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Abstract. Application of Blanc’s law for drift velocities of electrons and ions in gas mixtures at arbitrary
reduced electric field strengths E/n0 was studied theoretically and by numerical examples. Corrections for
Blanc’s law that include effects of inelastic collisions were derived. In addition we have derived the common
mean energy procedure that was proposed by Chiflikyan in a general case both for ions and electrons. Both
corrected common E/n0 and common mean energy procedures provide excellent results even for electrons
at moderate E/n0 where application of Blanc’s law was regarded as impossible. In mixtures of two gases
that have negative differential conductivity (NDC) even when neither of the two pure gases show NDC the
Blanc’s law procedure was able to give excellent predictions.

PACS. 51.10.+y Kinetic and transport theory of gases – 51.50.+v Electrical properties (ionization,
breakdown, electron and ion mobility, etc.)

1 Introduction

Blanc’s law has been developed many years ago [1] as a
means to combine drift velocities or mobilities of charged
particles in two gases in order to provide data for mixtures
for which data were not available. In principle it is also
possible to apply the law to use initial data for mixtures
in order to obtain data for other mixtures or even pure
gases [2]. The basic form of the Blanc’s law is [1]:

1
Wmix

=
∑
α

xα
1

Wα
, (1.1)

where Wmix is the drift velocity in gas mixture, xα the
concentration of the αth gas in which the drift velocity
is Wα.

However, following the development of accurate exper-
imental techniques [3] it became obvious that, for elec-
trons, Blanc’s law is simply not useful at all. Its applica-
tion for ions was, however, still pursued. The reason was
that mean energies of electrons increase very quickly with
the fields normalized to the gas number density (E/n0),
while ions remain close to thermal conditions for a broad
range of E/n0. The increase occurs at quite different E/n0

for different gases, especially for mean energies between
thermal and few eV. The transport properties of electrons
are very strongly affected by inelastic collisions due to
inefficiency of elastic collisions in energy transfer caused
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by a very small electron to background gas atom mass
ratio. On the other hand for ions the energy balance is
determined by elastic collisions, which have efficient en-
ergy transfer in a broad E/n0 range. In other words for
electrons it is likely that the distribution functions at the
same E/n0 in two gases are quite different and the distri-
bution function for the mixture is different from both. In
that case application of Blanc’s law is not possible. In case
of ions the mean energies remain low for a broad range of
reduced electric fields and therefore distribution functions
are similar. However, rule of thumb was that in both cases
the law is applicable close to the zero field, or to be more
precise when mean energy is close to thermal.

Equation (1.1) has been tested for ions experimen-
tally [4,5] for situation when it is not exactly applicable
i.e. for E/n0 not very close to zero. Since it is practically
impossible to achieve the conditions for which Blanc’s law
is exactly satisfied strategy was to develop a correction
factor δB that could give more reliable results while pre-
serving a simple form of the law itself:

1
Wmix

=
∑
α

xα
1

Wα
+ δB. (1.2)

A number of attempts to predict theoretically the de-
viation δB at higher E/n0 values were published for
ions. Mason and Hahn [6] derived an equation to calcu-
late mobilities in gas mixtures at arbitrary reduced field
strengths. There was an error in the expression for the en-
ergy partitioning. Correcting the error, Whealton et al. [7]
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obtained an equation which is successful in explaining
qualitatively the deviations δB for K+ ions [5] in mix-
tures of He + Ne, Ne + Ar and H2 + N2. This theo-
retical treatment applies only to situations when all the
collisions between ions and gas atoms are elastic and the
collision frequencies are slowly varying functions of E/n0.
The quantitative agreement between the equations and
the experimental values was however still not satisfactory.

The situation for applying Blanc’s law for electrons
was regarded as hopeless for non-thermal electrons. Even
for thermal electrons it was shown [2,8] that a combina-
tion of Blanc’s law and Nernst-Townsend-Einstein relation
needs correction if data for diffusion coefficients are to be
determined [2,8]. The main reason for failure in case of
non-thermal electrons was the fact that electron energy
distribution functions and mean energies for pure gases
and for the mixtures could be very different. However, it
was suggested [2,8] that for high values of E/n0 the dis-
tribution functions may become similar and Blanc’s law
would work well. Under those conditions a number of in-
elastic processes occur, but at some energy ionization be-
comes dominant. Thus the overall energy controlling pro-
cesses have similar energy dependences.

A strategy to use Blanc’s law for electrons for mod-
erate E/n0 with a greater accuracy was proposed by
Chiflikyan [9] (which will be described in greater detail
below). Basically, the idea is to use the data at the same
mean energy rather than the data at the same E/n0. Thus
we shall label the standard form of Blanc’s law as Com-
mon E/n0 (CEON) and Chiflikyan’s approach as Com-
mon Mean Energy (CME).

