On the order of the phase transition of the weakly interacting Bose gas in the Hartree-Fock approximation

Ivana Vidanović Scientific Computing Laboratory Institute of Physics Belgrade

Density distribution of thermally excited atoms for two different trap frequencies and T = 200nK, $\mu = 10^{-31}J$, calculated using semiclassical approximation.

Effective chemical potential μ_g , calculated using semiclassical approximation, $\mu = 10^{-31}J, T = 200nK, \omega = 2\pi \times 20Hz$. Number of thermally excited atoms $N_{atoms} = 1.090980 \times 10^7$.

Density of atoms vs. r, calculated by solving the Hartree-Fock equation in conjunction with semiclassical approximation, $N_{atoms} = 2 \times 10^7$, T = 200 n K, $\omega = 2\pi \times 20 Hz$. Obtained chemical potential value is $\mu \approx 9.88 \times 10^{-31} J$.

Effective chemical potential μ_c , $\mu = 13.67 \times 10^{-31} J$, T = 200nK, $\omega = 2\pi \times 20 Hz$. Number of thermally excited atoms $N_{atoms} = 3 \times 10^7$.

Calculated chemical potential μ vs. number of iterating steps of the self-consistent solution of the Hartree-Fock equation and semi-classical approximation. $N_{atoms} = 2 \times 10^7, T = 200nK, \omega = 2\pi \times 20Hz.$

Number of thermally excited atoms vs. μ , calculated using semiclassical approximation, T = 200nK, $\omega = 2\pi \times 20Hz$. Left branch of the diagram is the gas part, while the right one corresponds to the condensate phase.