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Transport theory of granular swarms
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The transport of trace granular gasvarn) in a carrier granular fluid is studied by means of the Boltzmann-
Lorentz kinetic equation. Time-dependent perturbation theory is used to follow the evolution of the granular
swarm from an arbitrary initial distribution. A nonhydrodynamic extension of the diffusion equation is derived,
with transport coefficients that are time dependent and implicitly depend on the wave vector. Transport coef-
ficients of any order are obtained as velocity moments of the solutions of the corresponding kinetic equations
derived from the Boltzmann-Lorentz equation. For the special case of the initial distribution of swarm particles,
transport coefficients are identified as time derivatives of the moments of the number density. Finally the
granular particle transport theory is extended by the introduction of the concept of non-particle-conserving
collisions.
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[. INTRODUCTION that both the mutual interactions between the swarm particles
and the influence of the swarm on the background fluid can
During the past decade a lot of effort has been put intdoe neglected. The behavior of the swarm patrticles is there-
understanding of the behavior of granular media, due to theifore determined solely through collisions with the particles
importance in various industrial and geological processesf carrier granular fluid and the external force field.
[1-4]. In modern technology, the blending of granular mate- To develop the basic features of the theory of granular
rials is an unavoidable step. Granular media are difficult taswarms and to simplify the analysis we consider the inelastic
mix. At present, physicists do not know how to predict hard sphere moddlll] only. The system of inelastic hard
priori whether two powders will mix or segregate when spheres(IHS’s) represent an idealized model foapid
stirred together in a given blender. There are two dominangranular flows where the dynamics of individual macro-
mixing mechanisms, both of them not yet completely underscopic particles is controlled by inelastic binary collisions,
stood. Convection is by far the faster and more efficient oneeparated by ballistic propagation over a typical mean free
for grains(as well as for fluids Diffusion is much slower path. Such flows do obey the conservation laws of mass and
than convection, but it occurs in all directions. The relativemomentum, and can therefore be considered as fluids. How-
importance of each mechanism is determined by the initiabver, energy is not conserved.
distribution of species in the mixer. In the absence of segre- The analytical method we follow parallels our previous
gational tendencies between dissimilar particles, diffusiorwork on charged particle transpoiftl?]. Using time-
will eventually lead to a completely homogeneous mixture;dependent perturbation theory generalized to hon-Hermitian
when diffusion dominates, the mixing problem is reduced tooperators, we construct the transport theory of swarm par-
that of finding relevant parameters that minimize the blendiicles as an initial value problem for the Boltzmann-Lorentz
ing time. Better understanding of the transport process ifkinetic equation. Transport theory for granular swarms is
granular mixtures should help in predicting whether a giversomewhat more complicated than the analogous theory for
flow will mix or segregate its constituents. charged particle swarms. The inherent time dependence of
The case of polydisperse granular systems has been stutlte reference state for carrier granular fluid introduces a new
ied by several authors. Most of the previous theoretical workime scale[13—-15 and requires some special attention in
has been limited to the case of slightly inelastic hard spheresonstructing the transport theory of granular swarms. Our
Jenkins and Mancinf5] and Zamankhai6] developed a definition of transport coefficients for swarm particles is ap-
kinetic theory, based on revised Enskog theory, in order tglicable for an arbitrary nonstationary but homogeneous ref-
predict the transport properties of mixtures of smooth.erence state of the surrounding granular fluid. The main re-
slightly inelastic spheres. Recently, Gagrad Dufty[7] have  sult of this paper is a generalized diffusion equati@DE)
provided a description of hydrodynamics in binary granularvalid for all times, with an infinite set of transport coeffi-
mixtures at low density, valid over the wide parameter rangecients which are expressed in terms of the solutions of a
(mass ratio, diameters, concentrations, inelasticity paramhierarchy of coupled linear integrodifferential equations.
eters. Referencef8—10] examine the efficiency of diffusion The plan of the paper is as follows. In the remainder of
as a mixing-segregating mechanism in granular materials. the Introduction we review the elements of kinetic theory
In this paper we have developed the transport theory for aelevant for the subsequent discussions. In Sec. Il the initial
binary mixture in which one of the componerisvarm is  value problem for the Boltzmann-Lorentz kinetic equation is
present in the tracer concentration. For the purposes of thistroduced and the corresponding transport theory is devel-
theory a granular swarm is defined as an ensemblad#-  oped along lines which are a generalization of the perturba-
pendentest particles moving in a background granular fluid.tive method developed ih12]. In Sec. Ill we derive the
Swarm particle concentrations are assumed sufficiently lommonhydrodynamic extension of the diffusion equation and

1063-651X/2002/66)/05130212)/$20.00 66 051302-1 ©2002 The American Physical Society



VRHOVAC, ARSENOVIC AND BELIC PHYSICAL REVIEW E 66, 051302 (2002

establish the connection between swarm particle flux andoefficient of normal restitutione, while the analogous
transport coefficients in the presence of the collision pro-quantity for collisions among fluid particles will be denoted
cesses which do not conserve the number of swarm particleby «,. Both coefficients have values<Qv,ag<1, with the
Section IV is devoted to the analysis of the long-time behavvalue of unity corresponding to the elastic limit.

ior of transport coefficients. Finally, in the Conclusion, we  The revised Enskog kinetic equation for the one-particle
summarize our main results. Some technical details of thgjistripution function f(r,0,t) of the swarm particles is

calculations are given in the Appendixes. (16,17
Kinetic equation g - a9 . 0 (P IS (1.0)
. . . . —+tv-—=+ta —=|f(r,v,)= r,,t), .
We consider swarm particles of massn a granular fluid gt ar v ( )= el f )

whose particles have masg,. All particles are smooth hard
spheres ¢=3) or disks |=2). Collisions between swarm
particles and fluid particles are characterized bgoastant whereJg is the Enskog collision operator given by

JE[f](F,J,t)=;d‘1j d51J de(e-v,)0(e-v,)[a 2x(r,r—aelnny)f(r,u’ t)fo(r—oe,v,t)

