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Abstract Currently available genome-wide expression measurementsand the re-
spective data bases represent the reliable entry information for gene interaction re-
search. In order to unravel the collective behavior of genes, methods and approaches
pertinent to complex dynamical systems are necessary. Using the network theory, we
study correlation patterns in the time series of gene expressions of Yeast measured
along the cell cycle. We select a subset of genes by their leading participation in
the scale-invariant features of the expression data. Applying standard filtering of the
correlation matrix reveals inhomogeneous mesoscopic structure of the related graph
with several well defined modules of genes. The findings are corroborated by the
spectral analysis of the correlation matrix and the eigenvector localization on the
graph. The topologically distinct groups of genes which areco-expressed within a
given phase of the cell cycle belong to different functionalcategories but often share
the same localization, i.e., nucleus, cytoplasm, or mitochondria, inside the cell.

1 Introduction

Mapping of a complex dynamical system on a mathematical graph, i.e., by iden-
tifying its nodes and their connections (edges), provides aground for quantitative
study of complexity by methods of the formal graph theory andstatistical physics
of structured networks [1, 2]. In this picture, the dynamic processes of the system
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can be viewed as a set oftime seriesrelated to the fluctuations of the activity of
each node on the graph. Such time series are often measured inthe real systems
and massive empirical data are currently available, for instance, the time series in
the stock-price fluctuations in the stock market [3] and temporal fluctuations of the
activity of routers in the Internet traffic [4]. Analysis of the time series and models
reveals the occurrence of the long-range correlations and collective behavior related
to the structure of the underlying dynamical system [4, 5, 6].

Studies of the correlations in time-series were attempted using various meth-
ods in order to unravel the underlying functional structureof the complex system,
which results in these time series. Owing to the nonlinearity of the dynamics and
the complexity (emergence) of thecollective dynamical effectswhich do not occur
at the level of isolated units, this problem represents a major challenge in contem-
porary science of complex systems. Often the mathematically elaborate methods
theoretical models are necessary to interpolate between the observed data and true
interactions in the system. On the other hand, massive data of genome-wide expres-
sions measurements [7] are available, which contain hiddeninformation about gene
interactions. Assuming a model of gene dynamics, analysis of gene expression data
yielded rather limited information aboutpairwisegene interactions (gene network)
[8, 9]. Using formal analysis we recently studied the traffictime series on known
modular networks [10]. We have shown that, unlike individual links, the network
modularity (structure at the mesoscopic scale) can be revealed quite accurately from
the correlations in the time series. The accuracy increaseswhen the network is fully
partitionable into modules. (See also Refs. [11] and [12] for different approaches to
the problem of resolution of the network community structure.)

In this work we study correlations in the empirical time series of gene expres-
sions measured [13] for each gene in the genome of YeastSaccharomyces cere-
visiae (S.c.). Compared to the typical time series, say in the stock pricesor Internet
traffic, the time series of the gene expressions differ in thefollowing: the expres-
sions are sparsely measured (every 10 minutes) resulting infewer number of points
(the statistical importance of the data points is discussedin [13]); more importantly,
the time evolution is naturally related to thecell cycle, therefore, when a cycle is
completed (approximately 2 hours), the gene activity returns to the beginning of a
new cycle. Our focus here is on the gene clustering that can bedetected through
the analysis of these time series. Our analysis is based entirely on the expression
data without further reference to the transcription regulation between genes with al-
ready known transcription factors [7, 2]. We also restrict the analysis to a subset of
603 genes whose activity is most prominent in one of the phases of the cell-cycle
(the “cell-cycle type”). Identification of the cell-cycle related genes and their mutual
correlations is an important and still open problem (see [14] and references therein).

In Section 2 we present the statistical analysis of the genome-wide expression
data and select the genes with leading contributions in the cell-cycle phases. We
further analyze the correlations of the selected subset of genes in Section 3, where
we determine the groups of genes using filtered correlation matrix and its eigenvalue
spectrum. Section 4 is devoted to the study of topology of thenetwork constructed
on the basis of correlations, and Section 5 makes a brief summary.
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2 Scale invariance in the expressions of CC genes

We consider empirical data for the time-course expression of the whole genome of
yeastS.c., measured in Ref. [13] at 17 equidistant time points along two full cell cy-
cles. The statistical analysis of the data [15] (see also [2]) revealed scale-invariance
in the ranking of the gene expressions and the broad distributions with power-law
tails, which are characteristic for collective behavior, e.g., in self-organized dynam-
ical systems. In particular, the average expressions of genes during the cell cycle
obey a power-law ranking, also known as Zipf’s statistics [21, 22], which indicates
different contributions of genes to the dynamics during thecell cycle. Here we use
the scale-invariance of the expression data to select the genes which contribute at
most to the observed scale-invariance.

