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Abstract. Transport properties of ion swarms in presence of Resonant Charge Transfer (RCT) collisions
are studied using Momentum Transfer Theory (MTT). It was shown that, not surprisingly, RCT collisions
may be represented as a special case of elastic scattering. Using the developed MTT we tested a previously
available anisotropic set of cross-sections for Ar + Ar+ collisions by making the comparisons with the avail-
able data for the transverse diffusion coefficient. We also developed an anisotropic set of Ne + Ne+ integral
cross-sections based on the available data for mobility, longitudinal and transverse diffusion. Anisotropic
sets of cross-sections are needed for Monte Carlo simulations of ion transport and plasma models.

PACS. 51.10.+y Kinetic and transport theory of gases – 52.25.Fi Transport properties –
52.20.Hv Atomic, molecular, ion, and heavy-particle collisions

1 Introduction

One of the problems often encountered in studies of the
transport of swarms of charged particles is the complex-
ity of the collisional operator which necessitates numeri-
cal solution in all realistic cases. Here, under swarm we
assume an ensemble of non-interacting (i.e. the limit of
small ionization) charged particles which are transported
in an unperturbed buffer gas under the influence of the ex-
ternal electric field. While numerical techniques for solving
Boltzmann equation and for simulations have reached an
amazing accuracy [1–4] deepest physical insight may be
reached when analytical theories are developed. Momen-
tum transfer theory (MTT) has been developed exactly
for that purpose. The theory consists of a specific sim-
plification of the Boltzmann equation collision operator
and of the specific procedure to determine approximate
distribution function. When swarms develop in uniform
and constant fields, the theory yields simple analytic so-
lutions that may be surprisingly accurate and thus may
provide basis for fast modeling of plasmas that could be
sufficiently fast and accurate. At the same time, relaxation
in temporal and spatial inhomogeneities may be included
in a consistent manner without losing much of the sim-
plicity (in that case ordinary or simple and well defined
partial differential equations have to be solved). Applica-
tion of MTT in plasma modeling is yet to be pursued, but
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we expect [5] that it would be a very viable option for fast
models of both local and non-local kinetics in plasmas.

MTT was first used to discuss the diffusion of neutral
gases and the mobility of ions at very low field strengths
where the energy can always be taken to be entirely ther-
mal [6]. MTT has been initially developed for charged
particle transport in mixtures of gases having only elastic
collisions [7]. The resulting corrections of Blanc’s law [8,9]
and the relationship between diffusion coefficients and mo-
bility [9] were obtained. Inelastic collisions have been in-
cluded in the single gas MTT and the corresponding equa-
tions for energy, drift velocity and relationship between
the mobility and components of the diffusion tensor were
developed. MTT has been developed mainly by the efforts
of Robson and coworkers [10,11] as an approximate solu-
tion to transport equations which gives an opportunity
to develop analytic forms of various transport coefficients
and their relations. Reactive collisions were included in
addition to inelastic and the corresponding effects of at-
tachment, annihilation [10] and ionization [11] on trans-
port coefficients were discussed. MTT has also been ap-
plied in crossed electric E and magnetic B fields for a
case of a single gas in conservative [12] and nonconser-
vative [13] systems. Because of its simplicity which how-
ever allows reasonable accuracy MTT has become quite
popular in discussing the basic physical explanations of
transport phenomena.

We have generalized the MTT for the case of reac-
tive particle swarms in mixtures of gases [14]. This the-
ory was applied to study the development of negative
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differential conductivity [14], the higher order transport
coefficients [15] and electron transport in crossed electric
and magnetic fields [16].

In this paper we shall discuss an application of MTT to
the transport of charged particles under the dominant in-
fluence of charge transfer collisions. This case is of utmost
importance in numerous plasmas and should be treated
in order to develop the basis for applying MTT in plasma
modeling. A very basic argument could be used to claim
that charge transfer collisions may be represented through
elastic scattering. However, this should be shown explic-
itly. In addition Phelps [17] has pointed out how cross-
sections that are obtained by simple conversion of the drift
velocity data into momentum transfer and furthermore to
the charge transfer cross-sections may be misused in mod-
eling of plasmas. In particular the issue of separation of
isotropic and anisotropic (including the backward scatter-
ing) components of the cross-sections was shown to be
critical in different approaches to plasma modeling.