—x(r,r+ae|n,ng)f(r,u,t)fo(r+oe,vy,t)], (1.2

anda is the acceleration due to the extertigtavitational  bution function fo(r,v,t) obeys anindependentonlinear
field. Here,fo(r,v,t) is the one-particle distribution function Enskog equation for inelastic particles. All properties of the
for the surrounding granular fluid) is Heaviside step func- surrounding fluid are assumed to be prescribed. For simplic-
tion, € is unit vector pointing from the center of the fluid ity, here we will assume that the carrier granular fluid is in
particle to the center of the swarm particle at contact, andhe homogeneous cooling st4teCS) described by a distri-
o= (0+0y)/2, whereo and o, are the diameters of swarm Pution of the form
and fluid particles, respectively. The primes on the velocities

- > NN - > > _ v
denote the initial valuesu(,v;) that lead to ¢,v,) follow- fo(r,v,t)=fy(v,t)=ngv, d(t)¢[m , (1.9
ing a binary collision: 0
_ 12 ; ;
g (@A Ll e o iles t im, ks i the Boltzmann consant, ant
v —U—m(e'vr e, Ul—vl—m(e'vr)e. » K )

is the scaling function. The granular temperatdigt) is

1.3 defined in the usual way:

In the above expressions=uv—v,; andA=mg/m. Finally, d 1 i

- - . . . . . el _ - 2
x[r.r1|n(t),ny(t)] is the pair correlation function of elastic 5 nOkBTO(t)_f dv 5 mov“f(v,b). (1.9
hard spheres in a spatially nonuniform equilibrium state.

The quantityx[n,no] is a functional of the local partial The HCS has been extensively studig®—21 and used,
densitiesn(r,t)=fdv f(r,v,t) andny(r,t)=fdv fo(r,v,t).  because of its simplicity, as a reference state to build up
This implies that x[n,ny] and, consequentlyJe[f] are theories for nonhomogeneous states. As indicated by Eqg.
highly nonlinear functionals of through this density depen- (1.4) all the time dependence of the distributidp takes
dence. Since density-functional theor[@s8] are able to re- place through the granular temperatiiigt). This tempera-
liably reproduce the pair correlations in the fluid phase foundure decreases obeying Haff's |4&2,23
in computer simulations, we will takg[n,ng] as a known
functional.

The swarm particles diffuse in and are convected by the
granular fluid. Their motion is also influenced by the gravi-
tational field. The presence of a macroscopic flow of back-The characteristic time of homogeneous cooliyg,can be
ground fluid significantly modifies the transport properties,determined from the second moment of the nonlinear
as swarm particles are now advected with the bulk motion oEnskog-Boltzmann equation for a dense system of inelastic
the fluid and generally mix by convective action at a muchhard spherefl9]. The explicit form of the scaling function
greater rate. In the kinetic theory of swarms a great simpli-¢ is only known in the first Sonine approximati¢h9].
fication is possible because the influence of swarm particles The simplifying features of the swarm problem allow us
on the background fluid is negligible. Therefore, the distri-to use the Boltzmann-Lorentz collision operator

-2

To(t)=To(0) (1.6

+ —
1 T
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s> —4-1 - 22 s s e where(bd(z;,t) is the spatial Fourier transform of the one-
I v.H=x(No)er fdvlj de(e-v,)0(e-vy) particle distribution function
XLa (0D (w1 (& t)—fdre 9T, 0t). 2.2
—f(r,u,)f(vy, 0], 17

In Eq. (2.1) the operatotZ4(t) is
instead of the Enskog collision operatar2). The frequency
factor x(ng) is a constant that has been factored out of the
collision integral. Indeed, the covolume effect and theWI,[h
screening effect responsible for modification of the binary-
collision frequency are both due to the presence of back- P
ground particles, which we assume to be at the HCS, with a M(t)= —a. —+J(1), (2.9
constantdensityn,. dv

The equilibrium radial distribution function at contagis o

independent of particle collisional properties and may be cal- Pg=—iq-v. (2.5
culated from approximate formulas. The expression for the
radial distribution at contact for mixtures of hard spheres ~ For the sake of compact notation, we introduce an abstract
(d=3) that agrees best with numerical simulations is that oHilbert spaceH to represent any functiog of veIOC|tyv In
Mansooriet al.[24]. Using the assumption that swarm par- other words, we conside(v) as the velocity-space repre-
ticles are very sparse, with density<ng, it can be written sentation of the vectd) e H, i.e., ¢(5)=<5|¢>, which is

as standard notation borrowed from quantum mechafBs.
) 5 In Hilbert spaceH, the scalariinnen product between two
1 3 & oo 18 ((roo) arbitrary vectorg¢) and|y) is defined as

-6 2(1-£6)? ¢ 2(1-£9°

Li(t)=M(t)+7P;, 2.3

x(Ng)=

<ﬂ@=f® ——* (V) Y(v). (2.6
(1.8 f(
wheregpz(w/G)nocrg, p=223. According to Eq.(2.6) we have
The collision operatord depends on time through
f,(v,t). The important feature is that operatbis thelinear I=f dvf X lv){(v| 2.7
operator which acts ohonly through itsy dependence. Op- H(v, )
eratorJ is local in space and in time. and
A freely evolving background fluid of IHS'’s, prepared
initially in a HCS, is unstable against long-wavelength spa- <5|5’>=fH(J’,t)6(J—J’), 2.9

tial fluctuations and eventually ends up in a state with inho-

mogeneities in the flow fieldio(r,t) (vortices and in the \yherei is the unit operator and is the delta function.
density fieldny(r,t) (clusterg [20,25—29. In the present pa- Likewise, a formal correspondence between operators
per we are concerned only with the transport processes af(t), M(t), andP; and linear operators on Hilbert space
granular swarms which precede the clustering of the back can be established:
ground fluid.

