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Structural characterization of submerged granular packings
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We consider the impact of the effective gravitational acceleration on microstructural properties of granular
packings through experimental studies of spherical granular materials saturated within fluids of varying density.
We characterize the local organization of spheres in terms of contact connectivity, distribution of the Delaunay
free volumes, and the shape factor (parameter of nonsphericity) of the Voronoı̈ polygons. The shape factor gives
a clear physical picture of the competition between less and more ordered domains of particles in experimentally
obtained packings. As the effective gravity increases, the probability distribution of the shape factor becomes
narrower and more localized around the lowest values of the shape factor corresponding to regular hexagon.
It is found that curves of the pore distributions are asymmetric with a long tail on the right-hand side, which
progressively reduces while the effective gravity gets stronger for lower densities of interstitial fluid. We show
that the distribution of local areas (Voronoı̈ cells) broadens with decreasing value of the effective gravity due
to the formation of lose structures such as large pores and chainlike structures (arches or bridges). Our results
should be particularly helpful in testing the newly developed simulation techniques involving liquid-related forces
associated with immersed granular particles.
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I. INTRODUCTION

The packing of classical particles that interact only through
contact forces is one of the enduring problems in physics.
Dense packings of hard spheres are an important starting
point for the study of simple liquids, glasses, colloids, and
granular matter [1–3]. Considerable work has been done
in the past on dry granular piles, both theoretically and
experimentally, exploring the influence of the microstructural
arrangement of the grains on the macroscopic properties of
the packing. In the 1960s, Bernal studied the arrangement for
500–1000 particles taken from the interior of an amorphous
packing with 5000 particles [4,5]. In more recent times,
Aste et al. used x-ray tomography to study several different
packings containing almost 105 grains [6,7]. Slotterback et al.
analyzed the position of 16 000 spheres by using the index-
matching fluid and laser-scattering-based imaging method to
find position of the particles [8]. These experiments provide
useful data for studying the microstructural properties of
granular packings, such as radial distribution function, number
of neighbors, orientation order metric, pore-size distributions,
etc.

Most experiments so far have been performed in dry
systems where the interstitial medium is air. A considerably
smaller number of experiments deal with granulates com-
pletely immersed in a less dense liquid. Usually, the objective
of these studies has been the analysis of the effects of interstitial
fluid on the segregation and mixing dynamics in a rotating
drum [9–13]. In some experiments, the replacement of air with
a liquid has been used as a strategy for obtaining the reduced
gravity conditions (the effect of buoyancy may be taken care of
by rescaling the gravity). Onoda and Liniger [14] determined
the random loose packing of uniform glass spheres at the limit
of zero gravitational force. Costantino et al. [15] analyzed
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the dependence of the low-velocity drag force in a granular
material on the effective gravitational acceleration. In both
experiments the spherical granular materials were submerged
within liquids of varying density.

The present work is focused on two-dimensional (2D)
disordered granular packings formed in liquids. Fluid density
is varied by using different solutions of zinc chloride (ZnCl2)
and water. The experiment is designed to investigate the
arrangement of grains. Our aim is to characterize the structure
of disordered disk packings and to quantify the structural
changes associated with different intensities of effective grav-
ity. Analysis at the microscopic scale is based on the Voronoı̈
tessellation. Voronoı̈ tessellation divides a two-dimensional
region occupied by grains into space filling, nonoverlapping
convex polygons. We apply the concept of shape factor,
introduced by Moucka and Nezbeda [16], for tracking the
changes in the structure as a liquidlike system approaches
a disordered jammed state. This quantity was recently used
to study the crystallization of two-dimensional systems, both
in simulation [16] and experiment [17]. Shape factor is a
dimensionless measure of deviation of the Voronoı̈ cells from
circularity. Distribution of the shape factor clearly indicates
the presence of different underlying substructures (domains)
in the packing.

The volume distribution and shape characteristics of the
interstitial voids are important parameters in describing and
evaluating the structural properties of granular packings. Next,
we compute the distributions of the Voronoı̈ cell volume,
which describe the deviation of 2D packings of spheres from
a regular hexagonal arrangement [18]. Finally, the Delaunay
triangulation is used to quantify the volume distribution of
pores of our particle packings [6,19,20].

The following section describes the various components of
the apparatus and summarizes the most important features and
technical details that are relevant to our experimental proce-
dures. The experimental results are reported and discussed in
Sec. III. In the last section, we draw some conclusions.
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II. EXPERIMENTAL SETUP AND PROCEDURES

Now we describe in more detail a conceptually simple ex-
periment aimed at understanding the relation between reduced
gravity conditions and local structure of granular packings.
The experiments were conducted in a glass rectangular tank
with base dimensions of 480 mm × 200 mm and a depth of 590
mm. The tank was entirely filled with various solutions of zinc
chloride (ZnCl2) and water, which allowed the density of the
mixture to be controlled. We examined the two-dimensional
(2D) submerged random packings of monodisperse acrylic
spheres with diameter ds of 6.00 ± 0.01 mm and mass m1 =
0.20 g (King Arms Airsoft Accessories). A 470 × 500 mm
glass plate was used as the removable confining wall for the
experiment. It was mounted inside of the vessel, parallel to
the front wall of the container. These two parallel glass plates
form a thin cell with an inner gap of thickness �l = 6.4 mm,
slightly larger than the diameter of the spheres ds . A sketch of
the experimental setup is shown in Fig. 1.

