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Abstract Currently available genome-wide expression measurenamtshe re-
spective data bases represent the reliable entry infoomédi gene interaction re-
search. In order to unravel the collective behavior of gemeshods and approaches
pertinentto complex dynamical systems are necessarygltsgmetwork theory, we
study correlation patterns in the time series of gene espas of Yeast measured
along the cell cycle. We select a subset of genes by theiirlggzhrticipation in
the scale-invariant features of the expression data. Apgpktandard filtering of the
correlation matrix reveals inhomogeneous mesoscopictsiiel of the related graph
with several well defined modules of genes. The findings armborated by the
spectral analysis of the correlation matrix and the eigetordocalization on the
graph. The topologically distinct groups of genes which@rexpressed within a
given phase of the cell cycle belong to different functiaratkbgories but often share
the same localization, i.e., nucleus, cytoplasm, or mibochia, inside the cell.

1 Introduction

Mapping of a complex dynamical system on a mathematicalrgiiag, by iden-
tifying its nodes and their connections (edges), providgsoaind for quantitative
study of complexity by methods of the formal graph theory atadistical physics
of structured networks [1, 2]. In this picture, the dynamiogesses of the system
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can be viewed as a set tilme seriegrelated to the fluctuations of the activity of
each node on the graph. Such time series are often measutieel inal systems
and massive empirical data are currently available, faiaimse, the time series in
the stock-price fluctuations in the stock market [3] and terapfluctuations of the
activity of routers in the Internet traffic [4]. Analysis dfd time series and models
reveals the occurrence of the long-range correlations alhective behavior related
to the structure of the underlying dynamical system [4, 5, 6]

Studies of the correlations in time-series were attemptadguvarious meth-
ods in order to unravel the underlying functional structofr¢he complex system,
which results in these time series. Owing to the nonlingartthe dynamics and
the complexity (emergence) of tlwellective dynamical effectshich do not occur
at the level of isolated units, this problem represents andjallenge in contem-
porary science of complex systems. Often the mathematietdborate methods
theoretical models are necessary to interpolate betweealiberved data and true
interactions in the system. On the other hand, massive dgenome-wide expres-
sions measurements [7] are available, which contain hiddermation about gene
interactions. Assuming a model of gene dynamics, analygjsme expression data
yielded rather limited information abopairwisegene interactions (gene network)
[8, 9]. Using formal analysis we recently studied the trafiilce series on known
modular networks [10]. We have shown that, unlike individirks, the network
modaularity (structure at the mesoscopic scale) can be leyeaite accurately from
the correlations in the time series. The accuracy increakes the network is fully
partitionable into modules. (See also Refs. [11] and [12Hitierent approaches to
the problem of resolution of the network community struetyr

In this work we study correlations in the empirical time serbf gene expres-
sions measured [13] for each gene in the genome of Yeastharomyces cere-
visiae (S.c.)Compared to the typical time series, say in the stock pocdsternet
traffic, the time series of the gene expressions differ inftlewing: the expres-
sions are sparsely measured (every 10 minutes) resultiiegvier number of points
(the statistical importance of the data points is discugsgt3]); more importantly,
the time evolution is naturally related to tkeell cycle therefore, when a cycle is
completed (approximately 2 hours), the gene activity refio the beginning of a
new cycle. Our focus here is on the gene clustering that casebected through
the analysis of these time series. Our analysis is baseklndin the expression
data without further reference to the transcription retjoilebetween genes with al-
ready known transcription factors [7, 2]. We also restitiet &nalysis to a subset of
603 genes whose activity is most prominent in one of the ghakthe cell-cycle
(the “cell-cycle type”). Identification of the cell-cyclelated genes and their mutual
correlations is an important and still open problem (se¢dhd references therein).

In Section 2 we present the statistical analysis of the genaide expression
data and select the genes with leading contributions in #flecgcle phases. We
further analyze the correlations of the selected subsetioégin Section 3, where
we determine the groups of genes using filtered correlatatnixand its eigenvalue
spectrum. Section 4 is devoted to the study of topology ohetevork constructed
on the basis of correlations, and Section 5 makes a brief sugnm
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2 Scaleinvariancein the expressions of CC genes

We consider empirical data for the time-course expressioheowhole genome of
yeastS.c, measured in Ref. [13] at 17 equidistant time points alorgftyl cell cy-
cles. The statistical analysis of the data [15] (see alsorffaled scale-invariance
in the ranking of the gene expressions and the broad distiisiwith power-law
tails, which are characteristic for collective behaviog, gin self-organized dynam-
ical systems. In particular, the average expressions oégydaring the cell cycle
obey a power-law ranking, also known as Zipf’s statistick, [22], which indicates
different contributions of genes to the dynamics duringaékcycle. Here we use
the scale-invariance of the expression data to select thesgehich contribute at
most to the observed scale-invariance.

