

Exact diagonalization studies of quantum lattice models

Zlatko Papic

Institute of Physics, Belgrade, 8/10/2008

Exact diagonalization

- Start from Schroedinger eq.
- $\left. \begin{array}{c} H\Phi_n = E_n \Phi_n \\ \bullet \text{ Choose basis:} \\ \{\Psi_i\}_{i=1}^N \end{array} \right\} H \to (H_{ij})$
- for quantum lattice models, H is:
 - always hermitian
 - can be even symmetric (real)
 - hopefully sparse O(N) nonzero

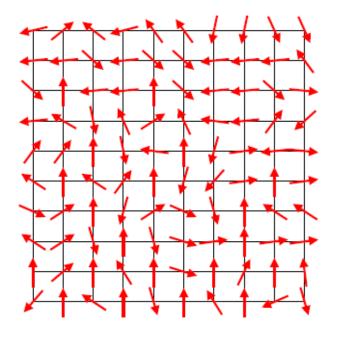
D procedure

- choose initial basis (in Fock space)
- If possible find better one employing symmetries
- numerical/virtual representation of H
- find eigenvalues/eigenvectors
- calculate observable's expectation values etc.

Exponential barrier

• Heisenberg model S=1/2

$$H = -\sum_{\langle i,j \rangle} J_{ij} \vec{S}_i \vec{S}_j$$



Hilbert space dim: $\gamma \cdot \times \gamma \cdot \mathbf{!}$

Hard wall: S=1/2 systems ~40 sites Hubbard at half filling ~20

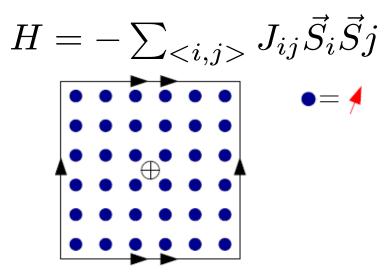
We can do a little better still...

- Full Hilbert space: $dim = 2^{36} \sim 70 \cdot 10^9$
- Symmetry Sz=0: $dim = \frac{36!}{18!18!} \sim 9 \cdot 10^9$
- Spin inversion symmetry

$$dim = \frac{1}{2} \frac{36!}{18!18!}$$

• Space group symmetries (translation, rotation)

$$dim \sim \frac{1}{2} \frac{1}{36 \cdot 4} \frac{36!}{18!18!} \sim 30 \cdot 10^6$$



Gain 2500!

Why use ED then?

- Robust, unbiased and completely versatile almost anything can be calculated!
- There are models which are not easy to access via other models (e.g. frustrated magnets)
- Error is at least as low as 10⁽⁻¹⁴⁾ numerical precision
- Exploiting symmetries reduces computational effort and gives physical information about eigenstates (good quantum numbers)

Example

$$\begin{split} |\sigma_{1},...,\sigma_{N} > \\ Integer &= \sum_{k=0}^{N-1} i_{k} 2^{k} \\ |1\rangle &:= |\uparrow\uparrow\downarrow\rangle & |3\rangle &:= |\downarrow\downarrow\uparrow\rangle \\ |2\rangle &:= |\uparrow\uparrow\uparrow\rangle & |4\rangle &:= |\downarrow\downarrow\downarrow\rangle \\ |5\rangle &:= |\downarrow\uparrow\downarrow\rangle & |7\rangle &:= |\uparrow\downarrow\downarrow\rangle \\ |6\rangle &:= |\uparrow\downarrow\downarrow\rangle & |8\rangle &:= |\downarrow\uparrow\uparrow\rangle \\ |6\rangle &:= |\uparrow\downarrow\downarrow\rangle & |8\rangle &:= |\downarrow\uparrow\uparrow\rangle \\ H_{0} &= \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \end{pmatrix} \\ H_{0} &= \begin{pmatrix} \begin{pmatrix} 0 & 0 & -\sqrt{2} \\ 0 & -1 & 0 \\ -\sqrt{2} & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 & \sqrt{2} \\ 0 & -1 & 0 \\ -\sqrt{2} & 0 & 1 \end{pmatrix} \end{pmatrix}$$

