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Purpose of QMC methods

Improve the convergence of a wide range of modeling and simulation

algorithms, running on modern distributed and HPC computing resources

Achieve better convergence rates but retain some advantages of MC
methods

parallelizable

usable in high dimensional settings

provide error bounds

low requirements for smoothness

Unknown quantities are expressed as answers to integration problems,
possibly of infinite dimension
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Motivation

More than 70% of computing power of HPC and supercomputing

resources is used for Monte Carlo simulations‘

Typical convergence of MC methods is O
“

N−
1

2

”

Advantages of MC methods:

inherently parallel

provide error estimates due to Central Limit Theorem

low smoothness requirements

rate does not depend on dimension

applicable in infinite dimensional settings
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Requirements on QMC methods

Replace MC methods with little change in the codes and algorithms.

Ideally only the pseudorandom number generator is replaced with
low-discrepancy sequence generators

Faster convergence rate for a wide range of functions

Provide statistical aposteriori error estimates

Run efficiently in distributed environments

high parallel efficiency

reproducibility of results

failover capability

Usability in high-dimension problems
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History of QMC methods

Uniform distribution of sequences mod 1

Definition 0.1 A sequence σ = {xj}
∞

j=1
is uniformly distributed in E s

if

lim
N→∞

AN (J)

N
= µ(J)

for each interval J ⊂ E s
. This is equivalent to

lim
N→∞

1

N

N
X

j=1

f(xj) =

Z

E s

f(x)dx

for each continuous function.
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History of QMC methods - constructions from

Theorem 0.1 (H. Weyl, 1916) The sequence {nα} is uniformly distributed

in E s
, if 1, α1, . . . , αs are linearly independent over the field of rationals.

Korobov showed how a net of numbers
n

na
p

o

can give better convergence

than Monte Carlo for a class of periodic functions with bounded
derivatives. p must be prime. The numbers a = (a1, . . . , as) are called

optimal coefficients.
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Discrepancy

Definition 0.2 For a sequence σ = (xi)
N

i=1
⊂ E s

, the discrepancy is
defined as

DN (σ) = sup
J⊂E s

AN (J)

N
− µ(J)

where J is an s-dimensional interval.

Star discrepancy - if the intervals start with 0. Lp discrepancy, diaphony
are other measures of irregularity of distribution

Best possible rate (conjecture) - O
`

N−1 logs N
´
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Theorem of Koksma - Hlawka

Theorem 0.2 For a function f of bounded variation in the sense of Hardy

and Krause
˛

˛

˛

˛

˛

˛

˛

1

N

N
X

j=1

f(xj) −

Z

E s

f(x)dx

˛

˛

˛

˛

˛

˛

˛

< V (f)DN (σ)

This is largely theoretical result, since computing discrepancy is hard, and
theoretical estimates largely overstate the discrepancy.
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History of QMC methods - digital constructions

Definition 0.3 The sequence of Van der Corput - Halton in base p is

obtained by representing

n =
∞

X

j=0

ajp
j

and then defining

φp (n) =

∞
X

j=0

ajp
−j−1

. If p1, . . . , ps are pairwise relatively prime, the sequence
(φp1

(n)), . . . , φps
(n)) , is uniformly distributed in E s

. Typically p1, . . . , ps

are the first s primes.

Faure has shown how permutting the digits can give better convergence.
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Digital (t, m, s) nets

Definition 0.4 For a given dimension s ≥ 1 and integers b ≥ 2 and

0 ≤ t ≤ m, a (t, m, s)-net in base b is a point set P consisting of bm points
in E s

such that every subinterval J of E s
of the form

J =

s
Y

i=1

h

aib
−di , (ai + 1)b−di)

”

with integers di ≥ 0 and 0 ≥ ai ≥ bdi for 1 ≤ i ≤ s and with µ(J) = bt−m

contains exactly bt points of P .

The sequences of Sobol, Faure, Niederreiter, are of this type and have
best possible order of discrepancy.
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The notion of effective dimension

If we can represent a Monte Carlo algorithm as an integration problem inE s
, we call s the effective dimension of the algorithm.

Decreasing the effective dimension makes QMC methods more efficient.

Infinite dimensional uniformly distributed sequences do exist.

For a given problem, there is a competition between Sobol, Faure,

Niederreiter, Halton and other constructions.

