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Abstract. We investigate, by numerical simulation, the dynamical response of a granular system to an
abrupt change in shaking intensity within the framework of the reversible random sequential adsorption
models. We analyse the two-dimensional lattice model in which, in addition to the adsorption-desorption
process, there is diffusion of the adsorbed particles on the surface. Our model reproduces qualitatively
the densification kinetics and the memory effects of vibrated granular materials. An interpretation of the
simulation results is provided by the analysis of the insertion probability function. The importance of the
diffusional relaxation is discussed. We conclude that a complex time-evolution of the density could be
explained as a consequence of the variation of the diffusion rate during the compaction. We study the
nonequilibrium time-dependent density-density autocorrelation function and show that the model displays
out-of-equilibrium dynamical effects such as aging.

PACS. 45.70.Cc Static sandpiles; granular compaction – 82.20.Wt Computational modeling; simulation –
81.05.Rm Porous materials; granular materials

1 Introduction

Dense granular media are complex disordered systems,
which exhibit many fascinating properties such as slow
density relaxation, annealing properties and hysteresis ef-
fects [1,2]. The phenomenon of granular compaction in-
volves the increase of the density of a granular medium
subjected to shaking, tapping or, more generally, to some
kind of external excitation. This problem is of fundamen-
tal importance to many industrial applications and also
raises some fundamental theoretical questions. The com-
paction has been extensively analyzed in a series of experi-
ments by the Chicago group [1–3], that suggested that the
density, ρ(t), follows an inverse logarithmic law with the
tapping number, ρ(∞)−ρ(t) ∼ 1/ ln(t). The final density,
ρ(∞), is a monotonic decreasing function of the dimen-
sionless vibration intensity, Γ = A/g, where A is the peak
acceleration in a tap, and g is the gravity. Moreover, the
slope of the relaxation curve is smaller for smaller vibra-
tion intensity, Γ , i.e. the relaxation is slower for smaller Γ .

The phenomenology of the granular compaction is very
rich, showing many characteristic glassy behaviors. Here
we will focus on one of them, namely on the response of the
granular system to sudden perturbations of the ‘effective
temperature’ given by Γ . Recently, it has been shown [4]
that, during the compaction, the response to an abrupt
change in the tapping acceleration, Γ , is opposite to what
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could be expected from the long-time behavior of the com-
paction. For a sudden decrease in Γ it was observed that
on short-time scales the compaction rate increases, while
for a sudden increase in Γ the system dilates for short
times. This behavior is however transient, and after sev-
eral taps the usual compaction rate is recovered. Recently,
Nicolas et al. [5] have also shown that periodic shear com-
paction exhibits a nontrivial response to a sudden change
in shear amplitude. The rapid variation of volume fraction
induced by the sudden change of shear angle is propor-
tional and opposite to the angle change.

In the last few years, a series of models has been
proposed to identify the physical principles underly-
ing the granular compaction. Most of the studies have
been performed for (off-lattice) adsorption-desorption or
parking lot model [2,6–11], frustrated lattice gas mod-
els [12–17] and one-dimensional lattice models with short-
range dynamical constraints [18–22]. These models, de-
spite their apparent simplicity, are able to reproduce
many features of real granular materials: slow den-
sity relaxation [6–8,16,18], density fluctuations [2,6,7],
aging [9,13,16,17], hysteresis [9,20] and memory ef-
fects [9–12,17,21]. The study of simple models has been
very useful in order to understand, at least qualitatively,
the glassylike behavior of dense granular systems, but a
complete and detailed physical theory (or reference model)
of the densification process is still lacking.

We study the phenomenon of the granular com-
paction within the framework of the well-known class
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of lattice-based models, the so-called reversible Random
Sequential Adsorption (RSA) model with diffusional re-
laxation [23,24]. In this paper we discuss how reversible
RSA on two-dimensional lattices with diffusional relax-
ation may be used to describe the dynamical response of
the granular system to perturbations of shaking ampli-
tudes. In particular, we explore the behavior of the model
for abrupt changes in the diffusion rate, that were not
considered before. Finally, we study the nonequilibrium
two-time density-density correlation function C(t, t0) and
find aging effects typical for glassy systems. We focus,
in particular, on the influence of diffusion on the decay
of C(t, t0).

