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Motivation: In the recent experiment [1], nonlinear dynamics of a

BEC was induced through the harmonic modulation of the atomic s-
wave scattering length, and collective oscillation modes were observed.
Using perturbation theory and numerical approach, we study frequency

shift of the collective mode, due to nonlinear interaction effects |2|.

Time-dependent variational description of BEC

* Time-dependent Gross-Pitaevskii equation can be studied using a Gaussian
variational ansatz [3]. In this approach, the dimensionless condensate width
u(t) evolves according to

U(t) + u(t) =0,

where P = \/%M, a 1s the s-wave scattering length, [ = \/% 18 the length
scale for the harmonic trap, and NV is the number of atoms.

*x Using Feshbach resonances, harmonic modulation of the scattering length
was achieved [1], yielding the time-dependent interaction P(t) = p+qsin Q.
The figures below give real-time dynamics of BEC for p = 0.4, ¢ = 0.06 and
different driving frequencies 2.
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Analytical Poincaré-Lindstedt analysis

* Linearization of the variational equation yields zeroth order collective mode
w = wy of oscillations around the time-independent solution uy:
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* To calculate the collective mode to higher orders, we rescale time as s = wt:
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* Far from resonances, we assume the following perturbative expansions in q:

u(s) = uo + qui(s) + q" ua(s) + ¢ us(s) + . . . |
W = wo+qw1+q2w2+q3w3+...

* This leads to a hierarchical system of equations in orders of ¢ [4]:
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where oo = 10p/ud + 6 /u) and B = 10p/uf + 5/u.

Fourier analysis of numerically obtained solutions

x Numerical solutions for the time interval (0, T") with the time step At are
analyzed using the discrete Fourier transform. This way, maximal accessible
frequency is wyae = 7/At, while the resolution is Aw = 27 /T
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x The above graphs give the Fourier spectrum of u(t) with basic modes wy ~
2.06638 and €2, higher harmonics nwy and mf2, as well as linear combinations
nwy + mS, including the beating frequency [€2 — wy.

*x Resonant effects are expected for €2 =~ wy, as numerical results clearly confirm
on the graphs below. However, a complex peak structure close to wy appears,
and a shift in the frequency wy — w is clearly visible.
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* For Q) ~ wy, frequencies w(k) = Q2 + k X |w — 2| where k is a small integer
are all close to the resonant region, and are all significantly excited, as we
observe numerically.

* Prominent peaks around wy are equidistant, as we see from the graph below
for ¢ = 0.1. By fitting a linear function w(k) = A + B X k to numerical
data, we determine |w — €| for each €2, and calculate collective modes as
()£ A, given in the table.
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Frequency shift of the collective mode

* Frequency shift of the main collective mode is obtained using the third order
Poincaré-Lindstedt method in ¢. First order correction w; vanishes, leading
to the frequency shift quadratic in ¢:

,  Polynomaial(£2)
(2 — wp)* (0 — dwp)

W = Wy +q

* We have obtained good agreement of numerical and analytical results for the
frequency shift far from resonances, as can be seen from the graphs below
for various values of q.
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x The most significant shift of up to 5% is observed for €2 ~ wy and large q.

Summary and outlook

* Using Fourier analysis of numerical data and analytical Poincaré-Lindstedt
method, we calculated shitt of the collective mode for a spherically symmetric
BEC excited by harmonic modulation of the scattering length.
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* In order to compare analytical results with the experiment [1]|, we are working
on a similar perturbation theory for a cylindrically symmetric BEC.

* To further study nonlinear BEC dynamics effects, we will use numerical
simulations of the full time-dependent Gross-Pitaevskii equation.
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