If the functions are periodic, Korobov’ sequences are to be preferred (but
they are not infinite).
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ANOVA decomposition

A function f can be decomposed as:

f(x) = f0 +f1(x1)+ · · ·+fs(xs)+
X

i,j

fi,j(xi, xj)+ · · ·+f1,...,s(x1, . . . , xs)

where f0 is constant and all the functions are orthogonal. Then the
variance of f can be expressed as

D = D1 + · · · + Ds + D1,2 + · · · + D1,...,s

where

D =

ZE s
f

2(x)dx

and

Di1,...,ik
=

1
Z

0

. . .

1
Z

0

f
2

i1,...,ik
(xi1 , . . . , xik

) dx1 . . . dxk

In many integration problems the low-dimensional interactions contribute

most of the total variance
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The Brownian bridge construction with QMC

How to sample a Wiener process W (t) with QMC? Suppose t ∈ [0, 1].

Let s be the number of intermediate points. Consider low-discrepancy

sequence σ = (x1

j , . . . , x
s
j) W (1) is sampled with invnorm(x1

j ). Then
W ( 1

2
) is sampled with mean W (0) + W (1) and standard deviation 1

2
, using

x2

j . After that we sample W ( 1

4
) and then W ( 3

4
), etc.

The advantage is that the variance is concentrated towards the first
coordinates, which are usually better distributed (Sobol, Halton).
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The use of scrambling

Obtaining error estimates in QMC is not possible in the same way as in

MC - the samples are correlated.

Introduce a source of randomness into the algorithm

Basic scrambling

Add the same random number to all samples (mod1).

xor with the same random binary number

Perform the same permutation of p digits

If several runs of the QMC algorithm are performed, with different
scramblings, then statistical error estimate can be obtain. It will not be as

accurate as in MC, because number of (super-)samples is rather small,
even though number of terms of the sequence used may be large.
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Owen’s construction

Consider one-dimensional case. Fix the base b and select a tree of

random permutations, all of them independently choosen.

Permute the first digit, using the first permutation τ1. Depending on the
result, permute the second digit, using the permutation from the

corresponding node in the tree. Continute until all digits are permuted
(instead of continuing the process, at some point one can simply choose a

random number, since no other point can arrive at the same branch).

Advantage of Owen’s construction - expected error is

O
“

N
−

3

2 log N
”

for functions in L2.

These methods are called randomized QMC and are effectively the norm.
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Transforming MC into QMC

If MC is sampling trajectories, we consider one trajectory to result from

one point in E s
. s is the constructive dimensionality. From one QMC point

we obtain one trajectory.

If s is not limited, we can use hybrid methods, where we use QMC for part

of the variables and MC for the rest.

Always use scrambling, even without making error estimation, otherwise
you can hit a singularity.

Example - integral equations that are resolved by Neumann series
expansion

It is also advantageous to skip the first N elements of a sequence, where

N is large. This is not equivalent to scrambling.
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Transforming MC into QMC

Not all QMC methods result from simple replacement of pseudorandom

numbers with low-discrepancy sequences. Example - Runge-Kutta QMC

QMC has advantage if constructive dimensionality is low (10, max 20), or if
the ANOVA decomposition is such that variance is concentrated in

low-dimensional interactions.

Example - in finance Sobol sequences with several thousand coordinates
are being used in production.
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MC vs QMC

Not all QMC methods result from simple replacement of pseudorandom

numbers with low-discrepancy sequences. Example - Runge-Kutta QMC

QMC has advantage if constructive dimensionality is low (10, max 20), or if
the ANOVA decomposition is such that variance is concentrated in

low-dimen sional interactions.

Example - in finance Sobol sequences with several thousand coordinates
are being used in production.

In most cases direct replacement is not worse, and can gain because of
speed of generation. With increase of number of trajectories

pseudorandom number generators start to exhibit strange correlations.
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Parallel implementation

QMC can not discard or lose partial results

Blocking or leap-frogging is used for parallelisation.

Not as flexible as MC, but reasonably efficient (close to 100%).

Offers reproducibility of results - small initial state gives all the information
needed.
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Cost analysis

QMC can be plugged in with little effort

Standard software implementations exist, but load-balancing is difficult.

Aborted computations should re-submitted.

Most integration methods gain from using QMC

In integral equations, the improvement depends on the practical problem,

and some re-ordering or re-design may be necessary. The smoothness of
the sub-integral function is important.
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Conclusion

Changing the algorithm from MC to QMC can be done in a few lines of

code.

Standard software implementations exist, even for Matlab.

Strong improvement is to be expected in most integration problems. QMC
combines with other techniques for variance reduction.

Usable in high-dimensional problems

Have been used in ensemble Monte Carlo methods

Ray tracing in computer graphics has been done with QMC
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