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By recursively solving the underlying Schrödinger equation, we set up an efficient systematic approach for
deriving analytic expressions for discretized effective actions. With this, we obtain discrete short-time propa-
gators for both one and many particles in arbitrary dimension to orders that have not been accessible before.
They can be used to substantially speed up numerical Monte Carlo calculations of path integrals, as well as for
setting up an alternative analytical approximation scheme for energy spectra, density of states, and other
statistical properties of quantum systems.
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I. INTRODUCTION

The central object in the path-integral formulation of
quantum statistics is the �Euclidean� transition amplitude

A�a ,b ; t�= �b�e−tĤ�a� �1–4�. The starting point in setting up
this formalism is the completeness relation

A�a,b;t� =� dq1 ¯� dqN−1A�a,q1;�� ¯ A�qN−1,b;�� ,

�1�

where �= t /N denotes the time-slice width. To leading order
in � the short-time transition amplitude reads in natural units

A�qn,qn+1;�� =
1

�2���d/2 exp	−
�qn+1 − qn�2

2�
− �V�xn�
 ,

�2�

where the potential V is evaluated at the midpoint coordinate
xn= �qn+qn+1� /2. Substituting �2� into the completeness rela-
tion �1�, the deviation of the obtained discrete amplitude
from the continuum result turns out to be of order O���. This
slow convergence to the continuum is the major reason for
the low efficiency of the ubiquitous path integral Monte
Carlo simulations �5�, especially in numeric studies of Bose-
Einstein condensation phenomena �6–8�, quantum phase
transitions, and phase diagrams at low temperatures �9,10�.
Thus, in order to accelerate numerical calculations for statis-
tical properties of quantum systems, it is indispensable to
develop more efficient algorithms. The existence of such al-
gorithms has been established recently �11�.

To this end we worked out and numerically verified in a
series of recent papers �12–15� an efficient analytical proce-
dure for improving the convergence of path integrals for
single-particle transition amplitudes to order O��p� for arbi-
trary values of p. This was achieved by studying how dis-
cretizations of different coarseness are related to a hierarchy
of effective discrete-time actions which improve the conver-
gence in a systematic way. In Ref. �16� we presented an

equivalent approach, which is based on a direct path-integral
calculation of intermediate time amplitudes to order O��p�.
The inherent simplicity of these direct calculations made it
possible to extend the procedure to general many-body theo-
ries in arbitrary dimension and to obtain explicit results for
the effective actions up to level p=5. It turned out that in-
creasing p leads to an exponential rise in complexity of the
effective actions, which, ultimately, limits the maximal value
of p one can practically work with. These limitations of ex-
isting approaches, in particular in the case of many-body
theories, are still below the calculational barrier stemming
from this rise in complexity. This is a strong indication that
new and more efficient calculational schemes must exist
which should considerably improve the convergence of path
integrals for general many-body theories. The availability of
analytic expressions for higher p effective actions is essential
for numerical calculations of path integrals with high preci-
sion. Obtaining the information on energy spectra is just one
important example of calculations that require high-precision
numerical results. Furthermore, since the structure of higher-
order terms of effective actions is governed by the quantum
dynamics of the system, it can be used for extracting analyti-
cal information about the system properties.

As is well known, in concrete calculations it is always
easier to solve the underlying Schrödinger equation than to
directly evaluate the corresponding path integral. For in-
stance, in the case of particular potentials the Schrödinger
equation approach allows an efficient recursive scheme to
calculate perturbation series up to very high orders �17–21�.
With this in mind, we develop in the present paper a more
efficient recursive approach for deriving the short-time tran-
sition amplitude from the underlying Schrödinger equation.
To this end we proceed as follows. Section II presents the
instructive case of a single one-dimensional particle moving
in a general potential. The maximal level obtained by the
method is p=35 and thus compares favorably with the best
result p=9 of previous approaches. In Sec. III we focus on
the restricted problem of evaluating the velocity-independent
part of the discrete-time effective potential. We derive the
differential equations for the velocity-independent effective
potential of a single one-dimensional particle and solve them
for the case of a general potential up to level p=37. Section
IV extends the results of Sec. II to the case of a general*antun@phy.bg.ac.yu
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many-body theory in d dimensions. We derive the differen-
tial equations for the general many-body effective potential
and solve them up to level p=10. Both the equations and
their solution are presented in Sec. V in a diagrammatic form
that is similar to the recursive graphical construction of
Feynman diagrams worked out in the series �22–27�. With
this, we illustrate the inherent combinatoric nature of deter-
mining the discrete-time effective potential. The growing
number of diagrams with level p leads to an increasing com-
plexity of the expression for the discrete-time effective po-
tential. We end by commenting on how this growth in com-
plexity limits maximal attainable values of p. Throughout the
paper we describe some important envisaged applications of
the derived discretized effective actions for calculating sta-
tistical properties of relevant quantum systems. These appli-
cations include not only numerical calculations, but also an
analytical approximation scheme which was made possible
through the availability of high-level effective actions.