At the same time Blanc’s law, even in its uncorrected
form, is often used in plasma modeling due to the lack of
data for electron transport. In addition, one may be able
to obtain data for some reactive gases or radicals only in
mixtures and extrapolating such data to pure gas or to
be able to derive cross-sections may employ some form of
Blanc’s law procedure. Thus it is of immediate importance
to establish a method to obtain the data for mixtures of
interest in plasma applications.

In this paper we analyze the application of Blanc’s law
in situations when inelastic collisions are present, i.e. for
arbitrary E/n0 for both electrons and ions, but because
electrons are a more difficult candidate for its applica-
tion all examples will be for electron drift velocities. A
momentum-transfer theory [10,11] is used to obtain an ex-
pression for the deviation δB that is applicable in broader
E/n0 range. In addition, we will derive the basic equa-
tions of the CME procedure, due to Chiflikyan, in quite a
general case.

2 Theory

2.1 Common E/n0 procedure

First, we shall develop the theory for the correction of the
standard (CEON) procedure to employ Blanc’s law. The
idea is to include the effects of inelastic collisions into
the correction to Blanc’s law.

Consider a swarm of particles of charge e and mass
m moving with velocity �v through neutral gas mixtures
under the influence of an applied electrostatic field �E. Let
n(�r, t) be the number density of swarm particles. Sup-
pose that there are several (l) different species of neu-
tral gases present with number densities nα. Let mα and
�vα be mass and velocity of molecules of the αth neutral
gas, respectively. We introduce the standard notation [11]:
n0 =

∑
α nα (number density of the gas mixture), µα =

mmα/(m + mα) (reduced mass), Mα = mα/(m + mα),
M0

α = m/(m + mα), �vrα = �v − �vα (relative velocity of a
colliding swarm-neutral pair), and εα = µαv2

rα/2 (kinetic
energy measured in the center-of-mass reference frame).

Let fmix(�r, �v, t) and fmix
α (vα) be the swarm and αth

neutral gas one-particle velocity distribution function in
the multicomponent mixture, respectively. If only one
of the neutral species (say α) is present, fα(�r, �v, t) and
fα(vα) denote the corresponding velocity distribution
functions. We assume that each neutral gas in the multi-
component mixture has Maxwellian distribution with the
same nonzero temperature T mix

α = T mix, α ∈ Il. With
T α we denote the temperature of one-component mixture
(pure αth gas) and assume that T mix = T α.

Averaging operators used in the development of equa-
tions are defined as:

〈Φ(�v,�vα)〉mix =
1

n(�r, t)

∫
d3�v fmix(�r, �v, t)Φ(�v,�vα),

(2.1)

〈〈Φ(�v,�vα)〉〉mix
α =

1
n(�r, t)nα

∫∫
d3�v d3�vα fmix(�r, �v, t)

× fmix
α (vα)Φ(�v,�vα), (2.2)

〈Φ(�v,�vα)〉α =
1

n(�r, t)

∫
d3�v fα(�r, �v, t)Φ(�v,�vα), (2.3)

〈〈Φ(�v,�vα)〉〉α =
1

n(�r, t)n0

∫∫
d3�v d3�vα

× fα(�r, �v, t)fα(vα)Φ(�v,�vα), (2.4)

where Φ(�v,�vα) is any function of �v and �vα. For the sake
of brevity, we write ε0

α = 〈〈εα〉〉mix
α and ε′α = 〈〈εα〉〉α.

At this point we should discuss the definition of the
mean energies ε0

α and ε′α. With εα we denote the mean
kinetic energy of the swarm-neutral pair in the center-of-
mass reference frame. In that case ε0

α represents the mean
energy in case of the gas mixture. At the same time ε′α is
the mean kinetic energy when swarm of particles moves
through a pure gas α. Evidently ε0

α and ε′α are not equal
for the same value of the reduced electric field E/n0. It is
easy to show that

ε0
α = 〈〈εα〉〉mix

α =
1
2
µα

[
〈v2〉mix +

3kTmix
α

mα

]
, α ∈ Il,

(2.5)

ε′α = 〈〈εα〉〉α =
1
2
µα

[
〈v2〉α +

3kT α

mα

]
, α ∈ Il. (2.6)

The collisional processes that we include in the the-
ory are limited to elastic and inelastic collisions of
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individual swarm particles with normal gas molecules.
A collision frequency να(vrα) for collisions between the
swarm particles and molecules of species α is related to
the cross-section σα(vrα) characterizing the collision pro-
cess by να(vrα) = nαvrασα(vrα). The momentum trans-
fer collision frequency for elastic collisions between the
swarm particles and molecules of species α is denoted
by ν

(m)
α (vrα).