M) —Ho(t), Pi—H,
II. INITIAL VALUE PROBLEM

t)+ Ha(t)=Ho(t)+H" 2.9
In this section we introduce the initial value problem for Lq)=MU+Pg—Hg)=Ho(U)+ q 29

the Boltzmann-Lorentz kinetic equation and develop its for- . Y

mal solution. We first write the kinetic equatidi.1) with ~ For instance, the convective operatdf.=—iq-v acts on
the Boltzmann-Lorentz collision operatdt.7) in Fourier  vector|y¢) e H, according to

space. In this work we study the solution of this equation for

a system of infinite volume, assuming that the one-particle
distribution functionf(r,v,t) and its derivatives all vanish at Hglu)= ~ig-0)lo ). ) e,
large r. This allows us to apply Fourier transform to Egs. (2.10

(1.1) and(1.7) to obtain R
wherev is the vector operator defined by its components

D = e W i=1,...d, along d orthonormal axes, ando;, i
(,D=Lg(OPg(v,0) @D =1,... d, are the usual multiplicative operatd0]. From
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Egs.(2.10 and(2.8) it follows that the velocity-space repre- | et U(t,t,) be the evolution operator corresponding to
sentation of the Hilbert space vectdr|4) is the unperturbed operatdt,(t); consequently, the operator
Uo(t,to) satisfies the differential equation

=—iq-ve(v). (2.12)

e(v)=(v|H;

N N N N N
After these technical preliminaries, we proceed to con- ZtY0(t,to) =Ho(1)Uo(t,to) = Uo(t,to) Ho(1),
sider an abstract initial value problem

J ~ | Oo(to,to):i\. (218)
S| Pa(D)=Ha([Pg(1),  [P4(to))=[Pg),  t=to.

(2.12

The evolution operatdd 4(t,tp) can be expressed in terms of
the operatoiS;(t,to) defined as

Let the linear operatoﬂ,i(t,s) map the solutioj®4(s)) at ~ -0 a.
time s to the solution|d4(t)) at timet=s: Uq(t,to) =Uo(t,1o) Sy, to)- 219
From Egs.(2.19, (2.18, and(2.19 it follows that the time

|¢5(t)>:ui(t’s)|¢5(s)>' t=5=1,. (213 dependence cﬁd(t,to) is given by

The uniqueness of the solution of .12 implies that the 9. o A A
family of evolution operator$U(t,s)[t=s=t,} satisfies Zoa(tto) =Pg(DS4(tto),  Sqltosto)=1. (2.20

Ug(t,9)Ug(s,r)=Uqg(tr),  t=s=r=ty, Here the operatoPg(t) is a perturbation operatdi in the
. . “interaction picture”:
Ugt,H) =1, t=t,. (2.19
A Pa(t)=U0g"(t,to) HUo(t,to). (2.2
Furthermore, the evolution operator famifyJ4(t,s),t
=s=ty} governing Eq(2.12 satisfies following differential Equation(2.20 is equivalent to the integral equation
equationg 31]:

i R Si(t, to)—l+f dty Pg(ty)Ss(ty,to), (2.22
q(t S)= Hq(t)U ;(t,s)= Uq(t s)H q(t) Ug(s,s) =1,

which can be solved by iteratigin powers ofﬁ’d), yielding

Og(t,5)=—Ug(t,s)Hg(s)= —Hg(s)U4(t,s), o
’ T T Sttt =1+ > §P(t10), (2.23

s

Ug(t,t)=1. (2.19

where

Here, howevert:la is not a Hermitian operator. Indeed, it

Al R t L o1 .
is obvious that the convective operatebg is anti-Hermitian, S%p)(t,to): ft dty Pd(tl)ﬁ dt, Pg(ta) - - J’t dt, Pg(tp),
0 0 0

=—(ylRie)*, [w)le)eH, (216 p=1. (2.24

where the asterisk represents complex conjugation. From this result, with the aid of definition2.19 and 2.21,

we get the following expansion fcﬁda(t,to):
Time-dependent perturbation method

In this section, we formulate the transport problem of O:(t,tg) =00t to) + E (p)(tt ),
. . . . . qltto 10 0
swarm particles starting from the kinetic equation and use p=
the time-dependent perturbation theory to determine the evo-

lution operatorJ;(t,to), 0O (t,t0)=Uq(t,to), (2.29

(1)) =04t to)| DY), t=tq, 2.1 . t ot o1

| 4(0) a( 0l q> 0 (2.17 U% (t.tg)= f o, 1dt2“‘fp 1dtpU(O)(t,t1)
t t t

which describes the time evolution of the swarm particles in ° ° °

accordance with the kinetic equati¢2.12). Sinceﬂa is not (;
a Hermitian operator, it is obvious that the evolution operator G
ri

Uj(t,to) is not unitary.

0Oty 1) H é' - 0(0)(tp—lvtp)

Oty to), p=1. (2.2
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Before finishing our formal manipulations, we still have
to express the distribution functidd(t)) in terms of the

convective operatoﬂé. Using Egs.(2.17) and (2.25, one
obtains the expansion ¢ (1)),

|<I>a<t>>:p20 [ P(1)), t=t (2.27
where
2P 1)=0P(tt0)| @),  t=to. (2.29

Inserting an explicit form of the convective operat%lé=

—i(iz; into Eq. (2.26 and by using Eqs(2.27) and (2.28
we find that the vectof®(t)) can be expressed as

t=t,,

(2.29

|<I>a<t>>=p20 (—iq)POl%P (1)),

where

J0))=00tt0)|0g), (230

%
2P (1)) = fdtlf dt,- - ftp "dt, 0Ot ty)0

0O (t,_y,tpv

)| D),

x 0Ot ty)v- - -

p=1. (2.3)

x 0O,
The quantities €iq)P andllxép)(t)» are tensors of rang.
The notatlodlx(p)(t)» signifies that such an object is a ten-
sor of rankp Whose components are not the usdalumbers,
but rather are vectors in the Hilbert spade The symbol©,,
denotes the appropriatep-fold scalar product, i.e.,
AP BP=3 AP BP) . forany tensoré(®
~ 1 p @1 p p
and B of rank p. Cartesian componentsy, ...,
=1,2,3,p=1, of the tensor { i(i)p areC numbers given by
—ig)P =(—)P .
[(=1a)Pay 0y =(=1)PAa Oay - - Gay  (2.32
while the components of tensoﬂ&%p)(t))) are vectors of
Hilbert spaceH given by

g ONay

t ty tp-1 (1(0) i
= | dty | dt, - dt, U™ (tty)v,,
to to %)
% 0(0)(t1't2){)a2 . '0(0)(tp—1!tp)aap
X 0Oty to)|@p) € H. (233

Equation (2.29 represents a formal solution of initial
value problem(2.12. In a subsequent section we will use

PHYSICAL REVIEW E6, 051302 (2002

this formal solution to develop the hierarchy of kinetic equa-
tions and to introduce transport coefficients valicihtimes,
including the initial nonhydrodynamic stage of the evolution
of swarm particles.