II. ONE PARTICLE IN ONE DIMENSION

We start with calculating the transition amplitude
A�q ,q� ;�� for one particle in one dimension. It obeys the
symmetry

A�q,q�;�� = A�q�,q;�� �3�

and satisfies the time-dependent Schrödinger equations

	 �

��
−

1

2

�2

�q2 + V�q�
A�q,q�;�� = 0, �4�

	 �

��
−

1

2

�2

�q�2 + V�q��
A�q,q�;�� = 0, �5�

with the initial condition

A�q,q�;0� = ��q − q�� . �6�

In terms of the deviation x̄= �q�−q� /2 and the midpoint co-
ordinate x= �q+q�� /2, both equations are rewritten according
to

	 �

��
−

1

8
�2 −

1

8
�̄2 +

1

2
�V+ + V−�
A = 0, �7�

�− ��̄ + 2�V+ − V−��A = 0, �8�

where we have introduced V�=V�x� x̄� as an abbreviation.
Their solution may be written in the form

A =
1

�2��
exp	−

2

�
x̄2 − �W�x, x̄;��
 , �9�

where the effective potential W�x , x̄ ;�� is an even function of
x̄ due to the symmetry �3� of the Euclidean transition ampli-
tude. Note that Eq. �2� represents an approximation to the
exact form �9� up to order O���. Substituting �9� into �7� and
�8� yields

W + x̄
�W

�x̄
+ �

�W

��
−

1

8
��2W −

1

8
��̄2W +

1

8
�2��W�2

+
1

8
�2��̄W�2 =

1

2
�V+ + V−� , �10�

x̄�W −
1

4
���̄W +

1

4
�2�W�̄W =

1

2
�V+ − V−� . �11�

Both partial differential equations determine the effective po-
tential W�x , x̄ ;�� and thus the transition amplitude
A�q ,q� ;��. The initial condition �6� implies that W is regular
in the vicinity of �=0; i.e., it may be expanded in a power
series in �. We are interested in using W to systematically
speed up the convergence of discrete amplitudes with N time
slices to the continuum limit. This is done by evaluating W to
higher powers in �. According to Eq. �2�, the dominant term
for the short-time propagation is the diffusion relation x̄2

��. Therefore, we expand W in a double power series in
both � and x̄2:

W�x, x̄;�� = �
m=0

�

�
k=0

m

cm,k�x��m−kx̄2k. �12�

Restricting the sum over m from 0 to p−1 leads to a discrete
amplitude that converges to the continuum result as �p—i.e.,
as 1 /Np. For later convenience we define all coefficients cm,k,
which are not explicitly used in Eq. �12�, to be zero; i.e., we
set cm,k=0 whenever the condition m�k�0 is not satisfied.

Substituting the expansion �12� into the partial differential
equations �10� and �11� leads to two equivalent recursion
relations. The second recursion relation turns out to be more
difficult to solve to higher orders as it directly determines not
the coefficients cm,k�x�, but also their first derivatives. For
this reason we restrict ourselves in the remainder of this sec-
tion to the recursion relation following from Eq. �10�. The
diagonal coefficients are given by