Let I
(in)
α be a set of indices that enumerates all pos-

sible inelastic collisions of swarm particle with molecules
of the gas α, while νsα(vrα), s ∈ I

(in)
α is the correspond-

ing collision frequency. The threshold for these inelastic
collisions is denoted by ∆Es

α, s ∈ I
(in)
α , α ∈ Il. The total

momentum transfer collision frequency is given by

ν
(m)
0α (vrα) = ν(m)

α (vrα) +
∑

s∈I
(in)
α

ν(m)
sα (vrα), α ∈ Il, (2.7)

where ν
(m)
sα (vrα), s ∈ I

(in)
α denotes momentum transfer

collision frequency of collision inducing inelastic process
s ∈ I

(in)
α .

For convenience we shall take collision frequencies
να(vrα) as a function of energies εα:

vrα → εα =
1
2
µαv2

rα ⇒ να(vrα) →
ν̃α(εα) = nα

√
2εα/µα σ̃α(εα), α ∈ Il. (2.8)

It is convenient to introduce collision frequencies η̃α(εα)
normalized to unit number density, i.e. η̃α(εα) =
n−1

α ν̃α(εα).
Under spatially uniform, steady state conditions the

momentum and energy balance equations may be written
in the following forms [11]:

e �E = m 〈�v〉mix
∑

α

Mαnαη̃
(m)
α0 (ε0

α), (2.9)

e �E · 〈�v〉mix =
[
m
〈
v2
〉mix− 3kTmix

]∑
α

MαM0
αnαη̃

(m)
α0 (ε0

α)

+
∑

α

nαΛ̃α(ε0
α). (2.10)

The quantity Λ̃α(εα) is

Λ̃α =
∑

s∈I
(in)
α

∆Es
αη̃sα(εα), α ∈ Il. (2.11)

Here the normalized collision frequency for inelastic pro-
cess (s) is η̃sα, s ∈ I

(in)
α .

In pure gases consisting of one of the mixture compo-
nents (α) we can simplify equations (2.9) and (2.10):

e �E = m 〈�v〉α Mαn0η̃
(m)
α0 (ε′α), α ∈ Il, (2.12)

e �E · 〈�v〉α =
[
m
〈
v2
〉α − 3kT α

]
MαM0

αn0η̃
(m)
α0 (ε′α)

+ n0Λ̃α(ε′α), α ∈ Il, (2.13)

where T α is the gas temperature of the pure αth gas. We
assume that the temperatures T mix and T α, α ∈ Il are
the same.

If vector �E is aligned with z-axis of the reference
frame, elimination of electric field �E between equa-
tions (2.9), (2.10) and (2.12) gives

1

〈�v〉mix
z

=
∑
α

xα
1

〈�v〉αz
+ δB, (2.14)

where

δB =
∑

α

η̃
(m)
α0 (ε0

α) − η̃
(m)
α0 (ε′α)

η̃
(m)
α0 (ε′α)

xα
1

〈�v〉αz
. (2.15)

Equation (2.14) is of the same form as equation (1.2). Note
that, in the absence of reactive collisions mean velocities
〈�v〉mix

z and 〈�v〉αz are equal to the corresponding drift ve-
locities.

When we expand collision frequencies in Taylor series
in the vicinity of the mean energy ε′α we obtain

η̃
(m)
α0 (ε0

α) = η̃
(m)
α0 (ε′α) +

dη̃
(m)
α0

dε′α
δε′α + o(δε′α), α ∈ Il,

(2.16)
where δε′α = ε0

α − ε′α, α ∈ Il. We assume that the Taylor
expansions (2.16) converge rapidly in the neighborhood
of mean energies ε′α. Substituting these expansions into
equation (2.15) leads after some algebra to the following
expression:

δB =
∑
α

xα

1
Ez

− 1
〈�v〉αz

d 〈�v〉αz
dEz

〈�v〉αz
δε′α
dε′α
dEz

. (2.17)

The details of this calculation are given in Appendix A.
This result indicates that the correction δB is determined
by deviation of mean energies ε′α, α ∈ Il, in pure gases
from the mean energies ε0

α, α ∈ Il, of swarm particles
in the gas mixture at the same value of reduced electric
field E/n0.

