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Transport theory of granular swarms

S. B. Vrhovac, D. Arsenovic´, and A. Belić
Institute of Physics, P.O. Box 68, 11080 Zemun, Belgrade, Yugoslavia

~Received 12 January 2002; published 7 November 2002!

The transport of trace granular gas~swarm! in a carrier granular fluid is studied by means of the Boltzmann-
Lorentz kinetic equation. Time-dependent perturbation theory is used to follow the evolution of the granular
swarm from an arbitrary initial distribution. A nonhydrodynamic extension of the diffusion equation is derived,
with transport coefficients that are time dependent and implicitly depend on the wave vector. Transport coef-
ficients of any order are obtained as velocity moments of the solutions of the corresponding kinetic equations
derived from the Boltzmann-Lorentz equation. For the special case of the initial distribution of swarm particles,
transport coefficients are identified as time derivatives of the moments of the number density. Finally the
granular particle transport theory is extended by the introduction of the concept of non-particle-conserving
collisions.
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I. INTRODUCTION

During the past decade a lot of effort has been put i
understanding of the behavior of granular media, due to t
importance in various industrial and geological proces
@1–4#. In modern technology, the blending of granular ma
rials is an unavoidable step. Granular media are difficul
mix. At present, physicists do not know how to predicta
priori whether two powders will mix or segregate whe
stirred together in a given blender. There are two domin
mixing mechanisms, both of them not yet completely und
stood. Convection is by far the faster and more efficient o
for grains ~as well as for fluids!. Diffusion is much slower
than convection, but it occurs in all directions. The relat
importance of each mechanism is determined by the in
distribution of species in the mixer. In the absence of seg
gational tendencies between dissimilar particles, diffus
will eventually lead to a completely homogeneous mixtu
when diffusion dominates, the mixing problem is reduced
that of finding relevant parameters that minimize the ble
ing time. Better understanding of the transport process
granular mixtures should help in predicting whether a giv
flow will mix or segregate its constituents.

The case of polydisperse granular systems has been
ied by several authors. Most of the previous theoretical w
has been limited to the case of slightly inelastic hard sphe
Jenkins and Mancini@5# and Zamankhan@6# developed a
kinetic theory, based on revised Enskog theory, in orde
predict the transport properties of mixtures of smoo
slightly inelastic spheres. Recently, Garzo´ and Dufty@7# have
provided a description of hydrodynamics in binary granu
mixtures at low density, valid over the wide parameter ran
~mass ratio, diameters, concentrations, inelasticity par
eters!. References@8–10# examine the efficiency of diffusion
as a mixing-segregating mechanism in granular material

In this paper we have developed the transport theory f
binary mixture in which one of the components~swarm! is
present in the tracer concentration. For the purposes of
theory a granular swarm is defined as an ensemble ofinde-
pendenttest particles moving in a background granular flu
Swarm particle concentrations are assumed sufficiently
1063-651X/2002/66~5!/051302~12!/$20.00 66 0513
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that both the mutual interactions between the swarm parti
and the influence of the swarm on the background fluid
be neglected. The behavior of the swarm particles is the
fore determined solely through collisions with the particl
of carrier granular fluid and the external force field.

To develop the basic features of the theory of granu
swarms and to simplify the analysis we consider the inela
hard sphere model@11# only. The system of inelastic har
spheres~IHS’s! represent an idealized model forrapid
granular flows, where the dynamics of individual macro
scopic particles is controlled by inelastic binary collision
separated by ballistic propagation over a typical mean f
path. Such flows do obey the conservation laws of mass
momentum, and can therefore be considered as fluids. H
ever, energy is not conserved.

The analytical method we follow parallels our previo
work on charged particle transport@12#. Using time-
dependent perturbation theory generalized to non-Hermi
operators, we construct the transport theory of swarm p
ticles as an initial value problem for the Boltzmann-Loren
kinetic equation. Transport theory for granular swarms
somewhat more complicated than the analogous theory
charged particle swarms. The inherent time dependenc
the reference state for carrier granular fluid introduces a n
time scale@13–15# and requires some special attention
constructing the transport theory of granular swarms. O
definition of transport coefficients for swarm particles is a
plicable for an arbitrary nonstationary but homogeneous
erence state of the surrounding granular fluid. The main
sult of this paper is a generalized diffusion equation~GDE!
valid for all times, with an infinite set of transport coeffi
cients which are expressed in terms of the solutions o
hierarchy of coupled linear integrodifferential equations.

The plan of the paper is as follows. In the remainder
the Introduction we review the elements of kinetic theo
relevant for the subsequent discussions. In Sec. II the in
value problem for the Boltzmann-Lorentz kinetic equation
introduced and the corresponding transport theory is de
oped along lines which are a generalization of the pertur
tive method developed in@12#. In Sec. III we derive the
nonhydrodynamic extension of the diffusion equation a
©2002 The American Physical Society02-1
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establish the connection between swarm particle flux
transport coefficients in the presence of the collision p
cesses which do not conserve the number of swarm parti
Section IV is devoted to the analysis of the long-time beh
ior of transport coefficients. Finally, in the Conclusion, w
summarize our main results. Some technical details of
calculations are given in the Appendixes.

Kinetic equation

We consider swarm particles of massm in a granular fluid
whose particles have massm0. All particles are smooth hard
spheres (d53) or disks (d52). Collisions between swarm
particles and fluid particles are characterized by aconstant
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coefficient of normal restitutiona, while the analogous
quantity for collisions among fluid particles will be denote
by a0. Both coefficients have values 0,a,a0<1, with the
value of unity corresponding to the elastic limit.

The revised Enskog kinetic equation for the one-parti
distribution function f (rW,vW ,t) of the swarm particles is
@16,17#

F ]

]t
1vW •

]

]rW
1aW •

]

]vW
G f ~rW,vW ,t !5JE@ f #~rW,vW ,t !, ~1.1!

whereJE is the Enskog collision operator given by
JE@ f #~rW,vW ,t !5s̄d21E dvW 1E deW~eW•vW r !Q~eW•vW r !@a22x~rW,rW2s̄eW un,n0! f ~rW,vW 8,t ! f 0~rW2s̄eW ,vW 18 ,t !

2x~rW,rW1s̄eW un,n0! f ~rW,vW ,t ! f 0~rW1s̄eW ,vW 1 ,t !#, ~1.2!
he
lic-
in

up
Eq.
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stic

us
and aW is the acceleration due to the external~gravitational!
field. Here,f 0(rW,vW ,t) is the one-particle distribution functio
for the surrounding granular fluid,Q is Heaviside step func
tion, eW is unit vector pointing from the center of the flui
particle to the center of the swarm particle at contact, a
s̄5(s1s0)/2, wheres ands0 are the diameters of swarm
and fluid particles, respectively. The primes on the veloci
denote the initial values (vW 8,vW 18) that lead to (vW ,vW 1) follow-
ing a binary collision:

vW 85vW 2
~11a!D

a~11D!
~eW•vW r !eW , vW 185vW 12

~11a!

a~11D!
~eW•vW r !eW .

~1.3!

In the above expressionsvW r5vW 2vW 1 andD5m0 /m. Finally,
x@rW,rW1un(t),n0(t)# is the pair correlation function of elasti
hard spheres in a spatially nonuniform equilibrium state.

