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Abstract

Complex systems are all around us and can be found in various domains of physics, biology, and social
sciences. While they differ in origin and function, their common feature is that they consist of a large
number of interacting units and that due to these interactions exhibit collective behavior. Complex
networks represent a general framework for representing interaction patterns in complex systems. The
structure of a complex network and its evolution are inevitably linked to the dynamics and function
of a complex system. Detecting the collective phenomena and understanding how they emerge from
individual interactions is important research problems. Complexity science gives us new ways to ex-
plore complex systems. Complexity science combines tools, methods, and paradigms of statistical
and computational physics, complex network theory, and computer science to describe and study dif-
ferent collective phenomena quantitatively and propose theoretical models to better understand the
mechanisms underlying dynamics and drive the evolution of complex networks.

This thesis aims to broaden the knowledge of the structure and dynamics of evolving complex
networks by analyzing the empirical data from different online social systems and providing themodels
and theories that could explain their specific characteristics. Social systems constantly evolve, and
because of that, it is necessary to understand the connections between their structure, growth, and
segmentation and how these connections influence their sustainability.

Earlier works have suggested that the properties of growth signals influence the structure and dy-
namics of evolving complex networks. In real online systems, growth signals fluctuate over time, and
they are long-range correlated and have multifractal properties. We use time series of new users from
real systems, MySpace and TECH, and computer-generated signals with specific long-range correla-
tion properties as growing signals. We combine them with a network model of aging nodes to examine
in detail how the features of these signals shape the structure of complex networks. Our results show
that the properties of the growth signal have the substantial influence on the structure of networks with
broad degree distribution. Unlike networks grown with constant signals, these networks are clustered
and correlated.

Further, we explore the influence of growth signals and linking rules on the segmentation and
growth of the social group in the social system. Empirical analysis of different socio-economic sys-
tems indicates that despite their differences, these systems often exhibit some universal properties
regarding their segmentation and growth. We analyze the Meetup groups in London and New York
and Subreddits and find that group size distribution in these systems is lognormal and universal over
time, location, and topic. We use a model that interplays two criteria for users’ linking with social
groups, random and based on social connections. We show that social interactions are an essential
factor in the emergence of the lognormal distribution. We demonstrate that mechanisms under which
users join social groups could explain the emergence of some universal properties in the social system.
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Abstract

The complex network theory allows us to determine how different network properties evolve and
understand how this evolution influences their sustainability. We use data from Stack Exchange sites
and compare the evolution of network structure for pairs of active and closed communities during
their early phase of existence. Stack Exchange sites are question-and-answer platforms where users
share knowledge on some specific topic. We compare active and closed communities on four topics,
namely astronomy, literature, economics, and physics. We analyze the structural patterns in these
communities and find that active ones are more clustered and characterized by better-connected and
stable cores. Core users are crucial for a healthy community and need to be trustworthy. Through the
dynamic reputation model, we measure the level of trust in these communities. In active communities,
core users show a higher reputation than in closed communities, indicating the importance that a
stable core develops early and has a high level of trust.

Keywords: statistical physics of complex systems, the structure and dynamics of complex net-
works, modeling online social systems
Research field: Physics
Research subfield: Statistical physics
UDC number: 536
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Сажетак

Комплексни системи се налазе свуда око нас у различитим доменима физике, биологије и
друштвених наука. Иако се разликују по пореклу и функцији, заједничка карактеристика им
је да се састоје од великог броја елемената који међусобно интерагују и због тих интеракција
испоњавају колективно понашање. Комплексне мреже представљају општи приступ за
репрезентацију образаца интеракција у комплексним системима. Структура комплексне
мреже и њена еволуција су узајамно повезане са динамиком и функцијом комплексног
система. Проналажење колективних фенома и разумевање како они настају из индивидуалних
интеракција је један од важних истраживачких проблема. Теорија комплексних система нам
пружа нове методе за истраживање комплексних система. Она комбинује методе статистичке
физике, рачунарске физике, теорије комплексних мрежа, компјутерских наука како би
квантитативно описала и проучавала различите колективне појаве и предложила теоријске
моделе ради бољег разумевања механизама који су у основи динамике и еволуције комплексних
мрежа.

Ова теза има за циљ да прошири знање о структури и динамици растућих комплексних
мрежа кроз анализу емпиријских података из различитих онлајн друштвених система и
дефинисањем модела и теорија које би могле да објасне њихове специфичне карактеристике.
Друштвени системи стално еволуирају и због тога је неопходно разумети везе између њихове
структуре, раста и сегментације и како те везе утичу на њихову одрживост.

Ранији радови сугерисали су да својства сигнала раста утичу на структуру и динамику
растућих комплексних мрежа. У реалним онлајн системима, сигнали раста флуктуирају током
времена и они су дугодометно корелисани и имају мултифрактална својства. Као сигнале
раста у овој тези, користимо временске серије нових корисника из реалних система MyS-
pace и TECH, и компјутерски генерисане сигнале са специфичним својствима дугодометних
корелација. Комбинујемо их са мрежним моделом старости чворова да бисмо детаљно
испитали како карактеристике ових сигнала утичу на структуру комплесних мрежа. Наши
резултати показују да својства сигнала раста имају најзначајнији утицај на структуру мрежа са
широким степеном дистрибуције. За разлику од мрежа које имају константан раст, ове мреже
су кластерисане и корелиране.

Даље, истражујемо како сигнал раста и правила повезивања утичу на сегментацију и раст
социјалних група. Емпиријска анализа различитих друштвено-економских система указује на
то да упркос разликама, ови системи често испољавају нека универзална својства у погледу
сегментације и раста. Проучавали смо Meetup групе настале у Лондону и Њујорку, као и
subReddit и открили да је дистрибуција величине група у овим системима логнормална и
универзална током времена, не зависи од локације и теме групе. Користили смо модел који
комбинује два критеријума за повезивање корисника са друштвеним групама, насумично или
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Abstract

на основу друштвених веза. Показали смо да су друштвене интеракције битан фактор
при настанку логнормалне дистрибуције. Механизми под којима се корисници придружују
друштвеним групама могу објаснити појаву универзалних својстава у друштвеном систему.

Комплексна теорија мрежа нам омогућава да опишемо како се развијају различита својства
мреже и разумемо како еволуција утиче на њихову одрживост. Користили смо податке са Stack
Exchange сајтова и упоређивали еволуцију структуре мреже за парове активних и затворених
заједница током њихове ране фазе постојања. Stack Exchange сајтови су платформа за питања
и одговоре на којима корисници деле знање о некој специфичној теми. Упоредили смо
активне и затворене заједнице на четири теме, а то су астрономија, књижевност, економија
и физика. Анализирали смо структурне обрасце у овим заједницама и открили да су активне
више кластерисане и да их карактерише боље повезана и стабилност језгра. Кроз динамички
модел репутације измерили смо ниво поверења у овим заједницама. У активним заједницама,
корисници који се налазе у језгру имају већу репутацију него у затвореним заједницама, што
указује на важност да се стабилно језгро развије рано и да има висок ниво поверења.

Кључне речи: статистичка физика комплексних система, структура и динамика комплексних
мрежа, моделовање онлајн социјалних система
Научна област: Физика
Ужа научна област: Статистичка физика
УДК број: 536
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Chapter 1

Introduction

Many real systems, such as brain networks, social organizations, cities, or cells, consist of many inter-
acting units and belong to a class commonly known as complex systems. One of the most prominent
characteristics of complex systems is that they exhibit emergent collective behavior that can not be pre-
dicted based on the behavior of individual components. The interactions between system components
can be represented as a complex network [1]. The emergence of collective behavior strongly depends
on the structure of the network of interactions. The structure of the brain network and its properties
are fundamental for brain functioning, while an emergent phenomenon is human intelligence. In so-
cieties, people’s interactions lead to civilization, economy, and formation of social groups [2]. Also,
the animal populations show different levels of organization: such as patterns in bird flocks or schools
of fish [2].

Despite the differences between complex systems, they can be studied using the same techniques.
The natural extension of the complex system is the network, which consists of sets of nodes (vertices)
and links (edges). Elements in the system are nodes, while interactions between them are represented
as edges. This approximation allows us to equally approach social [3, 4] (graph of actors), biological
(network of proteins) [5, 6] or even technological systems (internet, traffic) [7, 8, 9]. The research in
complex systems mainly focuses on the interactions between its units. Knowing the structure of these
connections, we can determine the properties of the system [10]. We can construct a representation
with neurons and synapses representing connectivity in the brain network [11]. Similarly, we can de-
fine communication between people. The structure of these interactions gives us insights, for example,
how information propagates through the system. The presence of people with many connections can
lead to faster information flow.

While the relationships between individuals characterize the structure of complex networks, the
dynamics describe changes in individual behaviors over time. As real complex networks constantly
evolve, the interactions between their elements can also change [2]. Networks can exhibit the addi-
tion of new nodes, removal of existing nodes, or change in the number of edges and the strength in
these edges. While these changes occur, the structure, but also the function of the network could be
affected. The formation of clusters, hubs, and node removal directly influence network connectivity,
and robustness [12].

The application of principles of statistical physics and complex network theory in the study of
social systems lead to the creation of the new, interdisciplinary field of socio-physics [13]. It pro-
vides methods for the statistical description of the structure and dynamics of social networks. Social
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1. Introduction

networks are very dynamic, and despite their constant evolution, they show universal properties [14].

Broadly, universality is an important property of complex systems [15]. One of the well-known
examples of universality in physics is a phase transition, such as in the Ising model of magnetization
[16]. At a critical transition point, the system’s properties are independent of the specific details of the
system. In the Ising model, a critical point is a temperature at which the system undergoes the phase
transition from a disordered phase to an ordered phase. The correlation length of the system diverges
and exhibits the power-law scaling. The critical exponents, which describe the scaling of different
quantities near the critical point, are the same for the model with different interaction patterns [17]. We
also find universal behavior in systems where elements are ordered randomly, as in complex networks.
For example, the time lap between two email messages follows the power-law distribution [18], and
the exponent is universal across different platforms. Similar conclusions are found in distributions
of the votes in elections [19, 20], and citations of scientific publications [21]. Even the growth of
social groups, such as cities, follows universal patterns. The probability distribution of the city sizes
in one country follows the same laws, with a similar exponent for all countries [22, 23]. However, the
distribution of company sizes follows log-normal behavior and remains stable over decades [24, 25].
Identifying universal behavior and understanding its emergence in the system is one of the main topics
in the statistical physics of complex networks [26]. In this thesis, we will explore the structural and
dynamical properties of evolving online social networks and apply complex network models.

When constructing complex network models, the specific mechanisms that govern social inter-
action and lead to observed macroscopic properties in empirical networks must be considered [13].
Many studies confirmed that networks show power-law scaling in the distribution of the number of
connections, high clustering, and nodes tend to connect to structurally similar nodes. For that reason,
complex network models have been created to mimic properties found in real social systems [13].

The complex network theory originates from the graph theory in mathematics. The first problem
solved using graph theory was the Konigsberg problem of seven bridges. The city of Konigsberg
had seven bridges connecting the city’s parts across the river and the island in the middle. Is it possible
to find a walk that crosses all seven bridges only once? Representing the problem as a graph, Euler
managed to simplify the problem; the parts of the land are represented as nodes while bridges between
them are links, see Figure 1.1. Crossing each bridge only once is possible if each part of the land has
an even number of connections. It makes it possible to enter one part of the land from one bridge and
leave it on the other. As each node has an odd number of connections, it is impossible; see Figure. 1.1.

Figure 1.1: The Konigsberg problem of seven bridges. The left panel shows the original map of the
bridges; the right panel shows its graph representation.

Until the late 1990s, graph theory was not widely used. Back then, the most crucial model was
the Erdos-Reni model of random graphs, which considers a fixed number of nodes in the network
connected randomly, resulting in the Poisson degree distribution. When researchers got an idea to
map the World Wide Web (WWW) on the network and analyze its properties [27], they found that
degree distribution follows the power-law contrary to expected behavior from random graph model
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[28]. Because the power-law distribution is the same on all scales, such networks are called scale-free.
Besides the scale-free property, empirical analysis of various complex networks showed the small-
world property and the high clustering coefficient [29, 30]. Two seminal papers from 1999 inspired
further research in complex networks. Watts and Strogatz [31] proposed the model where rewiring
of edges on regular lattice leads to the network in which paths between any two nodes become short
(small-world) and nodes become densely connected, resulting in a high clustering coefficient. On the
other hand, Barabasi and Albert (BA) [32] introduced the model, where the network grows over time,
and the new nodes tend to connect high-degree nodes; it produces scale-free networks with few highly
connected nodes.

Different complex network models were proposed to describe the structure and dynamics of social
and technological systems. The node degree is one of many node features that determine the linking
probability, and the linking probability may be nonlinear in node degree or may depend on the age of
the node [33, 34]. In the BA model, the links are introduced through new nodes, so it was proposed
that links can be created between existing nodes in the network.

Furthermore, the BAmodel considers the constant network growth, where a fixed number of nodes
is added at each step. The research on various social systems shows time-dependent growth, and we
record the exponential growth of online systems [35]. Some models considered that nodes become
inactive or even that network grows through a nonlinear number of links [36]. On the other hand,
models with accelerated growth in the number of nodes [37] simulate exponential expansion of the
online social systems. But the growth is not only accelerated; the time series of new nodes has trends
and reflect the typical human behavior [38, 39, 40].

Research has also been devoted to using generated networks to analyze dynamic processes on
top of them. Central questions are about the spread of epidemics, information diffusion, or emo-
tional interactions among elements [18]. These systems are modeled using agent-based models, while
the robustness is often studied by percolation and diffusion phenomena in complex networks. It was
shown that scale-free networks’ connectivity is sensitive to removing highly connected nodes. On the
other hand, eliminating small degree nodes won’t affect the scale-free structure [41]. They also show
resilience to random attacks. Real-world networks are often characterized by community structure.
They are common for social networks, where people with similar interests group together. Mostly
adopted definition of a community is a group of densely connected nodes. The complex network the-
ory provides different models for generating networks with community structure but also develops the
algorithms for inferring the community structure from the underlying network.

The complex network models contribute to our knowledge, connecting the network topology and
the dynamics of the system and helping us to understand underlying mechanisms that lead to the emer-
gence of the properties of the complex networks [32, 42, 43, 44]. Complex network models must gain
insights based on empirical data and social theories, and they are data-driven and require the develop-
ment of computational approaches. The physicists showed interest in modeling complex systems by
applying statistical physics approaches. Recently, the theory of graph neural networks (GNN) emerged
from computer science, where machine learning methods are found helpful in inferring the properties
of the network [45, 46, 47]. For example, they are used to determine missing links and recommend to
users in online social networks [48, 49] or to develop generative GNNmodels that lead to the discovery
of new drugs [50, 51].