We can express the deviation from Blanc’s law entirely
in terms of the properties of the swarm particles in pure
components:

δB =

∑
α

1 + mα

2e

〈�v〉α
z

Ez/n0

dΛ̃α

dε′
α

mα

2e

〈�v〉α
z

Ez/n0
Λ̃α(ε′α) + mα (〈�v〉αz )2 d ln〈�v〉α

z

d ln Ez

(
1− d ln〈�v〉α

z

d ln Ez

)−1

× 1
2
µα

{
1 −∑α xα

1
〈�v〉α

z

∑
α xα

Λ̃α(ε′
α)

e(Ez/n0)∑
α xα

1
〈�v〉α

z

∑
α xαM0

α
1

〈�v〉α
z

− 1
M0

α

[
(〈�v〉αz )2 +

Λ̃α(ε′α)
e(Ez/n0)

〈�v〉αz
]}

xα
1

〈�v〉αz
. (2.18)
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The calculation of δB proceeds in a similar manner as
in [7]. The details of this calculation are given in Ap-
pendix B. Equation (2.18) can be recommended as an ex-
pression for finding deviation δB from Blanc’s law in the
presence of inelastic collisions. When inelastic collisions
are not present, equation (2.18) is identical to the devia-
tion from Blanc’s law proposed by Whealton et al. [7]:

δB =
∑
α

(
1 − d ln 〈�v〉αz

d ln Ez

)[
mα (〈�v〉αz )2

d ln 〈�v〉αz
d ln Ez

]−1

× 1
2
µα

[(∑
α

xα
1

〈�v〉αz
∑
α

xαM0
α

1
〈�v〉αz

)−1

− 1
M0

α

(〈�v〉αz )2
]
xα

1
〈�v〉αz

. (2.19)

2.2 Common mean energy procedure for Blanc’s law

Chiflikyan was the first to take advantage of a possibility
to compensate the very different electron energy distribu-
tion functions in application of Blanc’s law for electrons.
The common mean energy approach (CME) [9] as an ana-
log of the Blanc’s law was developed under following as-
sumptions:

1. the basis of Chiflikyan’s theory is the two-term theory
as developed for electron transport and therefore the
applications are limited to the electron mobilities;

2. swarm is stationary and spatially homogeneous;
3. a basic requirement (and limitation) of the theory is

that the average energy of electrons is well below the
lowest excitation threshold of electronic levels. This
condition enables one to neglect the dissociation, exci-
tation, and ionization of electronic states;

4. for convenience it should be possible to represent the
cross-sections for the relevant collision processes by the
power functions.

The CME Blanc’s law for drift velocities of electrons
in homogeneous steady-state low-temperature weakly-
ionized highly non-equilibrium multicomponent gaseous
plasmas has the form [9]:

1 =
∑
α

xα
E′

α/n0

E/n0

[
Wmix(E/n0)
Wα(E′

α/n0)

]±1

, (2.20)

where E′
α/n0 and Wα are the reduced electric field and

drift velocity of electrons in the αth component, E/n0 and
Wmix are the analogous parameters in a mixture and xα

is the fractional concentration of the αth gas component.
It is required that E′

α/n0, Wα, E/n0 and Wmix are to be
taken at the same value of average electron energy. It may
be difficult to accept that both signs in the exponent are
acceptable and lead to reasonable results.

The theory proposed to support the form of the law [9]
is actually based on integral definition of the drift velocity
developed within the two term theory of electron trans-
port. Such form necessitated the assumptions given above

including the power dependence of the cross-section on
the energy. The results were questioned in the literature
on two grounds [12], the presented data were in disagree-
ment with the data that could be calculated on the basis
of available cross-sections and because of the special as-
sumptions that were part of the theory. However, the most
striking result that was presented by Chiflikyan was that
the proposed procedure was able to predict the negative
differential conductivity even in mixtures of gases that did
not show NDC on their own.

The NDC was studied by a number of authors but it
appeared that a combination of a simple theory and model
calculations of Petrović et al. [13] and a more elaborate
theory based on MTT of Robson [14] provided a complete
explanation. However, Shizgal has questioned these expla-
nations by pointing out the NDC in rare gas mixtures [15].
It is interesting to note that in the papers discussing the
Blanc’s law, Chiflikyan also, and independently of Vrhovac
and Petrović [11], gave an explanation of the NDC in mix-
tures of rare gases and suggested that it is in accordance
with the existing explanations of NDC [13,14]. Unfortu-
nately Chiflikyan did not show both the calculated data
for the pure gases and for the mixture, only the data for
the mixture. This made it difficult for his procedure to be
widely accepted and the ability of Blanc’s law to predict
NDC was not appreciated. On the other hand NDC was
show to be a very characteristic kinetic phenomenon that
may be used as test of kinetic theories and that may oc-
cur in a wide range of situations. Any implementation of
Blanc’s law that sought acceptance in plasma modeling
should be able to give predictions of NDC even if con-
stituent gases do not show it.

