t1) + P

(1)
des ,

where t1 < t < t2. The final probability of P
(2)
des is reached

during the time interval �t = t2 − t1, so that the negative slope
coefficient K = −(P (1)

des − P
(2)
des)/(t2 − t1) = −�Pdes/�t de-

pends on the time interval �t . In Fig. 5 the temporal
dependence of coverage θ (t) is displayed for the fixed
probabilities P

(1)
des = 0.050 and P

(2)
des = 0.010, and for dif-

ferent time intervals �t = 0,10,20,40,100,200,500,103,2 ×
103,5 × 103,104,2 × 104. Several horizontal arrows are placed
at certain values of coverage θ in order to show that much
more time is needed for a system to reach a given coverage
θ in the case when the desorption probability has a constant
value P min

des (θ ) in time (e.g., see Fig. 3).
The starting points of horizontal vectors in Fig. 5 are located

at points (A)–(H) where the linear decrease of probability
Pdes(t) stops. The envelope containing the points (A)–(H)
determines the minimal times tmin

θ needed for a system to
reach the given coverages θ , provided that the probability
Pdes(t) decreases linearly in time. These minimal times tmin

θ

are shown in Fig. 6 for the reversible deposition process with
linear decrease of desorption probability from P

(1)
des = 0.050

to P
(2)
des = 0.010 during the corresponding time intervals �t .

Figure 6 shows that the process of achieving the coverages
that are close to the stationary coverage θ∞(P (2)

des) ≈ 0.97 is
not possible to speed up significantly by linear decreasing of
the desorption probability. In other words, the time needed
for a system to reach coverages greater than θ (H ) ≈ 0.9578
cannot be reduced further by increasing the time interval �t

(see Fig. 6).
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FIG. 6. Plot of the minimal time tmin
θ (empty triangles) needed

for a system to reach a given coverage θ in the reversible deposition
process with linear decrease of desorption probability Pdes from
P

(1)
des = 0.050 to P

(2)
des = 0.010 during the time interval �t . The full

symbols are plotted against the right-hand axis and give the time
intervals �t which correspond to densities at points (A)–(H), (H1),
(H2), and (H3). For comparison, empty circles correspond to the
minimal time tmin

θ for a system to reach the given coverage θ in
the reversible deposition process with a constant value of desorption
probability P min

des (θ ) (e.g., see Fig. 3).

C. Density controlled desorption probability Pdes

We now introduce a protocol for reversible RSA which
optimizes the deposition process. Here we do not impose any
assumption on the time dependence of desorption probability
Pdes, but the probability Pdes is determined by the current
value of density θ (t) that is reached during the process. In
the case of deposition with a constant value of desorption
probability, we determined probabilities P min

des (θ ) needed for
the system to reach a given coverage θ > θjam in the shortest
period of time tmin

θ . These results are shown in Fig. 3, where the
solid line represents the exponential fit of the form P min

des (θ ) =
P1 + P2 exp(−λθ ), with P1 = −5.915 × 10−2, P2 = 32.30,
and λ = 6.393. The deposition procedure consists in first
achieving the density θ just above the jamming density θjam by
using the constant desorption probability. Then, the desorption
probability Pdes is reduced during the deposition process in
accordance with the exponential dependence of probability
P min

des (θ ) on the density θ shown in Fig. 3. In addition, the
corresponding dependence of the desorption probability on
the time Pdes(t) can be obtained from numerical simulation.

The simulation corresponding to the described protocol has
been run for the initial desorption probability Pdes = 0.060. In
Fig. 7 the temporal dependence of coverage θ (t) is displayed
for times t < 105. For comparison, we also plot the temporal
dependence of coverage θ (t) for the fixed probabilities, Pdes =
0.060, 0.001. It should be noticed that the coverage growth
for the deposition process realized using this protocol is much
faster than the growth for the constant desorption case. Also,
this growth is much faster at the beginning of the process. In
the same figure, the corresponding desorption probability Pdes

is plotted as a function of time on a log-log scale. Initially,
the desorption probability decreases algebraically in time, but
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FIG. 7. (Color online) Shown here is the time dependence of
the coverage fraction θ in the case of density controlled desorption
probability Pdes(t) = P min

des (θ (t)) (red, solid line, left-hand axis). The
dependence of probability P min

des (θ ) on the density θ is shown in Fig. 3.
Dotted and dash-dotted (blue) lines represent the results obtained for
Pdes = 0.060 and 0.001, respectively. The dashed (magenta) line is
plotted against the right-hand axis and gives the numerically obtained
temporal behavior of desorption probability Pdes(t). The horizontal
line represents the jamming coverage for dimers, θjam = 0.8766.

the late-time changes in desorption probability become very
small.