The quantityx@n,n0# is a functional of the local partia
densitiesn(rW,t)5*dvW f (rW,vW ,t) and n0(rW,t)5*dvW f 0(rW,vW ,t).
This implies that x@n,n0# and, consequently,JE@ f # are
highly nonlinear functionals off through this density depen
dence. Since density-functional theories@18# are able to re-
liably reproduce the pair correlations in the fluid phase fou
in computer simulations, we will takex@n,n0# as a known
functional.

The swarm particles diffuse in and are convected by
granular fluid. Their motion is also influenced by the gra
tational field. The presence of a macroscopic flow of ba
ground fluid significantly modifies the transport propertie
as swarm particles are now advected with the bulk motion
the fluid and generally mix by convective action at a mu
greater rate. In the kinetic theory of swarms a great sim
fication is possible because the influence of swarm parti
on the background fluid is negligible. Therefore, the dis
d

s

d

e
-
-
,
f
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s
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bution function f 0(rW,vW ,t) obeys anindependentnonlinear
Enskog equation for inelastic particles. All properties of t
surrounding fluid are assumed to be prescribed. For simp
ity, here we will assume that the carrier granular fluid is
the homogeneous cooling state~HCS! described by a distri-
bution of the form

f 0~rW,vW ,t ![ f H~vW ,t !5n0v0
2d~ t !fF v

v0~ t !G , ~1.4!

where v05@2kBT0(t)/m0#1/2 is the thermal velocity of the
fluid particles at timet, kB is the Boltzmann constant, andf
is the scaling function. The granular temperatureT0(t) is
defined in the usual way:

d

2
n0kBT0~ t !5E dvW

1

2
m0v2f H~vW ,t !. ~1.5!

The HCS has been extensively studied@19–21# and used,
because of its simplicity, as a reference state to build
theories for nonhomogeneous states. As indicated by
~1.4! all the time dependence of the distributionf H takes
place through the granular temperatureT0(t). This tempera-
ture decreases obeying Haff’s law@22,23#

T0~ t !5T0~0!F11
t

tc
G22

. ~1.6!

The characteristic time of homogeneous cooling,tc , can be
determined from the second moment of the nonlin
Enskog-Boltzmann equation for a dense system of inela
hard spheres@19#. The explicit form of the scaling function
f is only known in the first Sonine approximation@19#.

The simplifying features of the swarm problem allow
to use the Boltzmann-Lorentz collision operator
2-2
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J@ f #~rW,vW ,t !5x~n0!s̄d21E dvW 1E deW~eW•vW r !Q~eW•vW r !

3@a22f ~rW,vW 8,t ! f H~vW 18 ,t !

2 f ~rW,vW ,t ! f H~vW 1 ,t !#, ~1.7!

instead of the Enskog collision operator~1.2!. The frequency
factor x(n0) is a constant that has been factored out of
collision integral. Indeed, the covolume effect and t
screening effect responsible for modification of the bina
collision frequency are both due to the presence of ba
ground particles, which we assume to be at the HCS, wi
constantdensityn0.

The equilibrium radial distribution function at contactx is
independent of particle collisional properties and may be
culated from approximate formulas. The expression for
radial distribution at contactx for mixtures of hard sphere
(d53) that agrees best with numerical simulations is tha
Mansooriet al. @24#. Using the assumption that swarm pa
ticles are very sparse, with densityn!n0, it can be written
as

x~n0!5
1

12j3
1

3

2

j2

~12j3!2

ss0

s̄
1

1

2

j2
2

~12j3!3 S ss0

s̄
D 2

,

~1.8!

wherejp5(p/6)n0s0
p , p52,3.

The collision operatorJ depends on time throug
f H(vW ,t). The important feature is that operatorJ is thelinear

operator which acts onf only through itsvW dependence. Op
eratorJ is local in space and in time.

A freely evolving background fluid of IHS’s, prepare
initially in a HCS, is unstable against long-wavelength sp
tial fluctuations and eventually ends up in a state with in
mogeneities in the flow fielduW 0(rW,t) ~vortices! and in the
density fieldn0(rW,t) ~clusters! @20,25–29#. In the present pa-
per we are concerned only with the transport processe
granular swarms which precede the clustering of the ba
ground fluid.

II. INITIAL VALUE PROBLEM

In this section we introduce the initial value problem f
the Boltzmann-Lorentz kinetic equation and develop its f
mal solution. We first write the kinetic equation~1.1! with
the Boltzmann-Lorentz collision operator~1.7! in Fourier
space. In this work we study the solution of this equation
a system of infinite volume, assuming that the one-part
distribution functionf (rW,vW ,t) and its derivatives all vanish a
large rW. This allows us to apply Fourier transform to Eq
~1.1! and ~1.7! to obtain

]

]t
FqW~vW ,t !5LqW~ t !FqW~vW ,t !, ~2.1!
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whereFqW(vW ,t) is the spatial Fourier transform of the on
particle distribution function

FqW~vW ,t !5E drW e2 iqW •rW f ~rW,vW ,t !. ~2.2!

In Eq. ~2.1! the operatorLqW(t) is

LqW~ t !5M~ t !1PqW , ~2.3!

with

M~ t !52aW •
]

]vW
1J~ t !, ~2.4!

PqW52 iqW •vW . ~2.5!

For the sake of compact notation, we introduce an abst
Hilbert spaceH to represent any functionc of velocity vW . In
other words, we considerc(vW ) as the velocity-space repre
sentation of the vectoruc&PH, i.e., c(vW )5^vW uc&, which is
standard notation borrowed from quantum mechanics@30#.
In Hilbert spaceH, the scalar~inner! product between two
arbitrary vectorsuw& and uc& is defined as

^wuc&5E dvW
1

f H~vW ,t !
w* ~vW !c~vW !. ~2.6!

According to Eq.~2.6! we have

Î 5E dvW
1

f H~vW ,t !
uvW &^vW u ~2.7!

and

^vW uvW 8&5 f H~vW 8,t !d~vW 2vW 8!, ~2.8!

where Î is the unit operator andd is the delta function.
Likewise, a formal correspondence between opera

LqW(t), M(t), andPqW and linear operators on Hilbert spac
H can be established:

M~ t !→Ĥ0~ t !, PqW→ĤqW
8 ,

LqW~ t !5M~ t !1PqW→ĤqW~ t !5Ĥ0~ t !1ĤqW
8 . ~2.9!

For instance, the convective operatorĤqW
852 iqW •vŴ acts on

vector uc&PH, according to

ĤqW
8uc&5E dvW

1

f H~vW ,t !
c~vW !~2 iqW •vŴ !uvW &, uc&PH,

~2.10!

wherevŴ is the vector operator defined by its componentsv̂ i ,
i 51, . . . ,d, along d orthonormal axes, andv̂ i , i
51, . . . ,d, are the usual multiplicative operators@30#. From
2-3
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Eqs.~2.10! and~2.8! it follows that the velocity-space repre
sentation of the Hilbert space vectorĤqW

8uc& is

w~vW !5^vW uĤqW
8uc&52 iqW •vW c~vW !. ~2.11!