2.2.1 Theoretical basis for CME procedure

We shall show that the final result of Chiflikyan (see
Eq. (2.20)), which he labels as analogous of the Blanc’s
law may be developed on the basis of the MTT. The as-
sumptions in our development are:

1. we will not limit ourselves to the transport of electrons.
We are able to show that the final result of Chiflikyan
is valid for the ions as well;

2. swarm is also assumed to be stationary and spatially
homogeneous;

3. we are not limited to elastic collisions only. Inelastic
collisions are included in the general theory.

We shall consider momentum and energy balance sepa-
rately. First, the momentum balance will be used to derive
the mixture law for mobility. The basic idea of the further
development is strictly formal. We want to eliminate in
equation (2.9) the momentum transfer frequency η̃

(m)
α0 . In

order to achieve that, equation (2.12) will be employed.
The energies, which are used in equations (2.9) and (2.12)
to calculate the momentum transfer frequency η̃

(m)
α0 are

not the same. We assume that there is unique correspon-
dence between E/n0 and mean energies ε′α. In that case
we may choose the E′

α in equation (2.12) that would cor-
respond to ε′α which is equal to the mean energy ε0

α of the



J.V. Jovanović et al.: Application of Blanc’s law at arbitrary electric field to gas density ratios 95

swarm particles in the gas mixture and which corresponds
to the value of electric field of E (see Eq. (2.9)). We then
arrive at

eE′
α = mWα(E′

α)Mαn0η̃
(m)
α0 (ε0

α), α ∈ Il. (2.21)

If we use equation (2.21) to eliminate the momentum
transfer collision frequency η̃

(m)
α0 in equation (2.9) and af-

ter some simple algebra one obtains:

1 =
∑
α

xα
E′

α/n0

E/n0

Wmix(E/n0)
Wα(E′

α/n0)
. (2.22)

So to summarize, in this equation the drift velocity for the
mixture at a given E/n0 may be obtained from the drift
velocities Wα for the components α obtained at E′

α/n0

which correspond to the same mean energy as in the mix-
ture.

In further development we follow the same procedure
as in the previous considerations. Equation (2.13) may
be written for the energy balance of the swarm in gas α,
with electric field E′

α chosen so that the mean energy ε′α
of swarm in gas α, is the same as the mean energy ε0

α in
the gas mixture which corresponds to the electric field of
E in equation (2.10):

eE′
αWα(E′

α) =
[
m〈v2〉α(E′

α) − 3kT α
]

× MαM0
αn0η̃

(m)
α0 (ε0

α) + n0Λ̃α(ε0
α), α ∈ Il. (2.23)

Using equation (2.23) we eliminate the momentum trans-
fer collision frequency η̃

(m)
α0 in equation (2.10).

From (2.5) and (2.6) it follows that

m〈v2〉mix − 3kTmix = m〈v2〉α(E′
α) − 3kT α

=
2

Mα

[
ε0

α − 3
2
kTmix

]
, α ∈ Il.

(2.24)

And after some simple algebra from (2.10), (2.23)
and (2.24) we obtain:

1 =
∑
α

xα
E′

α/n0

E/n0

Wα(E′
α/n0)

Wmix(E/n0)
. (2.25)

The procedure of applying and testing this mixture law
would consist of preparing correspondence between E/n0

and mean energy for all constituents and for the mixture
and choosing the corresponding drift velocities to enter
into the mixture law. This is certainly more complex than
the standard form of Blanc’s law and may not be appli-
cable in case when one has only the data for drift veloci-
ties for pure component gases and not the data required
to estimate the mean energies. Nevertheless it is worth
checking whether this procedure would be useful in fluid
modeling of plasmas where one may be able to prepare
the tables ahead of simulation and also to use some other
transport coefficient such as D/µ as an equivalent of mean
energy.

 

 

Fig. 1. Calculated drift velocities for electrons in 1% N2 + 99%
Ar mixture versus E/n0. Symbols show values calculated from
equation (2.25) (�) and equation (2.22) (©) (CME). The doted
curve was calculated using the two-term Boltzmann equation;
the dashed curve is from standard Blanc’s law calculations
(Eq. (1.1)); the solid line is from equations (1.2) and (2.18)
(CEON); and the dot-dashed line is from equations (1.2) and
(2.19) (elastic collisions used in the correction).

3 Calculations and discussion

We have made a number of calculations for binary mix-
tures of real gases in order to verify the application of
different forms of Blanc’s law. Calculations of drift veloc-
ities have been performed by a standard two-term theory
(2TT) [8,16,17] with the cross-sections for gases from the
recommendations of the JILA Data Center [18]. The calcu-
lated data were used with one of the versions of Blanc’s law
by using different combinations of gases and mixture com-
positions. We have performed calculations for electrons in
He + Kr, Ar + N2, CH4 + Ar and O2 + N2 gas mixtures.