The phenomenon of compaction results from the ex-
istence of packing defects, such as voids, in a randomly
packed granular material. When mechanical energy is sup-
plied to a powder, in the form of shaking, periods of release
are introduced. During the periods of release, the grains
and voids have some freedom to rearrange their positions
relative to their neighbors. The waiting time between suc-
cessive taps is large enough to allow the system to relax,
so that the initial state for each tap is the final state from
the previous relaxation. The consecutive repetition of both
processes, tapping and free evolution, reduces the porosity
of the material and makes it denser.

This physical situation corresponds to the events oc-
curring in reversible RSA with diffusional relaxation [23].
This model can be regarded as a simple picture of a hori-
zontal slice or layer of a real granular material, parallel to
the bottom of the container. In the reversible RSA, objects
are placed in a space of arbitrary dimension at randomly
selected positions with constant rate k+. If the trial posi-
tion does not result in an overlap with a previously placed
object, a new object is accepted. In addition, all adsorbed
objects are subjected to removal (desorption) at random
with a constant rate k−. Motivated by the theoretical [24]
and experimental work [3], we use the two-dimensional
lattice-based model in which the previously deposited ob-
jects are allowed to diffuse on the layer. The diffusion of a
deposited particle is attempted in a randomly selected di-
rection on the surface with constant rate kd. The particle
moves along the selected direction if it finds a space large
enough to accommodate in. Some partial analyses of this
model have already been reported [25,26]. We note that
Tarjus et al. [24] have considered the diffusional relaxation
of a continuum irreversible RSA problem.

This paper is organized as follows. In Section 2 the
model is introduced. Section 3 is devoted to the analysis of
the short-term memory effects by considering the response
of the system to the abrupt change in the desorption and
diffusion rate. Finally, Section 4 contains some additional
comments and final remarks.

2 Definition of the model and the simulation
method

A square lattice of size 120×120 represents a given layer of
the material and the adsorbing objects are squares of size

2 × 2, covering four lattice sites. The periodic boundary
conditions are used in both directions.

The tapping processes are modeled in our lattice sys-
tem in the following way. At each Monte Carlo step ad-
sorption is attempted with probability P+ = 1, desorp-
tion with probability P− and diffusion with probability Pd.
These processes are essentially independent and they are
performed simultaneously. For each of these processes a
lattice site is selected at random. In the case of adsorp-
tion, we try to place the object with the fixed point (say
the left upper corner of the object) at the selected site,
checking whether all relevant sites are unoccupied. If the
selected site is occupied by the fixed point of a previously
adsorbed object and if the attempted process is desorp-
tion, the object is removed from the layer. On the other
hand, when the attempted process is diffusion, we choose
one of the four possible directions at random and try to
move the object for a lattice constant in that direction.
The object is moved if it does not overlap with any of
the previously deposited objects; if it does, the attempt is
abandoned. Hence, the desorption process is unrestricted
while the adsorption and diffusion is subjected to free vol-
ume constraints, i.e. two objects cannot overlap.

The time t is counted by the number of adsorption
attempts and scaled by the total number of lattice sites,
L2. If we assume that one tapping event corresponds to
one adsorption attempt per lattice site, the time is actually
measured in the number of tapping events.

The kinetics of the process is governed by the ra-
tios of adsorption to desorption rate (k+/k−) and adsorp-
tion to diffusion rate (k+/kd). In our model these ratios
correspond to the ratios of adsorption/desorption proba-
bility (K = 1/P−) and adsorption/diffusion probability
(R = 1/Pd). In our model the ratio 1/K plays a role
similar to the intensity of vibration, Γ , in real experi-
ments. In our simulation, we will analyze the influence
of the other parameter, R, i.e. diffusion, on the relaxation
of the density.

At certain time t0 instantaneous changes in the des-
orption or diffusion probabilities are made. The changes
in the vibration intensity, Γ , correspond to the changes of
the desorption probability, P−. The data are averaged over
100 independent runs for each combination of desorption
and diffusion probabilities.

