SCIENTIFIC COMPUTING LABORATORY

Exact Numerical Study of Rotating Ideal Bose-Einstein Condensates

Motivation: Semiclassical (SC) treatment of ideal Bose-Einstein condensates (BEC) was previously used [1] to describe results of recent experiments with fast-rotating 87 Rb atoms in an anharmonic trap [2]. We apply newly developed abitrary-order short-time propagator expansion technique [3] to exactly calculate static and dynamic properties of such condensates and to estimate the quality of SC results. We also show that first correction to SC result for $T_{\rm c}$ diverges for critical rotation, where only the presented exact approach can be used to assess SC results.

Properties of ideal BECs

• Grand-canonical ensemble

 \star Cumulant expansion for the free energy:

$$\mathcal{F} = -\frac{1}{\beta} \ln \mathcal{Z} = \frac{1}{\beta} \sum_{k} \ln(1 - e^{-\beta(E_k - \mu)}) = -\frac{1}{\beta} \sum_{m=1}^{\infty} \frac{e^{-\beta(E_k - \mu)}}{\beta}$$

where $\mathcal{Z}_1(m\beta)$ is one-particle partition function

- * Total number of particles is sum of the ground-state occupancy N_0 and the number of thermal particles, given by $-\partial \mathcal{F}/\partial \mu$
- ★ In BEC phase we set $\mu = E_0$, while in the gas phase $N_0 = 0$

• Static properties

* The condensation temperature T_c is defined by $\mu = E_0$ and $N_0 = 0$, where:

$$N_0 = N + \partial \mathcal{F} / \partial \mu = N - \sum_{m=1}^{\infty} (e^{m\beta\mu} \mathcal{Z}_1(m\beta))$$

* This also determines the condensate fraction N_0/N for $T < T_c$ * Diagonal density matrix elements $\langle \hat{\Psi}^{\dagger}(\vec{r}) \hat{\Psi}(\vec{r}) \rangle$ give the density profile

$$m(\vec{r}) = N_0 |\psi_0(\vec{r})|^2 + \sum_{n \ge 1} N_n |\psi_n(\vec{r})|^2$$

where thermal occupancies N_n are given by the Bose-Einstein distribution

• Dynamic properties

 \star Time-of-flight absorption pictures are obtained by switching off the trapping potential and allowing the gas to freely expand

 \star The density profile after time t is given by

$$m(\vec{r},t) = N_0 |\psi_0(\vec{r},t)|^2 + \sum_{n \ge 1} N_n |\psi_n(\vec{r},t)|^2$$

where $\psi_n(\vec{r},t) = \frac{1}{(2\pi)^3} \int d^3\vec{k} \, d^3\vec{R} \, e^{-i\omega_{\vec{k}}t + i\vec{k}\cdot\vec{r} - i\vec{k}\cdot\vec{R}} \, \psi_n(\vec{R})$

- SC approximation
- \star Static and some dynamic properties of BECs can be calculated in SC approach |1|
- * First correction to SC result for T_c is known for harmonic [3] trap and can be calculated also for other trapping potentials
- \star However, for critically rotating ideal BEC in a quartic anharmonic trap V_{BEC} [1, 2], first correction

$$\frac{\Delta T_{\rm c}}{T_{\rm c}^0} = -\frac{2\,\zeta(3/2)\,E_0}{5\,\zeta^{3/5}(5/2)}\,\left(\frac{M^2\pi}{4k\hbar^6\omega_z^2}\right)^{1/5}\,\frac{1}{N^{2/2}}$$

diverges for small anharmonicity k and cannot be used to assess SC result

¹ Scientific Computing Laboratory, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia ² Fachbereich Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany ³ Universität Potsdam, Campus Golm, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany

$$rac{meta\mu}{m} \mathcal{Z}_1(meta)$$

-1)