The most difficult case for application of Blanc’s law
in general is the combination of atomic gas where inelas-
tic collisions have high threshold (11 eV in case of Ar)
and some molecular gas where vibrational and rotational
excitation control electron energy at much lower energies.
First, we consider what happens when a small amount of
molecular gas is added to argon. The drift velocities of
electrons in 1% N2 + 99% Ar gas mixture are shown in
Figure 1. Solid squares are the results obtained by solv-
ing energy balance equation (2.25), and open circles are
the results obtained by solving momentum balance equa-
tion (2.22). Results obtained when equations (1.2) is cor-
rected by (2.18) are in excellent agreement with two-term
solution of the Boltzmann transport equation and calcu-
lations based on Chiflikyan’s CME approach (Eq. (2.25)).
All the corrected methods could predict the NDC in gas
mixtures, even though NDC is not present in pure gases.
Results obtained by using the term (2.19), including elas-
tic collisions only, are in poor agreement with the cal-
culated data for mixtures which shows that in Ar + N2

mixture, inelastic collisions are a necessary condition for
NDC to occur.

Two approaches in applying Blanc’s law are illustrated
in Figure 2, which shows mean electron energies in pure
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Fig. 2. Comparison of calculated electron mean energies versus
E/n0 in Ar (dashed curve), N2 (doted curve) and 1% N2 + 99%
Ar mixture (solid line).
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Fig. 3. Comparison of EEDF at E/n0 = 2.2 Td in Ar (dashed
curve), N2 (doted curve) and 1% N2 + 99% Ar mixture (solid
line).

gases and in gas mixture. The standard procedure of
Blanc’s law (Eq. (1.2)) involves combination of drift ve-
locities at the same value of E/n0 (point A for Ar and
point B for N2) to get data for the gas mixture (point X).
The values of mean energies (points A and B) are about
3.7 and 0.7 eV (respectively) at 2.2 Td and the electron
energy distribution functions (EEDF) are quite different
(Fig. 3). But if we consider the same value of mean en-
ergy, at the point X which is 1.2 eV, the corresponding
value of E/n0 in Ar is 0.25 Td (point C), while in N2 the
corresponding value is as high as 45 Td (point D). EEDF
for these very different values of E/n0 show similar be-
havior for both pure gases and for the mixture (Fig. 4).
This leads to correct predictions of drift velocities in the
gas mixtures calculated by using CME procedure as em-
ployed in formula (2.20).

As shown in Figure 5, for noble gases (such as He
and Kr) which have high excitation thresholds, correction
of Blanc’s law that neglects inelastic collisions is reason-
able at E/n0 values considered here. The results presented
here show that electron drift velocities calculated by us-
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Fig. 4. Comparison of EEDF in Ar at E/n0 = 0.25 Td (dashed
curve), N2 at E/n0 = 45 Td (doted curve) and 1% N2 + 99%
Ar mixture at E/n0 = 2.2 Td (solid line).

 

 

Fig. 5. Comparison of calculated and measured electron drift
velocities for 7% He + 93% Kr mixture versus E/n0. The open
circles are experimental results from [12]; the solid squares are
from present calculations by using the Chiflikyan’s CME pro-
cedure (Eq. (2.25)); the doted curve was calculated using the
two-term theory; the dashed curve is from standard Blanc’s
law (Eq. (1.1)); the solid line is obtained in CEON approach
by using equations (1.2) and (2.19).

ing (2.19), which are in excellent agreement with measured
drift velocities, drift velocities by two-term theory, and the
method proposed by Chiflikyan (Eq. (2.25)). The present
results also show, that there is a very small effect of NDC,
and that some inelastic process is not always required for
NDC [11,15,19]. Helium, which is the gas with a lower
abundance in the mixtures with krypton or xenon, con-
trols the mean energy by elastic collisions. Thus the elec-
tron to helium mass ratio, which is much more favorable
for the energy transfer than that of heavier gases, acts in
such a way that the elastic collisions with helium play the
role of inelastic collisions [11].

Figure 6 shows calculated drift velocities of electrons
for 97% Ar + 3% CH4 gas mixtures using the same meth-
ods mentioned above. Methane has a strong NDC in a
wide range of E/n0. It is evident that at lower E/n0
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Fig. 6. Comparison of calculated electron drift velocities ver-
sus E/n0 for 97% Ar + 3% CH4 mixture. Symbols show val-
ues calculated in CME approach from equation (2.25) (�) and
equation (2.22) (©). The doted curve was calculated by using
the two-term approximation; the dashed curve is from standard
Blanc’s law calculations (Eq. (1.1)); the solid line is obtained
by using equations (1.2) and (2.18) in CEON approach.
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Fig. 7. Comparison of calculated electron drift velocities ver-
sus E/n0 for 40% O2 + 60% N2 mixture. Solid squares (�) show
values calculated from equation (2.25) in CME approach. The
doted curve was calculated by using the two-term theory; the
dashed curve is from standard Blanc’s law (Eq. (1.1)); the solid
line is obtained by using equations (1.2) and (2.18) in CEON
approach.