For this purpose we analyse tluifferential expressiorwhich is defined as
AX(t) =hi(t)—hj(t—1) foreach gené=1,---,N = 6406 ORF (genes). The rank-
ing distributions of all measured entriéé x 17) is given in Fig. 1a, top curve. Simi-
lar ranking statistics for al genes but for a single time at 1,8, 16 are also given
by other three curves. Broad distribution with the Zipf'&/lauggestsion-random
correlationsfor genes with the expressions above a threshold (markeldebkidr-
izontal line, which actually coincides with often used disgnation level 2x hy,
wherehg is the average expression in the whole system and for adiricsts of time).
The occurrence of a smaller slope for genes with the larggsessions (upper part
of the ranking curve) suggests that a community structughttie present with
several genes playing a central role in each community. Takesnvariance of the
expressions is also seen in the distribution for the difféat¢expressions in Fig. 1b,
again for the three time points and for all data. This distidn exhibits a power-law
tail after a characteristic scale Ay, and can be fitted by thegeexponential form

AX] T
P(AX) =Bq [1—(1—Q)A—0] P 9#L 1)
whereq ~ 1.36 represents the non-extensivity parameter [20].

For the purpose of this work we select the genes with the sgjes above the
threshold< h; >> 2hg, as explained above and marked in Fig. 1a. The selected set
consists ofNs = 1216 genes. Among these the first 612 in the ranking ordehare t
genes which are expressed throughout the entire cell aybiés the following 604
genes are mostly expressed within one or two of the cell gudses (G1,S,G2,M).

In the following we will focus on this latter group of genegflecycle genes). For the
illustration, in Fig. 2 are shown the expressions for sevegh-cycle genes within
the first cycle.

For each pair of genes we compute the correlation coeffiiehthe temporal
differential gene expressiosx;(t), which is given by

Cjt—t) = S (AXi(t) — <AXi>LE§ij (t—t) — (AXj)) )
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Fig. 1 (a) and (b) Statistical analysis of the differential express data for all genes in the genome
of yeastS.c.shown in ranking order (a) and histogram (b). In both pariefscurve includes data
of all measurements, while lower three curves are for alegeat a given instant of time in the cell
cycle. The discrimination dashed line in (a) indicates hioevftrstNs = 1215 genes in the ranking
order are selected. (c) For the selected genes: the distribaf correlation coefficient€;; for
co-expressiondt = 0) and for two time-delayed correlations. (d) Size of theng@mponent as a
function of the threshold correlatiofg in the selected set s genes.

where o; and oj are the standard deviations of the respective time serigseof
genes andj. The distribution of the correlation coefficients for théested set of
Ns genes is given in Fig. 1c, whedt =t —t’ indicates the time-lagged correlations.
As the Fig. 1c shows, in this set of genes the strongest dengafrom normal
distribution are seen in the equal-time correlatidhs- 0, which we will consider
in the following. In order to extract the relevant corredais, e.g., in the tail of the
distributions in Fig. 1c, from the random correlations ardwero, one considers
only the correlations above a threshold valGg| > W. However, for the analysis
of the community structure, the threshold needs to be lomghsuch that all nodes
of the network based d@ij as the connectivity matrix belong to a single connected
component. Large values of the threshold lead to fragmientaf such network. On
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Fig. 2 Three-dimensional
plot of the gene expressions
within the first cycle for
several leading Cell-Cycle
genes ordered according
the time of their maximum
expression.

the other hand, we may observe how the giant cluster is folmetbwly reducing
the threshold starting froMg = 1 (in Ref. [15] formation of the giant cluster for
the entire genome of Yeast was studied). In the case of sdlMgigenes which we
consider here, the largest clus®&fax as function of the thresholMg forms slowly
and allNs genes are connected onlyeg > 0.6, as shown in Fig. 1d. Therefore, we
will consider the critical thresholdf = 0.6 for the study of the correlation matrix
of Ns genes and their subset—CC genes, in the next session.