cm,m =
V�2m�

�2m + 1�!
, �13�

while off-diagonal coefficients satisfy the recursion relation

8�m + k + 1�cm,k = �2k + 2��2k + 1�cm,k+1 + cm−1,k�

− �
l=0

m−2

�
r

cl,r� cm−l−2,k−r�

− �
l=1

m−2

�
r

2r�2k − 2r + 2�cl,rcm−l−1,k−r+1,

�14�

where the sum over r goes from max0,k−m+ l+2� to
mink , l� in accordance with the restriction that cm,k=0 when-
ever the condition m�k�0 is not satisfied. For a given
value of m, the coefficients cm,k for k=0,1 , . . . ,m are deter-
mined as follows. The diagonal coefficient cm,m is directly
given by �13�, whereas the off-diagonal coefficients cm,k fol-
low recursively from evaluating �14� for k=m−1, . . . ,1 ,0.
This recursive solution method is schematically depicted in
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Fig. 1. Let us illustrate this procedure for the lowest levels.
For p=1 we immediately obtain from �13�

c0,0 = V . �15�

For p=2 we have to first determine c1,1 from �13�, yielding

c1,1 =
V�

6
. �16�

Then the recursion relation �14� states that c1,0 follows from
the previously determined coefficients according to

c1,0 =
1

16
c0,0� +

1

8
c1,1. �17�

From �15�–�17� we then read off the result

c1,0 =
V�

12
. �18�

Similarly, we find for p=3

c2,2 =
V�4�

120
, �19�

c2,1 =
1

32
c1,1� +

3

8
c2,2 =

V�4�

120
, �20�

c2,0 =
1

24
c1,0� +

1

12
c2,1 −

1

24
�c0,0� �2 =

V�4�

240
−

V�2

24
. �21�

The outlined procedure continues in the same way for higher
levels p. We have automatized this procedure and imple-
mented it using the Mathematica 6.0 package �28� for sym-
bolic calculus. Using this, we determined the effective action
for a one-dimensional particle in a general potential up to the
level p=35. Although the effective actions grow in complex-
ity with level p, the Schrödinger equation method for calcu-
lating the discrete-time effective actions turns out to be ex-
tremely efficient. The ultimate value of p=35 far surpasses
the previously obtained best result of p=9 and is only limited

by the sheer size of the expression for the effective action of
a general theory at such a high level.

The whole technique can be pushed much further when
working on specific potential classes. For example, for a par-
ticle moving in a quartic potential we have obtained effective
actions up to p=140. Similar levels have been achieved for
higher-order polynomial potentials. The increase in level and
the decrease in size of the expressions for the effective ac-
tions originate from functional relations between the poten-
tial and its derivatives. These relations are particularly
simple in the case of polynomial interactions where all the
derivatives of the potential above a certain degree vanish.
However, the benefits of working within a specific class of
potentials are not only limited to polynomial interactions.
For example, the functional relations for the modified
Pöschl-Teller potential have allowed us to obtain effective
actions up to level p=40 �29�.

As already stated, the principal rationale behind construct-
ing high-level effective actions is to use them for speeding
up Monte Carlo calculations. However, having obtained ex-
plicit expressions for effective actions to such high levels, it
now becomes possible to use them extensively in both nu-
merical and analytical calculations. In particular, having ob-
tained an extremely precise knowledge of the short-time
propagation of a system, it is possible to use standard resum-
mation techniques such as the Padé and Borel methods to
extract useful information about its behavior for long propa-
gation times.

The derived effective actions can also be applied to sys-
tematically improve the numerical matrix diagonalization
�NMD� method �30–32� for calculating energy eigenvalues
and eigenstates. Note that the propagation time t used in the
NMD method is just a parameter that is chosen in such a way
that it minimizes the error associated with the calculated en-
ergy eigenvalues. Therefore, it is always possible to select
this parameter to be small, so that the obtained expansion of
the ideal effective action can be used to substantially im-
prove NMD calculations. Furthermore, in this case we can
even use an analytic N=1 approximation for the path inte-
gral. In this approximation there are no integrals to perform
in Eq. �1� and the amplitude is directly given by the analytic
expression �9�. Using such extremely rough discretizations is
only possible if one has determined the ideal effective action
to very high orders p. In effect, one compensates without
loss of precision the increase of discretization coarseness
with the input of new analytical information concerning the
propagation time which is contained in the effective action.
In this way, without any integration or resummation tech-
niques, we can calculate a large number of highly accurate
energy eigenvalues, avoiding the usually needed limit t→�,
which is difficult to approach. The large number of precise
energy eigenvalues obtained by using this improved NMD
method allows for calculating amplitudes for longer propa-
gation times using the spectral decomposition. This also
makes it possible to calculate partition functions as well as
global, local, and bilocal densities of states or other relevant
statistical quantities with high accuracy.