After these technical preliminaries, we proceed to co
sider an abstract initial value problem

]

]t
uFqW~ t !&5ĤqW~ t !uFqW~ t !&, uFqW~ t0!&5uFqW

I
&, t>t0 .

~2.12!

Let the linear operatorÛqW(t,s) map the solutionuFqW(s)& at
time s to the solutionuFqW(t)& at time t>s:

uFqW~ t !&5ÛqW~ t,s!uFqW~s!&, t>s>t0 . ~2.13!

The uniqueness of the solution of Eq.~2.12! implies that the
family of evolution operators$ÛqW(t,s)ut>s>t0% satisfies

ÛqW~ t,s!ÛqW~s,r !5ÛqW~ t,r !, t>s>r>t0 ,

ÛqW~ t,t !5 Î , t>t0 . ~2.14!

Furthermore, the evolution operator family$ÛqW(t,s),t
>s>t0% governing Eq.~2.12! satisfies following differential
equations@31#:

]

]t
ÛqW~ t,s!5ĤqW~ t !ÛqW~ t,s!5ÛqW~ t,s!ĤqW~ t !, ÛqW~s,s!5 Î ,

]

]s
ÛqW~ t,s!52ÛqW~ t,s!ĤqW~s!52ĤqW~s!ÛqW~ t,s!,

ÛqW~ t,t !5 Î . ~2.15!

Here, however,ĤqW is not a Hermitian operator. Indeed,
is obvious that the convective operatorĤqW

8 is anti-Hermitian,

^wuĤqW
8uc&52^cuĤqW

8uw&* , uc&,uw&PH, ~2.16!

where the asterisk represents complex conjugation.

Time-dependent perturbation method

In this section, we formulate the transport problem
swarm particles starting from the kinetic equation and
the time-dependent perturbation theory to determine the e
lution operatorÛqW(t,t0),

uFqW~ t !&5ÛqW~ t,t0!uFqW
I
&, t>t0 , ~2.17!

which describes the time evolution of the swarm particles
accordance with the kinetic equation~2.12!. SinceĤqW is not
a Hermitian operator, it is obvious that the evolution opera
ÛqW(t,t0) is not unitary.
05130
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Let Û0(t,t0) be the evolution operator corresponding
the unperturbed operatorĤ0(t); consequently, the operato
Û0(t,t0) satisfies the differential equation

]

]t
Û0~ t,t0!5Ĥ0~ t !Û0~ t,t0!5Û0~ t,t0!Ĥ0~ t !,

Û0~ t0 ,t0!5 Î . ~2.18!

The evolution operatorÛqW(t,t0) can be expressed in terms o
the operatorŜqW(t,t0) defined as

ÛqW~ t,t0!5Û0~ t,t0!ŜqW~ t,t0!. ~2.19!

From Eqs.~2.15!, ~2.18!, and~2.19! it follows that the time
dependence ofŜqW(t,t0) is given by

]

]t
ŜqW~ t,t0!5 P̂qW~ t !ŜqW~ t,t0!, ŜqW~ t0 ,t0!5 Î . ~2.20!

Here the operatorP̂qW(t) is a perturbation operatorĤqW
8 in the

‘‘interaction picture’’:

P̂qW~ t !5Û0
21~ t,t0!ĤqW

8Û0~ t,t0!. ~2.21!

Equation~2.20! is equivalent to the integral equation

ŜqW~ t,t0!5 Î 1E
t0

t

dt1 P̂qW~ t1!ŜqW~ t1 ,t0!, ~2.22!

which can be solved by iteration~in powers ofP̂qW), yielding

ŜqW~ t,t0!5 Î 1 (
p51

`

ŜqW
(p)

~ t,t0!, ~2.23!

where

ŜqW
(p)

~ t,t0!5E
t0

t

dt1 P̂qW~ t1!E
t0

t1
dt2 P̂qW~ t2!•••E

t0

tp21
dtp P̂qW~ tp!,

p>1. ~2.24!

From this result, with the aid of definitions~2.19! and 2.21,
we get the following expansion forÛqW(t,t0):

ÛqW~ t,t0!5Û (0)~ t,t0!1 (
p51

`

ÛqW
(p)

~ t,t0!,

Û (0)~ t,t0!5Û0~ t,t0!, ~2.25!

ÛqW
(p)

~ t,t0!5E
t0

t

dt1E
t0

t1
dt2•••E

t0

tp21
dtpÛ (0)~ t,t1!

3ĤqW
8Û (0)~ t1 ,t2!ĤqW

8•••Û (0)~ tp21 ,tp!

3ĤqW
8Û (0)~ tp ,t0!, p>1. ~2.26!
2-4
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Before finishing our formal manipulations, we still hav
to express the distribution functionuFqW(t)& in terms of the
convective operatorĤqW

8 . Using Eqs.~2.17! and ~2.25!, one
obtains the expansion ofuFqW(t)&,

uFqW~ t !&5 (
p50

`

uF qW
(p)

~ t !&, t>t0 , ~2.27!

where

uFqW
(p)

~ t !&5ÛqW
(p)

~ t,t0!uFqW
I
&, t>t0 . ~2.28!

Inserting an explicit form of the convective operatorĤqW
85

2 iqW •vŴ into Eq. ~2.26! and by using Eqs.~2.27! and ~2.28!
we find that the vectoruFqW(t)& can be expressed as

uFqW~ t !&5 (
p50

`

~2 iqW !p(pi¸ qW
(p)

~ t !&&, t>t0 ,

~2.29!

where

i¸ qW
(0)

~ t !&&5Û (0)~ t,t0!uFqW
I
&, ~2.30!

i¸qW
(p)

~ t !&&5E
t0

t

dt1E
t0

t1
dt2•••E

t0

tp21
dtpÛ (0)~ t,t1!vŴ

3Û (0)~ t1 ,t2!vŴ •••Û (0)~ tp21 ,tp!vŴ

3Û (0)~ tp ,t0!uFqW
I
&, p>1. ~2.31!

The quantities (2 iqW )p and i¸ qW
(p)(t)&& are tensors of rankp.

The notationi¸qW
(p)(t)&& signifies that such an object is a te

sor of rankp whose components are not the usualC numbers,
but rather are vectors in the Hilbert spaceH. The symbol(p
denotes the appropriatep-fold scalar product, i.e.
Â(p)(pB̂(p)5(a1•••ap

Aa1•••ap

(p) Ba1•••ap

(p) , for any tensorsÂ(p)

and B̂(p) of rank p. Cartesian componentsa1 , . . . ,ap

51,2,3,p>1, of the tensor (2 iqW )p areC numbers given by

@~2 iqW !p#a1•••ap
5~2 i !pqa1

qa2
•••qap

, ~2.32!

while the components of tensorsi¸qW
(p)(t)&& are vectors of

Hilbert spaceH given by

@ i¸qW
(p)

~ t !&&] a1•••ap

5E
t0

t

dt1E
t0

t1
dt2•••E

t0

tp21
dtp Û (0)~ t,t1!v̂a1

3Û (0)~ t1 ,t2!v̂a2
•••Û (0)~ tp21 ,tp!v̂ap

3Û (0)~ tp ,t0!uFqW
I
&PH. ~2.33!

