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Motivation: In the recent experiment [1], nonlinear dynamics of a
BEC was induced through the harmonic modulation of the atomic s-
wave scattering length, and collective oscillation modes were observed.
Using perturbation theory and numerical approach, we study frequency
shift of the collective mode, due to nonlinear interaction effects [2].

Time-dependent variational description of BEC

⋆ Time-dependent Gross-Pitaevskii equation can be studied using a Gaussian
variational ansatz [3]. In this approach, the dimensionless condensate width
u(t) evolves according to

ü(t) + u(t) −
1

u(t)3
−

P

u(t)4
= 0 ,

where P =
√

2
π

Na
l , a is the s-wave scattering length, l =

√

~

mω is the length
scale for the harmonic trap, and N is the number of atoms.

⋆ Using Feshbach resonances, harmonic modulation of the scattering length
was achieved [1], yielding the time-dependent interaction P (t) = p+q sin Ωt.
The figures below give real-time dynamics of BEC for p = 0.4, q = 0.06 and
different driving frequencies Ω.
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Analytical Poincaré-Lindstedt analysis

⋆ Linearization of the variational equation yields zeroth order collective mode
ω = ω0 of oscillations around the time-independent solution u0:

ω0 =

√

1 +
3

u4
0

+
4p

u5
0

, u0 −
p

u4
0

−
1

u3
0

= 0 .

⋆ To calculate the collective mode to higher orders, we rescale time as s = ωt:

ω2 ü(s) + u(s) −
1

u(s)3
−

p

u(s)4
−

q

u(s)4
sin

Ωs

ω
= 0 .

⋆ Far from resonances, we assume the following perturbative expansions in q:

u(s) = u0 + q u1(s) + q2 u2(s) + q3 u3(s) + . . . ,

ω = ω0 + q ω1 + q2 ω2 + q3 ω3 + . . .

⋆ This leads to a hierarchical system of equations in orders of q [4]:

ω2
0 ü1(s) + ω2

0 u1(s) =
1

u4
0

sin
Ωs

ω
,

ω2
0 ü2(s) + ω2

0 u2(s) = −2ω0 ω1 ü1(s) −
4

u5
0

u1(s) sin
Ωs

ω
+ α u1(s)2 ,

ω2
0 ü3(s) + ω2

0 u3(s) = −2ω0 ω2 ü1(s) − 2β u1(s)3 + 2α u1(s)u2(s) − ω2
1 ü1(s)

+
10

u6
0

u1(s)2 sin
Ωs

ω
−

4

u5
0

u2(s) sin
Ωs

ω
− 2ω0 ω1 ü2(s),

where α = 10p/u6
0 + 6/u5

0 and β = 10p/u7
0 + 5/u6

0.

Fourier analysis of numerically obtained solutions

⋆ Numerical solutions for the time interval (0, T ) with the time step ∆t are
analyzed using the discrete Fourier transform. This way, maximal accessible
frequency is ωmax = π/∆t, while the resolution is ∆ω = 2π/T .
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⋆ The above graphs give the Fourier spectrum of u(t) with basic modes ω0 ≈
2.06638 and Ω, higher harmonics nω0 and mΩ, as well as linear combinations
nω0 + mΩ, including the beating frequency |Ω − ω0|.

⋆ Resonant effects are expected for Ω ≈ ω0, as numerical results clearly confirm
on the graphs below. However, a complex peak structure close to ω0 appears,
and a shift in the frequency ω0 → ω is clearly visible.
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⋆ For Ω ≈ ω0, frequencies ω(k) = Ω + k × |ω − Ω| where k is a small integer
are all close to the resonant region, and are all significantly excited, as we
observe numerically.

⋆ Prominent peaks around ω0 are equidistant, as we see from the graph below
for q = 0.1. By fitting a linear function ω(k) = A + B × k to numerical
data, we determine |ω − Ω| for each Ω, and calculate collective modes as
Ω ± A, given in the table.
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Ω = 2.04

Ω A Ω − A Ω + A

2.00 0.0615 1.9352 2.0609

2.04 0.0166 2.0232 2.0562

2.05 0.0218 2.0279 2.0719

2.06 0.0273 2.0326 2.0876

Frequency shift of the collective mode

⋆ Frequency shift of the main collective mode is obtained using the third order
Poincaré-Lindstedt method in q. First order correction ω1 vanishes, leading
to the frequency shift quadratic in q:

ω = ω0 + q2 Polynomial(Ω)

(Ω2 − ω2
0)

2 (Ω2 − 4ω2
0)

.

⋆ We have obtained good agreement of numerical and analytical results for the
frequency shift far from resonances, as can be seen from the graphs below
for various values of q.
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⋆ The most significant shift of up to 5% is observed for Ω ≈ ω0 and large q.

Summary and outlook

⋆ Using Fourier analysis of numerical data and analytical Poincaré-Lindstedt
method, we calculated shift of the collective mode for a spherically symmetric
BEC excited by harmonic modulation of the scattering length.

⋆ In order to compare analytical results with the experiment [1], we are working
on a similar perturbation theory for a cylindrically symmetric BEC.

⋆ To further study nonlinear BEC dynamics effects, we will use numerical
simulations of the full time-dependent Gross-Pitaevskii equation.

•References

[1] S. E. Pollack, D. Dries, et. al., PRA 81 053627 (2010)
[2] F. Dalfovo, C. Minniti, L. P. Pitaevskii PRA 56, 4855 (1997)
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