Real networks are much more heterogeneous than networks obtained in simple models. Links may
be directed or undirected, they may have temporal dependencies, or we can deal with different types
of interaction in one system. Other network representations deal with these specific features. In the
following section, we will introduce complex networks and different approaches to deal with particular
data types.
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1. Introduction

1.1 Complex networks

The graph or network G is defined as G = (V ,E), where V = {v1, v2, ...vN} is a set of N nodes
(vertices), and E = {e1, ..eL} is a set of L edges (links). The edge is pair of nodes e = (vi, vj), such
that {vi, vj} ∈ V . The most basic network representation considers unweighted and undirected
structure. The edges are unweighted, meaning that all interactions in the network are equally important.
Because the network is un-directed, edges are symmetric, so (vi, vj) implies (vj, vi). In directed
networks, this symmetry is broken. The interaction between two nodes, vi and vj , can be only in
one direction. A typical example is World Wide Web, where webpages are nodes and hyperlinks
are directed edges. In biological networks, gene regulation and neural activation can be described as a
directed network. The first column a) in Figure 1.2 shows the graphical representation of two networks
with an equal number of nodes; the first is undirected, and the second is directed.

Even though graphical representation can be useful for describing the network structure, numerical
representation allows us to characterize the statistical properties of the networks. The graph G, with
N nodes could be represented with adjacency matrix |A| = N × N [12]. The matrix elements are
equal to 1 if there is a connection between two nodes vi and vj:

Aij =

{
1 (vi, vj) ∈ E
0 (vi, vj) /∈ E.

(1.1)

Column b) on Figure 1.2 shows the adjacency matrix representation of given graphs. By conven-
tion, as self-loops are not allowed, diagonal elements Aii = 0. For an undirected network adjacency
matrix is symmetricAi,j = Aji, but in the case of a directed network matrix is not symmetric, as edges
are drawn in one direction only.

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

A = 

0 0 1 0
1 0 0 0
0 1 0 1
0 0 0 0

A = 

a) b) c)

Figure 1.2: a) Graph representation of undirected (top panel) and directed (bottom panel) network.
The same networks are represented with adjacency matrices in column b) and edge list representation
in column c).

The number of edges and nodes are dependent variables. Considering that each node can make
N − 1 connections, the maximum number of the edges in the network is Lmax = N(N − 1)/2,
as each edge is counted twice. For a directed network, it is possible to draw Lmax = N(N − 1)
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1.1. Complex networks

edges [52]. When it comes to large networks, they are sparse, meaning that the number of links is
L << Lmax. Consequently, the adjacency matrix is also a sparse structure (has many zeros) that takes
a large portion of computer memory [53]. It is common to represent the graph as an edge list. In this
case, illustrated in Figure 1.2, column c), a graph is described with the list of links that are in the graph,
G = {{vi, vj}}. Still, with this representation, we cannot distinguish between directed and undirected
graph structures, so the computational algorithm should specify if the edges are symmetric or not.

Sometimes is essential to include the specific properties of the system in the network representa-
tion. For example, to emphasize the frequent interactions between nodes, edges can be assigned with
different values; such networks are weighted. In a collaboration network, authors who collaborate
more often have stronger interaction. They can be described with an adjacency matrix, whose ele-
ments can take any real number Aij = wij and wij > 0. In general, edges may be associated with any
categorical variable. Similarly, properties can be added to nodes or the whole network structure. Edges
could be characterized by the time when the interaction between nodes happens, which includes the
temporal component in the network representation, as in phone calls networks. Finally, if two nodes
interact differently, themultigraph is an appropriate configuration where multiple edges are allowed.
The transportation network, consisting of roads and railways, could be seen as a multigraph. Figure
1.3 presents the graphical representation of discussed network representations.

directed

weighted edges

weighted nodesmultiedges

Figure 1.3: The complex networks may represent different system characteristics. The edges can be
directed, weighted or multiply. Also, nodes can be assigned with different weights or any relevant
feature.

A bipartite network consists of two types of nodes. The nodes in the same partition are not
connected, while links exist only between partitions, Figure 1.4. For many real systems, a bipartite
graph is a natural representation [53, 11]. For example, the bipartite network of people and groups has
two distinct node partitions, where links indicate the memberships. Another example is a system of
customers and products. The user and item link is created when the user bought an item. The bipartite
networks find their application in the algorithms for recommender systems, whose goal is to suggest
items that may interest the user. They are often used to find the most probable missing links in the
network.

Though the nodes in the same partition of a bipartite network are not directly connected, we can
analyze their connections by projecting the bipartite network to one partition. The primary assumption
is that two nodes in one partition could be connected if they point to the same node in the other
partition. Figure 1.4 shows two projections of the bipartite networks. Consider the network of movies
and actors. The one-mode projection of movies is an undirected network whose links indicate that two
movies share the same actors. On the other hand, another projection is a network of actors. The links
exist if two actors appear in the same movie [30, 53].

We should be aware that important information is lost when creating a one-mode projection. First,
having weighted edges in the network of actors is necessary to know in how many movies two actors
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1. Introduction

Figure 1.4: Bipartite network and two partition projections.

appear. From the one-mode projection, we can not reconstruct the original network. Moreover, two
different bipartite networks may have the same projected networks. The important consequence of the
network projection is the creation of cliques, i.e., subgraphs where all nodes are connected.
In general, it is possible to define the k-partite network. The same rules apply as before. There are k
distinct node partitions, while the edges exist only between different types of nodes.

Temporal networks. Studying real systems as static networks can give us a lot of insight into the
system’s properties. Still, real systems are not static; they evolve not only in the number of elements
but also in the number of interactions between them. Some interactions in the system may repeat in
different intervals and could be described with complex activity patterns. Including time dimension
in the network representation allows us to study the properties of the system closely. The temporal
information may matter a lot [54]. For example, if the interaction between nodes (v1, v2) happened
before in time than (v2, v3), then nodes v1, v3 might not be connected, as is the case in the static
network.

The temporal network is a collection of timestamped edges; as seen on Figure 1.5 - top panel. Each
edge is defined as (vi, vj, t,∆t), where vi and vj , are nodes t is time when interaction happen, and ∆t
is event duration [55]. The duration of the events may vary, as in the phone-call network. Also, for
many systems, the time resolution of the event duration is too small. For example, this parameter may
be neglected when people interact on social platforms or email each other because the event time is
too short; it scales in seconds.

The temporal network can be represented as a sequence of static networks that evolve in time,
G = {G(t1), G(t2), ..., G(tmax)}, as shown in Figure 1.5 - bottom panel. At each time step, we can
create the network and analyze the macroscopic properties of the given network snapshot. With this,
we can end up with graph snapshots with many disconnected components or empty graphs for some
points [56]. Sometimes, a better approach is aggregating the links over timewindows. Here, we need to
specify the time window length w. Interactions in the time interval 0 ≤ t < w enter the first snapshot.
The following snapshot takes edges w ≤ t < 2w, and so on. The time windows are not overlapping,
but generally, it is possible to slide the time window for different periods 1 ≤ δt < w. The downside
of this method is that we can not recover original data points. The larger the time window is, the more
information is lost. If the time window is set to w = tmax, there is only one snapshot, and the temporal
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1.2. Thesis outline

Figure 1.5: Top panel represents temporal network as collection of timestamped edges. Bottom panel
represents sequence of static networks.

data are no more available [57, 58].

Multilayer networks were introduced for studying systems in which different types of interaction
exist. This formalism allows one to investigate diverse network systems and combine different data
types into one model [59]. In a multilayer or multiplex network, all nodes are present in each layer, but
their interactions among layers differ. Two nodes may be connected in one layer but not in the other.
Different online social systems may be an example of a multiplex network when users are connected on
one platform but not on the other [60]. Another example is the airline transportation network, where
each layer represents the flights of different airline companies [61].

1.2 Thesis outline

This thesis uses combined approaches of statistical physics and complex network theory to model and
analyze evolving online social systems. These systems consist of many users interacting online and
could be represented by complex networks. The main focus of the thesis is to explore the evolution of
these complex networks and understand how different dynamical processes shape their structure. We
study the growth of various online social networks using data fromMeetup, Reddit, and StackExchange
platforms and detect important structural changes in these systems, as well as the processes that lead
to the creation of groups and factors important for the emergence of sustainable communities.

In chapter 2, we provide the methodology employed for this research. We describe the fundamental
measures of complex networks and introduce basic complex network models. We review the most
common probability distributions characterizing complex systems’ properties and outline distribution
fitting methods. Finally, we introduce the multifractality of the time series and dynamical reputation
model.

Chapter 3 addresses the difference between network models where the growth in the number of
nodes is constant and when it follows a non-trivial growth signal. This research aims to quantify how
growth signals influence the structure of complex networks. Using the adapted aging model [62], we
use computer simulations to generate different kinds of complex networks. For more realistic real-
world network simulations, growing signals are time series of new users from online social platforms,
MySpace, and Tech group from Meetup. They are described with trends, cycles, and long-range cor-
relations. Often time series have multi-fractal properties. The results of this study are published in
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1. Introduction

[63], and they show the importance of growth signals in shaping the network structure because the
scale-free networks, which represent real systems, are mainly altered.

As research on social groups mainly focuses on a single group, there are remaining questions about
the characteristics of the entire system. For example, the Tech group is only one of the groups around
which Meetup users organize; many other groups are created worldwide, so the system constantly
grows. In chapter 4, we will examine how groups on online social platforms grow. The results are
summarised in the paper [64]. This research is based on Reddit and Meetup data. From Meetup, we
created two data sets, one with groups created in London and the other with groups created in New
York, while for Reddit, we selected groups built before 2012. We are interested in explaining scaling
behavior in group size and growth rate distributions and identifying the growth mechanisms present
in the system. Using a bipartite complex network model, we can reproduce the universality found in
the system.

Even though across complex systems, we find the emergence of universal behavior, for example, the
scaling of the degree distribution of two groups is similar, different factors might influence its success.
It is well known that many online groups may suddenly fall apart. These questions are the subject of
the chapter 5, which main results are published in the paper [65]. Here, we study the question-answer
platform Stack Exchange; it has more than 200 different topic-specific sites where people help each
other answer questions. What is interesting about this system is that some sites were closed because
they did not produce enough activity. For that reason, we selected the sites with the same topic that
failed, but later, when someone proposed the site again, it stayed active. We analyze the evolution of
user interaction networks; here, we use the temporal network approach and compare active and closed
sites. We find that it is essential how the network users are distributed into a core-periphery structure
[66]. The core must select firmly connected users, but their interaction with the periphery has to be
high. In other words, a trustworthy core is needed to hold the community. Introducing the Dynamical
Reputation Model (DIBRM) [67], based on user interaction sequences, we quantify how much users
can be trusted and whether a community has a strong core. We briefly describe the Stack Exchange
sites in the appendix A. In appendix B and C discuss howwe choose parameters for the DIBRMmodel,
while in appendix D we discuss the stability of inferred core-periphery structures.

Finally, in chapter 6, we draw the main findings of this thesis.
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Chapter 2

Methodology

2.1 The measures of complex network structure

The complex system can be represented by a complex network G = (V,E), where the elements of a
system (atoms, proteins, people) map to a set ofN nodes V = {1, 2, ..., N}. The interactions between
elements map to L links between nodes, E = {e1, e2...eL}. There are a lot of measures to quantify the
structure of the network. This section describes some of the important measures and their definitions
on the undirected and unweighted networks, where the adjacency matrix A = N ×N has value 1 if
there is a connection between two nodes; otherwise, it is 0 [12]; as this network representation is mostly
used through the thesis. We list degree distribution, correlations, and shortest path measures. We also
discuss different structures found in the network, such as core-periphery or community structures.

2.1.1 Degree distribution

The simplest network measure is node degree, k. The degree of node i is the number of nodes adjacent
to node i, ki =

∑
j Aij [12, 30]. The network density is the average degree divided by N − 1, where

N is the number of nodes [68].

In the case of regular networks, such as grids, each node has an equal degree, meaning that nodes
in the network have similar roles. In the general case, the networks have a more complex structure. If
the degree sequence is skewed, we can identify nodes with high-degree (hubs). Removing hubs may
partition a connected network into several components [69].

The degree distribution is the probability, P (k), that a randomly chosen node has degree k [30, 68].
To estimate the degree distribution, we can consider the fraction of k degree nodesNk, p(k) = Nk/N .
Similarly, we can order nodes according to their degree and plot the node degree.

Here we summarize the forms of degree distributions that are mostly found in the complex network
theory:

• The Poisson distribution. The degree distribution in a random network, where all nodes have
the same connecting probability, follows Poisson distribution P (k) = (Np)ke−Np

k!
, where k is the

mean degree distribution [53].
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2. Methodology

• Exponential distribution. P (k) = e−k/k. It is the degree distribution of the growing random
graph [53]. Even for infinite networks, all moments of distributions are finite and have a natural
scale of the order of average degree.

• In many real networks, degree distribution follows a power law [53, 30]. P (k) = k−γ , where
γ is exponent of the distribution. No natural scale exists in this distribution, so they are called
scale-free networks. In infinite networks, all higher moments diverge. If the average degree of
scale-free networks is finite, then the γ exponent should be γ > 2. Therefore, real networks
have a scale-free structure with the emergence of the hubs [30].

When plotting the degree distribution, it is common to use scaling of the axis. As many nodes have
a low degree, like for power-law or exponential distribution, it is more useful to use a logarithmic scale
[52]. Now it is easier to notice that data points follow a straight line, meaning that degree distribution
is some exponential function.

2.1.2 Degree-degree correlations

Correlation is defined through a correlation coefficient r(x, y). For two variables x and y, which
represent pairs (x1, y1), (x2, y2), ..., (xn, yn) we can define correlation coefficient [70] as:

r(x, y) =
1
n

∑n
i=1((xi − x̄)(yi − ȳ))√

1
n

∑n
i=1(xi − x̄)2

√
1
n

∑n
i=1(yi − ȳ)2

, (2.1)

where x̄ = 1
n

∑n
i=1 xi, is the average over variable x.

Using the correlation coefficient definition, we can define correlations for vertex degrees [70]. For
graph G which consists of n nodes and is characterized with with adjacency matrix A and degree
sequence d = [d1, ..., dn], correlation of vertex degree has form:

rdeg(G) =

∑n
i=1

∑n
i=1+1((di − d̄)(di − d̄)A[i, j])∑n

i=1(di − d̄)2
. (2.2)

An adjacency matrix allows us to calculate the correlations between neighboring nodes. If two
nodes are not connectedA[i, j] = 0, the degree of correlation between them does not contribute to the
r.