For this purpose we analyse thedifferential expressionwhich is defined as
∆Xi(t) = hi(t)−hi(t−1) for each genei = 1, · · · ,N = 6406 ORF (genes). The rank-
ing distributions of all measured entries (N×17) is given in Fig. 1a, top curve. Simi-
lar ranking statistics for allN genes but for a single time att = 1,8,16 are also given
by other three curves. Broad distribution with the Zipf’s law suggestsnon-random
correlationsfor genes with the expressions above a threshold (marked by the hor-
izontal line, which actually coincides with often used discrimination level 2× h0,
whereh0 is the average expression in the whole system and for all instances of time).
The occurrence of a smaller slope for genes with the largest expressions (upper part
of the ranking curve) suggests that a community structure might be present with
several genes playing a central role in each community. The scale-invariance of the
expressions is also seen in the distribution for the differential expressions in Fig. 1b,
again for the three time points and for all data. This distribution exhibits a power-law
tail after a characteristic scale∼ ∆0, and can be fitted by theq-exponential form

P(∆X) = Bq

[

1− (1−q)
∆X
∆0

] 1
1−q

; q 6= 1 , (1)

whereq≃ 1.36 represents the non-extensivity parameter [20].
For the purpose of this work we select the genes with the expressions above the

threshold< hi >> 2h0, as explained above and marked in Fig. 1a. The selected set
consists ofNs = 1216 genes. Among these the first 612 in the ranking order are the
genes which are expressed throughout the entire cell cycle,while the following 604
genes are mostly expressed within one or two of the cell cyclephases (G1,S,G2,M).
In the following we will focus on this latter group of genes (cell-cycle genes). For the
illustration, in Fig. 2 are shown the expressions for several cell-cycle genes within
the first cycle.

For each pair of genes we compute the correlation coefficients of the temporal
differential gene expressions∆Xi(t), which is given by

Ci j (t − t ′) =
∑t(∆Xi(t)−〈∆Xi〉)(∆Xj(t − t ′)−〈∆Xj〉)

σiσ j
. (2)
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Fig. 1 (a) and (b) Statistical analysis of the differential expressions data for all genes in the genome
of yeastS.c.shown in ranking order (a) and histogram (b). In both panels,top curve includes data
of all measurements, while lower three curves are for all genes at a given instant of time in the cell
cycle. The discrimination dashed line in (a) indicates how the firstNs = 1215 genes in the ranking
order are selected. (c) For the selected genes: the distribution of correlation coefficientsCi j for
co-expression (dt = 0) and for two time-delayed correlations. (d) Size of the giant component as a
function of the threshold correlationW0 in the selected set ofNs genes.

whereσi and σ j are the standard deviations of the respective time series ofthe
genesi and j. The distribution of the correlation coefficients for the selected set of
Ns genes is given in Fig. 1c, wheredt ≡ t− t ′ indicates the time-lagged correlations.
As the Fig. 1c shows, in this set of genes the strongest deviations from normal
distribution are seen in the equal-time correlationsdt = 0, which we will consider
in the following. In order to extract the relevant correlations, e.g., in the tail of the
distributions in Fig. 1c, from the random correlations around zero, one considers
only the correlations above a threshold value|Ci j | > W0. However, for the analysis
of the community structure, the threshold needs to be low enough such that all nodes
of the network based onCi j as the connectivity matrix belong to a single connected
component. Large values of the threshold lead to fragmentation of such network. On
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Fig. 2 Three-dimensional
plot of the gene expressions
within the first cycle for
several leading Cell-Cycle
genes ordered according
the time of their maximum
expression.
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the other hand, we may observe how the giant cluster is formedby slowly reducing
the threshold starting fromW0 = 1 (in Ref. [15] formation of the giant cluster for
the entire genome of Yeast was studied). In the case of selectedNs genes which we
consider here, the largest clusterSmax as function of the thresholdW0 forms slowly
and allNs genes are connected only atW0 ≥ 0.6, as shown in Fig. 1d. Therefore, we
will consider the critical thresholdW0 = 0.6 for the study of the correlation matrix
of Ns genes and their subset—CC genes, in the next session.