IIl. SHORT-TIME DEVELOPMENT OF GRANULAR
SWARMS: TRANSPORT COEFFICIENTS

In this section we derive a hierarchy of kinetic equations
for granular swarms and derive a general expression for
transport coefficients. Changes needed to accommodate the
possibility of nonconservative transport are considered in the
subsection below.

Taking the time derivative of Eq$2.30 and(2.31), with
the help of Eq.(2.18, we find that the tensorﬁxém(t)))
obey the following hierarchy of coupled differential equa-
tions:

SN =1L, 1 t0)=l0k,

t=t,, (3.1
J N oS _
Sl ) =Ho®lg () + ol P(D))),
||x“°’ te)))=0, t=t,, p=1. (3.2

The action of the vector operator=(04,0,,03) on the ten-
soerép_l)(t))), p=1, raises its rank by 1 and is defined as

[l0N)] 0, =0 o | 42(0)),

[0l DO 0y =0l P DOy

p=2, (3.3
where, as beforey,, . ..,a¢p=1,2,3,p=1.

It is convenient to introduce an infinite set of tensors

NP(q,n=(fat)«P 1)), p=0. (34
Sinceng(t)=(fu(t)|P4(t)), we get
ng(t)=> (—iq)PONP(q,t), t= (3.5

Finally, to set up our transport theory we define transport
coefficients by

©

-2

—N<p> @0=2 ol eNC (G, p=0, (3.6

Wherewq )(t) denote tensor transport coefficients of rank

and the symbolp denotes the standard symmetrized outer
tensor product defined as
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d Jd
R Y S O Ve ()t
atfq (v,t)+a anq (v,t) J[fq 1(v,1),

[og (&N @G0T, i,

1 - >
[og (0], NP (),

=— > y )

P! (i, i EPlL, i) e 10 to) = (v| @ =11(v). (3.10)

(3.7) :

Swarm particles may freely exchange momentum and energy
with the surrounding granular fluid and, therefore, these are
not invariants of the collision operatd{Eq. (1.7)]. There is
only one collision invariant, corresponding to the number of
swarm particles. This is analogous to the situation in the
Brownian motion theory of a granular gé3,14] or to the
situation in the self-diffusion in freely evolving granular

gased15,32. The presence of this invariant implies that

and the summation extends over all of indicgs, (. . . ,j)
that are permutation®(i,, ... ,i,) of the indices on the
left-hand side.

From definitions(3.6) and Eq.(3.5) it follows that

d ” . .

ﬁ”i(t)_ pgo (— |q)p®pwép)(t)na(t) =0. (3.9

(Fu(D[Fo(t)[ 2P (1)) = f dwI[fP](v,1)=0, p=0.

This last equation is often called the generalized diffusion (3.12

equation. It describes the temporal evolution of tigét) in

terms of an infinite sefw g") |p=0} of transport coefficients.

It s.hould_ be stress_e_d that .|t is valld fatl times and for 20%0)(,[):0, t=t,. (3.13

arbitrary initial conditions. Since thg dependence of trans-

port coefficientsw ¥, p=0, has its origin in thej depen- ~ Further, forp=1 we get

dence of the initial vectok@é) [see Eqs(2.30 and(2.31)], P

we conclude that they can be related to the corresponding —fM(, 1)+ a- Tf*@(&yg:J[Ftl)](lj't)+ljf@)(v*,t),

Fourier component of the initial distribution. In other words, gt A av 1 a d

transport coefficients are time-dependent functionals of the o

initial conditions. f(w,t0)=0. (3.14
The derivative with respect to time occurring in Eg.6)

can be eliminated with the help of E¢8.1) and(3.2). Com-  Using Eq.(3.10 and wg’)(t):o, we can establish the fol-

From Egs.(3.9 and(3.12, we get

bining Egs.(3.4),(3.6) and (3.1),(3.2) we obtain lowing expression for the drift velocity:
(:,(P)(t): —l 5 <fH(t)||:|0(t)||%(*O)(t))> W&(t)z(;)%l)(t): ;f dv EfS))(l;,t).
‘ (Fu(l|x(0)) K f dv F(0,0)

(3.9 (3.19

1 . Finally, we also rewrite Eq93.2) and(3.10 for p=2:
a,gp)(t):—[u O] %P M )))
q (0) H q
(Fr(Ollxg (1)) I3@: vra L3O 10, 0+00fP0
g . gtta whFa —=ir ) =J1"lw.n+vets .0,
+ (Ol ]x P D))= 2 o) -2), -
r=0 ft(i )(v,t9)=0, (3.19

®(f (t)llxgp”(t)»} p=1. (3.10 . . 1 ey -
T Da(t)zwgz’(t)=—H d e f(o,1)

Jde Ow.p

For a given initial condition|<I>'d>, kinetic equationg3.1)

and(3.2) and expression.9) and(3.10 determine both the —Wa(t>®f a0 f’((il)(l;’,t)

time-dependent tensonrbfg)(t)» and the transport coeffi-
. ~ () ~
cientsw,” for all r<p andp=0. whereD(t) denotes the diffusion tensor. It can be seen that

For the purpose of analysis in subsequent sections it i e A . .
useful to write down the first three kinetic equations of hier—.ﬁ1e diffusion tensob (1) is anisotropic, as expect¢83]. It

archy (3.1) and (3.2) in the velocity-space representation is straightforward to obtain expressions for the third- and
. ' ' = () " higher-order transport coefficients.
Using the correspondences2.9 and (vlx;"())) Equations(3.11)—(3.17) give the general expressions for

Efép)(z;,t), p=0, we immediately get, fop=0, the first three transport coefficients. Using further simplify-

: (3.17)
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ing assumptions regarding the initial conditions which are After these generalizations, we want to establish the con-

discussed in Sec. 1V, it is possible to reduce these generglection between the swarm particle flux'(r,t)
results to the well-known expressions found in Chapman_fdvvf(r 0,t) and transport coefﬁmentﬁ)(p)(t) p=0.