Diagonalization routine

- If H is dense or system small enough use Jacobi, Householder, LAPACK...
 (all these apply orthogonal transformations to H until tridiagonal form, then quickly diagonalize)
- If H is sparse use ARPACK, IETL/ALPS, DiagHam (these are iterative solvers based on variants of Lanczos algorithm which preserves the
 - sparseness of H)

Dense vs. sparse

Table 7: Time and memory complexity for operations on sparse and dense $N\times N$ matrices

operation	time	memory
storage	S	
dense matrix		N^2
sparse matrix	_	O(N)
matrix-vector multiplication		
dense matrix	$O(N^2)$	$O(N^2)$
sparse matrix	O(N)	O(N)
matrix-matrix multiplication		
dense matrix	$O(N^{\log 7/\log 2})$	$O(N^2)$
sparse matrix	$O(N) \dots O(N^2)$	$O(N) \dots O(N^2)$
all eigen values and vectors		
dense matrix	$O(N^3)$	$O(N^2)$
sparse matrix (iterative)	$O(N^2)$	$O(N^2)$
some eigen values and vectors		
dense matrix (iterative)	$O(N^2)$	$O(N^2)$
sparse matrix (iterative)	O(N)	O(N)

Lanczos iterations

1. Starting conditions:

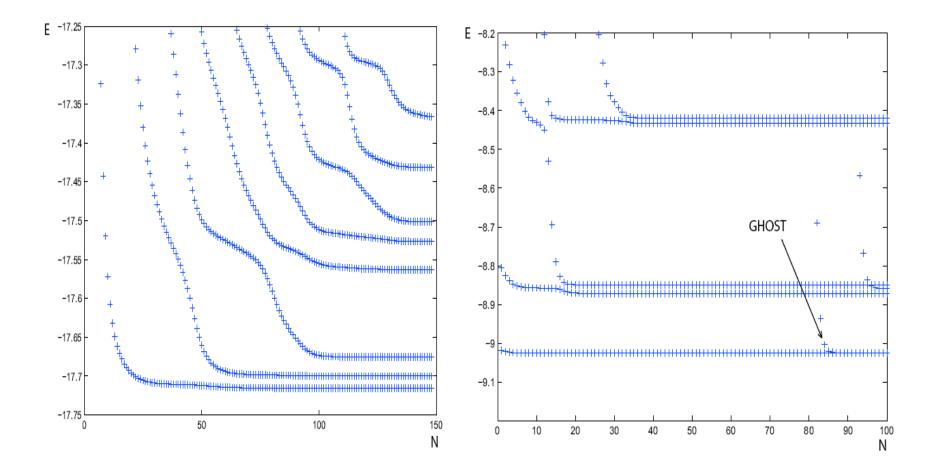
 $|U_1\rangle := |V\rangle$ with V random starting vector $||U_1\rangle|| = 1$, $|U_0\rangle = 0$, $b_0 = 1$, , k = 0

2. Iteration, building the *T*-matrix while $(b_k \neq 0)$ $|U_{k+1}\rangle = |r_k\rangle/b_k; k = k+1; a_k = \langle U_k|H|U_k\rangle$ $|r_k\rangle = H|U_k\rangle - a_k|U_k\rangle - b_{k-1}|U_{k-1}\rangle;$ $b_k = || |r_k \rangle ||_2$ end

Why use Lanczos?

- Because for large scale problems there is nothing else!
- Lanczos is fast sometimes as few as 100 iterations are enough to get groundstate with precision 10⁽⁻⁸⁾!
- Memory requirements are low need to store 2-4 vectors only ! Matrix in principle need not be stored, only action H*|vec> is required

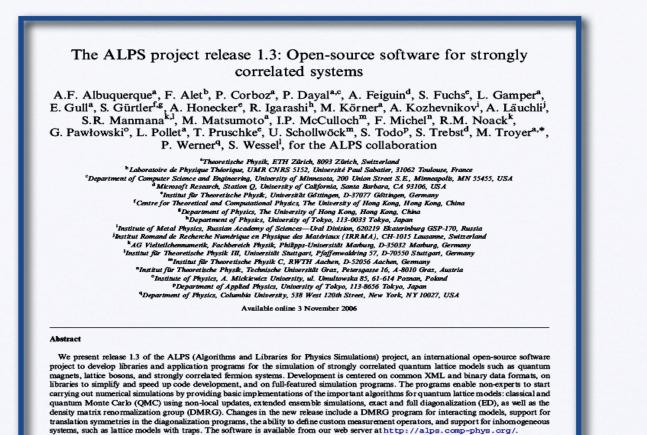
Lanczos problems



Main piece of wisdom

<u>DO NOT</u> start writing your own code from the scratch (unless really forced to)