The degree-degree correlations in the network are measured by assortativity index. If correla-
tions are positive, networks are assortative; there is a tendency for connections to exist between similar
degree nodes [53]. The negative correlations indicate that nodes with large degree are more likely to
connect nodes with small degree, disassortative networks. The average first neighbor degree knn can
be calculated as knn =

∑
k′ k

′
P (k

′|k). The P is the conditional probability that an edge of degree k
points to a node with degree k. The norm is

∑
k′ P (k

′ |k) = 1, and detailed balance conditions [12],
kP (k

′ |k)P (k) = k
′
P (k|k′)P (k

′
) [12]. If the node degrees are uncorrelated, knn does not depend on

the degree; otherwise, increasing/decreasing function indicates positive/negative correlations in the
network [71].

The Newman defined the assortativity [72] index r in slightly different way:

r =
∑
kl

kl(ekl − qlqk)/σ2
q , (2.3)
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2.1. The measures of complex network structure

where ekl is that a randomly selected link connects nodes with degrees k and l, qk is a probability
that a randomly chosen node is connected to node k and equals qk = kpk/〈k〉, while σq is a variance
of the distribution qk.

2.1.3 Clustering coefficient

The clustering coefficient is a measure describing the neighborhood’s structure. In networks, exist a
tendency to form triangles or clusters [53]. It is common property of friendship networks; there is high
probability that neighbors of one nodes are connected [73]. The clustering of node i can be measured
as [31]:

ci = 2ei/(ki(ki − 1)), (2.4)

where ei is number of links among neighbors of node i and ki is node degree.

We can calculate the mean clustering coefficient by averaging it overall network nodes. It ranges
from 〈c〉 = 0 where connections between neighboring nodes do not exist; the network has a tree
structure [53]. On the other hand, 〈c〉 = 1 indicates a fully connected network [53].

Alternative definition of the clustering coefficient was proposed by Newman [74]. The network
transitivity is seen as global clustering as it takes into account whole network properties. It is calculated
as ratio of number of triangles and triples in the network. While triangle is complete subgraph of tree
nodes, a triple has tree nodes, but only two edges.

2.1.4 Paths

In the network structure, the interacting nodes are directly connected with the edge. In this represen-
tation, the distance between them is dvi,vj = 1. Distance defined like this does not have any physical
meaning, and its purpose is to describe how the position of nodes in the network structure influences
the other distant nodes.

The path between two nodes [70], vi and vj is a sequence of edges {(v1, v2), (v2, v3), ...(vk, vk+1)
, ...(vn−1, vn)}, where v1 = vi, vn = vj . In the path, the nodes are distinct. Otherwise, the sequence
is called a walk, where each node can be visited many times. Also, it is possible to define a cycle, a
path that starts and ends on the same node while other nodes in the cycle are distinct. The length of
the path, walk or cycle is the number of links in the sequence. We can easily calculate the number of
walks between two nodes using the adjacency matrix. The A2 gives us walks of length 2, the A3, the
number of walks of length 3, and so on.

The network is connected if it can define the path between every two nodes. When it is not the
case, the network is disconnected into two or more connected components. Note that the component
can be an isolated node. Also, in directed networks may happen that node vi is reachable from node
vj , but if we start from vj , we can not find the path to the vi. Such a graph is connected but is called a
weakly connected component [75].

We can find different paths between two nodes in the network, but the most important one is the
shortest path [70, 75]. The distance between two nodes d(vi, vj) is defined as the shortest path length
between two nodes. In the case of weighted networks, it is the path with minimal weight, but its length
is not necessary minimal. Distances on the network can give us insight into how similar networks are
and indicate the node’s relative importance in the network.

The radius is the minimum overall eccentricity value. In contrast, the diameter defines the largest
distance between nodes in the network [70]. These definitions apply to directed and undirected graphs.
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Also for each node u in networkG we can calculate the average length of the shortest paths to any
other node in the network [70]:

d̄(u) =
1

|V | − 1

∑
v∈V,v /∈u

d(u, v). (2.5)

The average path length of the network is then calculated as:

d̄(G) =
1

|V |
∑
u∈V

d̄(u), (2.6)

while it is also possible to define the characteristic path length of G as median value of all nodes
shortest paths.

2.1.5 D-measure

For each node i, we can define the distribution of the shortest paths between node i and all other nodes
in the network, Pi = {pi(j)}, where pi(j) is the percent of nodes at a distance j from node i. The
connectivity patterns can efficiently describe the difference between the two networks. To specify how
much G and G′ are similar we use D-measure [76]:

D(G,G
′
) = ω

∣∣∣∣∣
√
J(P1, ..PN)

log(d)
−

√
J(P

′
1, ..P

′
N)

log(d′)

∣∣∣∣∣+ (1− ω)

√
J(µG, µG′ )

log2
. (2.7)

D-measure calculates Jensen-Shannon divergence between N shortest path distributions:

J(P1, .., PN)) =
∑
i,j

pi(j)log(
pi(j)

µj
), (2.8)

where µj = (
∑N

i=1 pi(j))/N is mean shortest path distribution.

The first term in equation 2.7 compares local differences between two networks, and Jensen-
Shannon divergence between N shortest path distributions J(P1, ..., PN) is normed with network di-
ameter d(G). The second part determines global differences, computing J(µG, µG′ ) between mean
shortest path distributions. Parameter 0 ≤ ω ≤ 1 determines importance of first and second term in
D-measure. The D-measure ranges from 0 to 1. The lower D-measure is, the more similar networks
are, and structures are isomorphic for D-measure D = 0.

2.2 Community structure

Nodes can be organized into groups called communities. In social networks, communities indicate
that people share some common interests, or in biological networks, we can find that genes or neurons
with similar functions are grouped. Identifying these hidden blocks can lead to interesting insights
into the network. However, the community detection problem does not give a precise characterization
of what a community is. A standard definition of a community is densely connected subgraph [77, 78],
meaning that nodes in one community tend to associate, creating the assortative connectivity pattern.
On the contrary, nodes could be organized in disassortative communities, where connections between
groups are denser.
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The network with k communities could be represented using k×kmatrix p. The diagonal elements
of p indicate the density inside communities, while off-diagonal elements show the density between
groups. Figure 2.1 [79] shows the matrix and networks for two communities. In the first example, (2.1
a), the diagonal elements have a higher probability, as in the classic definition of assortative community
structure. In disassortative structure (2.1 b), more connections exist between two partitions than inside
them, i.e. off-diagonal elements have higher probabilities. Bipartite networks can be represented as
a disassortative network with two groups. The links exist only between communities. Figure (2.1 c)
shows the core-periphery network. This network structure is composed of a core where nodes are well
connected with itself and with the periphery. The connectivity inside the periphery is sparse. Finally, if
there is no difference between connectivity inside and between groups, the concept of communities is
lost. We can treat the whole network as a single community, where each node has the same connectivity
probability, i.e., as Erdos Renyi random graph.

a) b) c) d)

Figure 2.1: Different communities structures (a) assortative. (b) disassortative. (c) core-periphery.
(d) Erdos Renyi random graph.

Different algorithms are used for detecting the community structure in the underlying network,
optimizing different objective functions of the network partition. Still, if the ground-truth communi-
ties are unknown, there are no guarantees that we will infer the actual number of communities and
entirely correct node assignments [80]. Even though community detection algorithms are widely used
in complex network analysis as they can give us a better understanding of network structure [80, 81].
In this section are explained two community detection models, the first one based on optimizing the
modularity function [77, 82], and the other based on the statistical inference of the Stochastic Block
Model (SBM) where is optimized the likelihood function [77, 83, 84].

2.2.1 Community detection based on modularity function optimization

The modularity [85, 82, 86] is a measure used to evaluate the quality of a partition or clustering of
nodes into communities. Partition is the division of the network with N nodes and L links into nc
communities, where each node belongs to only one group [87]. The modularity measures the degree
to which nodes in the same community are more connected to each other than expected by chance,
while taking into account the expected degree sequence of the network. The modularity has form:

Mc =
1

2L

∑
(Aij − pij), (2.9)
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2. Methodology

where the first part of equation measures number of links Aij within community c, while second
term is number of links within community if network is randomly connected pij =

kikj
2L

. If the first term
is larger than the second term, the modularity is positive and the partition is considered to be better
than random, otherwise we can not consider that nodes in given group form community structure. The
same idea can be generalized to the whole network: the modularity of the network partitioned into nc
communities is then defined as:

M =
n∑
c=1

[
Lc
L
− (

kc
2L

)2]. (2.10)

The higher modularity indicates that nodes are partitioned in better communities. When we put all
nodes into only one communityM = 0, otherwise, if each node is the community itselfLc = 0 and the
sum is negative. The Newman showed that modularity function [88] applies for weighted networks.

Maximum network modularity indicates the best partions. As too many possible partitions exist,
we need an algorithmic approach to identify the best separation. The first algorithm proposed for
modularity optimization was greedy algorithm. First, it assigns each node to a community and starts
with N communities. Then, we should merge each pair of communities and calculate the modularity
difference ∆M . We can join those two communities by identifying the pair for which the difference is
the largest. It is repeated until we get single community. The best partition is one with the largestM .

Louvain algorithm [89] is an optimization algorithm with better scalability than the greedy al-
gorithm so it can operate on very large networks. Initially, each node is in different communityand
similar to before, we calculate the difference in the modularity moving nodes to one of their neighbor-
ing community. Then we move node i to the community such that modularity becomes larger. It is
repeated with all nodes in the network, until there is no improvement in the modularity. In the second
step, we create a weighted network whose nodes are communities identified during the first step. The
weight of the links between communities is the sum of the weights between nodes [87]. The number
of links inside the community is given as a weighted self-loop. Then, the first and second steps are
repeated until there is no more change in the modularity. The obtained number of clusters when the
algorithm stops is an optimal number of communities.

The community detection algorithms tend to merge small communities, which should be indepen-
dent [90]. This consequence is easily seen in the graph consisting of N-connected cliques, where
higher modularity is if two adjacent cliques are merged into communities instead of having each
clique as a single community. This lead to the modification of the modularity function as M =
1

2L

∑
i,j[Ai,j− γ

kikj
2L

], where γ is resolution parameter [91], which controls the size of communities to
be detected. With γ < 1, detecting small communities undetected with the original model would be
possible.

2.2.2 Stochastic block model

Another approach for studying the community structure of complex networks, the Stochastic Block
Model (SBM), assumes that nodes are clustered in the groups, and the relations between nodes de-
pend on the probabilities for group memberships [83]. In one group, nodes have similar connectivity
patterns. To describe the network G(N,L) with the SBM model, we need to define the following:

• k: number of groups.

• Group assignment vector, g: gi ∈ {1, 2..k}, gives the group index of node i.

• SBM matrix, pk×k, whose elements prs are the probabilities that edges between groups r and s
exist. Note that nodes within one group have the same connection probabilities.
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2.2. Community structure

The number of possible nodes between two groups r and s:

nrs =

{
nr(nr + 1)/2 if r = s

nrns if r = s,
(2.11)

while the number of possible edges depends on the adjacency matrix Aij is

ers =
1

1 + δrs

∑
i∈r,j∈s

Aij. (2.12)

The benefit of this model is that we can generate many networks with similar network structure
[92]. When model parameters are initialized, the network can be easily generated. For each pair of
nodes i and j in network G, we draw a link if random number rij < pr,s.

The likelihood of generating network G for given model parameters is:

P (G|p, g) =
∏
i,j

Pr(i→ j|p, g) =
∏

(i,j)∈E

Pr(i→ j|p, g)
∏

(i,j)/∈E

(1− Pr(i→ j|p, g)). (2.13)

In the processes where the connection between two nodes is described with Bernoulli distribution,
the likelihood takes the form:

P (G|p, g) =
∏

(i,j)∈E

pgigj
∏

(i,j)/∈E

(1− pgigj). (2.14)

In the likelihood equation, we iterate over all pairs of nodes, separating the product over edges
present in the network and edges that are not present. As all nodes are considered independent, we
can switch the product over nodes with the product over groups such that

P (G|p, g) =
∏
(r,s)

persrs (1− prs)nrs−ers . (2.15)

As it is easier to work with the logarithm of the likelihood function, after taking the logarithm of the
likelihood function, we get the following expression:

L = log(P (G|g, p)) =
∑
r,s

er,sln
ers
nrs

+ (nrs − ers)ln(
ers − ers
nrs

). (2.16)

Instead of generating networks, the opposite task is network inference. For a given networkG, and
specified the number of communities k, we can use the SBM model to infer the nodes’ assignments
into groups, so we need to choose vector g and SBM matrix p such that the likelihood for generating
network G is maximized.

The formulation of the SBM model does not consider how to infer the optimal number of groups.
Optimizing the likelihood function for different numbers of groups would increase likelihood while
each node is not assigned to a different group. In practice, our found community structures for a
fixed number of groups, and then the likelihood function could be penalized by the number of model
parameters. One approach is calculating theMinimum description length (MDL) [84]. The variable
which has probability P(x), is described with amount of information −log2P (x). The numerator of
posterior probability could be written as

P (G|g)P (g) = P (G|p, g)P (p, g) = 2−Σ, (2.17)
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2. Methodology

whereΣ is the data’s description length (DL). TheMDL consists of two terms: Σ = −log2(p(G|p, g))−
log2P (p, g). In the first part of the equation, the amount of information necessary to describe the
model decreases with the number of groups [84]. The second contribution comes only from the
model, and as the model becomes more complex, with a larger number of groups, this part increases
[84]. The optimal solution represents the balance between these two terms in the MDL equation.

This SBM model has many variants motivated by specific properties of real data. For example,
for degree heterogeneous networks, there is degree corrected SBM [93]. In some social networks,
users can belong to more than one group, which can be modeled with mixed membership SBM. Other
extensions include application to bipartite, weighted network, and hierarchical model [94]. Many
community detection algorithms define the community as an assortative structure. With the SBM
model, such limitations do not exist, and it is possible to directly use statistical inference for discovering
core-periphery structures or even networks with bipartite structures.