The two layers of spheres were initially submerged and
held in place near the top of the tank by means of a horizontal
plexiglass plate. The plate was covered with a sandpaper
of large roughness by which the layers of particles were
randomized. The platform was placed beneath the surface of
the liquid, along the top edge of the confining wall. The level
of the liquid was always kept ≈ 3–5 cm above the top of the
grains, so that our results were not affected by capillary forces.
The angle of the platform is then slowly increased up to an
angle θ = 7.5◦, thereby inducing a single avalanche. After
the plane rotation, grains therefore freely slide downward and
fall through the liquid into quasi-two-dimensional rectangular
box in which they reach a mechanically stable state. The
system was also initialized by pouring grains near the top

FIG. 1. (Color online) Schematic drawing of the experimental
setup.

of the inclined plane (the case of intermittent series of
avalanches). In the both cases the final packing was obtained
by random rain of beads under gravity. We have verified that
usage of different preparation procedures gives quantitatively
very similar structural characteristics for submerged granular
packings, but we opted for the single avalanche one. It must
be emphasized that our method of preparation ensures the
formation of complex patterns and cooperative structures such
as arches or bridges in all parts of the final packing. An arch
or a bridge is a cooperative structure that is stable thanks
to the contributions of every particle in it. These multiparticle
structures are seen to naturally emerge when a granular system
locally solidifies due to the dissipation [21–25].

The microstructural properties of immersed packings were
studied in liquid whose density could be varied. An aqueous
solution of zinc chloride (ZnCl2) was used because it is very
soluble in water (4320 g/L at 25 ◦C). It is well known that ZnCl2
is corrosive to metals and therefore experimental apparatus
did not contain any metal parts. The spheres density was
ρ1 = 1.80 g/cm3 and the density of liquid ρ0 could be adjusted
to include neutrally buoyant conditions, ρ0 � ρ1. However, the
highest density of the liquid in which the granular packings
were formed had a slightly lower value of ρ0 = 1.70 g/cm3.
The density of the liquid was adjusted to lower densities by
decreasing the concentration of ZnCl2, so that the effective
gravitational force on the spheres could be varied. Actually, the
liquid buoyant force effectively reduced the acceleration owing
to gravity, resulting in an effective gravitational acceleration
of g

(1)
eff = g(ρ1 − ρ0)/ρ1, where g = 9.81 m/s3 is the Earth’s

gravity. The physical properties of different aqueous solutions
of ZnCl2 used in the experiments are summarized in Table I.
We were able to increase the fluid density to a range of values
between the density of water and the density of grains [we
label our solutions as (A)–(F) in Table I). Our maximum
density was ρ0 = 1.70 g/cm3, giving us a range in the effective
gravitational acceleration from g

(1)
eff (F) = 4.36 m/s2 in water

down to g
(1)
eff (A) = 5.46 × 10−1 m/s2 in the solution of type

(A). In the last column of Table I values of the effective gravity
geff normalized by g are given for the used liquids.

The problem with our approach is that during the settlement
of the packing the dynamics of spheres depends on the fluid
viscosity η. The maximum viscosity of our liquids was for
the highest density solution and its value was η � 6.5 mPas
(see Table I). It is obvious that larger buoyant force combined

TABLE I. Table summarizes the values of density ρ0 and viscosity
η of aqueous solutions of zinc chloride (ZnCl2) at 21.0 ± 0.5◦C [37].
We label our solutions as (A)–(F). The values of the effective gravity
g

(1)
eff normalized by g and the mean packing fraction 〈ρ〉 are given in

the two last columns, respectively.

Aqueous solution
of ZnCl2 ρ0 (g/cm3) η (mPa s) g

(1)
eff /g 〈ρ〉

(A) 1.70 6.5 5.57 × 10−2 0.812
(B) 1.60 4.3 1.11 × 10−1 0.829
(C) 1.50 2.5 1.67 × 10−1 0.846
(D) 1.40 2.0 2.22 × 10−1 0.863
(E) 1.30 1.7 2.78 × 10−1 0.871
(F) 1.00 1.0 4.44 × 10−1 0.876
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with viscous force will slow the settlement of the packing.
Therefore, experiments were also carried out with spheres of
mass m2 = 0.12 g < m1 and diameter ds = 6.00 ± 0.01 mm
(ρ2 = 1.06 g/cm3 < ρ1). The cell was filled with water
of density 1000 kg/m3 and viscosity 1 mPas, so that the
normalized effective gravity g

(2)
eff /g for immersed beads was of

5.75 × 10−2. The values of the normalized effective gravities
g

(1)
eff (A)/g and g

(2)
eff /g are close to each other, while the solution

(A) is 6.5 times more viscous than water. As evidenced
below, we find that the microstructural properties of immersed
granular packings are similar in both cases, suggesting that
viscous effects on grain motion had little impact on the
formation of complex structural components in static granular
pack. It must be stressed that we chose millimetric beads that
were coarse enough for interparticle forces (e.g., van der Waals
force) to be negligible compared with inertial forces, so that
aggregation effects are not present.