3 Monte Carlo results and discussion

In this section we present the results of the simulations for
the previously described model subject to abrupt changes
in the desorption and diffusion probabilities.

The kinetics of the adsorption-desorption model has
been previously investigated for large but finite values
of K [24–27]. In the limit of small desorption rate the den-
sification is extremely slow: a logarithmic regime, where
the density varies as 1/ ln(t), persists until the density is
very close to the equilibrium value. We restrict ourselves to
this stage, because the logarithmic part of the relaxation
process corresponds to the experimentally observed be-
havior of vibrated granular materials. In the final regime,
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Fig. 1. Time evolution of the density, ρ, when the desorption

probability is changed at t0 = 50, from P
(1)
− = 0.02, 0.03, 0.04

to P
(2)
− = 0.01, from top to bottom. Other parameters: P+ = 1,

and Pd = 0.01.

the rate of desorption events becomes comparable to the
rate of adsorption events, and an exponential approach to
an equilibrium disordered state occurres. In the presence
of diffusion, the rearrangement of the layer is more rapid
and the equilibrium is reached more quickly for greater
diffusion probabilities, Pd. However, the equilibrium cov-
erage depends only on the desorption/adsorption proba-
bility ratio. The possibility of diffusion always fastens the
relaxation of the system. The impact of diffusion is the
most important for low desorption rates [26].

In order to mimic what is done in the recent experi-
ments [4] with real granular materials we proceed in the
following way. Starting from an empty lattice, the sys-
tem evolves at a fixed desorption and diffusion probability,
P

(1)
− and Pd. We always use the adsorption probability of

value 1, P+ = 1. At a certain time, t0 = 50, desorption
probability changes from P

(1)
− to another value P

(2)
− . For

P
(1)
− > P

(2)
− (Γ1 > Γ2) we find that the compaction rate

increases on short-time scales (Fig. 1). For P
(1)
− < P

(2)
−

(Γ1 < Γ2) we observe a short-term memory effect oppo-
site to the previous case (Fig. 2). We find that the change
in the compaction rate has an opposite sign to that of the
change in the vibration intensity. The comparison of the
density relaxations at various changes in the tapping ac-
celeration (at fixed Pd and t0) shows that the amplitude of
the jump in the compaction rate is larger for larger jump
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Fig. 2. Time evolution of the density, ρ, when the desorption

probability is changed at t0 = 50, from P
(1)
− = 0.01 to P

(2)
− =

0.02 (solid), 0.03 (dashed), and 0.04 (doted). Other parameters:
P+ = 1, and Pd = 0.01.

of desorption probability. These results are in agreement
with the experimental results, but are contrary to our ex-
pectations that would stem from the compaction behavior
at constant forcing.

The interpretation of these results is quite straight-
forward using the results of [6,8,26]. The compaction rate
just before t0 is determined by vibration intensity Γ (t0−0)
(P−(t0−0)) and by the fraction of the substrate, Φ(t0−0),
that is available for the insertion of a new particle. As can
be seen from Figure 3, the quantity Φ(t0 − 0) (the inser-
tion probability) strongly depends on the state of the sys-
tem, but it is not unambiguously determined by the den-
sity ρ(t0−0) at the same instant. When Γ (P−) is abruptly
lowered, the first effect is that the particles tend to de-
crease the fraction of the substrate that is available for
deposition of new particles, and the layer becomes more
compact. Therefore the rate of compaction first increases
with respect to the unperturbed case. At larger times,
however, the compaction is slowed down by the creation
of a denser substrate and smaller fraction of the layer that
is available for the insertion of a new particle.

When the tapping intensity Γ (P−) is suddenly
increased at t0, the first effect is decompaction.
On short-time scales, the interplay between the insertion
probability and adsorption/desorption probability ratio
leads to the fast density changes. During this transient
stage the fraction of the substrate that is available for
the insertion of a new particle is an increasing function of
time. After this transient interval, the adsorption events
prevail, and the compaction proceeds faster. The growing
of the insertion probability, Φ(t), during the transient time
leads to more efficient densification afterwards.