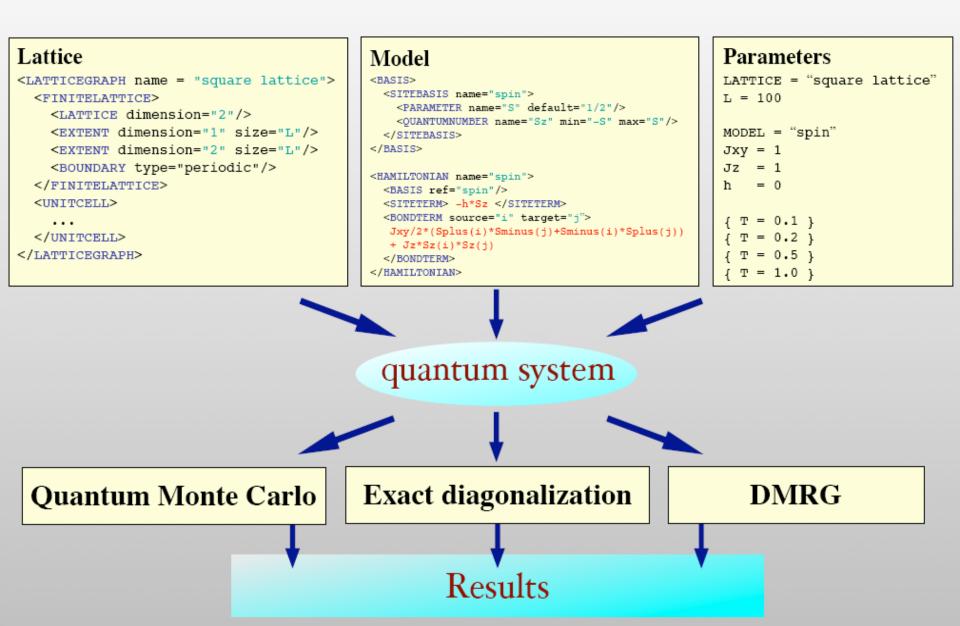
ALPS = Algorithms and Libraries for Physics Simulations



C 2006 Elsevier B.V. All rights reserved.

JPSJ Suppl. **74**, 30 (2005) [cond-mat/0410407] J. Mag. Mag. Mat. **310**, 1187 (2007)

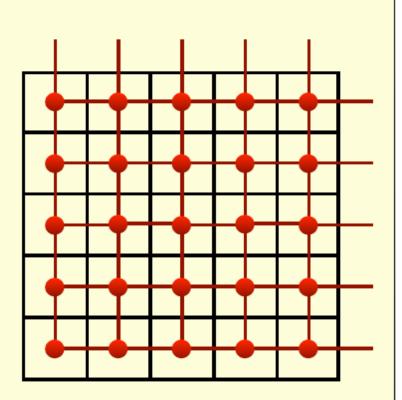
Simulations with ALPS



Lattice

A lattice

```
<LATTICEGRAPH name = "square lattice">
 <FINITELATTICE>
    <LATTICE dimension="2"/>
    <EXTENT dimension="1" size="L"/>
    <EXTENT dimension="2" size="L"/>
    <BOUNDARY type="periodic"/>
 </FINITELATTICE>
  <UNITCELL>
    <VERTEX/>
    <EDGE type="1">
      <SOURCE vertex="1" offset="0 0"/>
      <TARGET vertex="1" offset="0 1"/>
   </EDGE>
    <EDGE type="2">
      <SOURCE vertex="1" offset="0 0"/>
      <TARGET vertex="1" offset="1 0"/>
    </EDGE>
  </UNITCELL>
</LATTICEGRAPH>
```