When ions move in their parent gas, an ion and a neu-
tral can interchange roles by the resonant transfer of an
electron. This resonant charge exchange converts a col-
lision having a center-of-mass deflection angle of ϑ into
one of π − ϑ. Therefore a large number of glancing colli-
sions are transformed into apparent almost head-on colli-
sions. Resonant charge transfer (RCT) affects ion trans-
port properties in different ways at low and at high
electric field strengths [18–20]. At low fields the mean
energy that the ions acquire from the field is much less
than the thermal energy, the velocity distribution deviates
only slightly from the isotropic equilibrium Maxwellian
distribution [21]. Main effect is to alter the magnitude
and energy dependence of the momentum-transfer cross-
section Q1. As a result, Q1 is increased and the temper-
ature (and field) dependence of the mobility K is dras-
tically altered. At high electric fields, an ion loses most
of its energy after a charge transfer (CT) collision. As a
result the ion velocity distribution function has low en-
ergy maximum and has a long high velocity tail in the
field direction. Moreover, the effective kinetic energies of
ions that are parallel and perpendicular to the electric
field differ substantially. Therefore, both the ion velocity
distribution function and the diffusion tensor are strongly
anisotropic [22].

We have chosen two examples for numerical calcula-
tions. First, we would like to point out that the anisotropy
of the diffusion tensor may be used as a critical test of
the anisotropic cross-sections that should be developed to
properly model the kinetics of ion transport in gases and
in plasmas. Thus we shall check the cross-section set pro-
posed by Phelps [17] for argon ions in argon. The second
example will consist of determination of the anisotropic
set of cross-sections for neon ions at low energies based
on both drift velocities and components of the diffusion
tensor.

As rare gases are common buffer gases in numerous
plasma applications the range of situations where such
data would be of use is quite wide. We shall mention few.
Sputtering discharges rely [23] on high energy transport

of heavy rare gas ions that would be dominated by the
charge transfer collisions and may even lead to a consid-
erable component of sputtering due to fast neutral bom-
bardment. RF plasmas used for etching and other tech-
nologies in production of integrated circuits commonly
involve argon as a buffer gas [24–26] and both ion [27,28]
and fast neutral distributions at the surface of wafer is the
critical issue in understanding both the kinetics of etch-
ing and of charging [29–31]. Recently it was proposed that
the charge transfer together with neutralization on surface
may be used to develop charging free etching [32,33]. The
results of this paper may also be of interest for modeling
of plasma displays [34] and plasma thrusters [35]. Finally
the influence of CT collisions on gas breakdown and glow
discharges has been recently studied based on well defined
and reliable experimental data [36–44] including the stud-
ies at very high E/n0 (here E/n0 is the ratio of the electric
field E to the neutral gas number density n0) [45–48].

2 Balance equations including charge transfer

2.1 Charge transfer model

Our discussion is limited to collisions of symmetric (reso-
nant) ion-atom (molecule) systems, such as Ar+ + Ar and
Ne+ + Ne, when scattered ion is indistinguishable from
the incident ion and we are concerned only with the elastic
collisions. We assume that charge (electron) can be trans-
ferred without any noticeable transfer of momentum. If
the motion of the charged particle is followed, this cor-
responds to elastic scattering where the velocities of the
collision partners are interchanged, i.e. where the scatter-
ing angle is close to π. The corresponding backward (π in
center of mass) peaked component of the differential scat-
tering cross-section Ib(vr, θ) is defined as [49]:

Ib(vr, θ) =
σb(vr)

2π
lim

θ0→π
δ(cos θ − cos θ0). (2.1)

Phelps [17] has shown that it is necessary to include
also the isotropic part of the differential scattering cross-
section which is defined as:

Ii(vr, θ) =
σi(vr)

4π
· (2.2)