Experimental study of microstructural properties of granu-
lar packings requires a precise measurement of grain positions.
For this reason, a digital camera (Canon SX10 IS) is used
to capture high-resolution images (3648 × 2736 pixel2 spatial
resolution) of whole packings. The camera is firmly fixed to
the plane 72 cm away from the planar packing with its optical
axis perpendicular to it. Fluorescent lamps located beside the
camera provide diffuse lighting and a black cloth isolates
the experimental device from the ambient light. Figures 2(a)
and 2(b) show high-resolution images of typical packings
formed in solutions (E) and (A), respectively (see Table I).
If we compare the two snapshots taken from the central parts
of packings, the structure of clusters and pores appear quite
different to the eye. We clearly observe the correlation between
the degree of disorder in the system of grains and the value
of solution density. The center of each grain is accurately
determined using the image-processing program based on the
Standard Hough Transform (SHT) [26]. This involves the
measurement of the coordinates and diameters of 5000–6000
particles. In the output bitmap image, the diameters of grains
are ≈ 40 pixels. This analysis allows one to detect the centers
of spheres with resolution of 0.15 mm, i.e., centers are located
to within 0.025ds .

It should be noted that we control the ambient temperature
of the laboratory. Our laboratory is kept at 21.0 ± 0.5 ◦C when
the experiments are performed.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Here we try to compare quantitatively the structural char-
acteristics of packings corresponding to different intensities of
the effective gravity g

(1)
eff /g = (ρ1 − ρ0)/ρ1. In order to gain a

basic insight into the microstructure of the packings generated
in the experiments, we first consider the radial distribution
function g(r) (or pair-correlation function), which gives
information about the long-range interparticle correlations and
their organization [27]. Figure 3 shows g(r) functions for the
various packings studied here. The presence of peaks after the
peak at r = ds (associated with spheres in contact) is a clear
indication that the packings are organized, i.e., characteristic
structures with distinct local patterns are present. For all the
packings, there is a pronounced splitting of the second peak

FIG. 2. (Color online) Sample images of immersed beads ob-
served in aqueous solution of zinc chloride (ZnCl2): (a) solution
of type (E), and (b) solution of type (A) (see Table I). Two snapshots
are taken from the central part of the packings.

in g(r) into two subpeaks, located at r = √
3 and 2. Such a

splitting of the second peak has long been known [7,28–30];
it is a clear signature of the strong local order in the first two
coordination shells of the packing. It is easy to verify that a
radial distance r/ds ≈ √

3 is consistent with configurations in
two dimensions made by placing the centers of four spheres
on the vertices of two equilateral triangles (with edge length
ds), which share an edge, whereas the peak at r/ds ≈ 2 is
due to three or more spheres, which are lying along a straight
line. In other words, the separation r = 2ds corresponds to
the largest distance that can separate two spheres that have
one common neighbor. The separation r = √

3ds corresponds
to the largest possible separation between two particles that
have two common neighbors. Furthermore, Fig. 3 shows that
the two peaks at r/ds ≈ √

3 and r/ds ≈ 2 both increase in
height with packing density ρ. The growth with density ρ

is faster in the peak at r = √
3ds with respect to that in the

peak at r = 2ds . This indicates an increasing organization in
the packing structure. For packings formed in dense solutions,
such as solutions (A), (B), and (C), such a local organization
is limited to very short distances yielding globally nonordered
packings [see, e.g., Fig. 2(b)]. For packings formed in less
dense solutions (D), (E), and (F) peaks are clearly observed
near ds ,

√
3ds , 2ds ,

√
7ds , 3ds , 2

√
3ds , and

√
13ds indicating

a hexagonal packing. At large distances, the peaks broaden,

062208-3
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FIG. 3. (Color online) Radial distribution function g(r) as a
function of separation r/ds . From bottom to top results are shown
for packings formed in aqueous solutions (A)–(F) of ZnCl2. Plots are
evenly shifted vertically for clarity. The values of the mean packing
fraction 〈ρ〉 for the corresponding packings are given in the Table I.

merge with one another, and become lost in the continuum
background g(r) → 1.