Enskog theory. The details of this reduction for a particular
case of self-diffusion are given in Appendix C. Froﬁm%the .def|In|t|or(2 .2) we have that the Founer transform
of I'(r,t) is given by

Bulk and flux transport coefficients

L) =(fu(Do|Pg(D)). (319
In the development of transport theory in previous sec-

tions it was assumed that the number and properties dhserting Eq.(2.29 into Eq.(3.19), we arrive at
swarm particles were not changed in collisions with particles
of background granular fluid. In this section and in the re- - =
maining part of this paper, we remove this restriction and Fd(t):pgo (=iq)POK(fu(t)|v ||%'p)(t)>> (3.20
allow nonconservative processes to take place. The term
“nonconservative processes” is to be interpreted in a wideAfter some algebra, we obtain
sense; it includes all processes which do not conserve the
number of swarm particles and/or their other physical prop- ” QoD
erties. Non-particle-conserving collisions are usual for real Z —ig)POQ ¢ P(tngt), (3.2
granular systems. Examples of such processes are the perma- -
nent deformation or cracking of swarm particles. Particlesyhere
created in such collisions developrew granular swarm,
with different transport properties. In this paper we have con- AP (H=0®t)-RP1), p=1, (3.22
sidered only the equation for a one-component granular a a a
swarm. This should be sufficient for a general understanding.
In an actual “reacting” system several granular species are @ﬁp)(t):
usually involved. We characterize all these possible “non- a
conservative” processes by the respective collision operator
JR. The kinetic equatior{1.1) for the one-particle distribu- p=1. (3.23
tion function of granular swarms in the presence of noncon-
servative processes is corrected with a “reactive” tefn ~ For completeness we plﬂ(o)(t) w(o)(t) The details of
We suppose that the collision operattt is linear and de-  this calculation are given in Appendq|xA.
pends functionally on the background fluid distribution |, |3ssical near-equilibrium theories the ﬂleF,t) is

H(J t). It is therefore a time-dependent operator. For theusually expressed in the formf(Ft) n(F t),Céext

present purposes, however, where the aim is a formal struc-
ture of the transport theory of granular swarms, further de- D[an(r t)/‘?r] whereKX andD are classical mobility and
tails of this operator are not needed. diffusion coefficients, respectively, are®! is the external

Now notice that the operatd?lo(t) contains two terms: field strength. By analogy with this cIassAicaI prescription, we
the particle conserving terov(t) [Eq. (2.4)] and the “reac- ~ could define “flux” transport coefficients) é")(t), p=0, in
tive” collision term JR(t) which, under the correspondence accordance with Eqgs.(3.2)—(3.23. Reaction-corrected
(2.9), become operator$if(t) and HY(t), respectively. transport coefficienté)ép)(t) are often called “bulk” trans-
Hence the non-particle-conserving terms will survive in Egsport coefficients. In the absence of reactive proceé%g)s{t)
(3.9 and(3.10: vanishes for anp=1, and the “bulk” and “flux” transport

A (o) ~ R ®) coefficients becoméentical Thus, in the latter case, with
3 = w =
<fH(t)|H°(t)”%q () <fH(t)|H0(t)”%q (1)))#0, p=0. (O)—O the drift veIocnyW (t) is determined by Egs.

3.1
(318 (3.1]) and (3.195 and the diffusion tensqu(t) by Egs.

Inserting Eq(3.18) into Egs.(3.9) and(3.10, we see that the (314 and(3.17.

presence of nonconservative processes alters the transport
coefficients in two ways. First, there are explicitly IV. SPACE-TIME EVOLUTION OF GRANULAR SWARMS

Iilg(t)—dependent terms in EqE3.9) and(3.10, and second, We base our transport theory on the revised Enskog ki-
there is an implicit change in tenso|¢gé”)(t)>> since the netic theory(RET) for the hard sphere fluid34,35. The
kinetic equation$3.1) and(3.2) are now different. RET is exact for times much shorter than the mean free time
Note that when nonconservative processes are present theétween collisions. On this time scale it describes the one-
calculation of a transport coefficient of rapkrequires solu-  particle distribution functionf(F v ,t) for arbitrary spatial
tions of the kinetic equationg.1) and(3.2) up to orderp. variations. Outside this time regime, the Enskog equation is
In the absence of nonconservative processes, solutions abt exact, because it does not take into account the velocity
kinetic equations to the ordgp—1 suffice for the same correlations built up by sequences of correlated binary colli-
purpose. sions. However, RET takes into account static short-range

HDILo OT=ASO P (1)),
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correlations caused by excluded volume effects. The kineti@hese results show that hydrodynamic behavior is always
equationg3.1) and(3.2) and corresponding transport coeffi- linked to the forgetting of the initial conditions through the
cients(3.9) and(3.10 obtained from these equations are cor-relaxation.
rect within the framework of assumptions in which Enskog As discussed above, the theory of granular swarms is
theory is considered to be applicable. This remark is essemmore complicated than the corresponding theory of charged
tial; the validity of the Enskog description is an underlying particle swarms due to the presence of an additional time
assumption of this work. scale characterizing cooling processes. For this reason it is
This section is devoted to the analysis of the long-timedifficult to analyze the case of arbitrary initial conditions,
behavior of transport coefficients{”(t), p=0. It is a dif- and we limit ourselves to the special case where the initial

ficult problem which cannot be solved in full generality at distribution is given by

the present time. Recently, we have analyzed the foundations |

of the transport theory of charged particle swarmsairefied |(Da>:|f0>”d(t0)- (4.2)
neutral gases in the presencestditic and uniform external ) L )

electric field [12]. Except for minor technical details, our INserting this initial value into Eq¢2.30 and(2.31) we get
strategy was the same as the one we followed in Secs. Il and
[l to establish the generalized diffusion equatidty. (3.8)]