For comparison, Fig. 8 includes numerical values of time
needed for a system to reach a given coverage θ > θjam in
the case of the deposition protocol discussed above, and in
the case of reversible RSA with constant value of desorption
probability P min

des (θ ). The new protocol significantly hastens
the process for achieving high coverages. As mentioned in
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FIG. 8. The solid line represents the time needed for a system to
reach a given coverage θ > θjam in the case of deposition process with
density controlled desorption probability Pdes(t) = P min

des (θ (t)) (see
Fig. 7). For comparison, we present the minimal time tmin

θ (empty
circles) needed for a system to reach the given coverage θ in the
reversible deposition process with a constant value of desorption
probability P min

des (θ ) (see Fig. 3). The protocol hastens the deposition
process and the corresponding relative decrease � in time needed for
a system to reach a given coverage θ is shown in the inset.
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Sec. III B, the process for achieving high coverages θ � 0.97
is not possible to hasten by linear decrease of the desorption
probability. Using the above protocol, the times needed for a
system to reach the coverages θ in the range (0.965,0.985) are
reduced by 29–40%; for coverages θ ∈ (0.93,0.96), the times
are reduced by 25% (see inset of Fig. 8).

IV. CONCLUSION AND PERSPECTIVES

We have investigated numerically the kinetics of the
deposition process of dimers on a 1D lattice in the presence
of desorption. A systematic approach is made by examining
deposition with various time dependencies of the desorption
probability Pdes. We focused on the time evolution of the
coverage θ (t) in the whole postjamming time range θ (t) >

θjam. In the case of deposition with a constant value of
desorption probability, we determined the Pdes dependence of
the time tθ needed for a system to reach a given coverage
θ > θjam. Reducing the probability Pdes, the time tθ may
become arbitrarily large, i.e., time tθ diverges algebraically
when Pdes gets smaller. For each coverage θ > θjam, there
is the minimal time tmin

θ needed for a system to reach the
given coverage θ . For the densities slightly above the jamming
coverage θjam, it is found that the minimal time tmin

θ increases
exponentially with density. At high densities, we found that
the increase of tmin

θ with density is faster than exponential (see,
Fig. 3). Minimal time tmin

θ is expected to diverge at the maximal
close packing θ = 1.

We have shown that the time needed for a system to reach
a given coverage θ may be less than tmin

θ if Pdes decreases
in time. We have considered the behavior of the system
when the desorption probability Pdes decreases both stepwise
and linearly (continuously) over a certain time domain.
Furthermore, the initial and final desorption probability do
not have arbitrary values. If Pdes is large enough, the system
will not reach the jamming. In other words, there is an upper
limit P B

des of the desorption probability, above which the
steady-state coverage will be lower than the jamming limit. For
our 1D system we use P B

des ≈ 0.10. The greatest impact on the
deposition rate is obtained if the initial value of the desorption
probability P

(I )
des corresponds to the limiting value P B

des. The
final value of the desorption probability P

(F )
des determines the

maximal value of the coverage θ∞(P (F )
des ) that can be achieved.

We have shown that for each coverage fraction θ between θjam

and θ∞(P (F )
des ), there is an optimal rate K for the linear decrease

of Pdes(t) when the time needed for a system to reach the given
coverage θ is minimal. Finally, a self-consistent optimization
procedure for reversible RSA is formulated and tested. In this

case, the probability Pdes is determined by the current coverage
density θ (t). This value is chosen as the probability that gives
minimal time needed for a system to reach the current coverage
θ (t) in the constant desorption case. Our protocol significantly
hastens the process for achieving high coverage densities.

Since the time needed for a system to reach a given coverage
θ can be significantly reduced if Pdes decreases in time, we
propose the application of an analog procedure to optimize
the compaction process in weakly vibrated granular materi-
als. Granular materials are complex systems exhibiting rich
macroscopic phenomenology and showing many characteristic
glassy behaviors. One of the striking features of granular
materials are the memory effects observed by measuring the
short-time response to an instantaneous change in tapping
acceleration � [30]. For a sudden decrease in � it was observed
that on short-time scales the compaction rate increases, while
for a sudden increase in � the system dilates for short times.
This behavior is transient and after several taps there is a
crossover to the “normal” behavior, with the relaxation rate
becoming the same as in constant vibration intensity mode.
The short-term memory effects observed in granular materials
are reflected in the fact that the future evolution of the packing
fraction θ after time t0 depends not only on the θ (t0), but
also on the previous tapping history. Response properties of
granular media and the observation of short-term memory
effects indicate that the change in tapping acceleration � can
affect the dynamics and efficiency of the compaction process.

It is important to note that the parking lot model (PLM,
1D off-lattice reversible RSA model) [17,18,29] is a widely
used model which can reproduce qualitatively the densification
kinetics and other features of a weakly vibrated granular
material. The dynamics of both the present model and the PLM
depends essentially on the excluded volume and geometrical
frustration. Therefore, one would expect that the growth of
the coverage in the case of the PLM can also be accelerated
by decreasing the desorption rate during the deposition
process. The presented numerical analysis could be a first
step toward dealing with more realistic situations, such as
the case of compaction of a granular assembly of spheres
under variable intensity of external excitations (e.g., tapping,
periodic shear deformation, thermal cycling). However, any
numerical treatment of this problem by molecular dynamics
[31] is necessarily very time consuming and is beyond the
scope of this paper.
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