Blanc’s law without correction (Eq. (1.1)) disagrees sig-
nificantly, while at higher E/n0 agreements between all
methods is excellent.

Our final example is 40% O2 + 60% N2 gas mixtures
and results are shown in Figure 7. Because of similar en-
ergy dependence of collision frequencies there is little dif-
ference between drift velocities for the two pure gases so
all forms of Blanc’s low provide good results.

In all cases it is evident that the pure Blanc’s law
(Eq. (1.1)) at low E/n0 is not valid. All methods, except
the basic Blanc’s law and the Blanc’s low with correction
that includes only elastic collisions, predict the NDC. Be-
cause of the first derivative, application of Eq. (2.18) is not
always simple but it is possible. At lower values of E/n0

we suggest equations (1.2) and (2.18). At higher values of
E/n0 pure Blanc’s law (Eq. (1.1)) is a good approxima-
tion.

4 Conclusion

In this paper we have analyzed two strategies to correct
Blanc’s law in order to determine the drift velocities of
charged particles in mixtures of gases. The need for sim-
ple while sufficiently accurate technique is certainly high
due to the requirements for modeling of a broad range of
plasma technological devices. We have derived the correc-
tion to standard common E/n0 version of the law that in-
cludes inelastic processes and we have also given a broader
theoretical basis for the common mean energy technique
of Chiflikyan. Numerical examples were made for several
gases that show or do not show NDC and in all cases
the best results were obtained by CME procedure with
negative exponent, i.e. from the energy balance equation
and also by CEON procedure with correction for inelastic
collisions.

The CME procedure requires the knowledge of mean
energy while CEON procedure requires application of the
inelastic terms (rate coefficients). The numerical proce-
dure involved in CEON is much more complex and may
lead to some ambiguities especially if fitting of experimen-
tal data in order to perform smoothing is involved. Thus
we would recommend the CME procedure developed by
Chiflikyan as the best choice. Neither of the two tech-
niques is as simple as the basic Blanc’s law procedure but
CME comes close.

The uncorrected Blanc’s law cannot be used with any
degree of reliability for electrons at moderate (and even
small) values of E/n0. In no cases it was able to predict
the NDC unless it existed in at least one of the constituent
gases. However, for high E/n0 even the basic Blanc’s law
becomes as good as any technique since the differences be-
tween mean energies for different gases at the same E/n0

are small. This is certainly important as it may not be
expected that a broad range of experimental data will be
available for those conditions.

The second CME procedure, with positive sign in the
exponent, which was obtained from the momentum bal-
ance was somewhat inferior to two other, corrected, tech-
niques. However qualitatively it was able to predict NDC
in difficult cases when basic Blanc’s law failed.

Our results indicate that the objections to the first
paper presenting CME procedure were mainly result of
poor cross-sections used by Chiflikyan in the original pa-
per [9,20]. Even with a rather complicated theory that
gave results only for special forms of cross-sections it was
obvious that the procedure itself has a much broader scope
than that defined by the assumptions of the theory. Our
theory gives a firmer ground and broadens the scope cov-
ered by the assumptions of the theory. Yet even in that
case it is obvious that the CME procedure has applicabil-
ity that is much broader. The same may be said of the
corrected CEON procedure.
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Appendix A: Derivation of equation (2.17)

When we substitute equation (2.16) into equation (2.15),
we obtain

δB ≈
∑
α

1

η̃
(m)
α0 (ε′α)

dη̃
(m)
α0

dε′α
δε′αxα

1
〈�v〉αz

. (A.1)

Differentiation of equation (2.12) with respect to electric
field Ez gives

e

mn0Mα
= 〈�v〉αz

dη̃
(m)
α0

dε′α

dε′α
dEz

+ η̃
(m)
α0 (ε′α)

d 〈�v〉αz
dEz

, α ∈ Il.

(A.2)
Using equations (2.12) and (A.2) we obtain

1

η̃
(m)
α0 (ε′α)

dη̃
(m)
α0

dε′α
=

1
Ez

− 1
〈�v〉αz

d 〈�v〉αz
dEz

dε′α
dEz

, α ∈ Il. (A.3)

This leads immediately to equation (2.17).

