

u(t) evolves according to

$$\ddot{u}(t) + u(t) - \frac{1}{u(t)^3} - \frac{P}{u(t)^4} = 0 ,$$

different driving frequencies Ω .

$$\omega_0 = \sqrt{1 + \frac{3}{u_0^4} + \frac{4p}{u_0^5}}, \qquad u_0 - \frac{p}{u_0^4} - \frac{1}{u_0^3} =$$

$$\omega^2 \ddot{u}(s) + u(s) - \frac{1}{u(s)^3} - \frac{p}{u(s)^4} - \frac{q}{u(s)^4} \sin \frac{\Omega s}{\omega} = \frac{1}{\omega} \left(\frac{1}{\omega} - \frac{1}{\omega}\right) \left(\frac{1}{\omega} - \frac{1}{\omega}\right)$$

$$u(s) = u_0 + q \, u_1(s) + q^2 \, u_2(s) + q^3 \, u_3(s) + .$$

 $\omega = \omega_0 + q \, \omega_1 + q^2 \, \omega_2 + q^3 \, \omega_3 + \dots$

$$\begin{split} \omega_0^2 \ddot{u}_1(s) + \omega_0^2 u_1(s) &= \frac{1}{u_0^4} \sin \frac{\Omega s}{\omega}, \\ \omega_0^2 \ddot{u}_2(s) + \omega_0^2 u_2(s) &= -2\omega_0 \omega_1 \ddot{u}_1(s) - \frac{4}{u_0^5} u_1(s) \sin \frac{\Omega s}{\omega} + \alpha \\ \omega_0^2 \ddot{u}_3(s) + \omega_0^2 u_3(s) &= -2\omega_0 \omega_2 \ddot{u}_1(s) - 2\beta u_1(s)^3 + 2\alpha u_1(s) \\ &+ \frac{10}{u_0^6} u_1(s)^2 \sin \frac{\Omega s}{\omega} - \frac{4}{u_0^5} u_2(s) \sin \frac{\Omega s}{\omega} \end{split}$$

where $\alpha = 10p/u_0^6 + 6/u_0^5$ and $\beta = 10p/u_0^7 + 5/u_0^6$.

Nonlinear BEC Dynamics Induced by the Harmonic Modulation of the Atomic s-wave Scattering Length

Ivana Vidanović¹, Antun Balaž¹ and Axel Pelster^{2,3}

¹ Scientific Computing Laboratory, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia ² Fachbereich Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany ³ Universität Potsdam, Campus Golm, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany

ω₀ - Ω

Frequenc

2.06 2.1

2.14

 Ω

2.00

2.04

2.05

2.06

peak's number

A	$\Omega - A$	$\Omega + A$
).0615	1.9352	2.0609
0.0166	2.0232	2.0562
0.0218	2.0279	2.0719
).0273	2.0326	2.0876

Frequency shift of the collective mode

to the frequency shift quadratic in q:

$$\omega = \omega_0 + q^2 \frac{1}{(\Omega_0)^2}$$

for various values of q.

- BEC excited by harmonic modulation of the scattering length.
- on a similar perturbation theory for a cylindrically symmetric BEC.
- simulations of the full time-dependent Gross-Pitaevskii equation.

• References

- [1] S. E. Pollack, D. Dries, et. al., PRA **81** 053627 (2010)
- [2] F. Dalfovo, C. Minniti, L. P. Pitaevskii PRA 56, 4855 (1997)
- [3] V. M. Pérez-García, H. Michinel, et. al., PRL **77** 5320 (1996)
- [4] A. Pelster, H. Kleinert, M. Schanz, PRE **67**, 016604 (2003)
- (EGI-InSPIRE and PRACE-1IP).

Ministry of Science of the Republic of Serbia

★ Frequency shift of the main collective mode is obtained using the third order Poincaré-Lindstedt method in q. First order correction ω_1 vanishes, leading

> $Polynomial(\Omega)$ $(\Omega^2 - \omega_0^2)^2 (\Omega^2 - 4\omega_0^2)$

 \star We have obtained good agreement of numerical and analytical results for the frequency shift far from resonances, as can be seen from the graphs below

* The most significant shift of up to 5% is observed for $\Omega \approx \omega_0$ and large q.

Summary and outlook

* Using Fourier analysis of numerical data and analytical Poincaré-Lindstedt method, we calculated shift of the collective mode for a spherically symmetric

 \star In order to compare analytical results with the experiment [1], we are working

 \star To further study nonlinear BEC dynamics effects, we will use numerical

• Support: Serbian Ministry of Science (OI141035, PI-BEC), DAAD - German Academic and Exchange Service (PI-BEC), and European Commission