Equation ~2.29! represents a formal solution of initia
value problem~2.12!. In a subsequent section we will us
05130
this formal solution to develop the hierarchy of kinetic equ
tions and to introduce transport coefficients valid atall times,
including the initial nonhydrodynamic stage of the evoluti
of swarm particles.

III. SHORT-TIME DEVELOPMENT OF GRANULAR
SWARMS: TRANSPORT COEFFICIENTS

In this section we derive a hierarchy of kinetic equatio
for granular swarms and derive a general expression
transport coefficients. Changes needed to accommodate
possibility of nonconservative transport are considered in
subsection below.

Taking the time derivative of Eqs.~2.30! and~2.31!, with
the help of Eq.~2.18!, we find that the tensorsi¸ qW

(p)(t)&&
obey the following hierarchy of coupled differential equ
tions:

]

]t
i¸qW

(0)
~ t !&&5Ĥ0~ t !i¸qW

(0)
~ t !&&, i¸qW

(0)
~ t0!&&5uFqW

I
&,

t>t0 , ~3.1!

]

]t
i¸qW

(p)
~ t !&&5Ĥ0~ t !i¸qW

(p)
~ t !&&1vŴ i¸qW

(p21)
~ t !&&,

i¸qW
(p)

~ t0!&&50, t>t0 , p>1. ~3.2!

The action of the vector operatorvŴ 5( v̂1 ,v̂2 ,v̂3) on the ten-
sor i¸qW

(p21)(t)&&, p>1, raises its rank by 1 and is defined

@vŴ i¸qW
(0)

~ t !&&] a1
5 v̂a1

i¸qW
(0)

~ t !&&,

@vŴ i¸qW
(p21)

~ t !&&] a1•••ap
5 v̂a1

@ i¸ qW
(p21)

~ t !&&] a2•••ap
,

p>2, ~3.3!

where, as before,a1 , . . . ,ap51,2,3, p>1.
It is convenient to introduce an infinite set of tensors

N̂(p)~qW ,t !5^ f H~ t !i¸ qW
(p)

~ t !&&, p>0. ~3.4!

SincenqW(t)5^ f H(t)uFqW(t)&, we get

nqW~ t !5 (
p50

`

~2 iqW !p(pN̂(p)~qW ,t !, t>t0 . ~3.5!

Finally, to set up our transport theory we define transp
coefficients by

]

]t
N̂(p)~qW ,t !5(

r 50

p

v̂qW
(r )

~ t ! ^ N̂(p2r )~qW ,t !, p>0, ~3.6!

wherev̂qW
(r )(t) denote tensor transport coefficients of rankr,

and the symbol̂ denotes the standard symmetrized ou
tensor product defined as
2-5
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@v̂qW
(r )

~ t ! ^ N̂(p2r )~qW ,t !# i 1••• i p

5
1

p! (
( j 1 , . . . ,j p)PP( i 1 , . . . ,i p)

@v̂qW
(r )

~ t !# j 1••• j r
Nj r 11••• j p

(p2r ) ~qW ,t !,

~3.7!

and the summation extends over all of indices (j 1 , . . . ,j p)
that are permutationsP( i 1 , . . . ,i p) of the indices on the
left-hand side.

From definitions~3.6! and Eq.~3.5! it follows that

]

]t
nqW~ t !2 (

p50

`

~2 iqW !p(pv̂qW
(p)

~ t !nqW~ t !50. ~3.8!

This last equation is often called the generalized diffus
equation. It describes the temporal evolution of thenqW(t) in
terms of an infinite set$v̂ qW

(p)up>0% of transport coefficients
It should be stressed that it is valid forall times and for
arbitrary initial conditions. Since theqW dependence of trans
port coefficientsv̂ qW

(p) , p>0, has its origin in theqW depen-

dence of the initial vectoruFqW
I
& @see Eqs.~2.30! and~2.31!#,

we conclude that they can be related to the correspon
Fourier component of the initial distribution. In other word
transport coefficients are time-dependent functionals of
initial conditions.

The derivative with respect to time occurring in Eq.~3.6!
can be eliminated with the help of Eqs.~3.1! and~3.2!. Com-
bining Eqs.~3.4!,~3.6! and ~3.1!,~3.2! we obtain

v̂qW
(0)

~ t !5
1

^ f H~ t !i¸qW
(0)

~ t !&&
^ f H~ t !uĤ0~ t !i¸qW

(0)
~ t !&&,

~3.9!

v̂ qW
(p)

~ t !5
1

^ f H~ t !i¸qW
(0)

~ t !&&
F ^ f H~ t !uvŴ i¸qW

(p21)
~ t !&&

1^ f H~ t !uĤ0~ t !i¸ qW
(p)

~ t !&&2 (
r 50

p21

v̂qW
(r )

~ t !

^ ^ f H~ t !i¸ qW
(p2r )

~ t !&&G , p>1. ~3.10!

For a given initial conditionuFqW
I
&, kinetic equations~3.1!

and~3.2! and expressions~3.9! and~3.10! determine both the
time-dependent tensorsi¸qW

(r )(t)&& and the transport coeffi

cientsv̂qW
(r ) for all r<p andp>0.

For the purpose of analysis in subsequent sections
useful to write down the first three kinetic equations of hi
archy ~3.1! and ~3.2! in the velocity-space representatio
Using the correspondences~2.9! and ^vW i¸qW

(p)(t)&&

[ f̂ qW
(p)(vW ,t), p>0, we immediately get, forp50,
05130
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-

]

]t
f qW

(0)
~vW ,t !1aW •

]

]vW
f qW

(0)
~vW ,t !5J@ f qW

(0)
#~vW ,t !,

f qW
(0)

~vW ,t0!5^vW uFqW
I
&[ f qW

I
~vW !. ~3.11!

Swarm particles may freely exchange momentum and ene
with the surrounding granular fluid and, therefore, these
not invariants of the collision operatorJ @Eq. ~1.7!#. There is
only one collision invariant, corresponding to the number
swarm particles. This is analogous to the situation in
Brownian motion theory of a granular gas@13,14# or to the
situation in the self-diffusion in freely evolving granula
gases@15,32#. The presence of this invariant implies that

^ f H~ t !uĤ0~ t !i¸ qW
(p)

~ t !&&5E dvW J@ f̂ qW
(p)

#~vW ,t !50, p>0.

~3.12!

From Eqs.~3.9! and ~3.12!, we get

v̂qW
(0)

~ t !50, t>t0 . ~3.13!

Further, forp51 we get

]

]t
fWqW

(1)
~vW ,t !1aW •

]

]vW
fWqW

(1)
~vW ,t !5J@ fWqW

(1)
#~vW ,t !1vW f qW

(0)
~vW ,t !,

fWqW
(1)

~vW ,t0!50. ~3.14!

Using Eq.~3.10! and v̂qW
(0)(t)50, we can establish the fol

lowing expression for the drift velocity:

WW qW~ t ![v̂qW
(1)

~ t !5
1

E dvW f qW
(0)

~vW ,t !
E dvW vW f qW

(0)
~vW ,t !.

~3.15!

Finally, we also rewrite Eqs.~3.2! and ~3.10! for p52:

]

]t
f̂ qW

(2)
~vW ,t !1aW •

]

]vW
f̂ qW

(2)
~vW ,t !5J@ f̂ qW

(2)
#~vW ,t !1vW ^ fWqW

(1)
~vW ,t !,

f̂ qW
(2)

~vW ,t0!50, ~3.16!