from the Enskog equation. There is, however, a very impor- .
tant difference between the transport theory of charged pawhere the tensois<(P(t))), p=0, areq independent. From
ticle and granular swarms. The transport theory of charge&ds-(3.9 and(3.10 and Eq.(4.3 we conclude that all trans-
particle swarms is based on the Boltzmann equation, with thport coefficientsw ép)(t), p=0, also becomeg independent,
equilibrium state of a neutral gas as the reference state. Asiz.,

consequence, the corresponding unperturbed collision opera- A A

tor Hy [Eq. (2.9)] is time independent. For granular swarms, wép)(t)fw(p)(t), p=0, t=tg. (4.4
the energy dissipation of the surrounding granular fluid plays

a very crucial role, and it is responsible for the time depenfFourier inversionF~* of Eq. (4.4) gives

dence of the unperturbed collision operathy(t). To extract 10~ (p) ~ ()7 ~ () -
any information about the long-time behavior of either trans- 7 [@g (D]1=0™(r,H)=0®™(1)4(r), p=0, t=t,,
port coefficients&)ép)(t), p=0, or one-particle distribution 4.5
function f(r,v,t), we must analyze the asymptotic behavior '
of the tensor:ﬂzép)(t)», p=0. This is, of course, a difficult and we find that, for a class of initial conditiori4.2), the
problem, because the tensdjrzsép)(t)» involve the evolu-  transport coefficients arg independent for all times.
tion operatoiUo(t,t,), which is very complicated and cannot ~ Although the previous formulation in Fourier space is
be evaluated in closed form. very convenient for mathematical analysis, it is not very use-
In the case of charged particle swarms we have performefll for discussing the physical meaning of the results. For
an analysis of the long-time behavior of tensﬂ)ﬁép)(t)»' this latter purpose, let us go back to configuration space.
p=0. The remarkable theorem has been proved that a sufff-PPlying the well-known convolution theorem for Fourier
cient condition for the existence of a hydrodynamic regime idransforms on the GDEEq. (3.8)], we get immediately

[P ON =[P (O)ng(te),  p=0, t=t5, (4.3

the existence of an isolated eigenvatu®’ of the operator ; » S\

H, which is separated from the rest of the spectrum by a gap-n(r,t)— >, ( -— @pJ dr; w®(r—ry,t)n(ry,t)=0.
along the real axi$12,36. Such an assumption implies the t p=0 ar

separation of the relaxation time scalgx(do) ! (d, is the (4.6

length of gap in the spectrumand the hydrodynamic time . .
scaler, «[q(ksT) Y2 "1 [37] (m, is the time a swarm particle We see that the left-hand side of Hd.6) involves a nonlo-

needs to travel the length of macroscopic gradiekgd; is ~ Cal dependence on the number densify,t). The transport
the mean random energy of a swarm parficlEhis means  coefficientso(P)(r,t), p=0, connect the time evolution of

that in the long-time limit (>7,) all »{P(t) become time ~n(r,t) in an arbitrary point to its value in other points. This
and a independent in thesame characteristic time and is in accordance with the fact that granular materials are

achieve their hydrodynamic values intrinsically nonlocal[3]. o _
Greater insight into the physical interpretation of the

transport coefficientso(®(r,t), p=0, can be obtained by
oP =0, t>7, p=0. (4.1  taking spatial moments of the number dengitr,t). Let
#(r) be any function of and let us define

The transport coefficients”’ as well as the one-particle .1 o o B e
distribution function f(r,v,t) can be evaluated in non- <¢(r)>”zﬁf rg(rn(r.b), N=N(t)—f rn(r,0.
Hermitian perturbation theory, as demonstrated in REZ]. 4.7

051302-8
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Assuming than(F,t), together with its derivatives, vanish at J . S ®) o\P .
|r|— o, we obtain from Eq(4.6) the following equation for En(r,t)—zo 0P (D)Op| — o n(r,)=0 (4.12
the time development of the average#(r)),:

and the following expressions for the transport coefficients:

e O i . 1 dN(t
E<‘»{/(r)>n+m dt ((r))n R(t)E_w(o)(t):_W di)’ 4.13
1 o .
- roo®P(r - ~ d .
N S | W(H=60(1) = (P, (4.14
o) den(F—F t) 2 p (r)=0. (4.9 . - 1d . . . .
’ v e B(1)=2(1)=5 G(FON= (Pre (7)o

. . . . . ) 1d R R R R
Zdl'ir)l(eBc.ietalls of the derivation of E¢4.8) are given in Appen -5 &«r ()@ (F—(F))n. 4.15
If (r) is a polynomial of ordes in r, then in Eq.(4.8

only the transport coefficients of order<s occur. Taking These equations are exact for all times if the initial condition

has the assumed form.

successive momen(g/(r)=1r,rer, ...), after some alge- Recently, Brey and co-workerkl4] have proposed a
bra we have theory of Brownian motion in a granular gas in the absence
of an external field based on the Fokker-Planck equation. For

i dN(t) _f o 2O 1) 4.9 the initial condition defined by Eq4.2) these authors have
N(t) dt 0, ' shown that the number density of heavy particle granular

swarms in a granular gas of much lighter particles obeys Eq.
d . U o (4.12 truncated ap=2. Our theory yields Eq(4.12 with-
E<r>”:f dr w(l)(r,t)—f dr ©@(r,t)r, (4.10  out restrictions on the ratio of gas to swarm particle masses.
Furthermore, the results presented here are not restricted to
small gradients in the density of swarm particles.

and To establish further the contacts of our formalism with
previously studied particular cases we consider the self-

E E(<;® F) _<;> ®(F> ) diffusion in freely evolving granular gas. In Appendix A we

2 dt " e show that our general results yield the well-known kinetic

1 equations and the transport coefficients obtained in the stan-
:J dr w@(f t)— _J A oM Her+roe®(r )] dard Chapman-Enskog treatmé¢mb). X
2 Turning to the flux transport coefficien®{”, p=1,
L from Egs.(3.22, (3.23, and(4.3) we obtain that they also
+ Ej dr o©(r,rer, (4.1D becomeﬁ independent when the velocity and space-time de-
pendences of the initial conditions separate:

where the operatiom® has its usual meaning as defined in
Eq. (3.7).

