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1 Scientific Computing Laboratory, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
2 Fachbereich Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany

3 Universität Potsdam, Campus Golm, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany

Motivation: Hartree-Fock (HF) approximation is the simplest way to
study finite-temperature properties of Bose-Einstein condensates. How-
ever, the order of the Bose-Einstein condensation (BEC) phase transition
for a trapped weakly interacting Bose gas in this approximation is not
known. As a first step in resolving this question, we present a numerical
study of the BEC phase transition using the semiclassical approximation
(SC) for thermal states [1].

HF description of BEC

•Weakly interacting Bose gas - functional integral formulation

⋆ for ultra-cold dilute gases we assume contact interaction [2]
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⋆ for trapping we assume isotropic harmonic potential V (~r) = 1
2Mω2r2

⋆we split ψ into the ground-state (condensate) and thermal contribution

ψ(~r, τ ) = ψ0(~r, τ ) + δψ(~r, τ )

⋆ the action now contains terms up to 4th order in δψ

⋆ numerous approximation techniques treat δψ4 terms differently [2, 3]

•HF-SC approximation

⋆mean-field approach

δψ∗δψδψ∗δψ ≈ 4〈δψ∗δψ〉δψ∗δψ − 2〈δψ∗δψ〉〈δψ∗δψ〉,

where 〈•〉 denotes self-consistently calculated mean value

⋆ by extremizing the HF action, we obtain HF equations
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⋆we further apply SC approximation to calculate thermal contributions; in
this approximation, the last two equations are combined and replaced by
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Numerical solution of HF-SC equations

•Gas phase

⋆when condensate is absent (n0 = 0), HF-SC equations reduce to

nth(r) =
1

λ3
ζ3/2

(

eβ(µ−2gnth(r)−V (r))
)

⋆ for a given µ, we solve the equation numerically in the range of r

⋆ total number of atoms: Natoms = 4π
∫∞
0 dr r2 nth(r)

⋆ consistency check: to ensure the convergence of ζ3/2 function, we need to
verify that µg(r) = µ− 2gnth(r) − V (r) < 0

⋆Numerical results

Effective chemical potential µg
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•Condensate phase

⋆ in the condensate phase we solve the full system of two HF-SC equations

⋆ the total number of atoms Natoms is held fixed and we calculate the chemical
potential µ

⋆we use an iterative procedure to
solve the HF-SC equation

⋆ the convergence is achieved after
small number of iterative steps
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⋆ the generalized form of Gross-Pitaevskii equation is solved using propagation
in imaginary time

⋆ again we have to ensure the convergence of ζ3/2 function by verifying that
µc(r) = µ− 2g(n0(r) + nth(r)) − V (r) < 0

⋆Numerical results

Effective chemical potential µc
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BEC phase transition

•Setup

The temperature and trap frequency are fixed while we decrease Natoms in the
trap and observe transition from the condensate to the gas phase.

If we plot the normalized
radial density distribution
4πr2n(r)/Natoms, the promi-
nent peak for smaller values
of r corresponds to the pres-
ence of Bose-Einstein con-
densate. This peak disap-
pears as we decrease the total
number of atoms.  0
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•Phase diagram
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Natoms(µ) Left branch of the phase
diagram describes the gas
phase, while the right one
corresponds to the conden-
sate phase. The central part,
where the phase transition is
located, is inaccessible due to
the SC approximation limita-
tion (convergence of ζ3/2) [1].

Summary and outlook

⋆HF-SC equations fail to describe the behavior of ultra-cold atomic gases
in the vicinity of the phase transition from BEC to the gas phase, since
it is not possible to find self-consistent solution of equations, in agreement
with earlier studies [4-6]

⋆ thus, we cannot characterize the order of the BEC phase transition using
the simple HF-SC approach

⋆ to resolve this, we need to go beyond the standard SC approximation in
the Hartree-Fock approach
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