In order to analyze the granular organization at the
microscopic scale, we calculate the number of neighbors for
each grain and analyze the disposition of the particles as
nodes of the contact network. The coordination number, i.e.,
the average number of disks in contact with a given disk is
frequently investigated parameter in the literature on granular
packings [6,7]. It varies with the definition of contact, i.e.,
the minimal or cutoff distance dc between two disks below
which they are regarded to be in contact. The coordination
number is very sensitive to the changes of cutoff distance
dc. Figure 4 shows the mean coordination numbers 〈Nc〉 for
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FIG. 4. (Color online) Values of the mean coordination number
〈Nc〉 for packings formed in aqueous solutions (A)–(F) of ZnCl2 (see
Table I). Results are given for three values of the cutoff parameter
dc = 1.02ds (squares), 1.04ds (circles), and 1.06ds (triangles). The
values of the effective gravity g

(1)
eff normalized by g (red open circles)

are given on the right axis. The values of the mean packing fraction
〈ρ〉 for the corresponding packings are given on the x axis.
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FIG. 5. Connectivity numbers 〈N (p)
c 〉 (p = 1, . . . ,6) calculated

for packings formed in aqueous solutions (A)–(F) of ZnCl2 (see
Table I). The cutoff distance dc is 1.04ds . The values of the mean
packing fraction 〈ρ〉 are given on the x axis. The corresponding
values of normalized effective gravity g

(1)
eff /g are given in the Fig. 4.

packings formed in aqueous solutions (A)–(F) of ZnCl2 (see
Table I). Results are given for three different cutoff distances:
dc = 1.02ds, 1.04ds , and 1.06sd. In all cases, 〈Nc〉 increases
with density 〈ρ〉 of packings and ranges between 4.0 and 5.3
depending on the threshold distance dc and on the sample
density 〈ρ〉. Let us remark that the choice of such threshold
dc is not critical. The properties reported in this paper are
consistently observed in a range of thresholds from 1.02–1.06.
Because of that, in the present work we choose a threshold
distance of 1.04 sphere diameter ds .

Due to dynamic rearrangements in the packing, the number
of contact neighbors p varies from particle to particle. In a
two-dimensional bed of convex particles, p can vary from 1–6.
The connectivity disorder of a packing can be characterized by
the fraction 〈N (p)

c 〉 of disks having p contact neighbors. 〈N (1)
c 〉

corresponds to dead ends of particle chains. 〈N (2)
c 〉 and 〈N (3)

c 〉
are related to chaining and branching, respectively. 〈N (4)

c 〉
corresponds to a situation where a particle is supported by
two underlying grains and supports two others (piling). 〈N (5)

c 〉
and 〈N (6)

c 〉 correspond to jammed and ordered configurations.
Figure 5 shows the variation of the connectivity numbers

〈N (p)
c 〉, p = 1, . . . ,6 with density of packings 〈ρ〉 formed in

aqueous solutions (A)–(F) of ZnCl2 (Table I). All connectivity
numbers, except 〈N (5)

c 〉, vary monotonically with packing
fraction 〈ρ〉. Up to 〈ρ〉(C) = 0.846, 〈N (5)

c 〉 and 〈N (6)
c 〉 increase

at the expense of 〈N (2)
c 〉, 〈N (3)

c 〉, and 〈N (4)
c 〉 which decrease.

After 〈ρ〉(D) = 0.863, 〈N (6)
c 〉 increases more rapidly, so

that 〈N (5)
c 〉 starts to slightly decrease. 〈N (1)

c 〉 remains rather
constant in the whole range of densities. The lowest densities
〈ρ〉 = 0.81–0.83 correspond to the packings characterized
by piling (i.e., 〈N (4)

c 〉 is the largest connectivity number).
Chaining (〈N (2)

c 〉) and branching (〈N (3)
c 〉) are also important

characteristics of these packings. Values of 〈N (2)
c 〉 (chaining)

and 〈N (3)
c 〉 (branching) suggest the presence of bridges (or

arches) [21,24,25]. While the effective gravity g
(1)
eff /g gets

stronger for lower densities of the solution [(C)–(F)], the first
effect is that the particles tend to increase the fraction of the
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packing composed of dense ordered domains. Consequently,
connectivity number 〈N (6)

c 〉 increases rapidly, and the system
becomes more compact. Simultaneously, piling 〈N (4)

c 〉, branch-
ing (〈N (3)

c 〉), and chaining (〈N (2)
c 〉) decrease. The qualitatively

same results are obtained for different values of the threshold
distance in a range between dc = 1.02ds and 1.06ds .

Further analysis is based on the Voronoı̈ tessellation,
which allows us to unambiguously decompose any arbitrary
arrangement of spheres into a space-filling set of cells. The
packings are analyzed in terms of volume distributions of
the pores and distributions of the shape factor. The Voronoı̈
tessellation is one of the simplest mathematical models of
a cellular structure. Given a set A of discrete points in the
plane π , for almost any point x ∈ π in the plane π there is one
specific point ai ∈ A, which is closest to x. The set of all points
of the plane, which are closer to a given point ai ∈ A than to
any other point aj 
= ai , aj ∈ A, is the interior of a convex
polygon Pi usually called the Voronoı̈ cell of ai . The set of
the polygons {Pi}, each corresponding to (and containing) one
point ai ∈ A, is the Voronoı̈ tessellation corresponding to A,
and provides a partitioning of the plane π . In this work, the
QUICKHULL algorithm [31] is used to compute the Voronoı̈
diagrams in MATLAB R© for a given set of spheres on a plane.