In general, the quantities on the left-hand sidg4S's) of
Egs. (4.9—-(4.11) are time dependent. As such they can be
used in analysis of computer experiments. Their form is inwhere
dependent of whether “reactive” process€Sec. Ill) are = (0) . ~OVer AR
present or not. Physically, the time derivative on the LHS of Ry ()=R®(t)=—(fy(t)[[« ()T -H5(®) ][> P(1))),
Eqg. (4.10 can be interpreted as the time-dependent velocity
of the center of mass of the granular swarm. The tensor p=1. (4.17

quantity on the LHS of Eq(4.1]) represents the time- rinay combining Eq(4.16 and inverse Fourier transform
dependent rate of change of the mean-square width of thgs £”(3.21), it is easy to derive a useful expression for the
granular swarm or equivalently the time-dependent rate of rm particle flux:

the spreading of the granular swarm.

Thus far our discussion of the real-space formulation was .. - a\P
completely general. Let us consider again the initial state I(rt)= ZO Q(p“)(t)@p( —(9—») n(r,t). (4.19
f(r,v,to)=fo(v)N(r.,tg) which separates the velocity and P '
space-time dependencEsg. (4.2)]. According to Eq.(4.5, The physical interpretation afforded by Eq&t.14 and
from Eq. (4.6) and Egs.(4.9—(4.11) we get immediately (4.15 permits an interpretation of the flux component and
generalized diffusion equation “nonconservative” corrections to the bulk transport coeffi-

Qép)(t)zfl(p)(t) =P (t)—RP)(t),

p=1, t=tg, (4.19
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cients given in Eq(4.16. The flux drift velocity QM)(t) times including the initial nonhydrodynamic regime. In fact,
represents the rate of change of the position of the center ¢ contains the Chapman-Enskog theory as its long-time limit
mass due to extern&gravitatior) fields on|y_ The presence as demonstrated in Appendix A for the case of self-diffusion
of gravity results in a spatial variation in the energy through-in a freely evolving granular gas. The fact that the transport
out the swarm. Under such a condition, an energy-selectiveoefficients appearing in Eq3.8) are tensors reflects the
change of the number of swarm particles leads to a change @hisotropy of the granular swarm induced by the imposed
the position of the center of mass of the swarm. This effecexternal field. o

on the bulk drift velocityW(t) is represented bR()(t). For the special kind of initial statd=q. (4.2)] who§eaone—
particle distribution function is given byf(r,v,tp)
=fo(v)n(r,to), transport coefficientsP(t), p=0, areq
Lndependent at all times. In that case, they can be expressed
as time derivatives of the spatial moments of the number

Likewise the flux diffusion tensof)(?)(t) represents the rate

of spreading of the swarm due to gravity asd/Jr. An
energy-selective change of the number of swarm particle
may result in a variation afn/dr throughout the swarm and . N S
a s)L/Jbsequent variation in the rate o%‘ change of the meargens!tyn(r,t) [Eqs.(4_.13—(4.15)_]. For more general '”'“f?"
squared width of the swarm. Such effects are expressed b%Pnd't'onS theshort-t.lme beha\(|or of th.e r.1um-bAer d:ansny
the second-rank tens&?(t). cannot be characterized by singular distributias)(r ,t)
=wP)(1)8(r), p=0 [Eq. (4.6)]. Then, the temporal evolu-
tion of the spatial moment of the number densitysthf order
depends on the generalized transport coefficiét‘ﬁ%(ﬁt) of

In this paper we have analyzed the foundations of thedrder O<p=s. Equations(4.9)—(4.11) describe the inertial
transport theory of granular swarms. The Boltzmann-Lorent#egime in the dynamics of swarm particles subjected to an
equation was used to describe the motion of swarm particlegxternal field. This regime holds for times small enough
in a dilute granular gas of inelastic hard spheres. The theorgompared to the characteristic relaxation times. Note that the
developed in this paper is valid under several assumptiongesults presented here are not restricted to small gradients in
We have considered the special case when the backgrouide density of swarm particles.
fluid is in the homogeneous cooling state, but the developed As a new aspect of granular swarm transport theory we
formalism is applicable to any nonstationary thamoge- have introduced the concept of non-particle-conserving col-
neousstate of the background granular fluid. An infinite me-lisions. If “reactions” are present, the collision operatdr
dium with no boundaries is an idealization, and proper analymay be split into a particle conserving paft® and a “reac-
sis of real systems requires that boundaries and associattide” part J*. Without going into details of the operatdF,
boundary conditions be taken into account. Furthermore, th&e have demonstrated the separation of the flux and “reac-
homogeneous cooling state is unstable to long-wavelengttive” component of the transport coefficienf&gs. (3.22
perturbations that were not considered, so the results o&nd (4.16]. While the Chapman-Enskog method is valid
tained apply only on time scales short compared to that fopnly if the reaction term)® in the kinetic equation can be
the growth of such perturbations. treated as a small perturbation with respect to the collision

We have applied the time-dependent perturbation methoterm J°© [39], our hierarchy of kinetic equation@®.1) and
to study the evolution of the swarm from an arbitrary initial (3.2) is not restricted by this condition.
distribution. We have obtained E¢.8 which is a nonhy- The problems that need further elaboration are problems
drodynamic extension of the diffusion equation with trans-involving boundaries and inhomogeneities of the background
port coefficients that are time dependent and implicitly de-granular fluid. On the other hand, computer simulations have
pend on the wave vector. The spatial dependence of theecome an effective tool for gaining physical insight into
transport coefficients arises from their explicit dependencarious aspects of granular swarm behavior. It would be in-
on the initial distribution. In other words, every Fourier com- teresting to see them used to obtain accurate values of trans-
ponent of the initial distribution has a corresponding set ofport coefficient Egs. (4.13—(4.15].
transport coefficients{c:)ép)(t)|p>0} which, according to
Eq. (3.8), describes temporal evolution of the corresponding