If I(vr, θ) = Ib(vr, θ) + Ii(vr, θ) denotes the total differ-
ential scattering cross-section, then we define the partial
cross-sections [6]:

Ql(vr) = 2π

∫ π

0

dθ sin θ
(
1 − cosl θ

)
I(vr , θ),

l = 1, 2, 3, ... (2.3)

According to equations (2.1–2.3) we have momentum
transfer cross-section Q1(vr) = σi(vr) + 2σb(vr), and
viscosity cross-section Q2(vr) = (2/3)σi(vr). Symmetric
charge transfer collisions may be treated as a subset of
elastic scattering collisions. At high ion energies σb(vr)
is identical to the charge transfer cross-section σCT(vr),
but at low energies there is combination of isotropic and
backward scattering contributing to Q1(vr) [17].
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2.2 Summary of relevant equations

Considering ions of number density n in neutral gas in
equilibrium at temperature T0 and making the assump-
tions that density gradients are weak, we have the follow-
ing approximate balance equations for mean velocity 〈v〉
of ions and average energy 〈〈ε〉〉 in the center of mass
frame [10,14]:

− neE + kBT̂
∂n

∂r
= −1

2
mn〈v〉νm(〈〈ε〉〉), (2.4)

〈〈ε〉〉 =
1
2
m0〈v〉2 +

3
2
kBT0 − Q

(
1
n

∂n

∂r

)
1

νm(〈〈ε〉〉) · (2.5)

Equations (2.4, 2.5) are valid to the first order in the den-
sity gradient (∂/∂r)n. In these equations m and m0 denote
the masses of an ion and neutral molecule respectively, kB

is Boltzmann’s constant, while mean energy in the labo-
ratory frame is

εL ≡ 1
2
m〈v2〉 =

1
M0

[
〈〈ε〉〉 − M

3
2
kBT0

]
,

M0 =
m0

m + m0
, M =

m

m + m0
· (2.6)

The ion temperature tensor T̂ appearing on the left side
of equation (2.4) is defined by

kBT̂ = m〈(v − 〈v〉) ⊗ (v − 〈v〉)〉, (2.7)

where ⊗ indicates a dyadic product of vectors. Also in
equation (2.5) vector

Q =
1
2
〈(v − 〈v〉)2 (v − 〈v〉)〉, (2.8)

is the heat flux per ion. In equations (2.4, 2.5) the quantity

νm(〈〈ε〉〉) = n0

√
2〈〈ε〉〉

µ
(σi + 2σb), (2.9)

denotes the total momentum transfer collision frequency,
accounting for all scattering channels, both backward and
isotropic. The reduced mass is µ = mm0/(m + m0).

Temperature tensor T̂ and heat conductivity vector Q
can be evaluated from higher order moment equations.
Model collision operators can sometimes be used to obtain
analytical expressions for the components of temperature
tensor T̂ and the vector heat conductivity Q. The constant
Mean Free Time (MFT) model assumes a cross-section
inversely proportional to the relative velocity I(vr , θ) ∝
v−1

r . The usefulness of the MFT model derives from the
fact that most real ion–molecule potentials are dominated
by the polarization force (∝ r−5) at large distances, so
that for low relative speeds we have I(vr , θ) ∝ v−1

r . Hence,
in the so-called “polarization limit”, i.e. for low T0 and
low E/n0, an ion swarm may be expected to conform to
this model.

In the case of constant MFT where νv and νm are
constants, the ion temperatures and heat conductivity are
given exactly by the expressions [12,18,50–52]:

kBT‖ = kBT0 + A‖m0ω
2, kBT⊥ = kBT0 + A⊥m0ω

2,

Q = Bm0ω
3, (2.10)

where

A‖ =
2 m

m0

(
2 − νv(ε)

νm(ε)

)
+ νv(ε)

νm(ε)

4 m
m0

+ 3 νv(ε)
νm(ε)

, A⊥ =

(
1 + m

m0

)
νv(ε)
νm(ε)

4 m
m0

+ 3 νv(ε)
νm(ε)

,

(2.11)