2.2.3 Core-periphery structure

The core-periphery structure is characterized by a group of densely connected nodes in the core, which
are more connected to each other than to the less connected nodes in the periphery [95, 30]. The condi-
tion p11 > p12 > p22 implies that the probability of edges within the core is higher than the probability
of edges between the core and the periphery, which in turn is higher than the probability of edges
within the periphery. One way to identify the core-periphery structure is to use the degree criterion,
which assumes that the core nodes have higher degrees in the core than in the periphery. Another ap-
proach is to use k-cores [96], which are groups of nodes that are connected to at least k other members
of the group. The k-cores form a nested hierarchy, and the core-periphery structure can be detected
by identifying the densest k-core. Borgatti and Everett [97] proposed a measure similar to modularity
to detect core-periphery structures, where the goal is to minimize the number of edges in the periph-
ery. The score function ρ balances the number of observed edges in the periphery with the expected
number of edges in a null model where the nodes in the periphery are randomly connected. The opti-
mization problem seeks to maximize the score function ρ, which is defined as ρ = 1

2

∑
ij(Aij−p)gigj ,

where Aij is the adjacency matrix of the network, p is the expected probability of an edge between
two nodes, and gi is a variable that indicates whether node i belongs to the core or the periphery.

Another way to detect core-periphery structure is to use the inference method based on fits to a
Stochastic Block Model (SBM) [98, 93]. In this method, we fit the observed network to a block model
with two groups, such that edge probabilities have the form p11 > p12 > p22. Vector θi = r indicates
that node i is in block r, while SBM matrix {p}2x2, specify the probability prs that nodes from group
r are connected to nodes in group s. The SBM model is looking for the most probable model that can
reproduce a given network G [66]. Probability of having model parameters θ, p given network G is
proportional to the likelihood of generating network G, prior of SBM matrix P (p) and prior on block
assignments P (θ): P (θ, p|G) = P (G|θ, p)P (p)P (θ), while the likelihood function takes following
form: P (G|θ, p) =

∏
i<j p

Aij
risj(1− prisj)1−Aij , where Aij is a number of edges between nodes i and j.

The prior P (p) is modified for core-periphery model such that P (p) ∼ I0<p22<p12<p11<1, while prior
P (θ) consists of three parts: probability of having 2 blocks; given the number of layers probability
P (n|2) of having groups of sizes n1, n2 and the probability P (θ|n) of having particular assignments
of nodes to blocks.
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2.3. The probability distributions

2.3 The probability distributions

The shape of degree distribution is important for getting the first insight into the characteristics of
the complex network. When nodes are generated randomly, and any two nodes are linked with the
same probability p, we expect the binomial distribution. For larger networks it is Poisson distribution
P (k) = 1

k!
e−〈k〉〈k〉k, where 〈k〉 = Np. A different approach is to add one node and connect it randomly

to the network at each time step. The obtained network then has the exponential degree distribution
P (k) = e−λk. These are exponentially bounded distributions, meaning they decay exponentially or
faster for the large values [53].

On the other hand, heavy-tailed distributions decay slower than exponential, and the events for large
values are rare but still possible. For example, in the preferential attachment model, degree distribution
emerges to the power law [53]. Also, many empirical data exhibit the heavy-tailed distribution. Even
if they look like a power law, after statistical analysis, it may be concluded that the data deviate from
the power law and could be equally good or even better fitted with some other distribution. Commonly
used alternative distributions are lognormal distribution, stretched-exponential or power-law with an
exponential cutoff.

This section gives an overview of relevant distributions and methods for fitting data and testing the
quality of the performed fit. Figure 2.2 shows how different distributions look on linear (first column)
and log-log scale (second column).

2.3.1 The properties of distributions

Power-law distribution. The power-law distribution [99, 100] is defined as

p(k) = Ck−γ, (2.18)

where parameter γ is an exponent of the power-law distributionwhile the C is the normalizing constant.

The distribution can take discrete and continuous values, defined for positive values k > 0, so
there is a lower bound to the power-law function kmin. For the discrete case C = 1/ζ(γ, kmin), while
in the continuous case C = (γ − 1)kγ−1

min .

The power-law distribution is called scale-free distribution. If we scale the value k for the factor
2, the ratio of p(x)/p(2x) is constant and does not depend on the k [52]. We’ll find that these criteria
are not satisfied by any other distribution

p(k)

p(2k)
=

Ak−γ

A(2k)−γ
= 2γ, (2.19)

The scale-free function is defined as p(bx) = g(b)p(x). The solution of this equation is p(x) =
p(1)x−γ , where γ = −p(1)/p

′
(1) leads us to the conclusion that if the function is self-similar, it has

to be power-law.

Lognormal distribution. The variable x has the lognormal distribution if the random variable
y = ln(x) is distributed as normal distribution [101]

f(y) =
1

2πσ
e−(y−µ)2/2σ2

, (2.20)

where µ is the mean, and σ is the standard deviation. The density distribution of the lognormal distri-
bution is defined as

f(x) =
1

xσ
√

2π
e−(log(x)−µ)2/2σ2

. (2.21)
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Figure 2.2: Probability distributions on a linear and double logarithmic scale.
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2.3. The probability distributions

The lognormal distribution has finite mean eµ+1/2σ2 , and the variance e2µ+σ2
(eσ

2−1). [99]. Despite
the finite moments, the lognormal distribution can be similar to the power-law distribution. If the
variance is large, then the probability function on the log-log plot appears linear for a large range of
values.

Using the multiplicative processes, we can generate the lognormal distribution [52, 99]. The
lognormal distribution is generated by processes that economist Gibrat called the law of proportionate
effect. If we start from the organism of size S0, at each time step, the organism may grow or shrink
according to the random variable ε [99]

St = εtSt−1. (2.22)

When the system’s state at time t is proportional to the state at the previous time step, we have the
multiplicative process. The ε is a proportionality constant that can change over time. The current state
depends only on the initial size S0 and the ε variables.:

St = εtSt−1 = εtεt−1...ε2ε1S0. (2.23)

If εt is drawn from the lognormal distribution, then St also follows lognormal, as the product of
lognormal distributions is again lognormal. Still, the ε distribution does not determine the distribution
of the St. Taking the logarithm of the equation:

ln(St) = ln(S0) +
t∑
i=0

ln(εi). (2.24)

The sum of the logarithms of the εt, according to the Central Limit Theorem (CLT), follows the
normal distribution. The CLT states that the sum of identically distributed random variables with finite
variance converges to the normal distribution. If ln(St) is normally distributed, then St follows the
lognormal distribution [99].

The multiplicative processes generate the lognormal distribution. Introducing a threshold in the
multiplicative process leads to the power law. For example, in the Champernowne model [52], individ-
uals are divided into classes according to their income. The minimum income is m. People between
incomes m and γm are in the first class, and the second class is people with incomes between γm and
γ2m. The individuals can change their class, so it is described as a multiplicative process, but with
a threshold, as income can not be lower than m. If we fix γ = 2, and consider that with probability
pi,i−1 = 2/3, the change is from higher to lower class. In contrast, with probability, pi,i+1 = 1/3 in-
dividual goes to a higher class. In this process, the distribution of incomes emerges as the power-law
distribution.

Power law with exponential cutoff. The density function has the following form

p(k) = Ck−γe−λk. (2.25)

where k > 0 and γ > 0. This function combines the power-law and exponential terms responsible for
an exponentially bounded tail [53]. Taking the logarithm ln(p(k)) = lnC − γlnk − λk, when k <<
1/λ the second term dominates, so distribution follows the power-law, with exponent γ. Otherwise,
the λx term dominates, resulting in an exponential cutoff for high values.

Streched exponential The stretched exponential distribution is defined as:

p(k) = ckβ−1e−(λk)β . (2.26)

the parameter β is stretching exponent determining the properties of the function p(k) [53]. For β = 1,
the function is exponential. For β < 1, it is hard to distinguish the distribution from the power law.
We have a compressed exponential function for β > 1, so k varies in the narrow range.
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2.3.2 Estimating the distribution parameters

The maximum likelihood estimation(MLE) is a method where we consider that data comes from a
particular distribution, so we want to maximize the likelihood of the data to find the distribution pa-
rameters. For a given set of i.i.d. observations x1, x2, ...xn, sampled from the distribution p(x), we
can define the likelihood function [102]. The likelihood function tells us how likely it is to have the
given data if the distribution parameters are θ

L(θ|x1, ...xn) =
i=n∏
i=1

p(xi|θ). (2.27)

The parameter that maximizes the likelihood function is θmax ∈ argmaxL(θ|x1, ...xn).

We can solve the equation and derive the expression for maximum likelihood parameters. The
parameters can be obtained with numerical optimization for distributions where an analytical solu-
tion is unavailable. In practice is much easier to work with the logarithm of the likelihood function,
log(L) =

∑i=N
i=1 p(θ|xi), because then the product changes to summation. For the power-law distri-

bution, the exponent is calculated as γ = 1 + n[
∑
ln ki

kmin
]−1. For a discrete distribution, the solution

may be obtained by optimizing the log-likelihood function log(L) = log
∏n

i=1
k−γi

ζ(γ,kmin)
.

We can use the MLE [103] method to fit any distribution to the data. Even if obtained distribution
looks like a power law, and some parameters are estimated, it does not have to be that data are truly
from the power-law distribution. With the MLE method alone, it is impossible to distinguish between
different distributions, and we do not know how accurate the obtained results are. To determine the
quality of the fit, we need to use another statistical method called the goodness-of-the-fit test. The
main idea is based on calculating the distance between distributions of empirical data and the model
using Kolmogorov-Smirnov statistics. The Kolmogorov Smirnov statistics is the maximum distance
between the CDF of the data and the fitted model, D = max|S(x)− P (x)|.

First, we fit empirical data to get model parameters and calculate the KS statistics of this fit [103].
Then, many synthetic data sets are generated with model-optimized model parameters. Then each
synthetic data set is fitted, and KS statistics are obtained relative to its model. From there, we can
calculate p-value, the fraction of times that KS-statistics in synthetic distributions is larger than in
empirical data. If p − value < 0.1, we reject the hypothesis that this distribution describes the em-
pirical data. Otherwise, the model can not be rejected. Failing to reject the hypothesis does not mean
the model is a correct distribution for the data. Other distributions might fit the data equally good or
even better. To have an accurate p-value, we need a large sample. For a small number of synthetic
distributions, it is possible to have a high p-value, even if the distribution is the wrong model for the
data. Finally, we need to be confident in obtained results. The same procedure can be repeated for
different distributions. If the p-value for the power law is high, while for alternative distribution, it is
low, we can conclude that the power law is a more probable fit.

Another method, the likelihood ratio test, allows us to compare two distributions directly [103].
The distribution with a higher likelihood under empirical data is a better fit. We can calculate the
likelihood ratio, or it is easier to obtain the likelihood ratio’s logarithm because its sign determines
which distribution is a better fit. For given two distributions p1(x)and p2(x).

The likelihoods are defined as L1 =
∏n

i=1 p1(x) and L2 =
∏n

i=1 p2(x), or the ratio of likelihoods
as R = L1

L2
=
∏n

i=1
p1(x)
p2(x)

. Taking the logarithm, we obtain the log-likelihood ratio

R =
n∑
i=1

[logp1(xi)− logp2(xi)] . (2.28)

20



2.4. Network models

As data xi are independent, by central limit theorem, their sum R becomes normally distributed,
with expected variance σ2. We can approximate the variance as

σ2 =
1

n

n∑
1

[(li − li)− (< l >(1) − < l >(2))].

When R > 0, the first distribution is a better fit to the data, and then R < 0, the other one should
be chosen. When R = 0, it is not possible to distinguish between two distributions. The sign of R is
not enough criteria to conclude which distribution is a better fit, and it is a random variable subject to
statistical fluctuations. We need a log-likelihood ratio that is sufficiently positive or negative to ensure
that its sign does not result from fluctuations.

If we are suspected that the expectation value of the log-likelihood ratio is zero, the observed sign
of is simply the product of fluctuations and can not be trusted. The probability that the measured
log-likelihood ratio has a magnitude as large or larger than the observed value R is given as

p =
1√

2πnσ2

∫ −|R|
−∞

e−x
2/2nσ2

dx+

∫ ∞
|R|

e−x
2/2nσ2

dx. (2.29)

Here we use the standard two-tail hypothesis test [103], assuming that the null hypothesis is R =
0. If the p-value is larger than a threshold, the R sign is unreliable, and the test does not favor any
distribution. If p is small, p < 0.1, then it is unlikely that the observed sign is obtained by chance, so
we reject the null hypothesis that R = 0.

2.4 Network models

The interest in analyzing real-world networks allowed us to describe their statistical properties and for-
mulate models to explain essential data features. With network models, we can understand the origins
of the properties of complex networks, what mechanisms influence the generation of the network, and
how network properties emerge [30, 53]. This section considers the random network and small-world
models, which are static models, as the number of nodes is fixed. Even though the random network
model is not applicable to real networks, it is important historically as one of the first network models.
The small-world model explains how properties of real networks, such as high clustering and small
distances may emerge. On the other hand, generative models, such as models of preferential attach-
ment, where the network grows according to specific growing rules, are important for understanding
how network structure is created. They allow us to explore different growingmechanisms, and by com-
paring obtained networks with real data, we can conclude which growth processes have an influence
on the network structure.

2.4.1 Random network model

The random graph model was introduced by mathematicians Paul Erdős and Alfred Rényi in 1959. In
this model, connections between nodes are chosen randomly, and every link has the same probability
of existing. The graph is characterized only by a number of the nodes N and the linking probability
p, so Erdős-Rényi graph is written as G(n, p).

The creation of ER random network consists of the following steps:

• We start with N isolated nodes.
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• Between each N(N − 1)/2 pair of nodes we create link with probability p; sampling random
number r ∈ (0, 1), we create link if r ≤ p, see Figure 2.3.

p = 0 p = 0.01 p = 0.1

Figure 2.3: Erdős-Rényi graph with N = 100 nodes and different linking probabilities p.

We should note that this process is stochastic. The networks G(N, p) with the same parameters
do not need to have the same structure; i.e. they differ in the number of links. Therefore, the single
random graph is only one of all the possible realizations in the statistical ensemble.

Two simple quantities that could be estimated are the average number of links and the average
degree. For a complete graph with N nodes, the number of edges is N(N − 1)/2. As the probability
of drawing every edge is p, the average number of links is given as

〈L〉 =
N(N − 1)

2
p. (2.30)

We conclude that the network’s density equals probability p. The average degree is approximated
as 〈k〉 = 2〈L〉/N , leading to:

〈k〉 = (N − 1)p. (2.31)

The degree distribution of ER random graph follows the binomial distribution [53].

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k. (2.32)

The probability that the node has degree k is given with the second term pk, while the probability
that other N-1-k links are not created is given with the third part of the equation. Finally, there are(
N−1
k

)
combinations for one node to have k links from N − 1 possible links.

