
c++ and python – modern programming
techniques

Jakša Vučičević

IPB, Tuesday, February 28th, 2017

Outline

• Introduction to Python, Java and C++
• programming paradigms
• compilation model

• Template programming vs. class hierarchies

• Various examples (C++ vs. python)
• auto typing
• templates• templates
• meta-programming (functors, partial evaluation, lambdas)
• Variadic templates
• generic DMFT loop

• TRIQS library
• c++2py
• numpy.array and triqs::array: linear algebra made easy
• HDF5 data storage made easy

• Take away messages

simplest generic
programming

types-to-be-specified-later

std library support for function objects
partial evaluation

almost full generic programming – auto typing, type “copying”, variadic templates
full meta-programming – passing around code instead of objects

lambda functions = scope wormholes

no need for templates – all types automatic!
introspection – all info on all types and scopes available at runtime

C++ compile time ahead-of-time compilation

C++ run time

Java compile time just-in-time compilation

“byte-code” compiled and executed by JVM

Java run time

Python – no “compile time”
interpretation

Interactive!!!
Introspective!!!

dynamic typing!!!

Python run time

Generic programming

templating vs. class hierarchies

Generic programming

templating vs. class hierarchies

Generic programming

templating vs. class hierarchies

Generic programming

derived class cast to the base class

base class

function
is “color-blind”

the “old way”

class hierarchies

Generic programming

derived class cast to the base class

paradigm fails in the context of basic types,
and various function objects

classes and dependences proliferate... many issues

base class

function
is “color-blind”

Generic programming

You write

Compiler writes
whichever necessary

to achieve this we need
• templates
but
• auto type helpful
• compile time introspection quite useful

we are making full use of generic programming if
we have ways of passing functionswe have ways of passing functions
• since c++98, custom functors do the job,

but too much overhead
• since c++0x, std library support for functors – much better
• since c++11, lambda functions – as meta as it gets
• since c++14, generic lambdas – as if we’re writing python

let’s see some examples...

C++98

Auto typing

Python

C++11

Auto typing

Python

C++11 “auto” doesn’t work in function arguments

as return type only since c++14

since c++11 more “introspective”

Auto typing

Python

pre C++98

Templates

Python

C++98

Templates

Python

C++14

Templates

Python

C++98
Templates

Python

C++98
Templates

Python

C++98

Can’t compile!!!

Templates

Python

C++17

Can’t compile!!!

Templates

Python

whatever is declare “constexpr”
is evaluated at compile-time!! (since c++11)

C++17

Can’t compile!!!

Templates

Python

whatever is declare “constexpr”
is evaluated at compile-time!! (since c++11)

Functional meta-programming
treating functions as data

why is it useful?

C++

C++98 C++98
function objects!!!

Functional meta-programming
treating functions as data

C++0x automatic function objects
parital evaluation made easy
since c++0x

c++11

Functional meta-programming
treating functions as data

C++11

Lambda functions –
passing snippet of code
through a scope wormhole!!!

Python

Functional meta-programming
treating functions as data

Variadic templates

C++11

List/aggregate initializer

Variadic templates

Python

Generic DMFT loop
different shapes used in different ways

Leave the details to be determined later.
The basic structure is always the same! The number of circles may vary

Generic DMFT-like loop

C++11

Generic DMFT-like loop

Python

TRIQS
Toolbox for Research on Interacting Quantum Systems

TRIQS
Toolbox for Research on Interacting Quantum Systems

Main goals
• act as a bridge between c++ and python so as

to allow for both painless manipulation
of data (in python) and high-optimization of critical routines (c++)

• provide containers for common objects • provide containers for common objects
in condensed matter theory
(multidimensional arrays (in c++) ,Green’s functions,
second-quantized Hamiltonians, etc.)

• provide generic implementation of common
algorithms (monte carlo, Hilbert transform, FT, tail fitting...)

• provide a simplified and intuitive interface to MPI and HDF5

c++2py wrapper

• allows for dynamical linking of python code with precompiled
c++ libraries
• the “wrapping” produces python modules with “pythonically”

callable functions and classes
- each c++ class gets a python version of itself and
one may even choose which properties of the class will be
visible in pythonvisible in python

• basic types are simply equated between python and c++
no need to invoke any special integers, floats, string, etc.

• std types also wrapped up naturally (e.g. vector -> list)
•wrapper is based on the intermediate representation of
clang compiler and cmake project structure
• the python modules are generated automatically
with a single command

triqs::array
• c++ std library has no convenient multidimensional array container
• triqs::array is analogous to numpy.array in python
and allows for many of the same functionalities
• linear algebra made easy!

triqs::array
• c++ std library has no convenient multidimensional array container
• triqs::array is analogous to numpy.array in python
and allows for many of the same functionalities
• linear algebra made easy!

triqs::array
• c++ std library has no convenient multidimensional array container
• triqs::array is analogous to numpy.array in python
and allows for many of the same functionalities
• linear algebra made easy!

HDF5
Hierarchical Data Format

•HDF5 is a data model, library, and file format for storing and
managing data
•standard, well maintained and widely used
•supports an unlimited variety of data types, and is designed
for flexible and efficient I/O and for high volume and complex
data
•portable and is extensible•portable and is extensible
•HDF5 can be read and written in many languages

HDF5
Hierarchical Data Format

Take away messages

•High-level programming makes life easier!
•Generic and meta programming allow for separation between
various levels of detail of an algorithm
• no huge class hierarchies – instead small pieces we put
together as we need them, when we need them

•C++ is no longer so low-level, but still allows for huge •C++ is no longer so low-level, but still allows for huge
optimizations and should be used for computationally intensive
routines.

•Combination of c++ and python ideal! Install triqs give it a try!

•Need multidim array in c++? triqs::array does the job

•No more text files, no more formatting or mysterious binaries –
store data in HDF5 format!