Model

A model

$$H_{XXZ} = \frac{J_{xz}}{2} \sum_{\langle i,j \rangle} (S_i^+ S_j^- + S_i^- S_j^+) + J_z \sum_{\langle i,j \rangle} S_i^z S_j^z - h \sum_i S_1^z$$

<BASIS>

```
<SITEBASIS name="spin">
    <PARAMETER name="S" default="1/2"/>
    <QUANTUMNUMBER name="Sz" min="-S" max="S"/>
```

```
</SITEBASIS>
```

</BASIS>

Utilities

• Quantum Monte Carlo

- stochastic series expansions (SSE), F. Alet, M. Troyer
- loop code for spin systems, S. Todo
- continuous time worm code, S. Trebst, M. Troyer

Exact diagonalization

• full and sparse, A. Honecker, A. Läuchli, M. Troyer

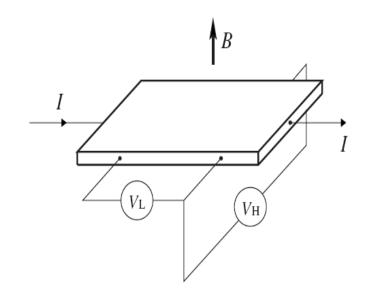
• DMRG

- single particle, S. Manmana, R. Noack, U. Schollwöck
- interacting particles, I. McCulloch

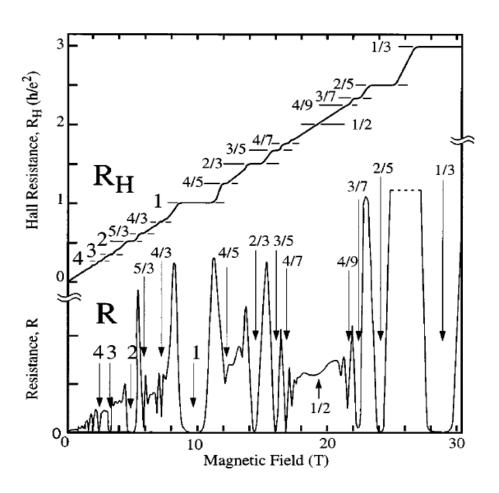
When use the ALPS?

- For complicated lattices many possibilities for abstract implementation of symmetries
- Whenever Hamiltonian is sufficiently simple i.e. short range – this precludes Fractional Quantum Hall Effect

Fractional Quantum Hall Effect



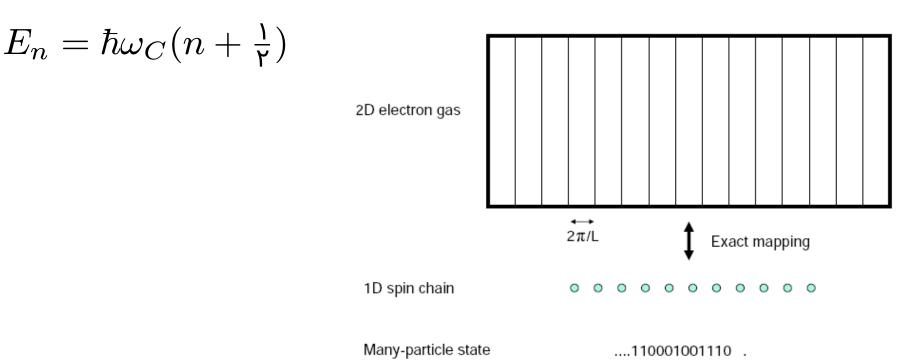
$$\nu = \frac{N_{electrons}}{N_{fluxquanta}}$$



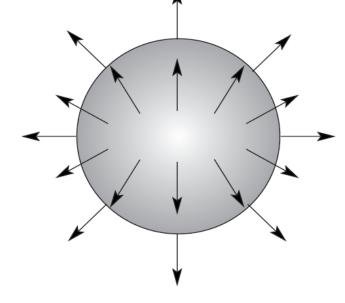
Single particle – Landau levels

$$H = \frac{1}{2m} (\vec{p} + \frac{e}{c}\vec{A})^2, \nabla A = B\vec{e}_z$$

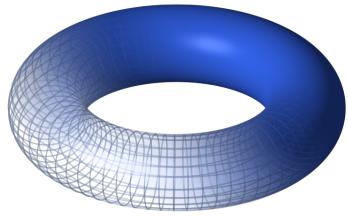
• Landau gauge $ec{A} = B(-y,0,0)$ $\Psi \sim \exp^{-(y-k_x)^r/r} H_n(y-k_x)$