The binomial distribution describes very well small networks, see Figure 2.4. For larger networks,
we find that they are sparse and that the average degree is much smaller than a number of nodes
〈k〉 << N . In this limit, binomial distribution becomes the Poisson, as could be shown in Figure 2.4,
which now depends only on one parameter 〈k〉

p(k) =
1

k!
e−〈k〉〈k〉k. (2.33)
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Figure 2.4: Degree distribution of ER graph. The degree distribution of small networks follows
binomial. Larger networks are better approximated with Poison distribution, and degree distribution
for fixed average degree < k > becomes independent of the network size.

The random graph has a very small average path length, it is given as 〈l〉 = lnN
ln(pN)

that is charac-
teristic of many large networks [104]. The clustering coefficient is proportional to linking probability,
〈C〉 = p, so we find a small clustering coefficient in large random networks, contrary to real-world
networks.

Figure 2.3 shows how the network becomes more connected by increasing the linking probability
p. When p = 0, all nodes are disconnected. In the other limit, p = 1, the network is fully connected.
Between those two probabilities exists critical probability, where the giant component appears. The
giant component is a sub-graph whose size is proportional to the network size. In other words, the
network does not have disconnected components. Such change in the network is a phase transition in
network connectivity and is related to percolation theory.

The phase transition occurs when the average degree is 〈k〉 = 1, which gives us: pc = 1
N−1

,
meaning that all nodes have degree larger than one [53]. When the 〈k〉 < 1, the network is in the sub-
critical regime where all components are small. In the critical regime, the size of the giant component
is proportional to the N2/3. In the supercritical regime, 〈k〉 > 1, the probability of a giant component
appearing is 1.

2.4.2 Small-world networks

Inspired by the idea that real-world networks are highly clustered and the average distance is small,
Watts and Strogatz [31] proposed the "small-world" model. The model starts from the regular lattice,
and with rewiring links, the network starts to resemble small-world property. The procedure is the
following:

• At the beginning, nodes are placed on the ring lattice, see Figure 2.5, and each node is connected
to k/2 first neighbors on the left and the right side. Initially, the clustering coefficient is high,
c = 3/4.

• For each link in the network, with probability p, we choose a random node to rewire the link.
This connects long-distance nodes, decreasing the network’s average path length, Figure 2.5.

23
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The model interpolates between the regular graph when the probability is p = 0 and the random
graph with p = 1 when all links are randomly rewired. Short distances and high clustering are present
in the network for the relatively small probabilities ranging from p ≈ 0.01− 0.1 [31].

p = 0.0 p = 0.05 p = 0.8

Figure 2.5: Watts and Strogatz graph model creation, for different rewiring probabilities.

Even though the small-world network model lacks the power-law degree distribution found in real-
world networks, it is an important model that motivated the research on random graphs.

2.4.3 Barabási-Albert model

The ER random graph model andWS small-world model are static models where the number of nodes
is fixed. It is one of the reasons why they can not fully explain the properties of real systems. The size
of real systems does not remain constant; real networks grow. Growth means that at each time step,
new nodes are added to the network. The simplest model that produces scale-free networks is the
Barabasi-Albert model [32].

• The model starts from the small number, n0 randomly connected nodes, withm0 links.

• At each time step, a new node with m links joins the network. A new node creates links with
the nodes already present in the network, following the linking rules; in this case, preferential
attachment rules.

The preferential attachment is important for generating a system with scale-free properties. In
the real system, the linking between nodes is not a random process; the preference for specific types
of nodes exists. For example, popular web pages can quickly get more visits, or it is expected that
already popular papers will get more citations. This effect is also called rich-get-richer or preferential
attachment.

The simplest formulation of the preferential attachment model is that new nodes tend to connect
with high-degree nodes. The linking probability Π is then proportional to node degree k [105]

Π(ki) =
ki∑
j kj

. (2.34)

As at each step one node arrives, we can estimate the number of nodes at the time step t, N(t) =
n0 + t, with links L(t) = m0 +mt.

First, we can calculate the evolution of network degrees in time [105].
dki
dt

= mΠ(ki) = m
ki∑
j kj

= m
ki

m0 + 2mt
. (2.35)
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Note that the new node that arrived at time point ti has degreem, as it links tom old nodes. Solving
the equation, we get that at t > ti, it has a degree that grows as the square root of time; it also shows
that younger nodes easily acquire a larger degree

ki(t) = m

(
t

ti

) 1
2

. (2.36)

With this equation, we can calculate the probability that node has a degree smaller than k [105] as
P [ki(t) < k] = P (ti >

m1/βt
k1/β ). Assuming that we add nodes in constant time intervals, we have

P (ti) = 1/(m0 + t). The cumulative probability is then P (ti >
m1/βt

k1/β ) = 1 − t
t+m0

(
m
k

)1/β . Finally,
the degree distribution has the following form

P (k) =
∂P [ki(t) < k]

∂k
∼ 2m2k−3. (2.37)

Degree distribution follows power-law, and for large k is approximated with P (k) = k−γ , where
γ = 3. As the network grows, nodes with larger degrees become bigger, and we end up with few
nodes with many links, called hubs. Figure 2.6 - left pane shows generated BA network, consisting
of N = 100 nodes, where even on this scale, we can notice the emergence of hubs. The right pane
of Figure 2.6 shows obtained degree distribution of a larger network with N = 104 nodes. The
degree distribution is also independent of the time and size of the system, meaning the emergence of
a stationary scale-free state. If we varym, the slope of distributions is the same, but they are parallel.
After rescaling p(k)/m2, they fall on the same line [53].

100 101 102

k

10 7

10 5

10 3

10 1

P(
k)

P(k) k 3

Figure 2.6: Barabasi-Alber model. The left panel shows the BA network, with 100 nodes. The right
panel shows the degree distribution for BA network of 104 nodes that follow the power-law.

The network diameter, represents the maximum distance in network, d ∼ lnN
lnlnN

[104]. The
diameter grows slower than lnN , making the distances in the BA model smaller than in the random
graph. The difference is found for large N. It is known that the BA network has hubs that shorten the
path between less connected nodes. Also, if hubs are removed from the network, the network easily
partitions into several components, losing its properties. The clustering coefficient of the BA model
follows C ∼ lnN2

N
[104]. It differs from clustering found in random networks, and BA networks are

generally more clustered.

The combination of the growth and preferential attachment linking is crucial for getting scale-
free networks [32]. For example, eliminating the preferential attachment; in a growing network with
random linking, degree distribution is stationary but follows exponential. In contrast, the absence of
growth leads to the non-stationary degree distribution. When a number of nodes is fixed, the network
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2. Methodology

grows only in the number of links, such that randomly chosen node i connects to node j according
to probability Π. In the beginning, the degree distribution follows the power law, the same as in the
BA model. As more links are added to the network, the distribution changes its shape; first, the peak
appears, while at the end network becomes a complete graph, where all nodes have the same degree.

2.4.4 Nonlinear preferential attachment model

In the nonlinear preferential attachment model linking probability also depends on the node degree.
The dependence is not linear and has the following a form [106]:

Π(ki) = ki
β. (2.38)

The probability that a newly added node attaches to node i depends on the existing i-th node degree
ki and the parameter β. When β = 1, the model is the BA model, where degree distribution follows
the power law. When β = 0, linking probability becomes uniform; i.e., it corresponds to a random
network model, and the degree distribution is Poisson; there is exponential decay.

For β > 1, preferential attachment effects are increased, leading to super hubs’ emergence. The
hub-and-spoke network appears in this regime, where almost all nodes are connected to a few high-
degree nodes [106].

On the other hand, if β < 1, the model is in a so-called sub-linear preferential attachment regime.
The linking probability is not random, so degree distribution does not follow Poisson, but also, the
preference toward high-degree nodes is too weak for having the pure power law. Instead, degree dis-
tribution converges to stretched exponential.

2.4.5 Aging model

To understand how aging can impact the network structure, we look into probability dependent on two
parameters, nodes degree k and age of node i at the time point t τi = (t − ti), where ti is the time
when node i is added to the network [33]

Πi(t) ∼ kiτ
α
i . (2.39)

The parameter α controls the linking probability dependence on the nodes’ age, as could be seen
on Figure 2.7. If α = 0, the aging of nodes is disregarded. If α > 0 is positive, the older nodes are
more likely to create connections. In this regime, the preferential attachment stays present, and the
high-degree and older nodes are preferred. For very high α, each node is connected to the oldest node
in the network. The scale-free properties are present; the power-law exponent γ deviates from γ = 3.
It is found that γ ranges between 2 and 3. When α is negative, aging overcomes the role of preferential
attachment, and scale-free properties are lost. For significant negative α network becomes a chain; the
youngest nodes are those who get connected.

In the general aging model, the non-linearity on the node degree is introduced, so this model has
two tunable parameters α and β. The probability that a link is created between the new node and the
existing node is defined as [62]

Πi(t) ∼ ki(t)
βταi . (2.40)
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2.4. Network models

Figure 2.7: Dependence of parameter α and network structure. Network topology vary from chain
network to the case where each node is connected to youngest node.

As before, depending on model parameters network evolves into different structures:

• For example if we fix β = 1 and α = 0 generated networks are scale-free; degree distribution
is P (k) ∼ k−γ with γ = 3.

• In the case of nonlinear preferential attachment β 6= 1 andα = 0 scale-free properties disappear.

• Scale-free property can be produced along the critical line β(α∗) in the α − β phase diagram,
see Figure 2.8.

• For α > α∗ networks have gel-like small world behavior.

• For α < α∗ and near critical line β(α∗) degree distribution has stretched exponential shape.

Figure 2.8: Phase diagram of aging network model.
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2.5 Fractal analysis

The study of time series is an important approach in understanding complex systems [107], and the
analysis of scaling laws and fractality in time series is particularly useful in characterizing their dy-
namics. With the Hurst exponentH , we can describe the degree of self-similarity or self-affinity across
different scales of time in time series x(t):

x(t) = aHx(at).

In other words, having self-similarity, means that if we rescale time t by a factor a, the time-series
values x(t) are rescaled by a factor aH . Monofractal [108, 109] time series is characterized by a
single scaling exponent that applies across all time scales. On the other hand, time series is called
multifractal.

2.5.1 Long and short-term correlations

The autocovariance function C(s) can be used to quantify the degree of persistence or correlation of a
stationary time series [107], where themean and variance do not changewith time. The autocovariance
function measures the linear dependence between the increments ∆xi and ∆xi+s at a lag s, where
∆xi = xi − xi−1, of time series {xi}, i = 1...N , and it is defined as the expected value of their
product:

C(s) = 〈∆xi∆xi+s〉 =
1

N − s

N−s∑
i=1

∆xi∆xi+s. (2.41)

If the time series is uncorrelated, C(s) is zero for all lags s. If the time series has short-range
correlations, C(s) decays exponentially with lag s, indicating that the correlations decay quickly with
distance in time:

C(s) = exp(−s/tc),
and this behavior is typical of time series generated by autoregressive processes,

∆xi = c∆xi−1 + εi,

with random uncorrelated offsets εi and c = exp(−1/tc).

If the time series has long-range correlations, C(s) decays as a power-law with lag s, indicating
that the correlations persist over long time scales. This behavior is typical of self-similar or fractal
time series, and it is characterized by a power-law exponent γ such that:

C(s) = s−γ.

Fourier filtering techniques can model this type of behavior. The Hurst exponent H is related to
the power-law exponent γ byH = 1− γ/2. Therefore, if we can estimate the Hurst exponent, we can
infer the degree of persistence or long-range correlations of the time series.

Due to the presence of noise in the data and non-stationarity, directly calculating the auto-
covariance functionC(s) can be a challenging task. This is because non-stationarities make it difficult
to define C(s) properly, as its average may not be well-defined. Additionally, on large scales, C(s)
fluctuates around zero, which makes it impossible to determine the correct correlation exponent γ.
Therefore, instead of computing C(s), it is common to estimate the Hurst exponent H .
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2.5. Fractal analysis

2.5.2 Rescaled range analysis

The rescaled range analysis (R/S) method proposed by Hurst [110]. is a popular technique to estimate
the Hurst exponent of a time series. It is a simple method that works well for a wide range of self-
similar processes. For time series xi, we can define the profile Yν for each segment of the size s:

Yν(j) =

j∑
i=1

(xνs+i − 〈xνs+i〉s).

Constant trends in the data are removed by removing the average values over segment 〈xνs+i〉s. From
there we can define the range between minimum and maximum value of obtained profile as Rν(s) =

maxYν(j)−minYν(j), and standard deviation is Sν(s) =
√

1
s

∑
Y 2
ν (j).

Finally, the rescaled range is averaged over all segments to obtain the fluctuation function F(s),

FRS(s) =
1

Ns

∑ Rν(s)

Sν(s)
∼ sH ,

where the H is the Hurst exponent. The Hurst exponent can be estimated from the slope of the
line in a log-log plot of R(s)/S(s) versus s. Values H < 1/2 indicate long-term anti-correlated data
while H > 1/2 long-term positively correlated data [107].

2.5.3 Fluctuation analysis

The fluctuation analysis is a method that relies on the principles of random walk theory [107]. It
involves taking a time series xi of lengthN and creating a global profile by calculating the cumulative
sum using equation 2.42. In this equation, 〈x〉 represents the average value of the time series.

Y (j) =

j∑
i=0

(xi − 〈x〉), j = 1, ..., N. (2.42)

Figure 2.9 shows examples of multifractal, monofractal and white noise signal with their global
profiles.

The profile of the signal Y is divided into Ns = int(N/s) non-overlapping segments of length s.
The last segment will be shorter ifN is not divisible with s. That is handled by doing the same division
from the opposite side of the time series, giving us 2Ns segments. Then we calculate the fluctuations
in each segment F 2(ν, s) and, finally, average overall subsequences, obtaining the mean fluctuation.
From the scaling of the function, we can determine the Hurst exponent

F2(s) = [
1

2Ns

∑
F 2(ν, s)]1/2 ∼ sH . (2.43)

Themost straightforward way to calculate the fluctuations is to consider the difference in the values
at the endpoints of each segment. It is the same as eliminating the linear trend from each segment.

F 2(ν, s) = [Y (νs)− Y ((ν + 1)s)]2

Figure 2.10 shows the global profile of the multifractal signal, divided in segments of the length s =
1000. On the top panel, each segment s is approximated with linear function.
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Figure 2.9: Multifractal, monofractal and white noise signals.