3 Detecting modulesin the correlation matrix

As mentioned above, the network based on the correlationxm@twith the ele-
mentsG;; > Wp = 0.6 is connected, however, it has very large number of links. As
mentioned in the Introduction, in order to find a meaningfuisture in the corre-
lations, one needs to apply a filtering procedure in ordeetluce the number of
'spurious’ links. One of the methods which we use here is thaseaffinity trans-
formation [17]. For the filtering procedure[17], the matebementsC;; of the cor-
relation matrix are first mapped to the positive interf@al]. Then each elemef;

is multiplied with a factoM;; which is constructed from the elements of the rows
i andj in the correlation matrix: Excluding the diagonal elemedtsandC;j, the
remaining matrix elements are first reordered to formrtke(N — 1)-dimensional
vectors{Cij,Ci1,...,Cin } and{C;i,Cj1,...,Cjn }. Then with the components of these
vectors the Pearson’s coefficigvlt; is computed according to the general expres-
sion in EqQ. (2). The matrix eIemenff%V' of thefiltered correlation matrixCM are
given by the respective products

cl' =M;Cj . 3)
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Fig. 3 Filtered correlation matrix showing several modules (diegj blocks) of CC genes.

In this way, the correlation between the nodaadj is enhanced if the correspond-
ing meta-correlation elemej is large, i.e., the nodesand j are connected to
the rest of the system in a similar way (which will be also niested in their time
series), and reduced otherwise. Therefore, after thefigigrocedure we expect to
find enhanced correlations between ’similar’ nodes, andaed in the case when
nodes play different role in the system. Applying then thme#hreshold as above,
we find groups of nodes with enhanced correlations insidgtbep and generally
reduced correlations (number of links above the threshald$ide the group. In
Fig. 3 we show the filtered correlation matrix of the 603 CCegemhe filtered ma-
trix clearly exhibits the modular structure with severaldutes, blocks along the
diagonal, of different sizes. It is also clear that some ef tmodules are not en-
tirely homogeneous, having a strongly expressed geneeiribiel module leads to
enhanced correlations between the other genes in the maddlwith other mod-
ules. As shown in ref. [10] for the model network, the intéineomogeneity of the
modules leads to extra correlations between the modulashwhn not be filtered
out by standard methods. However, the size and the asswci#tithe nodes with
the modules is correctly matched. We expect the same istrtieei case of gene
correlations. The structure of the modules can be visuhbrel analyzed in detail
using the network representation, with the adjacency mdgfined by the elements
of the filtered correlation matri€™ . In the following we first analyze the spectrum
and subsequently the structure of the network.
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3.1 Spectral analysis of the gene correlation matrix

The modular structure of the network can be also visualiz&the spectral analysis
of its connectivity matrix and other matrices, e.g., Lafdacrelated to the structure
[16]. Here we solve the complete eigenvalue problem of therétl correlation ma-
trix shown in Fig. 3. The matrix with weighted links (exclndithe self correlations)
above the threshold.®is considered. The results for the eigenvaldieare shown
in Fig. 4, ranked according to their values. In the eigerwalpectra of structured
networks [23] the largest eigenvalue is separated fromebeaf the spectrum and
the components of its eigenvector are related to the eigéoveentrality measure
[1, 16]. Inthe presence of the structural modules (or conitias), additional eigen-
values appear between the largest eigenvalue and the ntaof fee spectrum. The
number of such eigenvalues is directly related to the numttepologically distinct
modules. In the upper part of the plot in Fig. 4 six such eig&mes occur, corre-
sponding to six (sufficiently large and distinct) moduleghe correlation matrix.

Wy=06 O

0 100 200 300 400 500 600

Fig. 4 Eigenvalues of the filtered correlation matrix of CC genedkea according to value.

Further remarkable property of the eigenvalue problem ofoalutar network
is illustrated by the localization of the eigenvectors of thrge eigenvalues of its
connectivity matrix (or similarly, of the small non-zergenvalues of the Lapla-
cian matrix [16]) on the network modules. Formally, the tdouoalization of the
eigenvectol; =V (A;) belonging to the eigenvalug denotes that it hasr@onzero
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componentY, corresponding to the node with the indeXn modular networks the
nodes with indexeg corresponding to positive/negative values of the eigetavec
components belong to different modules. Moreover, thereldd branched view of
the scatter plot indicates a structured network. In our gasethe filtered correla-
tion matrix we show the eigenvectors associated with theettarge eigenvalues just
below theAmax The 3-dimensional scatter plot of the components thesneas-
tors (V{, V5, V) is shown in Fig. 5. Each point in this plot correspond to thaesa
index k of the three eigenvectors, and thus represents one nodezamettvork.
The separate branches in the scatter plot correspond &ratitf modules on the
network (diagonal blocks in its adjacency matrix). In ouse@ach node represents
a specific gene. Therefore, genes belonging to differemtdim@s can be identified
by their names and other known biological properties [18}. the illustration, the
genes at the far ends in the scatter plot are node with th& {feflematrix in Fig. 3)
471 corresponding to gene DIM1 or ORF “YPL266W"(most rightig. 5), index
130 corresponding to the gene CLB5 or “YPR120C” (at the ftgmof the middle
branch), index 367 or “YOR153W"” and gene PDRS5 (lower lef},tgnd index 221
representing the gene TY2B “YBL101W-b” (top of the middlebch in the scat-
ter plot on Fig. 5). Identity of more genes grouped in thenityiof these four are
listed in the separate sections in the Table 1. Their bickdgiroperties, taken from
the MIPS database [19], indicate that the genes in each gqmapthe whole spec-
trum of different biological functions, however, they mgsthare the same physical
localization in the cell (nucleus, cytoplasm, mitochoaddell periphery, etc.).