D̂qW~ t ![v̂qW
(2)

~ t !5
1

E dvW f qW
(0)

~vW ,t !
F E dvW vW ^ fWqW

(1)
~vW ,t !

2WW qW~ t ! ^ E dvW fW qW
(1)

~vW ,t !G , ~3.17!

whereD̂qW(t) denotes the diffusion tensor. It can be seen t
the diffusion tensorD̂qW(t) is anisotropic, as expected@33#. It
is straightforward to obtain expressions for the third- a
higher-order transport coefficients.

Equations~3.11!–~3.17! give the general expressions fo
the first three transport coefficients. Using further simplif
2-6
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TRANSPORT THEORY OF GRANULAR SWARMS PHYSICAL REVIEW E66, 051302 ~2002!
ing assumptions regarding the initial conditions which a
discussed in Sec. IV, it is possible to reduce these gen
results to the well-known expressions found in Chapm
Enskog theory. The details of this reduction for a particu
case of self-diffusion are given in Appendix C.

Bulk and flux transport coefficients

In the development of transport theory in previous s
tions it was assumed that the number and properties
swarm particles were not changed in collisions with partic
of background granular fluid. In this section and in the
maining part of this paper, we remove this restriction a
allow nonconservative processes to take place. The t
‘‘nonconservative processes’’ is to be interpreted in a w
sense; it includes all processes which do not conserve
number of swarm particles and/or their other physical pr
erties. Non-particle-conserving collisions are usual for r
granular systems. Examples of such processes are the pe
nent deformation or cracking of swarm particles. Partic
created in such collisions develop anew granular swarm,
with different transport properties. In this paper we have c
sidered only the equation for a one-component gran
swarm. This should be sufficient for a general understand
In an actual ‘‘reacting’’ system several granular species
usually involved. We characterize all these possible ‘‘no
conservative’’ processes by the respective collision oper
JR. The kinetic equation~1.1! for the one-particle distribu-
tion function of granular swarms in the presence of nonc
servative processes is corrected with a ‘‘reactive’’ termJR.
We suppose that the collision operatorJR is linear and de-
pends functionally on the background fluid distributio
f H(vW ,t). It is therefore a time-dependent operator. For
present purposes, however, where the aim is a formal st
ture of the transport theory of granular swarms, further
tails of this operator are not needed.

Now notice that the operatorĤ0(t) contains two terms:
the particle conserving termM(t) @Eq. ~2.4!# and the ‘‘reac-
tive’’ collision term JR(t) which, under the correspondenc
~2.9!, become operatorsĤ0

PC(t) and Ĥ0
R(t), respectively.

Hence the non-particle-conserving terms will survive in E
~3.9! and ~3.10!:

^ f H~ t !uĤ0~ t !i¸ qW
(p)

~ t !&&5^ f H~ t !uĤ0
R~ t !i¸qW

(p)
~ t !&&Þ0, p>0.

~3.18!

Inserting Eq.~3.18! into Eqs.~3.9! and~3.10!, we see that the
presence of nonconservative processes alters the tran
coefficients in two ways. First, there are explicit
Ĥ0

R(t)-dependent terms in Eqs.~3.9! and~3.10!, and second,
there is an implicit change in tensorsi¸qW

(p)(t)&& since the
kinetic equations~3.1! and ~3.2! are now different.

Note that when nonconservative processes are presen
calculation of a transport coefficient of rankp requires solu-
tions of the kinetic equations~3.1! and ~3.2! up to orderp.
In the absence of nonconservative processes, solution
kinetic equations to the orderp21 suffice for the same
purpose.
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After these generalizations, we want to establish the c
nection between the swarm particle fluxGW (rW,t)
5*dvW vW f (rW,vW ,t) and transport coefficientsv̂qW

(p)(t), p>0.
From the definition~2.2! we have that the Fourier transform
of GW (rW,t) is given by

GW qW~ t !5^ f H~ t !uvŴ uFqW~ t !&. ~3.19!

Inserting Eq.~2.29! into Eq. ~3.19!, we arrive at

GW qW~ t !5 (
p50

`

~2 iqW !p(p^ f H~ t !uvŴ i¸ qW
(p)

~ t !&&. ~3.20!

After some algebra, we obtain

GW qW~ t !5 (
p50

`

~2 iqW !p(pV̂ qW
(p11)

~ t !nqW~ t !, ~3.21!

where

V̂ qW
(p)

~ t !5v̂ qW
(p)

~ t !2R̂ qW
(p)

~ t !, p>1, ~3.22!

R̂qW
(p)

~ t !52
1

nqW~ t !
^ f H~ t !u@v̂qW

(0)
~ t ! Î 2Ĥ0

R~ t !#i¸qW
(p)

~ t !&&,

p>1. ~3.23!

For completeness we putV̂qW
(0)(t)[v̂qW

(0)(t). The details of
this calculation are given in Appendix A.

In classical near-equilibrium theories the fluxGW (rW,t) is
usually expressed in the formGW (rW,t)5n(rW,t)KEW ext

2D@]n(rW,t)/]rW# whereK andD are classical mobility and
diffusion coefficients, respectively, andEW ext is the external
field strength. By analogy with this classical prescription,
could define ‘‘flux’’ transport coefficientsV̂ qW

(p)(t), p>0, in
accordance with Eqs.~3.21!–~3.23!. Reaction-corrected
transport coefficientsv̂ qW

(p)(t) are often called ‘‘bulk’’ trans-

port coefficients. In the absence of reactive processesR̂ qW
(p)(t)

vanishes for anyp>1, and the ‘‘bulk’’ and ‘‘flux’’ transport
coefficients becomeidentical. Thus, in the latter case, with
v̂qW

(0)
[0, the drift velocity WW qW(t) is determined by Eqs

~3.11! and ~3.15! and the diffusion tensorD̂qW(t) by Eqs.
~3.14! and ~3.17!.

IV. SPACE-TIME EVOLUTION OF GRANULAR SWARMS

We base our transport theory on the revised Enskog
netic theory~RET! for the hard sphere fluid@34,35#. The
RET is exact for times much shorter than the mean free t
between collisions. On this time scale it describes the o
particle distribution functionf (rW,vW ,t) for arbitrary spatial
variations. Outside this time regime, the Enskog equatio
not exact, because it does not take into account the velo
correlations built up by sequences of correlated binary co
sions. However, RET takes into account static short-ra
2-7
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correlations caused by excluded volume effects. The kin
equations~3.1! and~3.2! and corresponding transport coef
cients~3.9! and~3.10! obtained from these equations are co
rect within the framework of assumptions in which Ensk
theory is considered to be applicable. This remark is ess
tial; the validity of the Enskog description is an underlyin
assumption of this work.