In order to demonstrate the short-term memory ef-
fects in a more explicit manner, we have also considered
another series of numerical experiments where the system
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(a) Φ= 0/36 (b) Φ= 8/36

(c) Φ= 12/36 (d) Φ= 16/36

Fig. 3. Schematic representation of different coverings on
square lattice of size 6 × 6 sites. The adsorbing objects are
squares covering 4 lattice sites. Periodic boundary conditions
are used in all directions. All four coverigs have the same den-
sity, ρ0 = 16/36, but different values of insertion probability
Φ = 0/36 (a), 8/36 (b), 12/36 (c), 16/36 (d).
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Fig. 4. Time evolution of the density ρ for a system which
was compacted up to the same density, ρ0 = 0.82, using
three different desorption probabilities (vibration intensities),

P
(1)
− = 0.04 (doted), 0.03 (solid), 0.01 (dashed). After the cov-

erage ρ0 = 0.82 was achieved, the system was always tapped

with P
(2)
− = 0.03. The time origin for each curve has been taken

at the time when the system reached the prescribed density
ρ0 = 0.82. The evolution for t > 0 strongly depends on the
prehistory of the system.

was tapped to the same density ρ0 = 0.82 with three differ-
ent vibration intensities Γ0 (P (0)

− = 0.03), Γ1 (P (1)
− = 0.01)

and Γ2 (P (2)
− = 0.04). After the density ρ0 was achieved,

the system was always tapped with the same intensity, Γ0.
The time evolution of the density is shown in Figure 4,
where the time origin for each experiment has been taken
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Fig. 5. Time evolution of the density, ρ, for three different
diffusion probabilities, Pd = 0, 0.05, 0.10, from top to bot-
tom. The desorption probability was changed at t0 = 50, from

P
(1)
− = 0.04 to P

(2)
− = 0.01. Other parameter: P+ = 1.

at the time when the system reached the prescribed den-
sity ρ0. The figure clearly shows that the three systems
prepared at the same density but in different ways dis-
play different behaviors if the same tapping acceleration
is applied to them. In other words, the density after the
perturbation of the vibration intensities depends not only
on the density ρ0, but also on the previous tapping his-
tory. The memory of the history up to the density ρ0 is
encoded in the arrangement of the deposited objects on
the lattice. In our numerical experiment, we have con-
structed three different packing topologies corresponding
to the same density ρ0, each one with different value of in-
sertion probability Φ. Since the systems with different val-
ues of the insertion probability respond in different ways
to the tapping, it is obvious to conclude that at the mi-
croscopical level, the information about the past history
is encoded in the values of the insertion probability.

An interesting behavior of the system is also revealed
in response properties when, in addition, we investigate
the influence of diffusion. Figures 5 and 6 show typical
memory effects at short times after an abrupt change of
the desorption probability, P−, for different values of diffu-
sion probability Pd = 0, 0.05, 0.10. Desorption probabil-
ity P− is switched from 0.01 to 0.04 and vice versa at t0 =
50. We observe that after several adsorption/desorption
events (or taps) the ‘anomalous’ response ceases and there
is a crossover to the ‘normal’ behavior, with the relax-
ation rate becoming the same as in constant forcing mode.
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Fig. 6. Time evolution of the density, ρ, for three different
diffusion probabilities, Pd = 0, 0.05, 0.10, from top to bottom.

The desorption probability is changed at t0 = 50, from P
(1)
− =

0.01 to P
(2)
− = 0.04. Other parameter: P+ = 1.

However, the difference between the value of compaction
rate just before the change in the intensity of vibration
at instant t0 and the value of compaction rate just after
the transient period strongly depends on diffusion proba-
bility. From Figures 5 and 6, it follows that the jump in
the compaction rate is less pronounced as Pd increases.