3 Detecting modules in the correlation matrix

As mentioned above, the network based on the correlation matrix C with the ele-
mentsCi j > W0 = 0.6 is connected, however, it has very large number of links. As
mentioned in the Introduction, in order to find a meaningful structure in the corre-
lations, one needs to apply a filtering procedure in order to reduce the number of
’spurious’ links. One of the methods which we use here is based on affinity trans-
formation [17]. For the filtering procedure[17], the matrixelementsCi j of the cor-
relation matrix are first mapped to the positive interval[0,1]. Then each elementCi j

is multiplied with a factorMi j which is constructed from the elements of the rows
i and j in the correlation matrix: Excluding the diagonal elementsCii andCj j , the
remaining matrix elements are first reordered to form then≡ (N−1)-dimensional
vectors{Ci j ,Ci1, ...,CiN} and{Cji ,Cj1, ...,CjN}. Then with the components of these
vectors the Pearson’s coefficientMi j is computed according to the general expres-
sion in Eq. (2). The matrix elementsCM

i j of the filtered correlation matrixCM are
given by the respective products

CM
i j = Mi jCi j . (3)
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Fig. 3 Filtered correlation matrix showing several modules (diagonal blocks) of CC genes.

In this way, the correlation between the nodesi and j is enhanced if the correspond-
ing meta-correlation elementMi j is large, i.e., the nodesi and j are connected to
the rest of the system in a similar way (which will be also manifested in their time
series), and reduced otherwise. Therefore, after the filtering procedure we expect to
find enhanced correlations between ’similar’ nodes, and reduced in the case when
nodes play different role in the system. Applying then the same threshold as above,
we find groups of nodes with enhanced correlations inside thegroup and generally
reduced correlations (number of links above the threshold)outside the group. In
Fig. 3 we show the filtered correlation matrix of the 603 CC genes. The filtered ma-
trix clearly exhibits the modular structure with several modules, blocks along the
diagonal, of different sizes. It is also clear that some of the modules are not en-
tirely homogeneous, having a strongly expressed gene inside the module leads to
enhanced correlations between the other genes in the moduleand with other mod-
ules. As shown in ref. [10] for the model network, the internal inhomogeneity of the
modules leads to extra correlations between the modules, which can not be filtered
out by standard methods. However, the size and the association of the nodes with
the modules is correctly matched. We expect the same is true in the case of gene
correlations. The structure of the modules can be visualized and analyzed in detail
using the network representation, with the adjacency matrix defined by the elements
of the filtered correlation matrixCM. In the following we first analyze the spectrum
and subsequently the structure of the network.
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3.1 Spectral analysis of the gene correlation matrix

The modular structure of the network can be also visualized via the spectral analysis
of its connectivity matrix and other matrices, e.g., Laplacian, related to the structure
[16]. Here we solve the complete eigenvalue problem of the filtered correlation ma-
trix shown in Fig. 3. The matrix with weighted links (excluding the self correlations)
above the threshold 0.6 is considered. The results for the eigenvaluesλi are shown
in Fig. 4, ranked according to their values. In the eigenvalue spectra of structured
networks [23] the largest eigenvalue is separated from the rest of the spectrum and
the components of its eigenvector are related to the eigenvector-centrality measure
[1, 16]. In the presence of the structural modules (or communities), additional eigen-
values appear between the largest eigenvalue and the main part of the spectrum. The
number of such eigenvalues is directly related to the numberof topologically distinct
modules. In the upper part of the plot in Fig. 4 six such eigenvalues occur, corre-
sponding to six (sufficiently large and distinct) modules inthe correlation matrix.
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Fig. 4 Eigenvalues of the filtered correlation matrix of CC genes ranked according to value.

Further remarkable property of the eigenvalue problem of a modular network
is illustrated by the localization of the eigenvectors of the large eigenvalues of its
connectivity matrix (or similarly, of the small non-zero eigenvalues of the Lapla-
cian matrix [16]) on the network modules. Formally, the termlocalizationof the
eigenvectorVi ≡V(λi) belonging to the eigenvalueλi denotes that it has anonzero
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componentVκi , corresponding to the node with the indexκ . In modular networks the
nodes with indexesκ corresponding to positive/negative values of the eigenvector
components belong to different modules. Moreover, the extended branched view of
the scatter plot indicates a structured network. In our casewith the filtered correla-
tion matrix we show the eigenvectors associated with the three large eigenvalues just
below theλmax. The 3-dimensional scatter plot of the components these eigenvec-
tors(Vκ

