Local Bifurcations of equilibria in delayed coupled type II excitable systems

Dragana Todorović–Ranković

draganat@pharmacy.bg.ac.yu

Department of Physics and Mathematics, Faculty of Pharmacy, University of Belgrade, Serbia and Montenegro, Belgrade, Vojvode Stepe 450

Introduction

- excitable dynamical systems
- type II excitable systems
- prime example of type II excitable systems

Two coupled FHN excitable systems with delayed coupling:

$$\dot{x}_1 = -x_1^3 + (a+1)x_1^2 - ax_1 - y_1 + c\tan^{-1}(x_2^{\tau}), \dot{y}_1 = bx_1 - \gamma y_1, \dot{x}_2 = -x_2^3 + (a+1)x_2^2 - ax_2 - y_2 + c\tan^{-1}(x_1^{\tau}), \dot{y}_2 = bx_2 - \gamma y_2,$$

where $x^{\tau}(t) = x(t - \tau)$

Bifurcation curves in (c,τ) plane

Local Bifurcations of equilibria in delayed coupled type II excitable systems – p. 3/16

Numerical calculations — two different types of excitable behavior

- single stationary solution as the only attractor
- two coexisting attractors, the stable stationary solution and a stable limit cycle.

The domain in (c, τ) plain — oscillator death. Both types of excitable behavior occur for relatively small time–lag.

Approximation: $f(x(t - \tau)) \approx f(x - \tau \dot{x})$

The approximate system of ODE's is then given by:

$$\dot{x}_1 = -x_1^3 + (a+1)x_1^2 - ax_1 - y_1 + \\ +c \tan^{-1}(x_2 - \tau(-x_2^3 + (a+1)x_2^2 - \\ -ax_2 - y_2 + c \tan^{-1}(x_1))),$$

$$\dot{y}_1 = bx_1 - \gamma y_1,$$

$$\dot{x}_2 = -x_2^3 + (a+1)x_2^2 - ax_2 - y_2 + \\ +c \tan^{-1}(x_1 - \tau(-x_1^3 + (a+1)x_1^2 - \\ -ax_1 - y_1 + c \tan^{-1}(x_2))),$$

$$\dot{y}_2 = bx_2 - \gamma y_2,$$

Main result

- The organizing center for the dynamics codimension 2 generalized Hopf (Bautin) bifurcation.
- quite a small time-lag bifurcation curves of the exact and approximate system almost coincide and the dynamics is qualitatively the same.

Exact system: $\dot{X} = F(X, X^{\tau})$.

Approximate system: $\dot{X} = F_{app}(X)$, $X \in \mathbb{R}^4$, $X = (x_1, y_1, x_2, y_2)$.

Bifurcations of the stationary solution

Parameters a, b, γ , c satisfy conditions

$$4\frac{b}{\gamma} < (a-1)^2, \qquad c < c_1 \equiv a + \frac{b}{\gamma}$$

For $\tau = 0$, F_{app} has only one stationary solution. Each unit is excitable when decoupled.

Theorem 1 The system \mathcal{F}_{app} has a pitchfork bifurcation for any $(c, \tau) \in \mathcal{B}_{E_0;p} \equiv \{(c, \tau) | \tau = 1/c, c < c_1\}.$

The standard calculations of the normal form prove the theorem.

Theorem 2 For the parameter values

$$(c,\tau) \in \mathcal{B}_{E_0;H} \equiv \left\{ (c,\tau) | \tau = \frac{c-a-\gamma}{c(c-a)}, c \in (a,c_1) \right\}$$

the system \mathcal{F}_{app} has either the supercritical Hopf or the subcritical Hopf or the generalized Hopf bifurcation. Furthermore, there are such values of a, b and γ that the value c_B for which the system has the generalized Hopf bifurcation satisfies $c_B \in (c_0, c_1)$.

Proof: For the parameter values in $\mathcal{B}_{E_0;H}$ linear part of the approximate system has a pair of purely imaginary eigenvalues $\lambda_{1,2} = \pm iv$, v > 0, and no other nonhyperbolic eigenvalues.

$$d \equiv \frac{dRe\lambda_{1,2}}{d\tau}|_{\mathcal{B}_{E_0;H}} = \frac{1}{2}\frac{d(-\gamma + F + D)}{d\tau}|_{\mathcal{B}_{E_0;H}} = c(a-c)/2 < 0$$

 \Rightarrow $(c, \tau) \in \mathcal{B}_{E_0;H}$ corresponds to the Hopf bifurcation. The approximate system expanded up to the terms of the third order:

$$\dot{X} = AX + \frac{1}{2}\mathcal{F}_{app,2}(X,X) + \frac{1}{6}\mathcal{F}_{app,3}(X,X,X),$$

where

$$A = \begin{bmatrix} F & -1 & D & E \\ b & -\gamma & 0 & 0 \\ D & E & F & -1 \\ 0 & 0 & b & -\gamma \end{bmatrix}, F = -a - c^2 \tau, D = c + ca\tau, E = c\tau$$

$$\mathcal{F}_{app,2}(X,X) = \begin{bmatrix} (a+1)x_1^2 - c(a+1)\tau x_2^2 \\ 0 \\ (a+1)x_2^2 - c(a+1)\tau x_1^2 \\ 0 \end{bmatrix},$$

and $\mathcal{F}_{app,3}(X, X, X)$ with terms of the third order.