B =

(
1 + m

m0

)2 (
A‖ + 1

2 + 3
2

m
m0

)
1 + 3

(
m
m0

)2

+ 2 m
m0

νv(ε)
νm(ε)

−
(

A‖ +
1
2

+
1
2

m

m0

)
,

(2.12)

and νv(ε) = n0(2ε/µ)1/2Q2(ε) is the collision frequency
for viscosity. In these expressions, ω and ε are, respec-
tively, drift velocity and energy in spatially uniform cir-
cumstances and are found from solution of the simple
equations:

eE =
1
2
mωνm(ε), (2.13)

ε =
1
2
m0ω

2 +
3
2
kBT0. (2.14)

MTT is exact for constant νm model in the absence of
reactions. In more realistic cases, where νv and νm are
functions of mean energy, equations (2.10) may be only
qualitative approximations. Using numerical results from
Monte Carlo calculations, Skullerud [18,51] investigated
the accuracy of equations (2.10–2.12) for cases in which
the collision frequency was not constant, but Q2/Q1 was
calculable. He has found that equations (2.10) is generally
a very good approximation for kT⊥, while equations (2.10)
is not as effective as a general approximation for kT‖.

Applying a procedure similar to Robson’s [12,52] on
equations (2.4, 2.5), we obtain Generalized Einstein Rela-
tions (GER):

D‖ =
kBT‖

e
K

(
1 + (1 + ∆)

d lnK

d ln E

)
,

D⊥ =
kBT⊥

e
K, ∆ =

Q

2kBT‖ω
, (2.15)

where K = ω/E is the mobility. The correction factor ∆
can be evaluated using equations (2.10–2.12).

3 Calculations for real cross-sections

Equations (2.13, 2.14) are to be solved for ω and ε as a
function of E/n0 and T0, for a specified model of interac-
tion σb, σi. Transverse D⊥ and longitudinal D‖ diffusion
coefficients can then be found from GER equation (2.15).
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Fig. 1. Cross-sections for the elastic scattering of Ar + Ar+

from reference [17]. Q1, σi and σb are the momentum transfer,
isotropic, and backward scattering cross-section components
of elastic scattering. Minimum σi and maximum σb (m = 2.3)
are shown by the dot-dashed and solid curves, respectively.
Suggested values σi and σb (m = 2.0) for plasma modeling,
are shown by long-dashed and dotted curves, respectively.

3.1 Transport coefficients for Ar+ in Ar

Recently Phelps [17] has proposed a set of isotropic and
backward scattering cross-sections to represent the trans-
port of argon ions in ion buffer gas. The set was primarily
based on the available differential cross-section data but
also it was tested to fit the available mobilities [45]. It was
pointed out that, while small differences exist between the
mobilities obtained by standard representations of charge
transfer collisions at low energies (either as isotropic scat-
tering by using the momentum transfer cross-section, or
by backward scattering only by using CT cross-section)
and the model proposed by Phelps, the critical test would
consist in calculation of the transverse diffusion coefficient.
Recently a set of highly reliable data for transverse dif-
fusion coefficients for argon ions in argon has been ob-
tained [53] that motivated us to perform the tests of the
argon scattering model as proposed by Phelps. Earlier
studies of the cross-sections for argon ions in their par-
ent gas have been reviewed in [17].

Scattering in this system is described in terms of the
consistent sets of Ar+ + Ar differential and integral cross-
sections which were obtained by Phelps from a variety
of experimental and theoretical sources. Figure 1 shows
various cross-sections defined in Section 2.1 for Ar+ col-
lisions with Ar. The momentum transfer cross-section Q1

is known most accurately for a wide range of ion ener-
gies. This cross-section is chosen to approach the spiral-
ing cross-section for polarization scattering at low ener-
gies [21] and twice the charge transfer cross-section σCT

at high energies [21]. An analytic approximation to the
values of the momentum transfer cross-section Q1 of Fig-
ure 1 is [17]:

Q1(ε) = 1.15 × 10−18ε−0.1

(
1.0 +

0.015
ε

)0.6

· (3.1)
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Fig. 2. Mean energy εL and drift velocity ω for Ar + Ar+ as
a function of E/n0, T0 = 293 K. Calculated values are indi-
cated by lines; (•) experimental drift velocities of Hegerberg
et al. [54]; (N) experimental drift velocities of Ellis et al. [55].