AROAI0

0.1
0 L
Vs
-0.1
0
0.05 v,

V,

Fig. 5 Scatter plot: Components of the eigenvectors associatélureée large eigenvaluels =
25.568807,A, = 26.276988, and\; = 30.840979. Most distant points on the plot correspond to
the genes DIM1, CLB5, and TY2B, located in nucleus, cytaplaand mitochondria, respectively.
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4 Structure of correlation network and group-identity of genes

The structure of the modules of co-expressed genes candiedgstystematically by
analysis of topology of the network whose adjacency masrbased on the filtered
correlation matrix. In Fig. 6a we show such network with rodepresenting genes
and edges indicating the expression correlations abovéhtieshold (shown are
only the linksC;; > 0.8). Colors (red, green, yellow, blue) on the nodes represent
one of the phases (G1, S, G2, M) of the cell cycle where the gaseits peak
expression. The presence of modules are seen on the nehwar&yer, the number

(b)

(d)

Fig. 6 (a) Network based on the filtered correlation matrix of CCege(shown are link€;; >
0.8)). (b) Maximum correlation spanning tree of the network.Zopmed branch of the tree with
genes marked by their ORF labels in the original data. Calarsodes in (a-c) indicate the cell-
cycle phases (Gl:red, S:green, G2:yellow, M:blue) in wiiel gene has maximum measured
expression. (d) Biological functions (grouped in severgaties) for genes within same branch.
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of links inside these modules is too large. Therefore, wethisspanning treeas
another way to visualize the structure of these weightedorss. We construct the
spanning tree of the gene correlation network (shown in@hy.where each gene is
connected to the rest of the tree bysteongestink (maximum correlation spanning
tree). Separate branches on the tree correspond to severesadthe correlation
matrix (cf. Fig. 3). The predominant color in parts of theet{branches) indicates
gene groupings according to the phase of their peak activétailed identification
of the genes within a branch or sub-branch, an example isagisg in Fig. 6¢ with
the names of genes, shows that genes within the same phdsea#lkt cycle have
variety of biological functions. An example of the tree brhns shown in Fig 6d,
with gene functions indicated by colors and numbers from (@7 seven groups
of known gene functions: metabolism, energy, cell cyclefescue, transcription,
protein synthesis, cellular transport, cell type diffé¢raiion and development, and
unknown). The genes along the same branch of the tree hait@adtisimilarity in
their localization in the cell. For instance, accordinghte MIPS database [19], the
majority of the genes belonging to the branch in Fig. 6c acalleed either in the
nucleus or in the nucleus and cytoplasm.

5 Conclusions

We have studied correlations in the activity of genes of ge@a.based on the em-
pirical data [13] in the form of time series, in which the fluation in the expression
of each gene are measured along the cell cycle. We emplogeslrtrethods suitable
for the analysis otollective dynamical behavian self-organized systems:

e Scale-invariancen various statistical measures of the differential expi@ss
suggests uneven role of different genes in the cell-cyatadyics. With the rank-
ing distribution (Zipf's law) we selected the genes withdegy contributions to
the scaling behavior, what implies prominent correlatiaitbin the selected set.

e Spectral analysi®f the appropriately filtered correlation matrix is suiglfor
detecting modules of strongly correlated genes. We findraésach modules of
different size in the subset of the cell-cycle genes. Theraigctors associated
with the largest eigenvalues of the correlation matrix slaguattern of localiza-
tion of the non-zero components on gene indexes belongidiffénent modules.

e Network topologyased on the filtered correlation matrix (above a threshold)

gives a systematic survey of the content of different grdupsdules). Identify-
ing the genes in different modules suggest that they shaikasity in the phase
of the cell cycle with their peak activity and also in the picgs localization
inside the cell, checked against the biological infornratioMIPS database.