First we introduce a complex eigenvector $Q \in R^4$ of A ie. AQ = ivQ and corresponding eigenvector P of A^T , $A^TP = -ivP$, normalized to $\langle P, Q \rangle = \overline{P}^TQ = 1$. $\forall R \in E^C \ R = \alpha Q + \overline{\alpha} \overline{Q}$, where $\alpha = \langle P, R \rangle$. The relation between the original system $\dot{X} = F_{app}(X)$ and the complex normal form of the system on the center manifold $X = H(\alpha, \overline{\alpha})$ of the following form:

$$\dot{\alpha} = iv\alpha + l_1\alpha |\alpha|^2 + l_2\alpha |\alpha|^4 + O(|\alpha|^6)$$

is contained in the corresponding homological equation:

$$\frac{\partial H}{\partial \alpha} \dot{\alpha} + \frac{\partial H}{\partial \bar{\alpha}} \dot{\bar{\alpha}} = \mathcal{F}_{app}(H(\alpha, \bar{\alpha})).$$

$$H(\alpha,\overline{\alpha}) = \alpha Q + \overline{\alpha}\overline{Q} + \sum_{1 < j+k \le 5} \frac{1}{j!k!} h_{jk} \alpha^j \overline{\alpha}^k + O(|\alpha|^6)$$

$$l_{1} = \frac{1}{2} \mathbf{Re} < P, \mathcal{F}_{app,3}(Q, Q, \bar{Q}) + \\ + \mathcal{F}_{app,2}(\bar{Q}, (2ivI_{4} - A)^{-1}\mathcal{F}_{app,2}(Q, Q)) \\ - 2\mathcal{F}_{app,2}(Q, A^{-1}\mathcal{F}_{app,2}(Q, \bar{Q})) > \\ = \frac{\gamma c^{3} + B(a, b, \gamma)c^{2} + C(a, b, \gamma)c + D(a, b, \gamma)}{2(a - c)(b + a\gamma - c\gamma)},$$

$$B(a, b, \gamma) = -b - 3a\gamma - 2\gamma^{2}$$

$$C(a, b, \gamma) = 2ab + 3a^{2}\gamma + 2b\gamma - 3\gamma^{2} + 3a\gamma^{2}$$

$$D(a, b, \gamma) = -a^{2}b - a^{3}\gamma + 3b\gamma - ab\gamma - 2\gamma^{2} - a\gamma^{2} - a\gamma^{2$$

Local Bifurcations of equilibria in delayed coupled type II excitable systems – p. 12/16

If $l_1 \neq 0$, the system is locally smoothly orbitally equivalent to the system $\dot{\alpha} = iv\alpha + l_1\alpha |\alpha|^2$. Since everywhere on \mathcal{B}

Since everywhere on $\mathcal{B}_{E_0;H}$ we have d < 0, then

- $l_1 < 0 \Rightarrow$ supercritical Hopf bifurcation
- $l_1 > 0 \Rightarrow$ subcritical Hopf bifurcation
- $l_1 = 0 \Rightarrow$ generalized Hopf bifurcation

There is at least one value of $c = c_B$ such that bifurcation is of the generalized Hopf type.

 $a = 0.25, b = \gamma = 0.02,$ $c_B = 0.289024 \in (c_0, c_1) = (0.27, 1.27)$ All three alternatives occur as c is varied. Generalized Hopf bifurcation at (c_B, τ_B)

Local Bifurcations of equilibria in delayed coupled type II excitable systems – p. 14/16

Bifurcation curves of the exact system and of the approximate system

Local Bifurcations of equilibria in delayed coupled type II excitable systems – p. 15/16

Conclusion

Two coupled FitzHugh–Nagumo excitable systems — DDE's, and for small time–lag ODE's

The first theorem — boundary beyond which the dynamics is qualitatively different.

The second theorem — three possible types of dynamics for small time–lags.

- stable solution as the only attractor
- oscillatory, when the limit cycle is the only attractor
- bi-stable, stable stationary solution and stable limit cycle