Fourier component of the number densﬂyf,t). Our de- o
scription of theshort-timedevelopment of granular swarms  Since the time derivative df(P)(q,t) is [see Eq(3.4)]

is consistent with the generalized hydrodynamic description

in which the diffusion coefficient depends on the wave vec- 5 P

tor [38]. Any transport coefficient can be represented as a ZROG 0 = Fo(0)]— 1P (¢ =0 Al
function of solutions to the hierarchy of kinetic equations at (@0 =(Tu( )|(9t”%q ), p=0, (AD
[Egs.(3.1)—(3.17)]. This is similar to the Chapman-Enskog

procedure. Namelyw® corresponds to the Navier-Stokes we obtain, from Eqs(3.1) and (3.2

hydrodynamics, and the transport coefficieats) and o

correspond to the Burnett and super-Burnett levels, respec-

tively. Despite this similarity, our formalism is more general
than the Chapman-Enskog theory, because it is validcalior

V. CONCLUDING REMARKS

APPENDIX A: DERIVATION OF EQ. (3.2))

Jd . o ~
SNOEH=(FuO RO (D), (A2)
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9 <o) (p) Self-diﬁqsion is the simplgst transport process whgn the
7N P(q,t) (fH(t)|Ho(t)||% (1)) swarm particles are mechanically equivalent to the fluid par-
ticles. The time evolution of the one-particle distribution
function of the swarm particles is given by Eg.1), where

the collision operator has the forfi.7) with o=0 andm
From Eq.(3.20 and Egs.(A2) and (A3), using definiion ~=Mo, A=1in Eq.(1.3). o _ o
(3.6) and Eq.(3.5), we arrive at Under the assumption that the initial one-particle distribu-
tion function of swarm particles is given by(r v to)
—fo(v)n(r to), the transport coefficients ! fqp), p=0, areq
independent at all times according to E4.4). Since we are

0 o interested in transport coefficients only, it can be supposed
+<fH(t)|[w( (HT—H o(t):|||%(p (ON]. that the initial distribution for swarm particles is(r,to)
(A4) =No4(r), whereN, is the number of swarm particles. For
this idealized initial condition, th€| dependence of the ten-
sors||xép)(t))>, p=0, in the hierarchy of kinetic equations
(3.1 and (3.2 can be omitted. Indeed, from E¢.3) and
ng(to) =No, we obtain

+{fu(t)]o ||x“’ Dyy, p=1. (A3)

oo

fa(t>=p§0 (—ig)PO L0 P Pt)ng(t)

This leads immediately to E@3.21).

APPENDIX B: DERIVATION OF EQ. (4.9

Multiplying Eq. (4.6) by the functiony(r) and integrating

overr. we obtain 2P0y =[P (0))Ng—No TP(0,1), p=0, t=t,.

P o ® L ) (C1
—J dr g(r)n(r,t)— >, Jdrl o®(ry,t)

at p=0 Hence, from Eqgs(3.1)—(3.17 and Eq.(C1) we obtain the
kinetic equations

L a\? . .
pr dr zﬁ(r)(—?) n(r—rq,t)=0. (B1) p
r QW H=1lw.t), 1O t)=fo(v), (C2

We suppose that(F ,t) together with its derivatives vanish at

the boundaries of the domain of integration: J . . . R R R o
ﬁf(l)(v,t)=J[f(l)](v,t)+vf(°)(v,t), fO(v,te)=0,

9 p
(?) n(r,H)—0, |rf|—e; p=0. (B2) (€3
r

and expressions for the transport coefficients
By partial integration, we get immediately

L. ” L W(t)=————| dvof@(u,1), (C4
dr t/f(r)n(r,t)—pEofdrlw‘p’(rl,t) fdl;f(O)(l;,t)J
p
© Jdr n(r- rl’t)( ) wn=0. (B9 B)y—— “d65®ﬂn(5 )
o y _ fdzif(O)(J,t)
Using, in addition, the equality
), ~\ > TO@ ).
2 o im0 =N S ) T (), Wos [ a7 (©
(B4) Next, let us consider the long-time behavior of swarm

particles. It is assumed that in the long-time limit there are

dily obtain Eq(4.8).
we readily obtain Eq(4.8) solutions to the kinetic equatiorif€2) and (C3) of the form

APPENDIX C: SELF-DIFFUSION FO5. ) = fOGI T, FDG 1) =FOG (1),
(C

Here we apply our general formalism to the self-diffusion
of swarm particles in the regime of homogeneous cooling
and compare with results previously obtained by Chapmanthe notationf(v| T (t)) means thaf+ is a functional of the
Enskog expansion in the density gradient of the swarm pamgranular temperatur€,(t) and that its time dependence oc-
ticles [15]. We consider the system in the absence of arcurs only through temperatuiig;(t). An evolution equation
external field. for the temperature has the well-known form
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dTh(t)
ot

=—Lnu(Ty) Tu(b), (Cv)

where {(Ty) is the cooling ratg20]. Finally, the kinetic

equations for this stage of evolution follow directly from

Egs.(C2),(C3) and Eq.(C7):

d - -
= Su(T) Tu(V) Z P @I T =P 10[ T, (€8

? -
_gH(TH)TH(t)me (v|Th)

=M T +0fO0[Th). (€9

The solution of the zeroth-order kinetic equati@B) must
be proportional th(J,t); i.e., it has the form

YR e
T (U|TH)_n_OfH(U1TH(t)) (C10

PHYSICAL REVIEW E 66, 051302 (2002

and, therefore, the drift velocityEq. (C4)] of swarm par-

ticles vanishes, i.eW(t)zO. Substitution of this into Egs.
(C9) and(Cb) yields

J 2(1), >
_gH(TH)TH(t)ﬁfT (U|TH)

— i -1 -
=Jfy ](U|TH)+Un_OfH(U1TH(t))r (C1y

ﬁ(TH(t)):f dv 0@ fR @] T(t). (C12

Recently, the result$C11) and (C12 have been obtained
from Chapman-Enskog solution to the Enskog-Lorentz equa-
tion [15] [Egs.(24) and(26) therein, and the integral equa-
tion (C11) was approximately solved in a leading-order So-
nine polynomial expansion.
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