Minimum values of isotropic cross-section σi are approxi-
mated with the expression [17]:

σi(ε) =
2.0 × 10−19

ε0.5(1.0 + ε)
+

3.0 × 10−19ε

(1.0 + ε�3.0)m , (3.2)

where m = 2.3. All the cross-section are in m2 and the
energies are in eV. The “suggested” (long-dashed curve)
cross-section in Figure 1 has been obtained [17] by low-
ering m in equation (3.2). Such modification results in a
better estimate of the ion scattering at intermediate an-
gles ϑ. Values for σb are obtained from the Q1 and σi by
the relation:

σb(ε) =
1
2

(Q1(ε) − σi(ε)) . (3.3)

When σi is modified it is necessary to change σb values by
applying this equation.

In Figure 2 present mean energy εL and drift velocity ω
as a function of reduced field to gas number density ra-
tio E/n0, for a standard gas temperature T = 293 K. The
points of Figure 2 show measured drift velocities [54,55],
while the solid line shows the values calculated using
the momentum transfer cross-section Q1 of Figure 1 (see
Eq. (3.1)) and the MTT equations (2.13, 2.14). MTT cal-
culations yielded results in a very good agreement with
the experimental data to within 3% for all values of E/n0.
The agreement is expected since the cross-section Q1 in
this energy range are those derived from drift velocity
data [54] and the minor discrepancy reflects on the ac-
curacy of MTT.

Figure 3 shows the ion temperatures and heat flux as
a function of E/n0. We have already established that the
temperature tensor T̂ is generally anisotropic. Under cer-
tain special circumstances temperature tensor can be re-
duced to a scalar, kBT⊥ ≈ kBT‖ ≈ 2〈〈ε〉〉/3. For light ions
and electrons (m � m0) this may be achieved by substi-
tuting the condition

m0νv

mνm
� 1, (3.4)
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in equations (2.10, 2.11). A more general form of the con-
dition (3.4) exists for a more general case which includes
inelastic collisions [12]. This condition, however reduces
to (3.4) in the case of purely elastic collisions. The isotropy
condition (3.4) may not be satisfied for strongly back-
ward scattering, for which I(vr, ϑ) is considerable only for
ϑ ≈ π. Then by equation (2.3), we have νv ≈ 0 while the
momentum transfer collision frequency (2.9) is not neces-
sarily small. This implies anisotropy of the temperature
tensor T̂ and breakdown of two term approximation even
in the case of light swarm particles [56].

Figure 4 shows diffusion coefficients calculated from
GER (Eqs. (2.15)). Since backward scattering dominates
over intermediate angle scattering at energies & 0.2 eV,
i.e. σb > σi, the calculated values for the ratio D⊥/K are
very small.

Two comments on ion diffusion coefficients are sug-
gested by Figure 4. First, the dependence of D‖ on E/n0

is much stronger than in the case of D⊥. This can be at-
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(Eq. (2.15)) for Ar + Ar+, as a function of E/n0, T0 = 293 K.

tributed to the different dependencies of T‖ and T⊥ on
reduced field strength E/n0. Figure 3 shows that when T‖
is increased by about two orders of magnitude with the
E/n0 increasing from 10 to 1000 Td, T⊥ changes by less
than an order of magnitude in the same interval.

The second comment that may be made is that, for
higher fields, the assumption of isotropic temperature
tensor leads to remarkable differences of the diffusion
coefficients, as compared to the calculations based on
anisotropic temperature tensor. As expected, the drift ve-
locity is determined by the adopted value of the momen-
tum transfer cross-section Q1, and is very little influenced
by the angular distribution in the scattering [45]. How-
ever, as stressed above, in case of diffusion coefficients the
discrepancies are great which indicates the necessity to
employ anisotropic models in plasma modeling [17].