We have also studied the effect of an abrupt change
in the diffusion probability Pd on the densification kinet-
ics with constant desorption probability P−. This is illus-
trated in Figures 7 and 8. We observe that the variation
of the compaction rate has the same sign as the change
in diffusion probability. For completeness, in Figure 9 we
show the response of the system to the diffusion prob-
ability shift from P

(1)
d = 0.01 to P

(2)
d = 0.05 at a

time t0 = 50 for several values of desorption probabil-
ity: P− = 0.01, 0, 02, 0.04. We find that the impact of
the sudden increase in the diffusion probability is the
most evident for low desorption rates. For sufficiently
small desorption probabilities, diffusion is rapid enough
to significantly modify the surface configuration between
two consecutive adsorption/desorption events. After one
adsorption/desorption event, the configuration on the sur-
face evolves rapidly at constant density, changing sig-
nificantly the insertion probability function, Φ, on the
timescale of the order of the characteristic time for desorp-
tion. These rearrangements of the adsorbed objects on the
layer always accelerate the compaction of the layer [26].

We have also examined the time correlation functions
in order to obtain a comprehensive information about the
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Fig. 7. Time evolution of the density, ρ, when the diffusion

probability is changed at t0 = 50, from P
(1)
d = 0.02, 0.04, 0.10

to P
(2)
d = 0.01, from top to bottom. Other parameters: P− =

0.01, and P+ = 1.
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Fig. 8. Time evolution of the density, ρ, when the diffusion

probability is changed at t0 = 50, from P
(1)
d = 0.01 to P

(2)
d =

0.02 (solid), 0.04 (dashed), and 0.10 (doted). Other parameters:
P− = 0.01, and P+ = 1.

out-of-equilibrium dynamics in our system. Specifically,
we have evaluated the two-time density-density correla-
tion function, C(t, t0), and qualitatively analyzed its de-
pendence on diffusion processes. The normalized two-time
density-density correlation function is defined as follows,

C(t, t0) =
〈ρ(t)ρ(t0)〉 − 〈ρ(t)〉 〈ρ(t0)〉

〈ρ2(t0)〉 − 〈ρ(t0)〉2
, t ≥ t0, (1)
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Fig. 9. Time evolution of the density, ρ, for three different
desorption probabilities, P− = 0.04, 0.02, 0.01, from top to
bottom. The diffusion probability is changed at t0 = 50, from

P
(1)
d = 0.01 to P

(2)
d = 0.05. Other parameter: P+ = 1.

where the angular brackets denote an average over inde-
pendent runs. In order to obtain reasonable statistics, it
is necessary to average over many independent runs (typ-
ically 104). Out of equilibrium, C(t, t0) is a function of
both times, t and t0.

Figure 10 shows the influence of the diffusion on the
decay of C(t, t0), after instantaneous change in the des-
orption probability at time t0 = 50. At short times, the
decay of C(t, t0) is fast. The first relaxation step consists of
‘fast’ rearrangements on the layer with an appreciable in-
fluence of diffusion processes. In the next relaxation step,
the decay curves have similar shapes for all values of Pd.
The global properties of the correlation function depend
smoothly on the diffusion probability: as Pd grows, the
correlation decays faster, as shown in Figure 10. However,
the correlation curves do not differ qualitatively and they
have similar shapes.

In Figure 11 we show the behavior of C(t, t0) for sev-
eral values of the waiting time t0. We observe the typical
ageing behavior: the larger t0, the longer memory of the
initial state persists. The aging properties of the system
are characterized by specific scaling properties of C(t, t0).
In the Tetris and Ising frustrated lattice gas models, it
was found that the relaxation of the C(t, t0) is given by
the form [13]:

C(t, t0) = (1 − c∞)
ln[(t0 + ts)/τ ]
ln[(t + ts)/τ ]

+ c∞, (2)
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Fig. 10. (Color online) Two-time density-density correlation
function as a function of time, for t0 = 50, and three values of
diffusion probability, Pd = 0 (doted), 0.02 (dashed) and 0.05
(solid). Other parameters: P+ = 1, and P− = 0.01.
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Fig. 11. (Color online) Two-time density-density correlation
function as a function of t − t0, for three values of wait-
ing time, t0 = 50 (solid), 100 (dashed) and 200 (doted).
Other parameters: P+ = 1, P− = 0.01, and Pd = 0. Inset:
The correlation C(t, t0) as a function of the scaling variable
α = ln[(t0 + ts)/τ ]/ ln[(t + ts)/τ ]. Fit parameters are ts = 210
and τ = 8.0.

where τ , ts and c∞ are fit parameters. The above be-
havior is found in our model. The inset of Figure 11 illus-
trates that when the two-time correlation function C(t, t0)
is plotted as a function of ln[(t0 + ts)/τ ]/ ln[(t+ ts)/τ ] the
data for three waiting times, t0 = 50, 100 and 200, col-
lapse onto single curve. This figure clearly demonstrates
the existence of the single universal master function.