This section is devoted to the analysis of the long-ti
behavior of transport coefficientsv̂ qW

(p)(t), p>0. It is a dif-
ficult problem which cannot be solved in full generality
the present time. Recently, we have analyzed the foundat
of the transport theory of charged particle swarms inrarefied
neutral gases in the presence ofstatic and uniform external
electric field @12#. Except for minor technical details, ou
strategy was the same as the one we followed in Secs. II
III to establish the generalized diffusion equation@Eq. ~3.8!#
from the Enskog equation. There is, however, a very imp
tant difference between the transport theory of charged
ticle and granular swarms. The transport theory of char
particle swarms is based on the Boltzmann equation, with
equilibrium state of a neutral gas as the reference state.
consequence, the corresponding unperturbed collision op
tor Ĥ0 @Eq. ~2.9!# is time independent. For granular swarm
the energy dissipation of the surrounding granular fluid pl
a very crucial role, and it is responsible for the time dep
dence of the unperturbed collision operatorĤ0(t). To extract
any information about the long-time behavior of either tra
port coefficientsv̂qW

(p)(t), p>0, or one-particle distribution

function f (rW,vW ,t), we must analyze the asymptotic behav
of the tensorsi¸ qW

(p)(t)&&, p>0. This is, of course, a difficult
problem, because the tensorsi¸ qW

(p)(t)&& involve the evolu-

tion operatorÛ0(t,t0), which is very complicated and canno
be evaluated in closed form.

In the case of charged particle swarms we have perform
an analysis of the long-time behavior of tensorsi¸qW

(p)(t)&&,
p>0. The remarkable theorem has been proved that a s
cient condition for the existence of a hydrodynamic regime
the existence of an isolated eigenvaluev̂

*
(0) of the operator

Ĥ0 which is separated from the rest of the spectrum by a
along the real axis@12,36#. Such an assumption implies th
separation of the relaxation time scalet0}(d0)21 (d0 is the
length of gap in the spectrum! and the hydrodynamic time
scaleth}@q(kBT)1/2#21 @37# (th is the time a swarm particle
needs to travel the length of macroscopic gradients;kBT is
the mean random energy of a swarm particle!. This means
that in the long-time limit (t@t0) all v̂ qW

(p)(t) become time

and qW independent in thesame characteristic time and
achieve their hydrodynamic values

v̂ qW
(p)

~ t !.v̂
*
(p) , t@t0 , p>0. ~4.1!

The transport coefficientsv̂
*
(p) as well as the one-particl

distribution function f (rW,vW ,t) can be evaluated in non
Hermitian perturbation theory, as demonstrated in Ref.@12#.
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These results show that hydrodynamic behavior is alw
linked to the forgetting of the initial conditions through th
relaxation.

As discussed above, the theory of granular swarms
more complicated than the corresponding theory of char
particle swarms due to the presence of an additional t
scale characterizing cooling processes. For this reason
difficult to analyze the case of arbitrary initial condition
and we limit ourselves to the special case where the in
distribution is given by

uFqW
I
&5u f 0&nqW~ t0!. ~4.2!

Inserting this initial value into Eqs.~2.30! and~2.31! we get

i¸ qW
(p)

~ t !&&5i¸ (p)~ t !&&nqW~ t0!, p>0, t>t0 , ~4.3!

where the tensorsi¸ (p)(t)&&, p>0, areqW independent. From
Eqs.~3.9! and~3.10! and Eq.~4.3! we conclude that all trans
port coefficientsv̂ qW

(p)(t), p>0, also becomeqW independent,
i.e.,

v̂ qW
(p)

~ t ![v̂ (p)~ t !, p>0, t>t0 . ~4.4!

Fourier inversionF 21 of Eq. ~4.4! gives

F 21@v̂ qW
(p)

~ t !#[v̂ (p)~rW,t !5v̂ (p)~ t !d~rW !, p>0, t>t0 ,

~4.5!

and we find that, for a class of initial conditions~4.2!, the
transport coefficients areqW independent for all times.

Although the previous formulation in Fourier space
very convenient for mathematical analysis, it is not very u
ful for discussing the physical meaning of the results. F
this latter purpose, let us go back to configuration spa
Applying the well-known convolution theorem for Fourie
transforms on the GDE@Eq. ~3.8!#, we get immediately

]

]t
n~rW,t !2 (

p50

` S 2
]

]rW
D p

(pE drW1 v̂ (p)~rW2rW1 ,t !n~rW1 ,t !50.

~4.6!

We see that the left-hand side of Eq.~4.6! involves a nonlo-
cal dependence on the number densityn(rW,t). The transport
coefficientsv̂ (p)(rW,t), p>0, connect the time evolution o
n(rW,t) in an arbitrary pointrW to its value in other points. This
is in accordance with the fact that granular materials
intrinsically nonlocal@3#.

Greater insight into the physical interpretation of t
transport coefficientsv̂ (p)(rW,t), p>0, can be obtained by
taking spatial moments of the number densityn(rW,t). Let
c(rW) be any function ofrW and let us define

^c~rW !&n[
1

NE drW c~rW !n~rW,t !, N[N~ t !5E drW n~rW,t !.

~4.7!
2-8
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TRANSPORT THEORY OF GRANULAR SWARMS PHYSICAL REVIEW E66, 051302 ~2002!
Assuming thatn(rW,t), together with its derivatives, vanish a
urWu→`, we obtain from Eq.~4.6! the following equation for
the time development of the averages^c(rW)&n :

]

]t
^c~rW !&n1

1

N~ t !

dN~ t !

dt
^c~rW !&n

2
1

N~ t ! (
p50

` E drW1 v̂ (p)~rW1 ,t !

(pE drW n~rW2rW1 ,t !S ]

]rW
D p

c~rW !50. ~4.8!

The details of the derivation of Eq.~4.8! are given in Appen-
dix B.

If c(rW) is a polynomial of orders in rW, then in Eq.~4.8!
only the transport coefficients of orderp<s occur. Taking
successive moments„c(rW)51,rW,rW ^ rW, . . . …, after some alge-
bra we have

1

N~ t !

dN~ t !

dt
5E drW v̂ (0)~rW,t !, ~4.9!

d

dt
^rW&n5E drW v̂ (1)~rW,t !2E drW v̂ (0)~rW,t !rW, ~4.10!

and

1

2

d

dt
~^rW ^ rW&n2^rW&n^ ^rW&n!

5E drW v̂ (2)~rW,t !2
1

2E drW@v̂ (1)~rW,t ! ^ rW1rW ^ v̂ (1)~rW,t !#

1
1

2E drW v̂ (0)~rW,t !rW ^ rW, ~4.11!

where the operation̂ has its usual meaning as defined
Eq. ~3.7!.

In general, the quantities on the left-hand sides~LHS’s! of
Eqs. ~4.9!–~4.11! are time dependent. As such they can
used in analysis of computer experiments. Their form is
dependent of whether ‘‘reactive’’ processes~Sec. III ! are
present or not. Physically, the time derivative on the LHS
Eq. ~4.10! can be interpreted as the time-dependent velo
of the center of mass of the granular swarm. The ten
quantity on the LHS of Eq.~4.11! represents the time
dependent rate of change of the mean-square width of
granular swarm or equivalently the time-dependent rate
the spreading of the granular swarm.

Thus far our discussion of the real-space formulation w
completely general. Let us consider again the initial st
f (rW,vW ,t0)5 f 0(vW )n(rW,t0) which separates the velocity an
space-time dependences@Eq. ~4.2!#. According to Eq.~4.5!,
from Eq. ~4.6! and Eqs.~4.9!–~4.11! we get immediately
generalized diffusion equation
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]t
n~rW,t !2 (

p50

`

v̂ (p)~ t !(pS 2
]

]rW
D p

n~rW,t !50 ~4.12!

and the following expressions for the transport coefficien

R~ t ![2v̂ (0)~ t !52
1

N~ t !

dN~ t !

dt
, ~4.13!