1 ,Vκ
2 ,Vκ

3 ) is shown in Fig. 5. Each point in this plot correspond to the same
index κ of the three eigenvectors, and thus represents one node on the network.
The separate branches in the scatter plot correspond to different modules on the
network (diagonal blocks in its adjacency matrix). In our case each node represents
a specific gene. Therefore, genes belonging to different branches can be identified
by their names and other known biological properties [19]. For the illustration, the
genes at the far ends in the scatter plot are node with the index (cf. matrix in Fig. 3)
471 corresponding to gene DIM1 or ORF “YPL266W”(most right in Fig. 5), index
130 corresponding to the gene CLB5 or “YPR120C” (at the fronttip of the middle
branch), index 367 or “YOR153W” and gene PDR5 (lower left tip), and index 221
representing the gene TY2B “YBL101W-b” (top of the middle branch in the scat-
ter plot on Fig. 5). Identity of more genes grouped in the vicinity of these four are
listed in the separate sections in the Table 1. Their biological properties, taken from
the MIPS database [19], indicate that the genes in each groupspan the whole spec-
trum of different biological functions, however, they mostly share the same physical
localization in the cell (nucleus, cytoplasm, mitochondria, cell periphery, etc.).
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Fig. 5 Scatter plot: Components of the eigenvectors associated tothree large eigenvaluesλ3 =
25.568807,λ2 = 26.276988, andλ1 = 30.840979. Most distant points on the plot correspond to
the genes DIM1, CLB5, and TY2B, located in nucleus, cytoplasm, and mitochondria, respectively.
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4 Structure of correlation network and group-identity of genes

The structure of the modules of co-expressed genes can be studied systematically by
analysis of topology of the network whose adjacency matrix is based on the filtered
correlation matrix. In Fig. 6a we show such network with nodes representing genes
and edges indicating the expression correlations above thethreshold (shown are
only the linksCi j > 0.8). Colors (red, green, yellow, blue) on the nodes represent
one of the phases (G1, S, G2, M) of the cell cycle where the genehas its peak
expression. The presence of modules are seen on the network,however, the number

(a) (b)

(c) (d)

Fig. 6 (a) Network based on the filtered correlation matrix of CC genes (shown are linksCi j >

0.8)). (b) Maximum correlation spanning tree of the network. (c)Zoomed branch of the tree with
genes marked by their ORF labels in the original data. Colorson nodes in (a-c) indicate the cell-
cycle phases (G1:red, S:green, G2:yellow, M:blue) in whichthe gene has maximum measured
expression. (d) Biological functions (grouped in seven categories) for genes within same branch.
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of links inside these modules is too large. Therefore, we usethe spanning treeas
another way to visualize the structure of these weighted networks. We construct the
spanning tree of the gene correlation network (shown in Fig.6b), where each gene is
connected to the rest of the tree by itsstrongestlink (maximum correlation spanning
tree). Separate branches on the tree correspond to seven modules in the correlation
matrix (cf. Fig. 3). The predominant color in parts of the tree (branches) indicates
gene groupings according to the phase of their peak activity. Detailed identification
of the genes within a branch or sub-branch, an example is displayed in Fig. 6c with
the names of genes, shows that genes within the same phase of the cell cycle have
variety of biological functions. An example of the tree branch is shown in Fig 6d,
with gene functions indicated by colors and numbers from 0-7(for seven groups
of known gene functions: metabolism, energy, cell cycle/cell rescue, transcription,
protein synthesis, cellular transport, cell type differentiation and development, and
unknown). The genes along the same branch of the tree have additional similarity in
their localization in the cell. For instance, according to the MIPS database [19], the
majority of the genes belonging to the branch in Fig. 6c are localized either in the
nucleus or in the nucleus and cytoplasm.

5 Conclusions

We have studied correlations in the activity of genes of yeaastS.c.based on the em-
pirical data [13] in the form of time series, in which the fluctuation in the expression
of each gene are measured along the cell cycle. We employed three methods suitable
for the analysis ofcollective dynamical behaviorin self-organized systems:

• Scale-invariancein various statistical measures of the differential expressions
suggests uneven role of different genes in the cell-cycle dynamics. With the rank-
ing distribution (Zipf’s law) we selected the genes with leading contributions to
the scaling behavior, what implies prominent correlationswithin the selected set.

• Spectral analysisof the appropriately filtered correlation matrix is suitable for
detecting modules of strongly correlated genes. We find several such modules of
different size in the subset of the cell-cycle genes. The eigenvectors associated
with the largest eigenvalues of the correlation matrix showa pattern of localiza-
tion of the non-zero components on gene indexes belonging todifferent modules.

