Numerical Study of BEC Phase Transition in Hartree-Fock Approximation
Ivana Vidanović ${ }^{1}$, Antun Balaž ${ }^{1}$, Axel Pelster ${ }^{2,3}$
${ }^{1}$ Scientific Computing Laboratory, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
${ }^{2}$ Fachbereich Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany

${ }^{3}$ Universität Potsdam, Campus Golm, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany

Motivation: Hartree-Fock (HF) approximation is the simplest way to study finite-temperature properties of Bose-Einstein condensates. However, the order of the Bose-Einstein condensation (BEC) phase transition for a trapped weakly interacting Bose gas in this approximation is not known. As a first step in resolving this question, we present a numerical study of the BEC phase transition using the semiclassical approximation (SC) for thermal states [1].

HF description of BEC

- Weakly interacting Bose gas - functional integral formulation * for ultra-cold dilute gases we assume contact interaction [2]

$$
V_{\mathrm{int}}\left(\vec{r}-\vec{r}^{\prime}\right)=g \delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

\star grand-canonical partition function

$$
\mathcal{Z}=\oint \mathcal{D} \psi^{*} \oint \mathcal{D} \psi \exp \left(-\mathcal{A}\left[\psi^{*}, \psi\right] / \hbar\right)
$$

$\mathcal{A}\left[\psi^{*}, \psi\right]=\int_{0}^{\hbar \beta} \mathrm{d} \tau \int \mathrm{d}^{3} \vec{r} \psi^{*}(\vec{r}, \tau)\left[\hbar \frac{\partial}{\partial \tau}-\frac{\hbar^{2}}{2 M} \Delta+V(\vec{r})-\mu\right] \psi(\vec{r}, \tau)$

$$
+\frac{g}{2} \int_{0}^{\hbar \beta} \mathrm{d} \tau \int \mathrm{~d}^{3} \vec{r} \psi^{*}(\vec{r}, \tau) \psi(\vec{r}, \tau) \psi^{*}(\vec{r}, \tau) \psi(\vec{r}, \tau)
$$

\star for trapping we assume isotropic harmonic potential $V(\vec{r})=\frac{1}{2} M \omega^{2} r^{2}$ \star we split ψ into the ground-state (condensate) and thermal contribution

$\psi(\vec{r}, \tau)=\psi_{0}(\vec{r}, \tau)+\delta \psi(\vec{r}, \tau)$

\star the action now contains terms up to $4^{\text {th }}$ order in $\delta \psi$
\star numerous approximation techniques treat $\delta \psi^{4}$ terms differently $[2,3]$

- HF-SC approximation
\star mean-field approach
$\delta \psi^{*} \delta \psi \delta \psi^{*} \delta \psi \approx 4\left\langle\delta \psi^{*} \delta \psi\right\rangle \delta \psi^{*} \delta \psi-2\left\langle\delta \psi^{*} \delta \psi\right\rangle\left\langle\delta \psi^{*} \delta \psi\right\rangle$,
where $\langle\bullet\rangle$ denotes self-consistently calculated mean value
* by extremizing the HF action, we obtain HF equations

$$
\begin{array}{r}
\left(-\frac{\hbar^{2}}{2 M} \Delta+V(\vec{r})+g n_{0}(\vec{r})+2 g n_{\mathrm{th}}(\vec{r})\right) \psi_{0}(\vec{r})=\mu \psi_{0}(\vec{r}) \\
n_{\mathrm{th}}(\vec{r})=\sum_{\vec{k}}\left|\psi_{\vec{k}}(\vec{r})\right|^{2} \frac{1}{\exp \left(\beta\left(E_{\vec{k}}-\mu\right)\right)-1}
\end{array}
$$

$\left(-\frac{\hbar^{2}}{2 M} \Delta+V(\vec{r})+2 g n_{0}(\vec{r})+2 g n_{\text {th }}(\vec{r})\right) \psi_{\vec{k}}(\vec{r})=E_{\vec{k}} \psi_{\vec{k}}(\vec{r})$