Appendix B: Derivation of equation (2.18)

Except for minor technical difficulties, our strategy is the
same as the one Robson and coworkers followed in refer-
ence [7] to establish the correction δB in the presence of
elastic collisions. The starting point of our derivation is
equation (A.1). We first write the expression for the en-
ergy partitioning in the presence of inelastic collisions [11]:

ε′α = 〈〈εα〉〉α =
1
2
mα (〈�v〉α)2 +

3
2
kT α

− 1
2M0

α

Λ̃α(ε′α)

η̃
(m)
α0 (ε′α)

, α ∈ Il. (B.1)

By differentiation of equation (B.1) with respect to Ez ,
we obtain

dε′α
dEz

=
mα 〈�v〉αz

d 〈�v〉αz
dEz

1 +
1

2M0
α

dΛ̃α

dε′α
η̃
(m)
α0 (ε′α) − Λ̃α(ε′α)

dη̃
(m)
α0

dε′α(
η̃
(m)
α0 (ε′α)

)2

, α ∈ Il.

(B.2)

Inserting equation (B.2) into equation (A.2), we get with
the help of equation (2.12)

1

η̃
(m)
α0 (ε′α)

dη̃
(m)
α0

dε′α
=

1 +
mn0Mα

2eM0
α

〈�v〉αz
Ez

dΛ̃α

dε′α

mn0Mα

2eM0
α

〈�v〉αz
Ez

Λ̃α(ε′α) + mα (〈�v〉αz )2
d ln 〈�v〉αz
d ln Ez

1 − d ln 〈�v〉αz
d ln Ez

, α ∈ Il.

(B.3)

From equations (2.5) and (2.6) we get immediately

δε′α =
1
2
µα

(〈
v2
〉mix − 〈v2

〉α)
, α ∈ Il. (B.4)

From equations (2.10) and (2.12), the mean-square veloc-
ity
〈
v2
〉mix can be evaluated:

〈
v2
〉mix

=

〈�v〉mix
z −∑α xα

Λ̃α(ε0
α)

Mαmν̃
(m)
α0 (ε′α)

1
〈�v〉αz∑

α xα
M0

αν̃
(m)
α0 (ε0

α)

ν̃
(m)
α0 (ε′α)

1
〈�v〉αz

+
1
m

3kTmix.

(B.5)
Elimination of electric field Ez between equations (2.12)
and (2.13) gives

〈
v2
〉α

=
1

M0
α

(〈�v〉α)2 +
1
m

3kT α − Λ̃α(ε′α)

mMαM0
αν̃

(m)
α0 (ε′α)

,

α ∈ Il. (B.6)

Substituting expressions (B.5) and (B.6) into the equa-
tions (B.4) leads after some algebra to the following
formula:

δε′α =
1
2
µα

×
[(

1 −
∑

α

xα
η̃
(m)
α0 (ε0

α)

η̃
(m)
α0 (ε′α)

1
〈�v〉αz

∑
α

xα
Λ̃α(ε0

α)

mMαη̃
(m)
α0 (ε′α)

1
〈�v〉αz

)

×
(∑

α

xα
η̃
(m)
α0 (ε0

α)

η̃
(m)
α0 (ε′α)

1
〈�v〉αz

∑
α

xα
M0

αη̃
(m)
α0 (ε0

α)

η̃
(m)
α0 (ε′α)

1
〈�v〉αz

)−1

− 1
M0

α

(〈�v〉α)2 +
Λ̃α(ε′α)

mMαM0
αη̃

(m)
α0 (ε′α)

]
, α ∈ Il. (B.7)

We can simplify equation (B.7) by expanding the collision
frequencies Λ̃α in Taylor series of δε′α similar to equa-
tion (2.16)

Λ̃α(ε0
α) = Λ̃α(ε′α) +

dΛ̃α

dε′α
δε′α + o(δε′α), α ∈ Il. (B.8)



J.V. Jovanović et al.: Application of Blanc’s law at arbitrary electric field to gas density ratios 99

Substituting equations (2.16) and (B.8) into equa-
tion (B.7), we obtain

δε′α =
1
2
µα

[(
1 −

∑
α

xα
1

〈�v〉αz
∑
α

xα
Λ̃α(ε′α)

e(Ez/n0)

)

×
(∑

α

xα
1

〈�v〉αz
∑

α

xαM0
α

1
〈�v〉αz

)−1

− 1
M0

α

(
(〈�v〉α)2 +

Λ̃α(ε′α)
e(Ez/n0)

〈�v〉αz
)]

+ Rα, α ∈ Il.

(B.9)

Quantity Rα denotes all other terms which include deriva-
tives of collisional frequencies η̃

(m)
α0 and Λ̃α. Since these

terms provide higher order corrections to Blanc’s law,
we neglect them. Finally, using equations (A.1), (B.3)
and (B.9) we readily obtain expression (2.18).
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