• Network topologybased on the filtered correlation matrix (above a threshold)
gives a systematic survey of the content of different groups(modules). Identify-
ing the genes in different modules suggest that they share similarity in the phase
of the cell cycle with their peak activity and also in the physical localization
inside the cell, checked against the biological information in MIPS database.

We have shown that the genes co-expressed along the cell-cycle show certain pat-
terns of correlated activity which is unraveled by the formal analysis within the
network theory without further reference to bio-chemical interactions (transcription
regulations) or a specific mathematical model for the gene dynamics.
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Table 1 Characteristics of genes associated with four tips of the branches in the scatter plot in
Fig. 5. Data according to MIPS database [19]. Abbreviations: UP (UNCLASSIFIED PROTEINS);
BIOG (BIOGENESIS), M (METABOLISM), CC (CELL CYCLE), CT (CELLULAR TRANS-
PORT), E (ENERGY), CTD (CELL TYPE DIFFERENTIATION), TR (TRANSCRIPTION),
ENV (Interaction with Environment), PF (regulation of PROTEIN FUNCTION), PM (PROTEIN
FATE , PROTEIN MODIFICATION), PS (PROTEIN SYNTHESIS), DEV (DEVELOPMENT),
CF (CELL FATE), CR (CELL RESCUE); Localization: CP (cell periphery), CYT (cytoplasm),
NUC (nucleus), VAC (vacuole), Ec ( extracellular), MIT (mitohondria), ER (endoplas.reticulum).

ORF reading Gene Name Functional Category Disruption Localization

YPL266W DIM1 TRANSCRIPTION letal NUC
YOL005c RPB11 DNA binding, TR lethal NUC
YPL267W ACM1 UP viable NUC
YKR013W PRY2 UP viable NUC, VAC
YNL281w HCH1 CELL RESCUE viable CYT,NUC
YDL039c PRM7 DEVELOPMENT viable ?
YDL003W MCD1 CC & DNA processing lethal CYT, NUC
YAL036c RBG1 GTP binding viable CYT
YJL174W KRE9 CTD, M, BIOG, E lethal Extracellular
YDL241W - UP viable CYT,NUC
YPL235W RVB2 M, CC & DNA processing, TR lethal ?

YBL101W-b TY2B Viral& PP - (cyt)
YLR257W - UP viable CYT
YFL035c-b MOB2 CC & DNA, PM, M, PF lethal CP, CYT
YHR135C YCK1 ENV, CC & DNA, PM, M, CTD viable PM, CYT, ER, NUC
YPL226W NEW1 M, PB, PS viable CYT,NUC,MIT
YML085C TUB1 DEV, CC & DNA processing, M lethal CYT, cytoskeleton
YKL001C MET14 METABOLISM viable CYT
YDR245W MNN10 CTD, M, BIOG, PM viabl ER, golgi
YPL032C SVL3 CTD, CF, BIOG viable CP, CYT
YGR118W RPS23A PROTEIN SYNTHESIS viable CYT
YPL028W ERG10 METABOLISM lethal CYT, NUC
YDR346c - unclassified viable CYT, NUC
YDL124w - PB, M viable CP, CYT, NUC
YBL064c PRX1 CR, DEFENSE & VIRULENCE viable CYT, NUC, MIT
YJL217w - UP viable CYT
YBR194w SOY1 UP viable CYT, NUC
YER001w MNN1 M, PM viable golgi, VAC
YNR065c YSN1 UP viable ?
YDL166c FAP7 CR, TRANSCRIPTION letal CYT, ER, NUC
YEL003w GIM4 BIOG, PM, PB viable CYT
YDR098c GRX3 CR, PM, CT viable CYT, NUC

YAR002c-a ERP1 CT, PM viable golgi, MIT, VAC
YKL142W MRP8- PROTEIN SYNTHESIS viable CYT, MIT
YPR120C CLB5 CC& DNA processing viable MIT
YKL190w CNB1 TR, PB viable CYT
YPL135w SU1 M, ENV viable MIT
YCR070w CPR4 PROTEIN FATE MODIFICATION viable ER, VAC
YLR017w MEU1 METABOLISM viable CYT, NUC
YML010W SPT5 TR, CC&DNA processing viable NUC, MIT
YER074w RPS24A PROTEIN SYNTHESIS viable CYT, MIT
YBR048w RPS11B PROTEIN SYNTHESIS viable CYT
YOR153w PDR5 ENV, CT, PB, CR viable CP, CYT, MIT
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