The trends present in the time series do not have to be linear [111]. The middle and bottom panel
in Figure 2.10 show that the segments of the signal could be very well approximated with some higher
order functions: quadratic or cubic. In general, using the detrended fluctuation analysis (DFA) we
could remove the polynomial trend of the order m [112]. From each segment ν, local trend pmν,s -
polynomial of order m - should be eliminated, and the variance F 2(ν, s) of a detrended signal is
calculated as in equation:

F 2(ν, s) =
1

s

s∑
j=1

[
Y (j)− pmν,s(j)

]2
. (2.44)
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Figure 2.10: Detrending of multifractal signal for the segments of length s = 1000. Panel A- linear
detrending, panel B-quadratic detrending, panel C- cubic detrending.
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2.5.4 Multifractality of the signals

The scaling behavior in many data may be more complicated, resulting that interwoven subset of time
series have different scaling exponents. This property is known as multifractality. The multifractality
may be caused by the time series values’ large probability distribution [113, 114]. In this situation,
shuffling time series cannot eliminate the multifractal features. The source of multifractality may also
come from different small and large fluctuations correlations. If density function is distribution with
finite moments, the shuffled time series will lose multifractal properties as correlations are easily de-
stroyedwith randomization. In situationswheremultifractality is caused by both types, the randomized
time series has weaker multifractality.

Multifractal detrended fluctuation analysis (MFDFA) is used [113, 114] to estimate multifractal
Hurst exponent H(q)

Fq(s) =

{
1

2Ns

2Ns∑
ν

[
F 2(ν, s)

] q
2

} 1
q

, q 6= 0.

The MFDFA for q = 2 is equivalent to the DFA method. The value of H(0), which corresponds
to the limit F (q), q− > 0, cannot be calculated directly because the exponent diverges. Instead, the
logarithmic averaging procedure has to be considered.

F0(s) = exp

{
1

4Ns

2Ns∑
ν

ln
[
F 2(ν, s)

]}
, q = 0. (2.45)

The fluctuating function scales as power-law Fq(s) ∼ sH(q) and the analysis of log-log plots Fq(s)
gives us an estimate of multifractal Hurst exponent H(q), see Figure 2.11.
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Figure 2.11: Dependence of the fluctuating functions on the scale for monofractal, multifractal and
white noise signals, and the Dependence of the Hurst exponent H on the scale 1 q for different types
of signal (bottom right).
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For monofractal time series, the scaling properties of all segments are the same, regardless of their
size or magnitude of change. This means that the value of H(q) will be the same for all values of q
[113, 107]. If the series exhibits multifractal behavior, then the scaling properties of different segments
of the series will be different, and the value of H(q) will vary depending on the magnitude of change in
the segment being analyzed. Positive values of q will indicate segments with large fluctuations, while
negative values of q will describe the scaling of segments with small fluctuations [107].

2.6 Dynamical reputation model

Consider a system where each component has an activity pattern that could be mapped to the discrete
signal, representing the moments when the event happened, such as the activity pattern when users are
sending an email or communicating, sharing opinions and information within the community. Users’
behavior directly influences their position in the community, which is measured through reputation.
The trust among users depends on the amount of interaction between them, which means the trust
changes over time. The computational model needs to capture the dynamic property of the trust.
Furthermore, the important property of trust is that it is easier lost than gained; the frequency of
interaction also matters. The trust between users who interact frequently should increase faster than
between users who rarely interact.

With Dynamic Interaction Based Reputation Model (DIBRM) [67], we can quantify the user rep-
utation Rn after each interaction using equation 2.46, where n is the number of interaction n ∈ 1, N

Rn = Rn−1β
∆n + In. (2.46)

The first part of the equation considers the reputation value after the previous interaction Rn−1,
weighted with coefficient β∆

n . Depending on the frequency of the interaction, reputation will rise or
decay. Parameter β ranges from 0 < β < 1 is forgetting factor. The ∆n measures time between two
interactions tn and tn−1:

∆n =
tn − tn−1

ta
, (2.47)

where ta is the characteristic time window of interaction. In the second part of the equation, In is the
reputation gained within each interaction. The basic value of each interaction is given as Ibn, and the
parameter α is the weight of the cumulative part

In = Ibn(1 + α(1− 1

An + 1
)). (2.48)

When ∆n < 1, a user is frequently active, meaning that the time between two interactions is less
than the characteristic time window. The number of sequential activities An increases by 1. On the
other hand, when ∆n > 1 is large, the reputation decays, while the number of activities resets to
An = 1.

For example, if we set the characteristic window size and basic value of interaction to ta = 1day,
Ibn = 1, we can analyze the influence of the parameters α and β on the user reputation. Lower α
and β values lead to faster reputation decline, as shown in Figure 2.12 - left panel. With lower β, the
reputation may quickly drop close to the reputation threshold, under which we don’t consider the user
as active. In contrast, with larger values of β, reputation stays high even if a user is inactive for a larger
period. The parameter α is the most important influence on burst behavior, where larger α leads to
higher reputation values.

If a user is frequently active, we can record the reputation after each day. On the other hand, if
tn − tn−1 > 1day we need to interpolate the reputation values for each day between two interactions,
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Figure 2.12: Left panel shows the dynamics of user reputation obtained in DIBRM model for different
model parameters α and β. Right panel shows the dependence of parameter β and number of days to
reputation from starting value In drops below threshold In = 1.

tn−1 < td < tn. To do that, we consider that due to inactivity, reputation will only decay, so it could
be calculated as Rd = Rn−1β

∆d , where ∆d = (td − tn−1)/ta.

When a user becomes inactive, its reputation starts to decline, and when it drops below the reputa-
tion threshold user does not have any influence on the community. We can approximate the dependence
of parameter β and time δt needed for reputation to reach this level as β = (R0

Ri
)
ta
δt . In the examples in

Figure 2.12, - right panel, the parameter ta = 1day, while we vary different starting reputation levels
In. For β values below 0.96, the decay is fast, and within two to four months of inactivity, even high
reputation values are reduced below the threshold. On the other hand, with values of β, the decay
process is more differentiated, and the high reputation becomes harder to lose, surviving up to a year
of inactivity. For β equal to 0.96, reputation with starting value 5 needs around one month to decay
below the threshold. For higher reputations, 500 or 1000, the decay period is around 5 months.

In this model, the user’s reputation changes continuously through time, decreases when the user is
inactive, and grows with frequent and constant user contribution. The reputation has highest growth
when user shows burst in activity. With model parameters, Ibn, ta, α, β, the dynamic of user reputation
may be controlled and adapted to different communities. If the community has its reputation system,
we can also fit the model parameters to mimic the actual reputation dynamic. In this thesis DIBRM
model is used to analyze Stack Exchange communities, Chapter 5, while in Appendix B, we suggest
the procedure to estimate the model parameters for this specific system.

33





Chapter 3

Evolving complex network structure
dependence on the properties of growth
signals

Complex networks grow by adding new nodes, and growing network models consider growth constant
over time. This approximation is sufficient for explaining how properties of complex networks can
emerge; for example, we find power-law degree distribution in the Barabasi-Albert model [32]. Models
mainly focus on linking rules and their influence on the topology of complex networks.

Still, the growth of real systems changes over time. In online social networks, new users join daily,
and the users’ activity might have bursty nature. We can consider a co-authorship network, where links
are created between scientists when they publish a paper [115, 116]. The dynamics of real networks
can be complex and highly influenced by nonlinear signals. The growth signal, the number of new
nodes in each time step, has cycles and trends. Circadian cycles are directly reflected in growth signals,
and we also find long-range correlations and multifractal properties [108].

In this chapter, we study how growth signals influence the network structure. We explain the
properties of growth signals, both real and computer-generated, and analyze networks created with a
growing network model where the interplay between aging and preferential attachment shapes their
structure. We are interested in incorporating non-constant growth signals into the model and measur-
ing their impact on complex networks. Differences between networks with the same number of nodes
and links can be observed by analyzing connectivity patterns. Figure 3.1 summarizes our goals.

3.1 Aging network model with growth signal

To enable nonlinear network growth in the number of nodes, we need to adapt the existing models
such that at each time step, we can addM ≥ 1 new nodes that make L ≥ 1 links with existing nodes
in the network. The master equation Nk, k degree nodes can be written as:

∂tNk =

M(t)∑
j=1

rk−j−→kNk−j −
M(t)∑
j=1

rk−→k+jNk +M(t)δk,L. (3.1)
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Figure 3.1: The open question is how nonlinear signals, in combination with the network model,
influence the network’s structure. Under what circumstances do networks have the scale-free, hub-
spoke, or chain structure?

We addM(t) nodes with L links at each time step. As multiple links between two nodes are not
allowed, we’ll getM(t) new nodes with degree L, which describes the third term in the equation. Old
nodes can increase their degree from 1 toM(t), as different new nodes can choose the same node. The
first term in the equation describes nodes with degree k ∈ {k−M(t), . . . , k−1} that getting degree k,
while in second term nodes with degree k entering degree k ∈ {k+ 1, . . . , k+M(t)}. The quantities
rk−j−→k and rk−→k+j are the rates that express the transitions of a node from class with degree k − j
to one with degree k and from class with degree k to class with degree k + j respectively.

For the model, we choose the aging model where linking probability depends on network degree
k and its age τ , Πi(t) ∼ ki(t)

βταi . With this linking probability, the master equation was solved for
M(t) = const. = 1, using approach [34]. WhenM(t) is the correlated function, the equation is not
solvable analytically. Instead, we use numerical simulations to study the influence of the signalM(t)
on the network structure. When we add only one link per node L = 1, networks are uncorrelated
trees. To obtain the clustered structures, we need to use L > 1; each new node can create more than
one link. Finally, we focus on the aging model parameters −∞ < α ≤ −1 and β ≥ 1. We expect a
critical line β(α∗)where scale-free networks can be found. Under critical line, networks have stretched
exponential degree distribution, and for large β small-world networks are present.

Finally, we need to define the new nodes’ time series. We focus on the growth of two real systems,
the TECH [117] community in the Meetup website and on two months of MySpace [118] social
network. Besides these signals, we use randomized MySpace and TECH signals and uncorrelated
Poissonian signals.

3.1.1 Characteristics of growth signals

MySpace signal is the number of new members who appear for the first time in the data. Here, the
time step is one minute. The MySpace signal has T = 3162 steps, with N = 10000 members. To
describe the properties of the signal, we use Multifractal detrended analysis and calculate the Hurst
exponent on different scales, showing the right pane of the Figure, 3.2. It is multifractal q < 0 and
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3.1. Aging network model with growth signal

becomes constant for q > 0; it has long-range correlations as H(q = 2) = 0.6. My Space signal
has cycles characteristic of the human circadian rhythm, Figure 3.2. We can easily destroy trends and
cycles if we randomize theMySpace signal. The randomization is done with the reshuffling procedure,
where we keep the number of nodes, length, and the mean value of the signal. The inset of the original
and randomized signals show the time series’ global profile; we find that trends are destroyed. Also,
the randomized MySpace signal no longer has long-range correlations; the Hurst exponent indicates
short-range correlations H = 0.5, and the signal becomes monofractal.
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Figure 3.2: MySpace signal, the random MySpace signal (left pane) and the dependence of multifrac-
tal Hurst exponent H(q) of the scale q (right pane).
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Figure 3.3: TECH signal, the random TECH signal (left pane) and the dependence of multifractal
Hurst exponent H(q) of the scale q (right pane).

The TECH is a group from the Meetup website that gathers users interested in technology. Using
theMeetup website, they organize offline events. The time unit in this time series is an event since then
are created links between events. The TECH time series M(t) represents the number of users who
joined the TECH community and visited the event for the first time. The time series length is T = 3162
steps, andwe countN = 3217members in the TECH community for a given period, Figure 3.3. TECH
signal has long-range correlations with Hurst exponent H(q = 2) = 0.6. Also, we find that TECH
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3. Evolving complex network structure dependence on the properties of growth signals

is multifractal, as the Hurst exponent is not constant across the scales. The multifractality originates
not only from signal trends but also from the broad probability distribution of time series. If we
randomize the TECH signal, we can easily destroy trends and cycles, but the signal keeps multifractal
properties, meaning that broad probability distribution can not be eliminated. Therefore, we generate
the uncorrelated signal from the Poissonian probability distribution. The length of this signal is T =
3246, while we keep the number of nodes N the same as in the TECH signal.

3.1.2 Structural differences between evolving complex networks

We can compare the networks with the same number of nodes and links generated with growth signals
with different properties. We use a growing network model where we vary parameters −3 < α ≤ −1
and −3 ≤ β ≤ 1. We also vary the network density, L ∈ {1, 2, 3}. For each set of model parameters
α, β, L and each signalM(t), we create the sample of 100 networks. Besides this, for the same set of
parameters, we generate the sample of networks with N = 10000 and N = 3217 nodes grown with
constant signalM(t) = 1; one node is added to the network at each time step. To examine how different
growing signals influence the structure of networks, we use D-measure [76], defined methodology
chapter. We equally consider the global and local properties, setting parameter w = 0.5. We compare
the networks grown with the constant and fluctuating signal with D-measure for all network pairs
between two samples and average the result. The advantage this measure has is that it can measure the
distance between two network structures, even if they are generated with the same model; that was not
the case with Hamming distance or graph editing distance [76].

Figure 3.4 presents the results for D-measure. The most significant distance between networks
is along the critical line β(α∗) of the aging model. The fluctuations present in the signal mainly
influence the scale-free networks. Structural differences exist for networks away from this line, but
they are much smaller. The D-measure is close to zero for gel small-world networks, β > β∗. Under
critical line, β < β∗, the D-measure depends on the properties of the signal. If we fix network density
L, the position of the critical line is independent of the properties of the signal. Still, with higher link
density, the critical line slightly moves toward larger β; see Figure 3.4.

In the region around the critical line, we find that the D-measure depends on the properties of the
signal. Multifractal signals TECH has the most considerable impact on network structure; the maxi-
mum value of the D-measure is Dmax = 0.552. Similar behavior is discovered for other multifractal
signals, random TECH and MySpace. The difference exists for networks generated with uncorrelated
signals: random MySpace and Poisson, but it is much smaller.

D-measure rises for lower α. In the case of a constant signal, the number of nodes added to the
network is equal for each time step, so at the time interval T , the network hasMT nodes. In fluctuating
signal, the number of nodes added during time interval T vary. Hubs emerge faster in signals, such as
TECH, where there are peaks in the number of new users. As we decrease the parameterα, fluctuations
in the signal become more critical, and the hubs emerge even for uncorrelated signals. The trends in
the real signals further promote the emergence of hubs in the network.

3.1.3 The structure of networks

We examine degree distribution, degree correlations, and clustering coefficient of networks generated
by real signals. These measures have provided a sufficient set for describing the structure of complex
networks. Results showed that multifractals influence networks more than monofractals; it is most
prominent in scale-free networks.