WW ~ t ![v̂ (1)~ t !5
d

dt
^rW&n , ~4.14!

D̂~ t ![v̂ (2)~ t !5
1

2

d

dt
~^rW ^ rW&n2^rW&n^ ^rW&n!

5
1

2

d

dt
^~rW2^rW&n! ^ ~rW2^rW&n!&n . ~4.15!

These equations are exact for all times if the initial conditi
has the assumed form.

Recently, Brey and co-workers@14# have proposed a
theory of Brownian motion in a granular gas in the absen
of an external field based on the Fokker-Planck equation.
the initial condition defined by Eq.~4.2! these authors have
shown that the number density of heavy particle granu
swarms in a granular gas of much lighter particles obeys
~4.12! truncated atp52. Our theory yields Eq.~4.12! with-
out restrictions on the ratio of gas to swarm particle mass
Furthermore, the results presented here are not restricte
small gradients in the density of swarm particles.

To establish further the contacts of our formalism w
previously studied particular cases we consider the s
diffusion in freely evolving granular gas. In Appendix A w
show that our general results yield the well-known kine
equations and the transport coefficients obtained in the s
dard Chapman-Enskog treatment@15#.

Turning to the flux transport coefficientsV̂qW
(p) , p>1,

from Eqs.~3.22!, ~3.23!, and ~4.3! we obtain that they also
becomeqW independent when the velocity and space-time
pendences of the initial conditions separate:

V̂qW
(p)

~ t ![V̂ (p)~ t !5v̂ (p)~ t !2R̂(p)~ t !,

p>1, t>t0 , ~4.16!

where

R̂qW
(p)

~ t ![R̂(p)~ t !52^ f H~ t !u@v̂ (0)~ t ! Î 2Ĥ0
R~ t !#i¸ (p)~ t !&&,

p>1. ~4.17!

Finally, combining Eq.~4.16! and inverse Fourier transform
of Eq. ~3.21!, it is easy to derive a useful expression for t
swarm particle flux:

GW ~rW,t !5 (
p50

`

V̂ (p11)~ t !(pS 2
]

]rW
D p

n~rW,t !. ~4.18!

The physical interpretation afforded by Eqs.~4.14! and
~4.15! permits an interpretation of the flux component a
‘‘nonconservative’’ corrections to the bulk transport coef
2-9
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cients given in Eq.~4.16!. The flux drift velocity V̂ (1)(t)
represents the rate of change of the position of the cente
mass due to external~gravitation! fields only. The presence
of gravity results in a spatial variation in the energy throug
out the swarm. Under such a condition, an energy-selec
change of the number of swarm particles leads to a chang
the position of the center of mass of the swarm. This eff
on the bulk drift velocityWW (t) is represented byR̂(1)(t).
Likewise the flux diffusion tensorV̂ (2)(t) represents the rat
of spreading of the swarm due to gravity and]n/]rW. An
energy-selective change of the number of swarm parti
may result in a variation of]n/]rW throughout the swarm an
a subsequent variation in the rate of change of the me
squared width of the swarm. Such effects are expresse
the second-rank tensorR̂(2)(t).

V. CONCLUDING REMARKS

In this paper we have analyzed the foundations of
transport theory of granular swarms. The Boltzmann-Lore
equation was used to describe the motion of swarm parti
in a dilute granular gas of inelastic hard spheres. The the
developed in this paper is valid under several assumpti
We have considered the special case when the backgr
fluid is in the homogeneous cooling state, but the develo
formalism is applicable to any nonstationary buthomoge-
neousstate of the background granular fluid. An infinite m
dium with no boundaries is an idealization, and proper ana
sis of real systems requires that boundaries and assoc
boundary conditions be taken into account. Furthermore,
homogeneous cooling state is unstable to long-wavelen
perturbations that were not considered, so the results
tained apply only on time scales short compared to that
the growth of such perturbations.

We have applied the time-dependent perturbation met
to study the evolution of the swarm from an arbitrary init
distribution. We have obtained Eq.~3.8! which is a nonhy-
drodynamic extension of the diffusion equation with tran
port coefficients that are time dependent and implicitly d
pend on the wave vector. The spatial dependence of
transport coefficients arises from their explicit depende
on the initial distribution. In other words, every Fourier com
ponent of the initial distribution has a corresponding set
transport coefficients$v̂ qW

(p)(t)up>0% which, according to
Eq. ~3.8!, describes temporal evolution of the correspond
Fourier component of the number densityn(rW,t). Our de-
scription of theshort-timedevelopment of granular swarm
is consistent with the generalized hydrodynamic descrip
in which the diffusion coefficient depends on the wave v
tor @38#. Any transport coefficient can be represented a
function of solutions to the hierarchy of kinetic equatio
@Eqs.~3.11!–~3.17!#. This is similar to the Chapman-Ensko
procedure. Namely,v̂ (2) corresponds to the Navier-Stoke
hydrodynamics, and the transport coefficientsv̂ (3) and v̂ (4)

correspond to the Burnett and super-Burnett levels, res
tively. Despite this similarity, our formalism is more gener
than the Chapman-Enskog theory, because it is valid forall
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times including the initial nonhydrodynamic regime. In fac
it contains the Chapman-Enskog theory as its long-time li
as demonstrated in Appendix A for the case of self-diffus
in a freely evolving granular gas. The fact that the transp
coefficients appearing in Eq.~3.8! are tensors reflects th
anisotropy of the granular swarm induced by the impos
external field.

For the special kind of initial state@Eq. ~4.2!# whose one-
particle distribution function is given by f (rW,vW ,t0)
5 f 0(vW )n(rW,t0), transport coefficientsv̂ (p)(t), p>0, areqW
independent at all times. In that case, they can be expre
as time derivatives of the spatial moments of the num
densityn(rW,t) @Eqs.~4.13!–~4.15!#. For more general initial
conditions theshort-time behavior of the number densit
cannot be characterized by singular distributionsv̂ (p)(rW,t)
5v̂ (p)(t)d(rW), p>0 @Eq. ~4.6!#. Then, the temporal evolu
tion of the spatial moment of the number density ofsth order
depends on the generalized transport coefficientsv̂ (p)(rW,t) of
order 0<p<s. Equations~4.9!–~4.11! describe the inertial
regime in the dynamics of swarm particles subjected to
external field. This regime holds for times small enou
compared to the characteristic relaxation times. Note that
results presented here are not restricted to small gradien
the density of swarm particles.

As a new aspect of granular swarm transport theory
have introduced the concept of non-particle-conserving c
lisions. If ‘‘reactions’’ are present, the collision operatorJ
may be split into a particle conserving partJPC and a ‘‘reac-
tive’’ part JR. Without going into details of the operatorJR,
we have demonstrated the separation of the flux and ‘‘re
tive’’ component of the transport coefficients@Eqs. ~3.22!
and ~4.16!#. While the Chapman-Enskog method is val
only if the reaction termJR in the kinetic equation can be
treated as a small perturbation with respect to the collis
term JPC @39#, our hierarchy of kinetic equations~3.1! and
~3.2! is not restricted by this condition.