The correction factor ∆ (see Eqs. (2.15)) can be evalu-
ated using equations (2.10–2.12) and its dependence upon
E/n0 for Ar + Ar+ is shown in Figure 5. The correc-
tion ∆ is of the order of 10−1 and approaches zero in the
low-field limit. This is a reflection of the similar variation
of Q with E/n0 (Fig. 3). Figure 5 also shows the com-
parison of longitudinal diffusion coefficient D‖ with the
corresponding coefficient, calculated by ignoring the heat
transfer (Q ≈ 0, ∆ = 0).

The results of our calculation for the ratio D⊥/K are
shown in Figure 6, where they are compared to the ex-
perimental results of Sejkora et al. [57], Stefánsson and
Skullerud [53] and Schiestl et al. [58], respectively. The
agreement between calculated and measured values is sur-
prisingly good below 1000 Td, but at higher E/n0, the
experimental values fall significantly below the calculated
ones. Small changes in the isotropic cross-section param-
eter m = 2.0–2.3 have little influence on this (Fig. 6).

For comparison, we also show (dotted line in Fig. 6)
results obtained from a moment theory calculation, which
have been carried out by Stefánsson and Skullerud [53],
based on an analytical four-parameter model potential.
From Figure 6 it is evident that the difference between
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MTT results and moment theory calculation became im-
portant at high-field strengths.

3.2 Transport coefficients for Ne+ in Ne

The available cross-sections in the literature for ion trans-
port at moderately small energies are mostly based on
determination of the mobility and subsequent determina-
tion of the momentum transfer cross-section. Momentum
transfer cross-section was converted to the charge trans-
fer cross-section without any isotropic scattering. The
best available data include the mobility measurements of
Hegerberg et al. [54], Helm and Elford [59], of Skullerud
and Larsen [60] and of Basurto et al. [61]. The diffusion
coefficients or characteristic energies have been measured
with high accuracy by Stefánsson [62]. We have performed
for neon a similar analysis as Phelps did for argon [17] ex-
cept that the basis for determining the isotropic part of the
cross-section came from the requirement to fit the avail-
able experimental data for the transverse component of
the diffusion tensor. Of course, the complete set of cross-
sections had to agree with all the available transport co-
efficients in the low energy range (below 2 eV).

At very low energies we allowed the isotropic elastic
scattering to aim towards the polarization limit. The com-
plete set of cross-sections is shown in Figure 7. At the
higher energy end charge transfer is significantly higher
than the isotropic elastic scattering. At even higher ener-
gies one could allow the contribution of isotropic compo-
nent to decrease in a similar way as for argon. We however
do not show these data here as the available diffusion coef-
ficient data do not allow exact determination of the cross-
section at higher energies. However, one may state that
the present cross-sections may be smoothly extrapolated
to the high energy limit of the cross-section set compiled
and recommended by Phelps [63].
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ponents of elastic scattering.
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Fig. 8. Mean energy εL and reduced mobility K0 for Ne +
Ne+ as a function of E/n0, T0 = 294 K. Calculated values
are indicated by lines; (M) experimental reduced mobilities of
Hegerberg et al. [54]; (H) experimental reduced mobilities of
Helm and Elford [59]; (•) experimental reduced mobilities
of Basurto et al. [61]; (◦) calculated mean energies of Skullerud
and Larsen [60].

The predictions based on the proposed cross-sections
are shown in Figure 8 for the mobility and mean energy,
in Figure 9 for the transverse component of the diffusion
tensor normalized by the mobility and in Figure 10 for the
longitudinal component of the diffusion tensor normalized
by the mobility. In all cases agreement is excellent. Hav-
ing in mind that the cross-section set for argon derived
independently gave a very good agreement with the avail-
able data one may conclude that the uncertainty due to
application of MTT is very small and that the proposed
cross-section set is equally reliable.