Voronoı̈ cells are convex and their edges join at trivalent
vertices, i.e., each vertex is equidistant to three neighboring
disks. Two disks sharing a common cell edge are neighbors.
As suggested by Bideau and coworkers [32,33], a pore in
2D packing can be defined as a virtual circle centered on
the vertex and in contact with the three neighboring disks. The
second convenient definition of a pore is based on the Delaunay
triangulation (DT), which is a natural way to subdivide a
2D packing structure into a system of triangles with vertices
on the centers of neighboring disks. Consequently, the circle
circumscribed about a Delaunay triangle has its center at the
vertex of a Voronoı̈ polygon. In this study we define the
pore as a part of the Delaunay triangle not occupied by the
disks (Delaunay free volume) [6,20]. The pore volume v is
normalized by the volume of the grains, vs = d2

s π/4.
Here we consider the probability distribution P (v) of the

Delaunay free volume v. The distribution function P (v) is
related to the probability of finding a pore with volume v. It is
normalized to unity, namely,

∫ ∞
0 dvP (v) = 1. Fluctuations in

the measurements of P (v) are reduced by averaging over six
different experiments, performed under the same conditions.
We compare volume distribution of the pores P (v) for packings
corresponding to different intensities of the effective gravity
g

(1)
eff , as reported in Fig. 6. Here, the pore distributions P (v)

obtained for packings formed in aqueous solutions of zinc
chloride (A)–(F) have been plotted; their mean packing
fractions 〈ρ〉 are, respectively, 0.812, 0.829, 0.846, 0.863,
0.871, and 0.876 (see also Table I). It can be seen that these
distribution functions are dependent on the solution density ρ0.
The curves of volume distribution P (v) are asymmetric with
a quite long tail on the right-hand side, which progressively
reduces while the effective gravity g

(1)
eff gets stronger for lower

densities of solution. We observe the appearance of two peaks
of P (v) on fixed positions, approximately at 0.05 and 0.13.
It is easy to understand which kind of local configuration
contributes most to each peak of the P (v). The Delaunay
cells with free dimensionless volume

√
3/π − 1/2 ≈ 0.051

10-1
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FIG. 6. (Color online) Volume distribution of the pores P (v) for
packings formed in aqueous solutions (A)–(F) of ZnCl2 (see Table I).
The pore volume v is normalized by the volume of the grains,
vd = d2

s π/4. Vertical arrows are at the volumes
√

3/π − 1/2 and
2/π − 1/2. As the density of solutions ρ0 decreases, the tail of the
distribution corresponding to the largest pores is being reduced.

correspond to the local arrangements of hexagonal symmetry,
when three disks are all in touch with each other with centers on
the vertices of a unilateral triangle. The cells with free volume
2/π − 1/2 ≈ 0.13 correspond to the local configurations of
quadratic symmetry, when four disks are all in touch with
each other with centers on the vertices of a square. Actually,
such local organization in two dimensions corresponds to
piling, i.e., a natural situation where a disk is supported by
two underlying disks and supports two others. Therefore, the
behavior of the two peaks of distribution P (v) should be in
accordance with changes of connectivity numbers 〈N (6)

c 〉 and
〈N (4)

c 〉. Indeed, Figs. 5 and 6 suggests that the decrease of
〈N (4)

c 〉 is accompanied by decrease of the height of the second
peak of distribution P (v). Simultaneously, increase of 〈N (6)

c 〉
is accompanied by an increase of the height of the first peak
of P (v). Furthermore, we have verified that other choices for
the elementary volumes, such as the void volume proposed
by Bideau and coworkers [32,33], do not yield to such a neat
second peak in the volume distribution.

Further, we investigate the correlation between the degree of
disorder in the system of grains and the values of the effective
gravity geff/g. For this purpose we use the concept of the
shape factor to measure the topology of the Voronoı̈ cells.
The shape factor ζ (parameter of nonsphericity) combines the
circumference C and the surface S of the Voronoı̈ cells [16,34].
It is defined as

ζ = C2

4πS
. (1)

For a square ζ = 4/π ≈ 1.273, for a regular pentagon
ζ = π/5 tan(π/5) ≈ 1.156, and for a regular hexagon ζ =
6/

√
3π2 ≈ 1.103. Generally, for a regular N -sided polygon

we have ζ = (N/π ) tan(π/N ), which sets a lower bound for
other N -sided polygons. Thus a circular structure has a shape
factor ζ = 1, while for a convex polygon, the more anisotropic
is the polygon, the higher is ζ > 1.
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TABLE II. Table summarizes the classification of the Voronoı̈
polygons into eight groups G1 − G8 according to the values of
the shape factor ζ [Eq. (1)]. For the densities corresponding to the
packings obtained in the experiment, the distribution of ζ diminishes
above ≈ 1.30.