4 Concluding remarks

We have studied the density evolution of a granular sys-
tem subjected to a tapping process in the framework of
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a two-dimensional reversible RSA model with diffusional
relaxation. Our model is a lattice based model, and in this
sense it is not a realistic microscopic model of granular ma-
terials, but it does reproduce the complex phenomenology
of granular media.

We have studied the response of a vibrated granular
system to an instantaneous change in the intensity of the
vibrations. The change in the compaction rate for a short
time has an opposite sign to the one of the change in
the vibration intensity. These results are in qualitative
agreement with experimental observations [4].

Following reference [4], we have considered a series of
numerical experiments where the system was compacted
to ρ0 using three different accelerations. After the den-
sity ρ0 was achieved, the system was vibrated with the
same intensity. These experiments indicate that the global
density does not represent a good parameter for the de-
scription of a static packing, because the future evolution
of density depends not only on ρ0, but also on the pre-
vious tapping history. This additional feature lies in the
coding of the system history by topological properties of
the covering. We find that the coverings with the same
density but reached with different compaction procedures
may have completely different values of insertion proba-
bility. The numerical experiments have confirmed that the
systems with different values of the insertion probability
respond in a different way to abrupt changes in tapping
intensity.

Recently, Tarjus and Viot [10,11] have applied the
statistical mechanical approach proposed by Edwards
and co-workers [28,29] to the parking-lot model,
a one-dimensional model that reproduces the memory ef-
fects of the compaction of a vibrated powder. In their
approach, a macrostate of the system is characterized by
fixed values of three extensive parameters: the number of
particles, the system size and the total length available
for insertion of particles. They have postulated that all
configurations (microstates) of nonoverlapping hard rods
characterized by fixed values of density ρ and the available
line fraction Φ are equally probable. The choice of Φ as an
additional ‘thermodynamic’ parameter was crucial for re-
producing various memory effects observed in parking-lot
model. Our two-dimensional simulations have confirmed
that the inclusion of the second state variable Φ is directly
relevant for describing the history-dependent phenomena.

In addition we have studied the relevance of the diffu-
sion in the process of granular compaction. The response
of the system to a change in diffusion probability Pd is
‘normal’, in the sense that an increase in Pd produces
a positive jump in the compaction rate. Such behavior
shares some similarities with the phenomena of relaxation
in vibrated anisotropic granular materials [3] (see Fig. 3
in [3]). During the compaction of the anisotropic granular
materials there is an abrupt increase in packing fraction,
which becomes less steep and smaller as Γ increases. This
increase in the packing fraction coincides with the nematic
ordering of the material. We have obtained similar effects
by an abrupt change in diffusion probability (see Figs. 8
and 9).

We have also investigated the decay of density corre-
lations. For our model we have observed a two-step re-
laxation of the density-density correlation function, which
is a very common behavior in glassy systems. The first
(‘fast’) relaxation step strongly depends on the diffusion
probability.

Equation (2) leads to the conclusion that, for the
long enough times, C(t, t0) is a function of the ra-
tio ln(t0)/ ln(t). Such scaling behavior is in agreement
with the Ising frustrated lattice gas model and the Tetris
model [13], but in contrast with the parking lot model [9],
for which t/t0 behavior has been observed. This finding
suggest that the important step would be to relate the
macroscopic dynamics of the compaction process to evo-
lution of ‘microscopic’ structure of the packing experimen-
tally [30].

The two-dimensional model presented in this work can
be generalized to mixtures of several kinds of grains [31].
This allows us to study the compaction process in poly-
disperse granular systems under vibratory excitation.
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