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Exact diagonalization

• Start from Schroedinger eq.                                 
                                              

• Choose basis:

• for quantum lattice models, H is:

• always hermitian
• can be even symmetric (real)
• hopefully sparse – O(N) nonzero

gH©n = En©n

fªigNi=1
H ! (Hij)



  

ED procedure

• choose initial basis (in Fock space)
• If possible find better one employing 

symmetries
• numerical/virtual representation of H
• find eigenvalues/eigenvectors
• calculate observable's expectation values etc.



  

Exponential barrier

• Heisenberg model S=1/2

Hilbert space dim:

Hard wall:
S=1/2 systems ~40 sites
Hubbard at half filling ~20

H = ¡P<i;j> Jij
~Si~Sj

210£10!



  

We can do a little better still...

• Full Hilbert space:

• Symmetry Sz=0:

• Spin inversion symmetry

• Space group symmetries (translation, rotation)

Gain 2500!

H = ¡P<i;j> Jij
~Si~Sj

dim = 236 » 70 ¢ 109

dim = 36!
18!18! » 9 ¢ 109

dim = 1
2

36!
18!18!

dim » 1
2

1
36¢4

36!
18!18! » 30 ¢ 106



  

Why use ED then?

• Robust, unbiased and completely versatile – 
almost anything can be calculated! 

• There are models which are not easy to access 
via other models (e.g. frustrated magnets)

• Error is at least as low as 10^(-14) – numerical 
precision

• Exploiting symmetries reduces computational 
effort and gives physical information about 
eigenstates (good quantum numbers)



  

Example

fªsymg
G = TG£ PG

j¾1; :::; ¾N >
Integer =

PN¡1
k=0 ik2

k



  

Diagonalization routine

• If H is dense or system small enough – use 
Jacobi, Householder, LAPACK...     
(all these apply orthogonal transformations to H 
until tridiagonal form, then quickly diagonalize)

• If H is sparse – use ARPACK, IETL/ALPS, 
DiagHam      
(these are iterative solvers based on variants of 
Lanczos algorithm which preserves the 
sparseness of H)



  

Dense vs. sparse



  

Lanczos iterations



  

Why use Lanczos?

• Because for large scale problems there is 
nothing else!

• Lanczos is fast – sometimes as few as 100 
iterations are enough to get groundstate with 
precision 10^(-8)!

• Memory requirements are low – need to store 
2-4 vectors only !      
Matrix in principle need not be stored, only 
action H*|vec> is required  



  

Lanczos problems



  

Main piece of wisdom

• DO NOT start writing your own code from the 
scratch (unless really forced to)



  



  



  

Lattice



  

Model



  

Utilities



  

When use the ALPS?

• For complicated lattices – many possibilities for 
abstract implementation of symmetries

• Whenever Hamiltonian is sufficiently simple i.e. 
short range – this precludes Fractional Quantum 
Hall Effect



  

Fractional Quantum Hall Effect

º =
Nelectrons
Nfluxquanta



  

Single particle – Landau levels

• Landau gauge
~A = B(¡y; 0; 0)

H = 1
2m
(~p+ e

c
~A)2;rA = B~ez

ª » exp¡(y¡kx)2=2Hn(y ¡ kx)
En = ~!C(n+ 1

2)



  

FQHE - Sphere and Torus

•  

     Degeneracy of LLs = 2l +1
     Diagonalize in invariant 
     subspace of

       Must use magnetic 
       translation symmetry and 
       their projective reps  

º = limN!1 N
2Q

l = jQj; jQj+ 1; ::::;m = ¡l; :::; l

~L2; Lz; ~S
2; Sz



  

DiagHam

• Nicolas Regnault, ENS Paris 
http://www.phys.ens.fr/~regnault/

• Set of C++ for exact diagonalization; in-built 
programs for      
Spin Chains Quantum Dots FQHE

• Available from Subversion with GNU license        
                    

>svn checkout https://www.nick-
ux.org/diagham/svn/trunk DiagHam
>./configure [options] 
>make

http://www.phys.ens.fr/~regnault/


  

DiagHam

• It is able to handle spaces of dimension 10^8 
for FQHE on Sphere 

• As long as Hilbert space and Hamiltonian can be 
defined, DiagHam can solve the model



  

Example: Laughlin problem

ª =
Q
i<j(zi ¡ zj)3

MR
MR



  

Hamiltonian



  

DiagHam Options
•system options :

• -p, - -nbr-particles :   number of particles

•  -l, - -lzmax :  twice the maximum momentum for a single particle

• - -initial-lz : twice the inital momentum projection for the system

• - -nbr-lz :    number of lz value to evaluate

• - SU(2), SU(3), SU(4) spin projection

•parallelization options :

• -S, - -SMP : enable SMP mode

• - -processors : number of processors to use in SMP mode

•Lanczos options :  ....

•precalculation options :

•-m, - -memory : amount of memory that can be allocated for fast 
multiplication 

• - -fast-search : amount of memory that can be allocated for fast state 
search (in Mbytes) 

•misc options :

• -h, - -help



  

QHBilayer



  

Conclusions

• Exact diagonalization studies are essential in      
strongly correlated electrons (like FQHE) where  
nonpertubative insight is needed to describe 
even the basic physics

• Depending on the properties investigated, one 
may exploit different geometries to perform ED

• Unfortunately, ED will remain limited up to ~ 20 
particles (Monte Carlo can go much higher, but 
it requires knowledge of the wavefunction; 
DMRG can reach ~ 30 particles, but no progress 
is expected beyond that limit). 
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