FQHE - Sphere and Torus



$$\begin{split} \nu &= \lim_{N \to \infty} \frac{N}{2Q} \\ l &= |Q|, |Q| + 1, \dots; m = -l, \dots, l \\ \text{Degeneracy of LLs} &= 2l + 1 \\ \text{Diagonalize in invariant} \\ \text{subspace of } \vec{L}^2, L_z, \vec{S}^2, S_z \end{split}$$



Must use magnetic translation symmetry and their projective reps

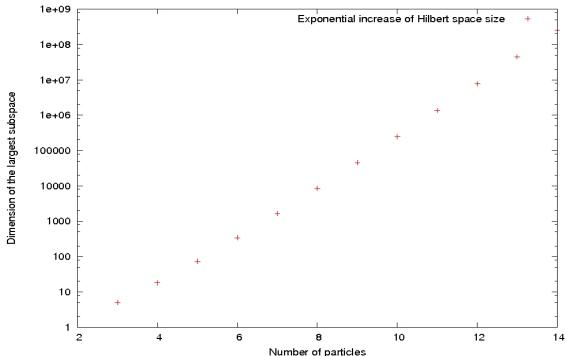
DiagHam

- Nicolas Regnault, ENS Paris http://www.phys.ens.fr/~regnault/
- Set of C++ for exact diagonalization; in-built programs for Spin Chains Quantum Dots FQHE
- Available from Subversion with GNU license

>svn checkout https://www.nickux.org/diagham/svn/trunk DiagHam >./configure [options] >make

DiagHam

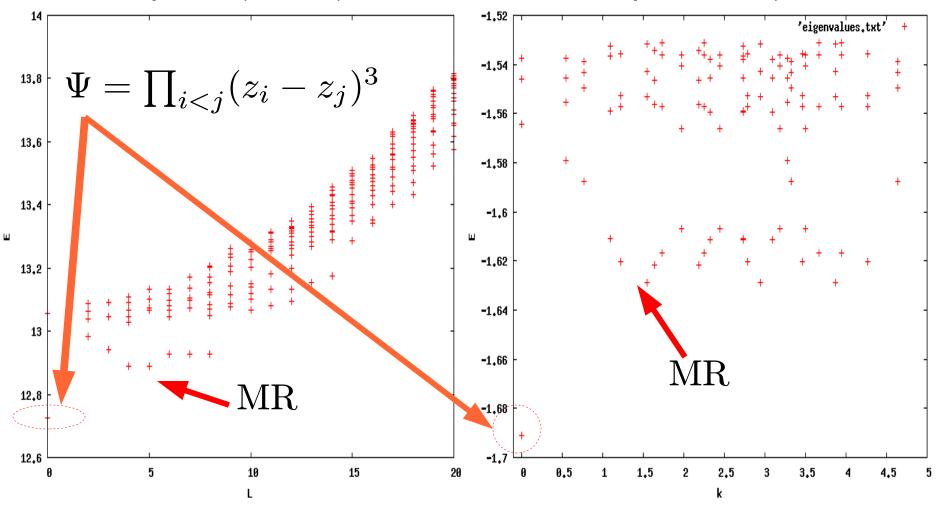
- It is able to handle spaces of dimension 10⁸ for FQHE on Sphere
- As long as Hilbert space and Hamiltonian can be defined, DiagHam can solve the model