We should note that it came to our attention that inde-
pendently of this work Phelps and Pitchford with cowork-
ers have attempted to produce a complete set of cross-
sections for the mixture of xenon and neon based on the
mobility data of Urquijo et al. [64] for mixtures of these
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+ Ne+ as a function of E/n0, T0 = 294 K; (M) experimental
values of Skullerud and Larsen [60]; (H) experimental values of
Stefánsson [62].
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Fig. 10. Longitudinal diffusion coefficient D‖ ≡ Dpara for
Ne + Ne+ as a function of E/n0, T0 = 294 K; (•) experimental
values of Skullerud and Larsen [60].

two gases. We only had a limited access to some prelimi-
nary data up to now so comparisons could not be made.

4 Conclusion

The purpose of this paper is to show how transport co-
efficients under the influence of resonant charge transfer
can be approximately treated at high electric fields by
momentum-transfer theory [10,14], with particular refer-
ence to two issues. The first concerns the choice of consis-
tent ion-atom (molecule) integral cross-sections that take
into account differential scattering data and the fact that
symmetric charge transfer collisions are one aspect of elas-
tic collisions. The second issue is whether simple MTT
calculations in presence of charge transfer collisions give
good quantitative estimates of transport coefficients for
real gases, such as Ar and Ne.

While one may argue that the applicability of the stan-
dard MTT developed for elastic conditions could be ex-

pected, this is by no means a trivial result. One should
bear in mind in particular the complex nature of the tem-
perature tensor and of the heat flux vector. Our results
show that present semi-quantitative theory fully explains
the behavior of the diffusion coefficients with E/n0 in pres-
ence of charge transfer collisions.

Both from the viewpoint of the theory and from the
fact that excellent agreement of the results for argon was
achieved between experiments and MTT results we may
regard the results of MTT as highly reliable. This claim
may be extended to all the formulae developed earlier in-
cluding the GER or Blanc’s law (provided that one may be
able to define properly the cross-sections for the mixture of
gases). The theory may be extended to treat non-resonant
(asymmetric) charge transfer and also the transport of the
fast atoms produced in the RCT. These components would
be required in case that one attempts to develop an MTT
based plasma model.

The accuracy of MTT was fully tested for the mobil-
ities and it is certainly not a mere coincidence that the
agreement for both components of the diffusion tensor in
case of argon is also excellent. At the same time we have
verified the anisotropic set of low-energy cross-sections
obtained by Phelps [17]. The excellent agreement of the
predictions based on the set of Phelps with the experi-
mental data for transverse diffusion give support to both
the cross-section set and to the MTT that includes the
resonant charge transfer. Having in mind that the trans-
verse diffusion coefficient is particularly sensitive to the
isotropic scattering component we were able to propose a
set of cross-sections for neon that would satisfy the needs
for data for Monte Carlo or kinetic modeling under condi-
tions of plasma sheaths and low pressure-high E/n0 swarm
and discharge experiments.

The simplified model of isotropic plus backward scat-
tering (as proposed by Phelps for argon [17]) provides a
good and sufficiently accurate foundation for Monte Carlo
simulations and plasma models and may replace the ne-
cessity to determine complete differential cross-sections.
Experimental data for differential cross-sections for scat-
tering of rare gas ions are not sufficiently detailed and
the calculations may involve assumptions of the interac-
tion potentials and complex procedures. Such calculations
may yield good results but certainly have to be verified by
comparisons with the transport data [65].
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Makabe, Jpn. J. Appl. Phys. 33, 4271 (1994)
26. M. Surendra, Plasma Sources Sci. Technol 4, 58 (1995)
27. J.K. Olthoff, Y. Wang, J. Vac. Sci. Technol. A 17, 1552

(1999)
28. J.K. Olthoff, R.J. VanBrunt, S.B. Radovanov, J.A. Rees,

R. Surowiec, J. Appl. Phys. 75, 115 (1994)
29. T.J. Sommerer, M.J. Kushner, J. Appl. Phys. 70, 1240

(1991)
30. K.P. Giapis, T.A. Moore, T.K. Minton, J. Vac. Sci. Tech-

nol. A 13, 959 (1995)
31. J. Matsui, N. Nakano, Z.Lj. Petrović, T. Makabe, Appl.
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