The problems that need further elaboration are proble
involving boundaries and inhomogeneities of the backgrou
granular fluid. On the other hand, computer simulations h
become an effective tool for gaining physical insight in
various aspects of granular swarm behavior. It would be
teresting to see them used to obtain accurate values of tr
port coefficients@Eqs.~4.13!–~4.15!#.

APPENDIX A: DERIVATION OF EQ. „3.21…

Since the time derivative ofN̂(p)(qW ,t) is @see Eq.~3.4!#

]

]t
N̂(p)~qW ,t !5^ f H~ t !u

]

]t
i¸qW

(p)
~ t !&&, p>0, ~A1!

we obtain, from Eqs.~3.1! and ~3.2!,

]

]t
N̂(0)~qW ,t !5^ f H~ t !uĤ0~ t !i¸qW

(0)
~ t !&&, ~A2!
2-10
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]

]t
N̂(p)~qW ,t !5^ f H~ t !uĤ0~ t !i¸qW

(p)
~ t !&&

1^ f H~ t !uvŴ i¸qW
(p21)

~ t !&&, p>1. ~A3!

From Eq. ~3.20! and Eqs.~A2! and ~A3!, using definition
~3.6! and Eq.~3.5!, we arrive at

GW qW~ t !5 (
p50

`

~2 iqW !p(p@v̂ qW
(p11)

~ t !nqW~ t !

1^ f H~ t !u@v̂qW
(0)

~ t ! Î 2Ĥ0~ t !#i¸ qW
(p11)

~ t !&&].

~A4!

This leads immediately to Eq.~3.21!.

APPENDIX B: DERIVATION OF EQ. „4.8…

Multiplying Eq. ~4.6! by the functionc(rW) and integrating
over rW, we obtain

]

]tE drW c~rW !n~rW,t !2 (
p50

` E drW1 v̂ (p)~rW1 ,t !

(pE drW c~rW !S 2
]

]rW
D p

n~rW2rW1 ,t !50. ~B1!

We suppose thatn(rW,t) together with its derivatives vanish a
the boundaries of the domain of integration:

S ]

]rW
D p

n~rW,t !→0, urWu→`; p>0. ~B2!

By partial integration, we get immediately

]

]tE drW c~rW !n~rW,t !2 (
p50

` E drW1 v̂ (p)~rW1 ,t !

(pE drW n~rW2rW1 ,t !S ]

]rW
D p

c~rW !50. ~B3!

Using, in addition, the equality

]

]tE drW c~rW !n~rW,t !5N~ t !
]

]t
^c~rW !&n1

dN~ t !

dt
^c~rW !&n ,

~B4!

we readily obtain Eq.~4.8!.

APPENDIX C: SELF-DIFFUSION

Here we apply our general formalism to the self-diffusi
of swarm particles in the regime of homogeneous cool
and compare with results previously obtained by Chapm
Enskog expansion in the density gradient of the swarm p
ticles @15#. We consider the system in the absence of
external field.
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Self-diffusion is the simplest transport process when
swarm particles are mechanically equivalent to the fluid p
ticles. The time evolution of the one-particle distributio
function of the swarm particles is given by Eq.~1.1!, where
the collision operator has the form~1.7! with s̄5s and m
5m0 , D51 in Eq. ~1.3!.

Under the assumption that the initial one-particle distrib
tion function of swarm particles is given byf (rW,vW ,t0)
5 f 0(vW )n(rW,t0), the transport coefficientsv̂ qW

(p) , p>0, areqW

independent at all times according to Eq.~4.4!. Since we are
interested in transport coefficients only, it can be suppo
that the initial distribution for swarm particles isn(rW,t0)
5N0d(rW), whereN0 is the number of swarm particles. Fo
this idealized initial condition, theqW dependence of the ten
sorsi¸ qW

(p)(t)&&, p>0, in the hierarchy of kinetic equation
~3.1! and ~3.2! can be omitted. Indeed, from Eq.~4.3! and
nqW(t0)5N0, we obtain

i¸ qW
(p)

~ t !&&5i¸ (p)~ t !&&N0→N0 f̂ (p)~vW ,t !, p>0, t>t0 .

~C1!

Hence, from Eqs.~3.11!–~3.17! and Eq.~C1! we obtain the
kinetic equations

]

]t
f (0)~vW ,t !5J@ f (0)#~vW ,t !, f (0)~vW ,t0!5 f 0~vW !, ~C2!

]

]t
fW (1)~vW ,t !5J@ fW (1)#~vW ,t !1vW f (0)~vW ,t !, fW (1)~vW ,t0!50,

~C3!

and expressions for the transport coefficients

WW ~ t !5
1

E dvW f (0)~vW ,t !
E dvW vW f (0)~vW ,t !, ~C4!

D̂~ t !5
1

E dvW f (0)~vW ,t !
F E dvW vW ^ fW (1)~vW ,t !

2WW ~ t ! ^ E dvW fW (1)~vW ,t !G . ~C5!

Next, let us consider the long-time behavior of swa
particles. It is assumed that in the long-time limit there a
solutions to the kinetic equations~C2! and ~C3! of the form

f (0)~vW ,t !5 f T
(0)
„vW uTH~ t !…, fW (1)~vW ,t !5 fWT

(1)
„vW uTH~ t !….

~C6!

The notationf T„vW uTH(t)… means thatf T is a functional of the
granular temperatureTH(t) and that its time dependence o
curs only through temperatureTH(t). An evolution equation
for the temperature has the well-known form
2-11
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]TH~ t !

]t
52zH~TH!TH~ t !, ~C7!

where z(TH) is the cooling rate@20#. Finally, the kinetic
equations for this stage of evolution follow directly fro
Eqs.~C2!,~C3! and Eq.~C7!:

2zH~TH!TH~ t !
]

]TH
f T

(0)~vW uTH!5J@ f T
(0)#~vW uTH!, ~C8!

2zH~TH!TH~ t !
]

]TH
fWT

(1)~vW uTH!

5J@ fWT
(1)#~vW uTH!1vW f T

(0)~vW uTH!. ~C9!

The solution of the zeroth-order kinetic equation~C8! must
be proportional tof H(vW ,t); i.e., it has the form

f T
(0)~vW uTH!5

1

n0
f H„vW ,TH~ t !… ~C10!
.

-

ty

jo

05130
and, therefore, the drift velocity@Eq. ~C4!# of swarm par-
ticles vanishes, i.e.,WW (t)50. Substitution of this into Eqs
~C9! and ~C5! yields

2zH~TH!TH~ t !
]

]TH
fWT

(1)~vW uTH!

5J@ fWT
(1)#~vW uTH!1vW

1

n0
f H„vW ,TH~ t !…, ~C11!

D̂„TH~ t !…5E dvW vW ^ fWT
(1)
„vW uTH~ t !…. ~C12!

Recently, the results~C11! and ~C12! have been obtained
from Chapman-Enskog solution to the Enskog-Lorentz eq
tion @15# @Eqs.~24! and~26! therein#, and the integral equa
tion ~C11! was approximately solved in a leading-order S
nine polynomial expansion.
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