0

1

2

3

...

m

0 1 2 3 . . . k

FIG. 1. Order in which the coefficients cm,k are calculated. Di-
agonal ones follow from Eq. �13�, off-diagonal ones from the recur-
sion relation �14�.
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III. VELOCITY-INDEPENDENT PART OF THE
EFFECTIVE POTENTIAL

The velocity-independent part of the effective potential
W0�x ;���W�x ,0 ;�� determines diagonal transition ampli-
tudes. Although it does not contain all the information which
is needed for constructing the effective action, it is of interest
for determining physical quantities such as the particle den-
sity and the energy spectra. This object is also much simpler
than the full W. In addition, the relation between V and W0
allows us to visualize the effects of quantization and discreti-
zation for a given potential. In this section we derive the
differential equation for W0 for a single particle moving in
one dimension.

Both Eqs. �7� and �8� contain derivatives with respect to x̄,
so it is impossible to set x̄=0 and obtain equations for W0.
However, differentiating Eq. �8� with respect to x̄ we get

��̄2A = 4�VA + ¯ , �22�

where the dots denote terms which vanish when x̄→0. Thus,
differentiating Eq. �7� with respect to x and substituting the
above result, we obtain an equation that does not contain
derivatives with respect to x̄. Finally, setting x̄=0, we find
the differential equation for diagonal transition amplitudes:

��
�

��
−

1

8
�3 +

1

2
�V + V��A�x,x;�� = 0. �23�

Substituting A�x ,x ;��= �2���−1/2 exp�−�W0� then yields the
equation for W0:

�W0 +
�

4
�8�

�W0

��
− 8W0�W0 + 8V�W0 − �3W0�

−
�2

4
�8�W0

�W0

��
− 3�W0�

2W0� −
�3

4
��W0�3 = �V .

�24�

This is solved in the form of the power series

W0�x;�� = �
m=0

�

cm,0�x��m. �25�

Inserting this into the differential equation �25� determines
the coefficients cm,0 through the simple recursion relation

�2m + 1�cm,0� =
1

4
cm−1,0� − 2Vcm−1,0� + 2�

k=0

m−1

ck,0� cm−k−1,0

+ 2�
k=1

m−1

kck,0cm−k−1,0� −
3

4 �
k=0

m−2

ck,0� cm−k−2,0�

+
1

4 �
k=0

m−3

�
l=0

m−k−3

ck,0� cl,0� cm−k−l−3,0� . �26�

With this, we have evaluated the velocity-independent part of
the effective potential up to level p=37 for a particle moving
in a generic potential V�x�. As before, for specific potential
classes one can go to much higher levels.

IV. MANY-BODY SYSTEMS

Now we extend the calculations of Sec. II to the case of a
general nonrelativistic theory of M particles in d dimensions.
The derivation of the equations for W proceeds completely
parallel to the case of one particle in one dimension. The
Schrödinger equations now have the form

	 �

��
−

1

2�
i=1

M

	i + V�q�
A�q,q�;�� = 0, �27�

	 �

��
−

1

2�
i=1

M

	i� + V�q��
A�q,q�;�� = 0, �28�

where 	i and 	i� stand for d-dimensional Laplacians over
initial and final coordinates of particle i, while q and q� are
�d
M�-dimensional vectors representing positions of all
particles at the initial and final moments. Furthermore, the
potential V contains both the external potential and respec-
tive interaction potentials between two and more particles.
After substituting the dM-dimensional generalization of the
expression for the transition amplitude, Eq. �9�, into the
Schrödinger equations �27� and �28�, we find the analogs of
Eqs. �10� and �11� for the effective potential W:

W + x̄ · �̄W + �
�W

��
−

1

8
��2W −

1

8
��̄2W +

1

8
�2��W�2

+
1

8
�2��̄W�2 =

1

2
�V+ + V−� , �29�

x̄ · �W −
�

4
� · �̄W +

�2

4
��W� · ��̄W� =

1

2
�V+ − V−� . �30�

Here we have used the definition A ·B=AiBi, where i
=1,2 , . . . ,Md and repeated indices are summed over. Either
of the above two equations for W can be used to determine
the appropriate short-time expansion as a double Taylor se-
ries in powers of � and even powers of x̄:

W�x, x̄;�� = �
m=0

�

�
k=0

m

�m−kWm,k�x, x̄� , �31�

where Wm,k�x , x̄�= x̄i1
x̄i2

¯ x̄i2k
cm,k

i1,. . .,i2k�x�. It turns out to be ad-
vantageous to use recursion relations for the fully contracted
quantities Wm,k rather than the respective coefficients
cm,k

i1,. . .,i2k. In this way we avoid the computationally expensive
symmetrization over all indices i1 , . . . , i2k. Again it is easier
to work with the first of the two equations for W. Substitut-
ing �31� into �29� directly yields the diagonal coefficients
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Wm,m =
1

�2m + 1�!
�x̄ · ��2mV . �32�

The off-diagonal coefficients satisfy the recursion relation
which represents a generalization of Eq. �14�:

8�m + k + 1�Wm,k = �2Wm−1,k + �̄2Wm,k+1

− �
l=0

m−2

�
r

��Wl,r� · ��Wm−l−2,k−r�

− �
l=1

m−2

�
r

��̄Wl,r� · ��̄Wm−l−1,k−r+1� .

�33�

As before, the sum over r goes from max0,k−m+ l+2� to
mink , l�. The above recursion disentangles, in complete
analogy with the previously outlined case of one particle in
one dimension. To illustrate this we write down and solve the
equations up to level p=4:

W0,0 = V ,

W1,1 =
1

6
�x̄ · ��2V ,

W1,0 =
1

16
�2W0,0 +

1

16
�̄2W1,1

=
1

12
�2V ,

W2,2 =
1

120
�x̄ · ��4V ,

W2,1 =
1

32
�2W1,1 +

1

32
�̄2W2,2 =

1

120
�x̄ · ��2�2V ,

W2,0 =
1

24
�2W1,0 +

1

24
�̄2W2,1 −

1

24
��W0,0�2

=
1

240
�4V −

1

24
��V� · ��V� ,

W3,3 =
1

5040
�x̄ · ��6V ,

W3,2 =
1

48
�2W2,2 +

1

48
�̄2W3,3 =

1

3360
�x̄ · ��4�2V ,

W3,1 =
1

40
�2W2,1 +

1

40
�̄2W3,2

−
1

20
��W0,0� · ��W1,1� −

1

40
��̄W1,1�2

=
1

3360
�x̄ · ��2�4V −

1

120
�iV�x̄ · ��2�iV

−
1

360
�x̄ · ���iV�x̄ · ���iV ,

W3,0 =
1

32
�2W2,0 +

1

32
�̄2W3,1 −

1

16
��W0,0� · ��W1,0�

=
1

6720
�6V −

1

120
�iV�2�iV −

1

360
�i� jV�i� jV . �34�

V. GRAPHICAL REPRESENTATION

The above equations and their solutions can be cast in a
diagrammatic form which is similar to the recursive graphi-
cal construction of Feynman diagrams worked out in the
series �22–27�. The effective potential W represents the sum
of all connected vacuum diagrams of the underlying theory
with the following Feynman rules. The propagator is repre-
sented by the Kronecker delta

δij= i j,

�35�

the l-point vertex is the lth derivative of the potential

.
.
.

∂i1∂i2 · · ·∂il
V =

i1
i2

il

,

�36�

and the even number of external sources stand for the dis-
crete velocities x̄

x̄i = i.

�37�

A simple dimensional analysis determines those diagrams
which contribute to a given coefficient Wm,k. The discrete-
time effective potential W is the generating functional of
connected diagrams since it appears in the exponent. The
diagrammatic notation makes it explicit that the short-time
expansion of the effective discrete potential is a purely com-
binatoric problem in which all the information is contained
in the symmetry factors multiplying individual diagrams.
Thus, Eq. �33� represents the Schwinger-Dyson equation of
the underlying theory. As such, it is the simplest way for
actually determining the symmetry factors.