Group Range Color

G1 ζ < 1.108 yellow
G2 1.108 < ζ < 1.125 magenta
G3 1.125 < ζ < 1.130 cyan
G4 1.130 < ζ < 1.135 red
G5 1.135 < ζ < 1.140 green
G6 1.140 < ζ < 1.160 blue
G7 1.160 < ζ < 1.250 white
G8 1.250 < ζ black

The shape factor is able to identify the occurrence of
different domains in experimentally obtained packings of
particles. Every domain is made up of the grains whose
Voronoı̈ polygons have similar values of the shape factor.
We calculate a shape factor for each Voronoı̈ cell, except
for the opened cells located on the boundaries, which have
incorrectly defined volumes. In order to clearly distinguish the
domains made up of different Voronoı̈ polygons, in Table II
we classify the polygons according to their ζ values into
eight groups G1 − G8. Group G1 comprises near-regular
hexagons, while other groups include less regular figures. To
differentiate polygons belonging to different groups G1 − G8

we use the color coding in accordance with the definitions
given in Table II. This allows us to easily distinguish the local
arrangements of grains for the obtained packings.

In Fig. 7 we show the Voronoı̈ tessellation of packings
formed in the experiment with the beads of mass m1 in various
aqueous solutions of ZnCl2. Diagrams correspond to the fluid
densities ρ0 of 1.7 [Fig. 7(a)], 1.6 [Fig. 7(b)], 1.5 [Fig. 7(c)], 1.4
[Fig. 7(d)], and 1.3g/cm3 [Fig. 7(e)]. In Fig. 7(a) we observe a
mixture of various Voronoı̈ polygons. It is obvious that figures
belonging to class G7 dominates, where G7 polygons are
mostly distorted pentagons and hexagons. Only small islands
of near-regular hexagons belonging to class G1 are found.
Moreover, small domains made up of G2 − G6 polygons can
also be detected. This means that the beads are distributed quite
randomly and no specific configurations of beads are formed.

As the density of fluid decreases further [Figs. 7(b) and 7(c)],
more regular cells can be observed and their occurrence starts
prevailing, though the structure of the system is still disordered.
In the case of larger value of effective gravity [Fig. 7(d)]
we find large domains made up predominantly of more or
less regular hexagons (figures belonging to classes G1 and
G2). One salient feature of Figs. 7(c) and 7(d) is the fact
that grains spontaneously tend to form ordered hexagonal
patterns. Orientation of the clusters of near-regular Voronoı̈
cells observed in the bulk is not always parallel to the walls,
suggesting that the order is not only wall induced, but nucleates
and grows in the bulk. At first, such local organization is limited
to short distances yielding an overall disordered packing.
These clusters grow with a further increase of the effective
gravity [Fig. 7(e)], so that grains end up in configurations
where large clusters of near-regular Voronoı̈ cells (class
G1) are found. These blocks are clearly separated by thin
disordered regions made up of Voronoı̈ polygons belonging
to the class of more distorted Voronoı̈ cells (G2 − G7). It
must be stressed that tendency toward a crystalline order
is much less pronounced in three dimensions than it is in
two [35]. Indeed, in two dimensions the densest possible local
configuration (hexagonal pattern) can be repeated infinitely in
space. However, in three dimensions the closest attainable local
configuration in a system of equal spheres is not compatible
with translational symmetry and therefore it cannot be repeated
in space without leaving gaps. After packing 12 spheres around
the central one, with centers on the vertices of a regular
icosahedron, there is a significant amount of free space left,
although not enough to fit the thirteenth sphere. Such a compact
local icosahedral configuration is geometrically frustrated
and therefore it can be regarded as a source of structural
heterogeneity.

To further quantify the structural changes in the packings
of grains presented above, here we consider the probability
distribution P (ζ ) of the shape factor ζ [it is normalized to
unity, i.e.,

∫ ∞
0 dζP (ζ ) = 1]. Figure 8 compares the probability

distribution P (ζ ) for the packings formed in solutions (A)–(E)
(see Table I). For low intensities of the effective gravity
g

(1)
eff /g, the Voronoı̈ diagrams show a lot of cells with irregular

rectangular, pentagonal or hexagonal structure [see Figs. 7(a)
and 7(b)], and we thus get a broad distribution P (ζ ) with
no distinct maxima (Fig. 8). As the effective gravity g

(1)
eff /g

increases, the distribution P (ζ ) becomes narrower and more

FIG. 7. (Color online) Voronoı̈ diagrams of packings formed in various aqueous solutions of ZnCl2. Diagrams correspond to the fluid
densities ρ0 of (a) 1.7, (b) 1.6, (c) 1.5, (d) 1.4, and (e) 1.3 g/cm3. Voronoı̈ cells are colored according to their shape factor ζ [Eq. (1)]. Color
coding of the Voronoı̈ polygons is defined in Table II. These results refer to the beads of mass m1 = 0.20 g.
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FIG. 8. (Color online) Probability distribution P (ζ ) of the shape
factor ζ for the packings formed in aqueous solutions (A)–(F) of
ZnCl2 (see Table I). The vertical arrow, centered at ζ ≈ 1.175,
indicates the broad peak, which is composed primarily of overlapping
contributions from distorted pentagons and hexagons.