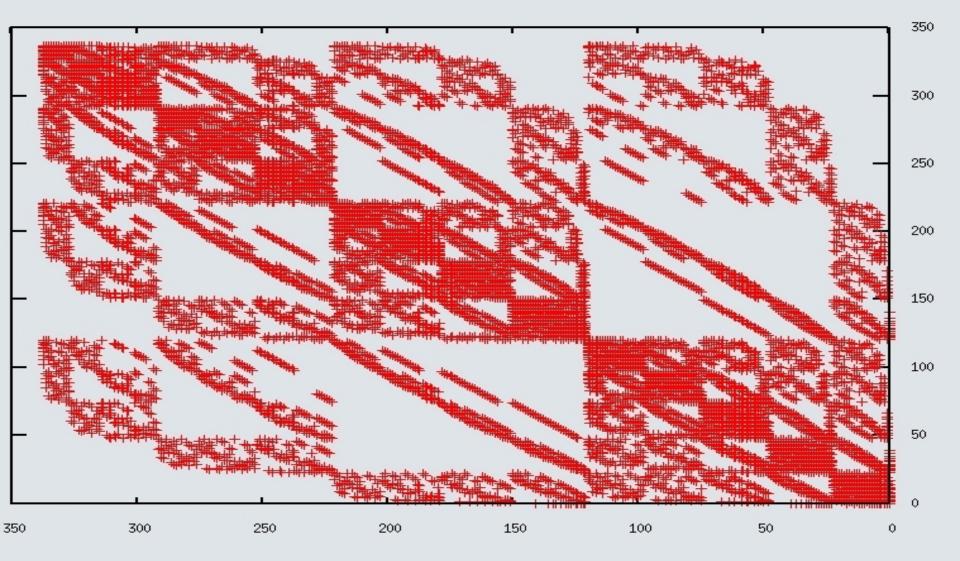
Example: Laughlin problem

Laughlin state for 8 particles on the sphere

Laughlin state on torus for 7 particles



Hamiltonian



DiagHam Options

•system options :

- -p, -nbr-particles : number of particles
- -I, -Izmax : twice the maximum momentum for a single particle
- - -initial-lz : twice the inital momentum projection for the system
- - -nbr-lz : number of lz value to evaluate
- - SU(2), SU(3), SU(4) spin projection

• parallelization options :

- -S, -SMP : enable SMP mode
- - -processors : number of processors to use in SMP mode

•Lanczos options :

• precalculation options :

•-m, - -memory : amount of memory that can be allocated for fast multiplication

• - -fast-search : amount of memory that can be allocated for fast state search (in Mbytes)

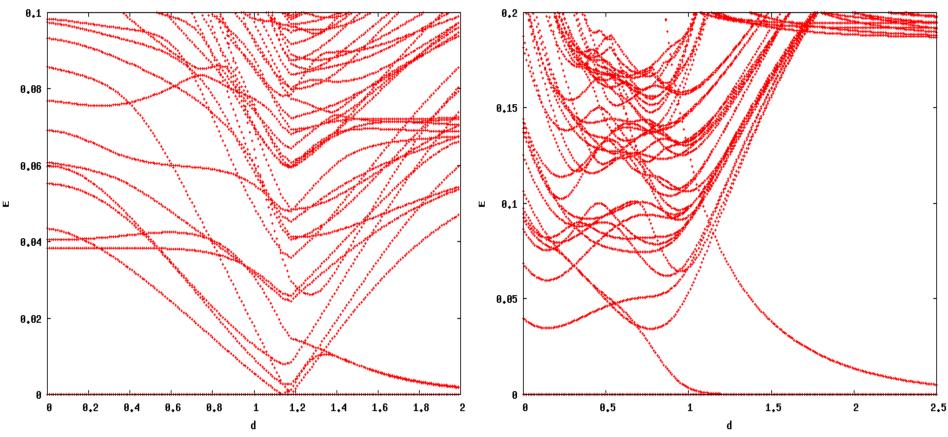
•misc options :

• -h, - -help

QHBilayer

Bilayer 6, 9, aspect 1.0

Bilayer 10, 10, aspect 4.0



Conclusions

- Exact diagonalization studies are essential in strongly correlated electrons (like FQHE) where nonpertubative insight is needed to describe even the basic physics
- Depending on the properties investigated, one may exploit different geometries to perform ED
- Unfortunately, ED will remain limited up to ~ 20 particles (Monte Carlo can go much higher, but it requires knowledge of the wavefunction; DMRG can reach ~ 30 particles, but no progress is expected beyond that limit).