Figure 3.5 shows properties of networks generated with model parameters L = 2, α = −1.0, β =
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Figure 3.4: The comparison of networks grown with growth signals shown in figures 3.3 and 3.2
versus ones grown with constant signal M = 1, for the value of parameter α ∈ [−3,−1] and β ∈
[1, 3]. M(t) is the number of new nodes, and L is the number of links added to the network in each
time step. The compared networks are of the same size.

1.5, that lie on the critical line. The degree distributions P (k) of networks generated with real signals
TECH and MySpace have super-hubs emerged. Degree distributions generated with randomized and
white noise signals do not differ from the degree distribution of networks generated with the constant
signal. Networks generated with real signals average neighboring degree 〈k〉nn(k) and clustering
coefficient c(k) depend on node degree. In contrast, networks generated with constant and randomized
signals weakly depend on the degree k.

We also find structural differences between networks, obtained with model parameters under the
critical line α < α∗, see Figure 3.5. The difference is mainly found in the TECH signal. Degree
distribution P (k) shows the emergence of hubs in networks grown with TECH signal, while the ran-
domized and Poisson signals are more similar to networks grown with the constant signal. MySpace
signal, whose generalized Hurst exponentH(q) weakly depends on scale parameter q and whose long-
range correlations and trends are easily destroyed, do not influence the structure of networks more than
constant or randomized signal.

The properties of the time-varying signal do not influence the topological properties of small-
world gel networks, Figure 3.5. Here model promotes the existence of hubs. As this is the mechanism
through which the fluctuations alter the structure of evolving networks, the properties of the signal are
not relevant.
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Figure 3.5: Degree distribution, the dependence of average first neighbor degree on node degree, the
dependence of node clustering on node degree for networks grown with different time-varying and
constant signals. Model parameters have value α = −1.0, β = 1.5 and L = 2 for all networks. The
networks are from the scale-free class. Model parameters have value L = 2, α = −1.5, β = 1.5. The
networks have stretched exponential degree distribution. Model parameters have value L = 2, α =
−1.0, β = 2.0. Generated networks have small-world properties.
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3.2. Long range correlated signals

3.2 Long range correlated signals

The previous section showed that the growth signal of real systems has complex dynamics. Besides
long-range correlations, we also find multifractal properties, and it is hard to isolate individual effects
and analyze their influence separately. When this is the case, synthetic signals with specific charac-
teristics can help to verify our findings in real systems. The long-range correlated properties can be
included in time series using Fourier filtering transform method [119].

The long range correlated data have power-law correlations C(s) =< xixi+s >= s−γ character-
ized with coefficient γ. Hurst exponent depends on γ as H = 1 − γ

2
. The Fourier transform gives us

the power spectrum of the time series S(f), which is a function of the frequency f . For the long-range
correlated data, it depends on coefficient β = 1− γ and has the form:

S(f) ∼ f−β. (3.2)

We can generate the data using Fourier filtering with β = 2H − 1, as following:

• First generate one-dimensional sequence of uncorrelated random numbers ui from Gaussian
distribution with σ = 1.

• Calculate the Fourier transform of the generated sequence, uq, the spectrum is flat as data cor-
respond to white noise.

• Then filter the power spectrum with f−β/2, so the function will follow the power spectrum
expected for data with long-range correlations.

• Calculate the inverse Fourier transform xi. It converts data to the time domain where the signal
has desired long-range correlations.

The Fourier filtering method generates the Gaussian distributed data, so data are without broad
distributions, nonlinear or multifractal properties. Using this method, we generated the signals for
different values of the Hurst exponent; see Figure 3.6. The obtained signals are round to integers, and
the mean values of signals are close to 4.

As before, we focus on the region of the model phase diagramwith negative α and positive β as the
transition line from stretched-exponential across scale-free to the small world-gel networks are found.
We take a range of parameters −3 ≤ α ≤ −0.5 and 1 ≤ β ≤ 3 with steps 0.5, and we also vary the
number of links each new node can create L ∈ 1, 2, 3. For each combination of (α, β, L), we generate
the sample of 100 networks and compare the structure of the network grown with fluctuating signals
with different Hurst exponentH ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and constant signalM = 4. The results
represented by D-measure, shown in Figure 3.7, are obtained by averaging the D-measure between all
possible pairs of generated networks.

The higher values of the D-measure are found in the region of critical line β(α∗). The most con-
siderable influence is on networks with scale-free distribution. Comparing D-distance in only one
point of the phase diagram, for example, L = 1, α = −2.5, β = 2.5, we find that when the Hurst
exponent is more prominent, correlations in the signal make a bigger impact on the network structure.
D-measure between networks grown by signal with Hurst exponent H = 1.0 and the constant signal
is D(H = 1.0,M = 4) = 0.405, while between networks grown with a signal with H = 0.8 and
the constant signal is D(H = 0.8,M = 4) = 0.316. For α > α∗, networks have similar structural
properties, and D-measure is close to 0. In the region of networks with stretched exponential degree
distribution, α < α∗ differences are small.
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Figure 3.6: Monofractal signals generated with Fourier filtering method for different Hurst exponents

Figure 3.7: D-distance between networks generated with different long-range correlated signals with
a fixed value of Hurst exponent and networks generated with constant signal M=4.
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3.3. Conclusions

We further explore the assortativity index and clustering coefficient of generated networks. Figure
3.8 are results for several aging model parameters that show the difference between networks this
model can produce. All networks are disassortative, with a negative degree-degree correlation index.
For the parameters below critical line values, α = −2.5, β = 1.5 r does not depend on the Hurst
exponent. Above the critical line are small-world networks, and they are disassortative. The minimum
value of the assortativity index is r = −1, for L = 1, indicating the presence of hubs connecting many
nodes. The assortativity index grows slightly with link density.

In the region of critical parameters, the assortativity index depends on the value of the Hurst
exponent. Signals With Hurst exponent H > 0.8 have a larger influence on the assortativity index.
Networks become more disassortative; see the line for parameters L = 1, α = −2.5, β = 2.5 in
Figure 3.8. The long-range correlations have a stronger effect on the evolution of networks with lower
density.
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Figure 3.8: Mean assortativity index for networks generated with different model parameters α, β, L
and different long-range correlated signals with Hurst exponent H .

Figure 3.8 shows the mean clustering coefficient. For L = 1, networks are uncorrelated trees
with clustering coefficient 0. For network density L > 1, nodes are organized into clusters. Under
the critical line, for the parameter, L = 3, α = −2.5, β = 1.5, the clustering coefficient is constant
and low. Similar values are obtained for the clustering coefficient for critical parameters L = 3, α =
−1.5, β = 2.0, but for Hurst exponentH > 0.8 clustering coefficient increases. Small world networks,
L = 3, α = −1.5, β = 2.5 are clustered, the value of < c > is high. The value of clustering for
networks created with the constant signal is 0.8. Networks grown with white noise signals and signals
with H=0.6 have higher clustering values, while networks grown with signals with a Hurst exponent
larger than 0.6 have the same clustering value below 0.8.

3.3 Conclusions

In this chapter, we focused on the properties of growth signals and their influence on the system. The
network grows at a constant rate in the simplest complex network models. In reality, growth signals
are not constant, they are temporally correlated, and the main question is what impact they have on
the complex networks. We combined the aging model with nonlinear growth while we used real and
computer-generated long-range correlated signals for growing signals. The network structure depends
on the type of signals.

The aging model can generate different complex networks depending on the model parameters.
Our results showed that the most significant difference between networks generated with a constant
and fluctuating signal is found on the critical line, where networks have broad degree distribution.
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3. Evolving complex network structure dependence on the properties of growth signals

While temporal correlations do not affect the degree distribution, the networks generated with fluctu-
ating signals are more clustered and have more significant degree-degree correlations. The D-measure
indicates that structural differences exist even for networks generated with white noise. For multifrac-
tal signals, we find the larger values of the D-measure. Furthermore, if we focus only on monofractal
signals, characterized by the fixed value of Hurst exponent, H , the difference between networks rises
with H .

Away from the critical line, the fluctuations do not have a strong influence on the network structure;
D-measure is close to zero. In small-world networks, super-hubs emerge, and no matter how strong
correlations, trends, or cycles exist in the signal, the structure of small-world networks does not change.
Similar conclusions are found under the critical line, where networks with stretched exponential degree
distribution appear. As α << α∗, the new nodes attach to close ancestors, and monofractals do not
impact the network structure. Only signals withmultifractal properties may contribute to the formation
of hubs, which is reflected in larger D-measure between networks.

Previous research on temporal networks [54] has shown that edge activation properties impact the
complex system’s dynamics. Also, different studies indicated the importance of fluctuating signals
[27, 40, 35]. Our results imply that modeling the social and technological networks should include
non-constant growth. In combination with local linking rules, the properties of growth signals can
significantly alter the network structure.
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Chapter 4

The growth of social groups

The evolving complex networks have a tendency to separate into connected fragments, communities,
or groups of nodes. These communities are formed around certain topics and interests; they could
also evolve and influence network structure and members’ behavior. The distribution of the sizes
of these communities has a universal shape. To understand how the dynamics and structure of the
networks affect the distribution of community sizes, we combine empirical approaches and theoretical
modeling. We analyze real-world social networks and collect data about their structure and community
sizes, while theoretical modeling involves developingmodels able to capture essential features of social
networks and explain the emergence of the universal distribution of group sizes.

4.1 Empirical analysis of the social group growth

Two popular online platforms, Reddit and Meetup, are organized into different groups. On Reddit
1, users create subreddits, where they share web content and discussion on specific topics, so their
interactions are online through posts and comments. The Meetup groups 2 are also topic-focused,
but the primary purpose of these groups is to help users in organizing offline meetings. As meetings
happen face-to-face, Meetup groups are geographically localized, so we’ll focus on groups created in
two towns, London and New York.

The Meetup data cover groups created from 2003, when the Meetup site was founded, until 2018,
when we downloaded data using theMeetup API.We extracted the groups from London and NewYork
that were active for at least two months. There were 4673 groups with 831685 members in London
and 4752 groups with 1059632 members in New York. For each group, we got information about
organized meetings and users who attended them. From there, for each user, we can find the date
when the user participated in a group event for the first time; it is considered the date when the user
joined a group.

The Reddit data were downloaded from the https://pushshift.io/ site. This site collects posts and
comments daily; data are publicly available in JSONfiles for eachmonth. The selected subreddits were
created between 2006 and 2011, and we filtered those active in 2017. We removed subreddits active for
less than two months. The obtained dataset has 17073 subreddits with 2195677 active members. For

1https://www.reddit.com/
2www.meetup.com
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each post, we extracted the subreddit-id, user-id, and the date when the user created the post. Finally,
we selected the date when each user posted on each subreddit for the first time.

4.1.1 The empirical analysis of social groups

We have information about when the user attended the group event for eachMeetup group. In contrast,
we have detailed data about user activity for the subreddit, so we can extract the information when a
user creates a post for the first time. Those dates are considered as the timestamp when a user joins
to the group. So both datasets have the same structure: (g, u, t), where t is the timestamp when user
u joined group g. For each time step, we can calculate the number of new members in each group
Ni(t), and the group size Si(t). The group size at time step t is Si(t) =

∑k=t
k=t0

Ni(t), where t0 is
month when group is created. The group size is increasing over time, as we do not have information if
the user stopped to be active. Also, we calculate the growth rate as the logarithm of successive sizes
R = log(Si(t)/Si(t− 1)).

Even thoughMeetup and Reddit are different online platforms, we find some common properties of
these systems; see Figure 4.1. The number of groups and the number of new users grow exponentially.
Still, subreddits are larger groups thanMeetups. The distribution of groups sizes follows the lognormal
distribution:

P (S) =
1

Sσ
√

2π
exp(−(ln(S)− µ)2

2σ2
), (4.1)

where S is the group size and µ, and σ are parameters of the distribution.

The distributions for Meetup group sizes in London and New York follow a similar lognormal
distribution, with parameters µ = −0.93, σ = 1.38 for London and µ = −0.99 and σ = 1.49 for New
York. The group sizes distribution of Subreddits is a broad lognormal distribution that resembles the
power law; it has parameters µ = −5.41 and σ = 3.07. Still, we used the log-likelihood ratio method
and showed that lognormal distribution is a better fit for these data than the power-law. The Result
section is given a detailed analysis that supports these findings.

The simplest model that generates the lognormal distribution is the multiplicative process [99].
Gibrat used this model to explain the growth of firms. The main assumption of this model is that
growth rates R = log St

St−∆t
do not depend on the size S and that they are uncorrelated. Further, this

implies the lognormal distribution of the sizes, while the distribution of growth rates appears to be
a normal distribution, [120], [121]. Figure 4.2 shows the distribution of the logrates that follow a
lognormal distribution, contrary to the Gibrat law. Furthermore, logrates depend on the group size
4.2. For these reasons, the Gibrat law can not explain the growth of online social groups. Similar
conclusions are shown in recent studies about cities or the growth of the internet [122, 123].

The growth of online social groups has universal behavior independent of the group’s size. If
we aggregate the groups created in the same year y, and each group size normalizes with average size
< Sy >, syi = Syi / < Sy >wewill find that group sizes distributions for the same dataset and different
years fall on the same line, Figure 4.2. The same characteristics are observed for the distribution of
the normalized logrates 4.2. The growth is universal over time, and the group sizes distribution does
not change from year to year.
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Figure 4.1: The number of groups over time, normalized sizes distribution, normalized log-rates
distribution and dependence of log-rates and group sizes for Meetup groups created in London from
08-2002 until 07-2017 that were active in 2017 and subreddits created in the period from 01-2006 to
the 12-2011 that were active in 2017.
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Figure 4.2: The figure shows the groups’ sizes distributions and log-rates distributions. Each distribu-
tion collects groups founded in the same year and is normalized with its mean value. The group sizes
are at the end of 2017 for meetups and 2011 for subreddits.
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4.2 Theoretical model of social group growth

Meetup and Reddit engage members in different activities. Still, there are some underlying processes
same in both systems. Each member can create new groups and join existing ones. Both systems grow
in the number of groups and users, and each user can belong to an arbitrary number of groups. In the
previous section, we identified the universal patterns in the growth of social groups, but the growth
can not be modeled with the Gibrat law.

The complex network models allow us to simulate the growth of these systems considering all
types of members’ activities. We can identify how model parameters shape growth by varying linking
rules. Regarding the user’s group choice, it was shown that social connections play an important
role [124, 125]. On the other hand, users can be driven by personal interests. Diffusion between
groups could also be enhanced with rich-get-richer phenomena, where users join larger groups. With
a complex network model, we can easily incorporate the nonlinear growth in the number of users and
groups, as it is an important parameter that shapes the structure and dynamics of the complex network
[126, 127, 63].