localized around the lowest values of the shape factor (for
a regular hexagon, ζ = 6/

√
3π2 ≈ 1.103). This behavior of

the probability distribution P (ζ ) corresponds to the decrease
of the fraction of Voronoı̈ polygons belonging to classes
G5 − G7 (less circular cells). Furthermore, broad maximum
in P (ζ ), centered at ζ ≈ 1.175 is caused by overlapping
contribution of distorted hexagons and pentagons. Indeed,
the peak at ζ ≈ 1.175 vanishes if the pentagons and very
distorted hexagons are not included in the computation of
the distribution P (ζ ). Examining snapshots (see, e.g., Fig. 7)
shows that these distorted cells mainly come from the grains
located in regions between solidlike domains.

Figure 9 compares the probability distributions P (ζ ) for
two packings formed under conditions that provide the same
effective gravity, but different viscosity of the surrounding
fluid. Experimental results for the distribution P (ζ ) of the
shape factor ζ are given for the packings of beads of
mass m1 = 0.20 g and m2 = 0.12 g, which are created in
the solution of type (A) and water, respectively. Solution
(A) is 6.5 times more viscous than water, but the values of
the corresponding effective gravities g

(1)
eff (A)/g = 5.57 × 10−2

and g
(2)
eff /g = 5.75 × 10−2 are close to each other. In addition,

the inset in Fig. 9 shows a plot of the radial distribution function
g(r) for these two packings. As seen in the inset, the major
changes in the viscosity achieved in the experiment do not
lead to important differences in the radial distribution function
g(r). Interestingly, we find that the microstructural properties
for these two granular packings are very similar. This result
is plausible for the following reasons. The possible effects
of viscous drag on the grains are determined by measuring
the velocity of particles during the settling. The resulting
terminal velocity of a grain in a free fall through the liquid
of maximum viscosity [solution of type (A)] is observed to be
approximately Vt = 10.5dss

−1. At this measured velocity, the
Reynolds number Re = ρ0Vtds/η is about 98.5. The drag force
exerted on the spherical particle of diameter ds moving at a
constant velocity Vt in a viscous fluid can be written generally
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 1.1  1.15  1.2  1.25  1.3
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ζ

m1=0.20 g, ρ0= 1.70 g/cm3

m2=0.12 g, ρ0= 1.00 g/cm3

 0

 1

 2

 3

 4
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 1  1.5  2  2.5  3  3.5  4  4.5  5

g(
r)

r/d

m1=0.20 g, ρ0= 1.70 g/cm3

m2=0.12 g, ρ0= 1.00 g/cm3

FIG. 9. (Color online) Results for the probability distribution
P (ζ ) of the shape factor ζ for two packings formed under conditions
that provide the same effective gravity, but different viscosity of
the surrounding fluid. Distributions P (ζ ) are given for the packings
created in the solution of type (A) (circles) and water (triangles),
with beads of mass m1 = 0.20 g and m2 = 0.12 g, respectively.
The corresponding values of the effective gravity are g

(1)
eff (A)/g =

5.57 × 10−2 and g
(2)
eff /g = 5.75 × 10−2. The vertical arrow indicates

the same peak as in Fig. 8. The inset shows the variation of the radial
distribution function g(r) for these two packings.

as:

Fv = 1

8
ρ0d

2
s πCDV 2

t , (2)

where ρ0 is the fluid density and Cd is the drag coefficient.
The so called standard drag curve (SDC) for solid spheres es-
tablishes a universal relationship between the drag coefficient
CD and the Reynolds number Re. Here we give expression
proposed by Turton and Levenspiel [36]:

CD = 24

Re
(1 + 0.173 Re0.657) + 0.413

1 + 16300 Re−1.09 . (3)

Note that relation (3) is valid for Reynolds numbers up to
about 105. Consequently, the calculated viscous drag Fv on
the grains would therefore be < 111μN ≈ m1geff  m1g at
maximal velocities Vt . During the settlement of the packing,
the beads undergo inelastic collisions and propagate under
the effective gravity and the fluid drag in between collision
events. This sequence of binary collisions with geometrically
decreasing space and time scales brings the system to the
state where neighboring beads are very close to contact.
Finally, solidification occurs because the beads lose all of
their kinetic energy. The local densification is accompanied
by the formation of complex patterns and structures (arches
or bridges). They are responsible for the voids that determine
the volume fraction and for the force distributions in granular
materials [21]. In the final stage of forming the cooperative
structures, grain velocities are considerably smaller than the
terminal velocity Vt , and thus the viscous drag Fv [Eq. (2)]
on a grain is only a small part of its apparent weight mgeff .
Consequently, influence of the viscous effects on the grain
motion in the final stage of forming the multiparticle structures
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FIG. 10. (Color online) Probability distribution function P (σ ) of
Voronoı̈ areas σ normalized by the minimum area of a Voronoı̈ cell,
σmin =

√
3

2 d2
s . Distributions P (σ ) are given for the packings created

in aqueous solutions (A)–(F) of ZnCl2 (see Table I). The inset shows
the distributions P (σ ) for the packings created in the solution of type
(A) (solid) and water (dashed), with beads of mass m1 = 0.20 g and
m2 = 0.12 g, respectively. The corresponding values of the effective
gravity are g

(1)
eff (A)/g = 5.57 × 10−2 and g

(2)
eff /g = 5.75 × 10−2.

can be neglected, so that microstructural properties of the
packing are predominantly determined by the effective gravity.