The Schwinger-Dyson equation is now cast in a diagram-
matic form. To this end we begin with introducing general
diagrams for Wm,k:

. . .}

Wm,k =

2k

m, k
.

�38�

According to �32�, diagonal terms Wm,m are directly given in
terms of vertices which are contracted with even numbers of
external sources:

. . .} }. . .

Wm,m = = 1
(2m+1)!

2m2m

m, m
.

�39�

The off-diagonal recursion relation �33� contains a differen-
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tiation of diagrams with respect to the midpoint coordinate x
and the discrete velocity x̄. These operations act as follows:

. . . . . .} }

∂i =

2k2k

m, km, k i ,

�40�

. . . . . .} }

∂̄i = 2k

2k

m, km, k i

2k − 1

.

�41�

Putting all those elements together, we find the graphical
representation of the Schwinger-Dyson

. . . . . . . . .} } }

8(m + k + 1)

2k2k2k

m, k
=

m − 1, k
+ (2k + 2)(2k + 1)

m, k + 1

} }

−
m−2�

l=0

�

r

l, r

2r

m − l − 2, k − r

2k − 2r

} }

l, r−
m−2�

l=1

�

r

2r(2k − 2r + 2)

2r − 1 2k − 2r + 1

m − l − 1, k − r + 1
.

�42�

The sum over r has the range as defined after Eq. �33�. From this, we read off via complete induction that, indeed, all vacuum
diagrams contributing to the effective potential are connected. In this diagrammatic notation, the previously obtained solutions
for the discrete-time effective potential of a general many-body theory up to level p=4 read

W0,0 = ,

W1,1 = 1
6

= 1
6 (1)2 ,

W1,0 = 1
12 = 1

12 (11) ,

W2,2 = 1
120 = 1

120 (1)4 ,

W2,1 = 1
120 = 1

120 (1)2(11) ,

W2,0 = 1
240 − 1

24

= 1
240 (11)2 − 1

24 (12) ,

W3,3 = 1
5040 = 1

5040 (1)6 ,

W3,2 = 1
3360 = 1

3360 (1)4(11) ,

W3,1 = 1
3360 − 1

120 − 1
360 = 1

3360 (1)2(11)2 − 1
120 (1)2(12) − 1

360 (1)(2)(12) ,

W3,0 = 1
6720 − 1

120 − 1
360 = 1

6720 (11)3 − 1
120 (11)(12)− 1

360 (12)2 .

Here we have also introduced a simple topological notation
for the diagrams. The translation between both notations is
obvious: �1� is an external source on vertex 1, �11� a loop
on that vertex, and �12� is a link between vertices 1 and 2.
The topological notation makes it possible to present the
effective action terms up to level p=6 in a relatively compact
form:

W4,4 =
1

362880
�1�8,

W4,3 =
1

181440
�1�6�11� ,
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W4,2 =
1

120960
�1�4�11�2 −

1

3360
�1�4�12�

−
1

2520
�1�3�2��12� −

1

2016
�1�2�2�2�12�

W4,1 =
1

120960
�1�2�11�3 −

1

1680
�1�2�11��12�

−
1

2520
�1�2�12�2 −

1

1260
�1�2�22��12�

−
1

2520
�1��2��11��12� −

1

5040
�1��2��12�2,

W4,0 =
1

241920
�11�4 −

1

2240
�11�2�12� −

1

1680
�11��12�2

−
17

40320
�11��22��12� −

1

6720
�12�3 +

1

240
�12��13� ,

W5,5 =
1

39916800
�1�10,

W5,4 =
1

15966720
�1�8�11� ,

W5,3 =
1

7983360
�1�6�11�2 −

1

181440
�1�6�12� −

1

90720
�1�5�2�


�12� −
1

25920
�1�4�2�2�12� −

1

64800
�1�3�2�3�12� ,

W5,2 =
1

5322240
�1�4�11�3 −

1

60480
�1�4�11��12�

−
1

36288
�1�4�22��12� −

1

90720
�1�4�12�2

−
1

45360
�1�3�2��11��12� −

1

45360
�1�3�2��12�2

−
1

37800
�1�3�2��22��12� −

1

15120
�1�2�2�2�11��12�

−
1

50400
�1�2�2�2�12�2,

W5,1 =
1

5322240
�1�2�11�4 −

1

40320
�1�2�11�2�12�

−
1

30240
�1�2�11��12�2 −

1

17280
�1�2�11��22��12�

−
1

24192
�1�2�22�2�12� −

1

25200
�1�2�22��12�2

−
1

60480
�1�2�12�3 −

1

60480
�1��2��11�2�12�

−
1

30240
�1��2��11��12�2 −

1

67200
�1��2��11��22��12�

−
1

100800
�1��2��12�3 +

1

3360
�1�2�12��13�

+
1

1260
�1�2�12��23� +

1

2520
�1��2��12��13�

+
1

15120
�1��2��13��23� ,

W5,0 =
1

10644480
�11�5 −

1

60480
�11�3�12� −

1

30240
�11�2�12�2

−
1

30240
�11��12�3 −

1

151200
�12�4 −

13

403200
�11��22�


�12�2 −
11

241920
�11�2�22��12� +

1

2240
�11��12��13�

+
17

20160
�11��12��23� +

1

1680
�12�2�13�

+
1

5670
�12��23��13� .

Higher-level expressions are more cumbersome and may be
found on our website �29�. Note that the diagrammatic nota-
tion reveals the fact that, as far as the short-time expansion is
concerned, all systems fall into one of two classes of com-
plexity depending on the value of the product dM. Discrete-
time effective potentials for systems with dM �1 grow faster
in complexity with increasing p than their dM =1 analogs, as
illustrated in Fig. 2. The reason for this is that several distinct
diagrams collapse into a single term in the case of one par-
ticle in one dimension. Symbolical algebraic calculations for
dM �1 effective actions were done using the program �29�
written in MATHEMATICA 6.0 in conjunction with the MATHT-

ENSOR package �33�. Using this program, for a general

1

10

102

103

104

105

106

107

4035302520151051

N
o.

of
di

ag
ra

m
s

Level p

dM > 1, all terms
dM = 1, all terms
dM = 1,�x = 0

FIG. 2. �Color online� The number of diagrams contributing to a
given level illustrates the rise in complexity with increasing p. Sys-
tems fall into one of two classes of complexity: the more complex
ones with dM �1 �top curve� and the less complex ones with dM
=1 �middle curve�. In addition, the bottom curve gives the number
of velocity-independent diagrams for dM =1.

RECURSIVE SCHRÖDINGER EQUATION APPROACH TO… PHYSICAL REVIEW E 79, 036701 �2009�

036701-7



many-body theory we have derived analytic expressions for
effective actions up to level p=10.

As in the case of one-dimensional systems, the obtained
discretized effective actions can be applied to a host of rel-
evant physical many-body problems in the framework of the
path integral Monte Carlo approach, including the
continuous-space worm algorithm �34�. For instance, our ap-
proach is applicable to efficiently determine the statistical
properties of Bose-Einstein condensates which are confined
in harmonic or anharmonic traps �35–38�. Furthermore, our
method is ideally suited for dealing with dilute quantum
gases in a disorder environment where the impact of two-
particle interactions upon the recently discovered phenom-
enon of Anderson localization is at present studied �39,40�.

VI. CONCLUSIONS

We have given a detailed presentation of an analytic pro-
cedure for determining the short-time propagation of a gen-
eral nonrelativistic M-particle theory in d dimensions to ex-
tremely high orders. The procedure is based on recursively
solving the Schrödinger equation for the transition amplitude
in a power series of the propagation time. This leads to a
recursion relation that has been solved to order p=10 for the
case of a general many-body theory. For a single particle

moving in a general potential in d=1, we have even achieved
p=35. In addition, for specific classes of potentials such as,
for instance, polynomial potentials, the equations have been
solved to order p=140. The resulting Schwinger-Dyson
equation and its recursive solution have also been cast in
both a familiar diagrammatic and a compact topological no-
tation. The presented results define the state-of-the-art for
calculating short-time expansion amplitudes. They can be
used to obtain orders of magnitude speedup in path integral
Monte Carlo calculations. Thus, the extremely high orders of
the short-time expansion make it possible to perform new
and precise analytical calculations of thermodynamical and
dynamical properties of many-body systems. A list of appli-
cations of the presented method to relevant physical systems
is briefly outlined.
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