We have shown that the genes co-expressed along the ctdlstyow certain pat-
terns of correlated activity which is unraveled by the forrmmaalysis within the

network theory without further reference to bio-chemio&tractions (transcription
regulations) or a specific mathematical model for the gemanycs.
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Table 1 Characteristics of genes associated with four tips of tlaadites in the scatter plot in
Fig. 5. Data according to MIPS database [19]. Abbreviatiaf3 (UNCLASSIFIED PROTEINS);
BIOG (BIOGENESIS), M (METABOLISM), CC (CELL CYCLE), CT (CELULAR TRANS-
PORT), E (ENERGY), CTD (CELL TYPE DIFFERENTIATION), TR (TRASCRIPTION),
ENV (Interaction with Environment), PF (regulation of PREIN FUNCTION), PM (PROTEIN
FATE , PROTEIN MODIFICATION), PS (PROTEIN SYNTHESIS), DE\DEVELOPMENT),
CF (CELL FATE), CR (CELL RESCUE); Localization: CP (cell ganery), CYT (cytoplasm),
NUC (nucleus), VAC (vacuole), Ec ( extracellular), MIT (olitondria), ER (endoplas.reticulum).

|ORF reading Gene Name Functional Category Disruption lirai@dn |
YPL266W DIM1 TRANSCRIPTION letal NuUC
YOLO005¢c RPB11 DNA binding, TR lethal NUC
YPL267W  ACM1 upP viable NuUC
YKRO13W PRY2 UpP viable NUC, VAC
YNL281w HCH1 CELL RESCUE viable CYT,NUC
YDLO039c PRM7 DEVELOPMENT viable ?
YDLOO3W  MCD1 CC & DNA processing lethal CYT, NUC
YALO36¢c RBG1 GTP binding viable CYT
YJL174W KRE9 CTD, M, BIOG, E lethal Extracellular
YDL241W - UpP viable CYT,NUC
YPL235W RVB2 M, CC & DNA processing, TR lethal ?
YBL101W-b TYZ2B Viral& PP - (cyt)
YLR257W - upP viable CYT
YFLO35¢c-b MOB2 CC & DNA, PM, M, PF lethal CP, CYT
YHR135C YCK1 ENV, CC & DNA, PM, M, CTD  viable PM, CYT, ER, NUC
YPL226W NEW1 M, PB, PS viable CYT,NUC,MIT
YMLO85C TUB1 DEV, CC & DNA processing, M lethal CYT, cytoslatbn
YKLOO1C  MET14 METABOLISM viable CYT
YDR245W  MNN10 CTD, M, BIOG, PM viabl ER, golgi
YPL0O32C SVL3 CTD, CF, BIOG viable CP,CYT
YGR118W RPS23A PROTEIN SYNTHESIS viable CYT
YPLO28W  ERG10 METABOLISM lethal CYT, NUC
YDR346¢c - unclassified viable CYT, NUC
YDL124w - PB, M viable CP, CYT, NUC
YBLO64c PRX1 CR, DEFENSE & VIRULENCE viable CYT, NUC, MIT
YJL217w - upP viable CYT
YBR194w SOY1 upP viable CYT, NUC
YEROO1w  MNN1 M, PM viable golgi, VAC
YNRO65¢ YSN1 UP viable ?
YDL166¢c FAP7 CR, TRANSCRIPTION letal CYT, ER, NUC
YELOO3w GIM4 BIOG, PM, PB viable CYT
YDRO098¢c GRX3 CR, PM, CT viable CYT, NUC
YARO002c-a ERP1 CT, PM viable golgi, MIT, VAC
YKL142W  MRP8- PROTEIN SYNTHESIS viable CYT, MIT
YPR120C CLB5 CC& DNA processing viable MIT
YKL190w CNB1 TR, PB viable CYT
YPL135w SU1l M, ENV viable MIT
YCRO70w CPR4  PROTEIN FATE MODIFICATION viable ER, VAC
YLRO17w MEU1 METABOLISM viable CYT, NUC
YMLO1OW  SPT5 TR, CC&DNA processing viable NUC, MIT
YERO74w  RPS24A PROTEIN SYNTHESIS viable CYT, MIT
YBR048w RPS11B PROTEIN SYNTHESIS viable CYT
YOR153w PDR5 ENV, CT, PB, CR viable CP, CYT, MIT
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