It is interesting to study the heterogeneity of the packings
in more detail via the size σ of the Voronoı̈ cell. In two
dimensions, the minimum area of a Voronoı̈ cell σmin is
achieved for a hexagonal packing with σmin =

√
3

2 d2
s , where

ds is the diameter of a particle. The probability distribution
P (σ ) of the Voronoı̈ areas σ is defined as the probability
of finding a polygon with area σ in the set of the Voronoı̈
cells. It is normalized to unity, namely,

∫ ∞
σmin

dσP (σ ) = 1. We
have calculated P (σ ) for various final packings and plotted
it in Fig. 10 as a function of the area σ normalized by the
minimum area of a Voronoı̈ cell σmin. Distribution of Voronoı̈
areas P (σ ) in two dimensions describes the deviation of a
given structure from a hexagonal packing. In the case of
perfect crystalline packing the Voronoı̈ cell corresponding to
each particle is a regular hexagon and thus P (σ ) becomes a
δ function. For random particle structures, distribution P (σ )
broadens so that width of the distribution can be interpreted
as the heterogeneity of a packing. From Figs. 7(a)–7(e) large
variations in the sizes and shapes of the cells are noticeable
at low values of the effective gravity g

(1)
eff , but less so as the

g
(1)
eff is increased reflecting the changes in the void spaces

between grains. Consequently, distributions found for the
packings formed in solutions (D), (E), and (F) are narrower
in comparison to the packings in dense solutions (A), (B), or
(C). One can see that P (σ ) broadens with decreasing value
of the effective gravity g

(1)
eff indicating that larger fluctuations

in Voronoı̈ areas are found with increasing heterogeneity. In
addition, the inset in Fig. 10 shows the distribution P (σ ) for the
two packings formed under conditions that provide the same
effective gravity, but different viscosity of the surrounding
fluid. Again, this result confirms that heterogeneity of the
packings is predominantly determined by the effective gravity.

IV. CONCLUSIONS

In this paper, we have reported some experimental results
concerning the microstructural properties of packings im-
mersed in a liquid whose density could be varied. The packings
have been generated under the chosen apparent gravity so that
our results gain some insight into the properties of granular
materials in a reduced gravity environment.

To examine the short scale structure in the packings, we
evaluated the radial correlation function g(r), which measures
the particle density-density correlation at distance r for various
intensities of the effective gravity g

(1)
eff /g. We found the

expected changes in the behavior of the correlation function
g(r) with increasing the intensity of the g

(1)
eff /g. Namely, the

oscillation of g(r) quickly decays for the lowest values of
g

(1)
eff /g, which means that long-range order does not exist

in the system. As the effective gravity g
(1)
eff /g is increased,

the relative height of the secondary peaks increase, that is
consistent with the increase in size of the compact clusters
(see, e.g., Fig. 7). In addition, observed changes of connectivity
numbers 〈N (p)

c 〉, (p = 1, . . . ,6) with g
(1)
eff /g have provided an

additional insight into the growth of hexagonal domains and
formation of cooperative structures, such as arches or bridges
(arching is directly related to the reduction of particle-particle
contacts).

The organization of grains at local level was studied by
analyzing the shape factor ζ [Eq. (1)], which is a quantifier
of the circularity of the Voronoı̈ cells associated with the
individual particles. This gives a clear physical picture of
the competition between less and more ordered domains of
particles in the packing. For low intensities of the effective
gravity the beads are distributed quite randomly and no
specific configurations of beads are formed. In the case of
larger value of the effective gravity we found that beads
tend to organize themselves locally into ordered hexagonal
patterns. Consequently, the narrowing of distribution P (ζ )
that occurs with increasing of the effective gravity corre-
sponds to the increase of the fraction of near-regular Voronoı̈
cells.

Reorganization of the grains has also been analyzed through
the distribution of pore volumes. This distribution is sensitive
to small structural changes of the system. Delaunay free vol-
umes have a distribution with a long tail, which progressively
reduces while the apparent gravity increases. Furthermore,
unlike in the three-dimensional case, these distributions have
two peaks, which clearly indicate existence of local configura-
tions with hexagonal and quadratic symmetry. Further, we have
found that distribution of the Voronoı̈ areas P (σ ) broadens with
decreasing value of the effective gravity. Broadening in the
distribution P (σ ) means that there is a broader distribution in
the nearest-neighbor distances and therefore larger differences
in the density fluctuations.
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