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Faraday patterns, fundamentals

Naturally, the first work 1s due to Faraday. The Appendix of his much-
celebrated paper is now a classic: When the upper surface of a plate
vibrating so as to produce sound is covered with a layer of water, the
water usually presents a beautifully crispated appearance---the
crispations being produced more readily and beautifully when there is a
certain quantity than when there is less. For small crispations, the water
should flow upon the surface freely. Large crispations require more
water than small ones. Too much water sometimes interferences with
the beauty of the appearance, but the crispation is not incompatible with
much fluid, for the depth may amount to eight, ten, or twelve inches,
and is probably unlimited. (crispation=1. (A) curled condition; curliness;
(an) undulation. Now rare. SOED)

Faraday patterns became a standard topic in nonlinear physics due to
experiments with liquids in the 80s

Faraday patterns were unknown to the BEC community until the seminal
paper of Staliunas et al. (PRL 89, 210406) in 2002. Their main point
was that by periodically modulating the scattering length of a
magnetically trapped 3D one excites a series of patterns similar to
those in fluid mechanics.



Faraday patterns, fundamentals

The group formed around Staliunas published two main papers, one In
2002 (PRL 89, 210406) and one in 2004 (PRA 70, 011601).

The one in 2002 uses full 3D simulations to show the patterns in the
density profile of the condensate but no systematic computations are
performed. They use the Mathieu equations only to show that there is
an instability.

The one in 2004 addresses cigar—-shaped and pancake-like condensates,
r.e., quasl one—dimensional and quasi two—-dimensional setups. They
show the formation of the waves through direct integration of the GP
and give analytical arguments based on multiple scale analysis. It 1s
very important to notice that in this paper the modulation 1s on the
trapping potential not on the scattering length.

As far as the proof of concept goes Staliunas ef al. have paternity of
these ideas in the BEC community.
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FIG. 2. Evolution of patterns in parametrical ~ FIG. 1. (a)-(d) Sequence of BEC density as taken at every 1/2
of the trap modulation period (from top to bottom); (¢) BEC density

as obtained by numerical integration of E¢ | L . : .
y : in momentum space (density of the spatial Fourier spectrum of the

potential with periodic boundary conditions,

S : _ i BEC wave function) corresponding to snapshot (a). Plots are ob-
w = 1.577. Upper row: distribution in physica

tained by nmumerical integration of Eq. (2) with periodic boundary
row: distributions in momentum space. The conditions in both directions, and with the trapping potential in the
take at times: (a) t = 100. (h) t = 200. (¢) ¢t = vertical (¥) direction. The trap modulation frequency i1s @
component in momentum space pictures is ren %! © 1.77). Other parametets are a=0.5, y=0.01, and u

2 (aspect ratio: 8:1). The size of
integration space along the horizontal (X) coordinate is 176. The

mode #=3 of periodic boundaries (along the X axis) is excited.



Faraday patterns, experimental results

P. Engels, C. Atherton, and M. A.

Hoefer, PRL 98, 095301 (2007).
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FIG. 1. In-trap absorption images of Faraday waves in a BEC. )

Frequency labels for each image represent the driving frequency 100 ' q['—][-] ' 300 | 4[[]['1
at which the transverse trap confinement is modulated. . i .
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FIG. 2. Average spacing of adjacent maxima of the longitudi-
nal patterns plotted versus the transverse driving frequency.
Points are experimental data, while the line shows the theoretical
values calculated for the longitudinal modes closest to half the
driving frequency.



Faraday patterns in low—density condensates
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Faraday patterns in low—density condensates
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*Since this 1s really a one-
dimensional equation the FFT is
one—dimensional as well.

Due to the inhomogeneity of the
condensate  imposed by the
magnetic trapping the peaks of the
FFT are rather broad indicating
the period of the Faraday patterns
is not that “well defined.”

*While there 1s good quantitative
agreement between the observed
and theoretically computed periods
there 1s a rather large discrepancy
when 1t comes to the time after
which the Faraday waves become
visible. This i1s due to the fact we
“freeze” the radial dynamics; the
full 3D numerics do not show this
discrepancy.



Analytical calculations

wr(t) = wro - (1 + esin(wt))

. ' 0s(wt)
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Let us now look at the
perturbed solution and | N
determme the 1ead1-ng-order c= W“ +3a,NA?)
equation of the deviation.

ft)= folt)[1+ (u(t) +iv(t))cos(kz)].
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Analytical calculations

To determine the most unstable
mode we have to solve the
equation alk,w)=1.
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*Of course, the above results are
obtained using a Gaussian radial
ansatz, while the experiments of
Engels et al. are really in the TF
regime, but still they give good
quantitative results.



Full 3D numerics
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Full 3D numerics
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High—density condensates
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One—-dimensional condensates




Conclusions

We have obtained fully analytical results for low— and
high—density condensates using the non—-polynomial
Schrodinger equations and the theory of the Mathieu
equations

We have performed extensive quasi one—dimensional
and fully three—dimensional numerical computations

Overall, we obtain good quantitative results, the main
difference between the quast 1D and the full 3D
simulation 1s that in the former case the Faraday
patterns sets in rather slowly because of the ansatz in
the radial direction (which is too restrictive)
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