* we further apply SC approximation to calculate thermal contributions; in this approximation, the last two equations are combined and replaced by

$$
n_{\mathrm{th}}(r)=\frac{1}{\lambda^{3}} \zeta_{3 / 2}\left(e^{\beta\left(\mu-2 g\left(n_{0}(r)+n_{\mathrm{th}}(r)\right)-V(r)\right)}\right),
$$

where $\lambda=\sqrt{\frac{2 \pi \hbar^{2} \beta}{M}}$ and $\zeta_{3 / 2}(z)=\sum_{j=1}^{\infty} \frac{z^{j}}{j^{3 / 2}}$

```
Numerical solution of HF-SC equations
```

- Gas phase
\star when condensate is absent ($n_{0}=0$), HF-SC equations reduce to

$$
n_{\mathrm{th}}(r)=\frac{1}{\lambda^{3}} \zeta_{3 / 2}\left(e^{\beta\left(\mu-2 g n_{\mathrm{th}}(r)-V(r)\right)}\right)
$$

\star for a given μ, we solve the equation numerically in the range of r \star total number of atoms: $N_{\text {atoms }}=4 \pi \int_{0}^{\infty} \mathrm{d} r r^{2} n_{\text {th }}(r)$
\star consistency check: to ensure the convergence of $\zeta_{3 / 2}$ function, we need to verify that $\mu_{g}(r)=\mu-2 g n_{\mathrm{th}}(r)-V(r)<0$

- Condensate phase
* in the condensate phase we solve the full system of two HF-SC equations \star the total number of atoms $N_{\text {atoms }}$ is held fixed and we calculate the chemical potential μ
*we use an iterative procedure to solve the HF-SC equation
* the convergence is achieved after small number of iterative steps

\star the generalized form of Gross-Pitaevskii equation is solved using propagation in imaginary time
* again we have to ensure the convergence of $\zeta_{3 / 2}$ function by verifying that $\mu_{c}(r)=\mu-2 g\left(n_{0}(r)+n_{\text {th }}(r)\right)-V(r)<0$

$$
\star \text { Numerical results }
$$

Density of atoms

BEC phase transition

- Setup

The temperature and trap frequency are fixed while we decrease $N_{\text {atoms }}$ in the trap and observe transition from the condensate to the gas phase.
If we plot the normalized radial density distribution radial dinstribution $4 \pi r^{2} n(r) / N_{\text {atoms }}$, the prominent peak for smaller values of r corresponds to the presence of Bose-Einstein condensate. This peak disappears as we decrease the total number of atoms

- Phase diagram

Left branch of the phase diagram describes the gas diagram describes the gas
phase, while the right one corresponds to the condensate phase. The central part, where the phase transition is located, is inaccessible due to the SC approximation limitation (convergence of $\zeta_{3 / 2}$) [1].

Summary and outlook

\star HF-SC equations fail to describe the behavior of ultra-cold atomic gases in the vicinity of the phase transition from BEC to the gas phase, since it is not possible to find self-consistent solution of equations, in agreement with earlier studies [4-6]
\star thus, we cannot characterize the order of the BEC phase transition using the simple HF-SC approach
\star to resolve this, we need to go beyond the standard SC approximation in the Hartree-Fock approach

References

[1] M. Timmer, A. Pelster, R. Graham, unpublished
[2] C. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases [3] N. P. Proukakis, B. Jackson, JPB 41, 203002 (2008)
[4] D. A. Huse, E. D. Siggia, JLTP 46, 137 (1982)
[5] S. Giorgini, L. P. Pitaevskii, S. Stringari, PRA 54, R4633 (1996) [6] M. Holzmann, W. Krauth, M. Narschewski, PRA 59, 2956 (1999)
Support: Serbian Ministry of Science, German Academic Exchange Service (DAAD), and European Commission through research projects PI-BEC, OI141035, CX-CMCS, EGEE-III, and SEE-GRID-SCI

DAAD \pm.