The evolution of the social groups has been studied using the co-evolution model in the reference
[125]. This model consists of two evolving networks: the bipartite network, which stores connections
between users and groups, and the affiliation network of social connections. At each time step, active
users create new connections in the affiliation network; i.e., they make new friends. They also join
existing groups or create new ones, which updates the bipartite network. The group selection can
be random with probability proportional to the group size; otherwise, the group is selected through
social contacts. Using this model, authors have reproduced the power-law group size distribution
found in several communities, such as Flickr or LiveJournal. The empirical analysis of Meetup and
Reddit groups showed that group size distribution could be lognormal, meaning that some different
mechanisms control the growth of the groups.

We propose a model that is based on the co-evolution model. The main difference between those
two models is how model parameters are defined. First of all, in the co-evolution model user becomes
inactive after period ta, which is drawn from an exponential distribution with the rate λ, while in our
model probability that the user is active is constant, and the same for each user. The second difference
is how groups are chosen. While in the co-evolution model probability that the user selects a group
through social linking depends on the friend’s degree, we give preference to groups where a user has
a larger number of social contacts. We also modified the rules for random linking, so users choose a
group with uniform probability.

4.2.1 Groups growth model

The representation of the model is given in Figure 4.3. The model consists of two networks:

• Bipartite network B(VU , VG, EUG), where VU is set of users, VG set of groups and EUG set of
links between users and groups, where link e(u, g) indicates that user u is member of group g.

• Social network G(VU , EUU) describes the social connections e(u, v) between users u and v, and
V (U) is set of users same as in bipartite network.

The bipartite and social networks evolve. New users NU(t) are added to the network at each step.
It is how the set of users VU in the bipartite and social network can grow. At arrival, each new member
connects to a randomly selected user in the social network G. This allows new members to choose a
group based on social contacts [124]. The activity of old members is a stochastic process; old members
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are activated with probability pa. The set of active usersAU has newmembersNU(t) and old members
who decided to be active in that time step.

The active users can create a new group with probability pg. By this, group node g is added to the
set of group nodes VG in bipartite networkB. If an active user does not create a new group, it will join
the existing one with probability 1− pg, see lower panel on Figure 4.3. When the user creates a new
group or joins an existing one, the link e(u, g) is made in the bipartite network B.

Figure 4.3: The top panel shows bipartite (member-group) and social (member-member) networks.
Filled nodes are active members, while thick lines are new links in this time step. In the social
network, dashed lines show that members are friends but do not share the same groups. The lower
panel shows the model schema, where pg is the probability that the user creates a new group, while
paff is the probability that group choice depends on social connections. Example: member u6 is a
new member. First, it will make a random link with node u4, with probability, pg makes a new group
g5. With probability, pa member u3 is active, while others stay inactive for this time. Member u3

will, with probability 1− pg choose to join one of the old groups, and with probability paff linking is
chosen to be social. As its friend u2 is a member of a group g1, member u3 will also join group g1.
When member u3 joins group g1, it will make more social connections; in this case, it is member u1.

When joining existing groups, users may be influenced by social connections. This linking happens
with probability paff . The second case is that the user chooses a random group with probability
1− paff .

Social linking depends on the properties of a bipartite and social network. The networks can be
represented with matrices B and A, so if a link between two nodes exists, they have element 1. The
neighborhood of user u, Nu in a bipartite network is a set of groups in which the user is a member.
Similarly, we define the neighborhood of group g as Ng, as a set of users who belong to the group.
From there, we can define the probability Pug that the user u will choose group g. This probability is
proportional to the number of social contacts that the user has in the group

Pug =
∑
u1∈Ng

Auu1 . (4.2)

After selecting group g, user u is introduced to new members in the group and can make new
social contacts. In the simplest case, we could assume that all members belonging to a group are
connected. However, previous research on this subject [117, 128, 125] has shown that the existing
social connections of members in a social group are only a subset of all possible connections. We
selectX randommembers ui from a group g and make new connections in the social network e(u, ui).
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4.2. Theoretical model of social group growth

The model parameters pa and pg are important for controlling the number of users and groups.
With larger parameter values pa, more users become active, and the number of links in bipartite and
social networks grows faster. Parameter pg controls the rate at which new groups are created. For
example, if pg = 0, users will not create new groups. Also, if pg = 1, users will only create new
groups, and the resulting network will consist of star-like subgraphs. In real systems, we do not expect
extreme values for probabilities pa and pg. First, not all members are constantly active, and we do
not find a burst in the creation of the groups. From real data, we notice that there is always a higher
number of users than groups in social systems. The parameter paff how users choose groups, and with
higher paff social connections become more important.

4.2.2 Dependence of the group size distribution on model parameters

Before applying the group growth model on Meetup and Reddit, we consider the system where at each
time step, a constant number of users is added N(t) = 30. We also fix the probability that the user
is active to pa = 0.1, so we can, in more detail, explore the influence of parameters pg and paff . We
plot the group size distribution after the 60 steps of simulation. The values of pg and the pa influence
the number of groups, their maximum size, and the shape of group size distribution. With probability
pg = 0.1, users create a large number of groups, over 104, while with pg = 0.5, they are on the order
of magnitude 105.

Figure 4.4 show the obtained group size distributionswith power-law and lognormal fits. Users join
randomly chosen groups for a lower parameter value pg = 0.1 and paff = 0. Group size distributions
are approximated with lognormal. When the affiliation parameter is larger, paff = 0.5, the lognormal
distribution becomes broader, and so on, we find the larger maximum group size. If we increase the
parameter pg = 0.5, every second active user will create a group. At this group creation rate, the group
size distribution deviates from lognormal, but it is not explained with power-law either, right column
on Figure 4.4.

Figure 4.4: The distribution of sizes for different values of pg and paff and constant pa and growth of
the system. The combination of the values of parameters of pg and paff determine the shape and the
width of the distribution of group sizes.
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Finally, we compare how group size distribution depends on different rules in random linking. In
our model, the probability that the user chooses a random group is uniform. In contrast, in the co-
evolution model [125], probability depends on the group size, as in the preferential attachment model.
Instead of random linking, if we incorporate preferential linking, users with probability 1− paff tend
to choose larger groups, and group size distribution changes significantly. Similar to the co-evolution
model, we find the power-law distribution. Figure 4.5 shows the results from a model where we add a
constant number of new users at each time step. The probabilities pa and pg are fixed, and the affiliation
parameter takes values 0, 0.5 and 0.8. If we consider random linking, a top panel on Figure 4.5, the
distribution becomes broader with larger paff . On the other hand, with preferential linking, group size
distribution is a power law, and the paff parameter does not have a large impact on the distribution
shape.

Figure 4.5: Groups sizes distributions for groups model, where at each time step the constant number
of users arrive, N = 30 and old users are active with probability pa = 0.1. Active users make new
groups with probability pg = 0.1, while we vary affiliation parameter paff . With probability, 1−paff ,
users choose a group randomly. The group sizes distribution (top row) is described with a lognormal
distribution. The distribution has a larger width with a higher affiliation parameter, paff . The bottom
row presents the case where with probability 1 − paff , users prefer larger groups. For all values of
parameter paff , we find the power-law group sizes distribution.
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4.3 The growth of real social groups

The social systems do not grow at a constant rate. In Ref. [63], authors have shown that features of
growth signal influence the structure of social networks. For these reasons, we use the real growth
signal from Meetup groups located in London and New York and Reddit community to simulate the
growth of the social groups in these systems. Figure 4.6 top panel shows the time series of the number
of new members that join each of the three systems each month. All three systems have relatively low
growth initially, which accelerates as the system becomes more popular.

Figure 4.6: The time series of the number of new members (top panel), the ratio between old mem-
bers and total members in the system (middle panel), and the ratio between new groups and active
members(bottom panel) for Meetup groups in London, Meetup groups in New York, and subreddits.

We also use empirical data to estimate pa, pg and paff . Probabilities that old members are active pa
and that new groups are created pg can be approximated directly from the data. Activity parameter pa
is the ratio between the number of old members active in month t and the total number of members in
the system at time t. Figure 4.6 middle row shows the variation of parameter pa during the considered
time interval for each system. The values of this parameter fluctuate between 0 and 0.2 for London,
and New York-based Meetup groups, while for Reddit, it ranges between 0 and 0.15. To simplify our
simulations, we assume that pa is constant in time and estimate its value as its median value during
the 170 months for Meetup systems and 80 months of the Reddit system. For Meetup groups based in
London and New York, pa = 0.05, while Reddit members are more active on average, and pa = 0.11
for this system.

Figure 4.6 bottom row shows the evolution of parameter pg for the three considered systems. The
pg in month t is estimated as the ratio between the groups created in month t Ngnew(t) and the total
number of groups that monthNgnew(t)+Ngold(t), i.e., pg(t) = Ngnew(t)

Nnew(t)+Nold(t)
. We see from Figure 4.6

that pg(t) has relatively high values at the beginning of the system’s existence. In the beginning, these
systems have a relatively small number of groups and often cannot meet the needs for the content of all
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their members. As time passes, the number of groups and content offerings within the system grows,
and members no longer have a high need to create new groups. Figure 4.6 shows that pg fluctuates
less after the first few months, and thus we again assume that pg is constant in time and set its value to
median value during 170 months for Meetup and 80 months for Reddit. For all three systems, pg has
the value of 0.003.

The affiliation parameter paff cannot estimate directly from the empirical data. For these reasons,
we simulate the growth of social groups in each of the three systems with the time series of new
members obtained from the real data and estimated values of parameters pa and pg, while we vary
the value of paff . For each of the three systems, we compare the distribution of group sizes obtained
from simulations for different values of paff with ones obtained from empirical analysis using Jensen
Shannon (JS) divergence. The JS divergence [129] between two distributions P and Q is defined as

JS(P,Q) = H

(
P +Q

2

)
− 1

2
(H(P ) +H(Q)) , (4.3)

whereH(p) is Shannon entropyH(p) =
∑

x p(x)log(p(x). The JS divergence is symmetric, and if P
is identical toQ, JS = 0. The smaller the JS divergence value, the better the match between empirical
and simulated group size distributions. Table 4.1 shows the value of JS divergence for all three systems.
We see that for London-based Meetup groups; the affiliation parameter is paff = 0.5, for New York
groups paff = 0.4, while the affiliation parameter for Reddit paff = 0.8. Our results show that social
diffusion is important in all three systems. However, Meetup members are more likely to join groups at
random, while for Reddit members, their social connections are more important regarding the choice
of the subreddit.

Table 4.1: Jensen Shannon divergence between group sizes distributions from model (in the model,
we vary affiliation parameter paff) and data.

paff JS cityLondon JS cityNY JS reddit2012
0.1 0.0161 0.0097 0.00241
0.2 0.0101 0.0053 0.00205
0.3 0.0055 0.0026 0.00159
0.4 0.0027 0.0013 0.00104
0.5 0.0016 0.0015 0.00074
0.6 0.0031 0.0035 0.00048
0.7 0.0085 0.0081 0.00039
0.8 0.0214 0.0167 0.00034
0.9 0.0499 0.0331 0.00047

Figure 4.7 compares the empirical and simulation distribution of group sizes for three considered
systems. We see that empirical distributions for Meetup groups based in London and New York are
perfectly reproduced by the model and chosen values of parameters. In the case of Reddit, the dis-
tribution is very broad, and the model well reproduces the tail of the distribution. The bottom row
of Figure 4.7 shows the distribution of logarithmic values of growth rates of groups obtained from
empirical and simulated data. We see that the tails of empirical distributions for all three systems are
well emulated by the ones obtained from the model. However, there are deviations that are the most
likely consequence of using median values of parameters pa, pg, and paff .
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4.3. The growth of real social groups

Figure 4.7: The comparison between empirical and simulation distribution for group sizes (top panel)
and logrates (bottom panel).

4.3.1 Distributions fit

We compute the log-likelihood ratio R and p-value between different distributions and lognormal fit
[103] to determine the best fit for the group size distributions. Distribution with a higher likelihood is
a better fit. The log-likelihood ratio R has a positive or negative value, indicating which distribution
represents a better fit. To choose between two distributions, we need to calculate the p-value to be
sure that R is sufficiently positive or negative and that it is not the result of chance fluctuation from
the result close to zero. If the p-value is small, p < 0.1, it is unlikely that the sign of R is the chance
of fluctuations, and it is an accurate indicator of which model fits better.

Table 4.2 summarizes the findings for empirical data on group size distributions from Meetup
groups in London and New York and Reddit. Using the maximum likelihood method, we obtain the
parameters of the distributions [103]. The results indicate that lognormal distribution best fits all three
systems. Figure 4.8 shows the distributions of empirical data and lognormal fit on data. For Meetup
data, we present fit on stretched exponential distribution, which fits a large portion of data well. For
subreddits, distribution is broad and potentially resembles power-law. Still, the lognormal distribution
is a more suitable fit.

We use the same methods to estimate the fit for simulated group size distributions on Meetup
groups in London, New York, and Subreddits. Table 4.3 shows the results of the log-likelihood ratio
R and p-value between different distributions. We conclude that lognormal distribution is most suit-
able for simulated group size distributions. We confirm our observations by plotting lognormal and
stretched exponential fit on data, Figure 4.9.
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Table 4.2: The likelihood ratio R and p-value between different candidates and lognormal distribution
for fitting the distribution of groups sizes of Meetup groups in London, New York and in Red-
dit. According to these statistics, the lognormal distribution represents the best fit for all communities.

distribution
Meetup

city London
Meetup
city NY Reddit

R p R p R p

exponential -8.64e2 8.11e-32 -8.22e2 6.63e-26 -3.85e4 1.54e-100
stretched

exponential -3.01e2 1.00e-30 -1.47e2 7.78e-8 -7.97e1 5.94e-30

power law -4.88e3 0.00 -4.57e3 0.00 -9.39e2 4.48e-149
truncated
power law -2.39e3 0.00 -2.09e3 0.00 -5.51e2 2.42e-56

Figure 4.8: The comparison between lognormal and stretched exponential fit to London and NY data,
and between lognormal and power law for Subreddits. The parameters for lognormal fits are 1) for
city London µ = −0.93 and σ = 1.38, 2) for city NY µ = −0.99 and σ = 1.49, 3) for Subreddits
µ = −5.41 and σ = 3.07.

Table 4.3: The likelihood ratio R and p-value between different candidates and lognormal distribu-
tion for fitting the distribution of simulated group sizes of Meetup groups in London, New York
and Reddit. According to these statistics, the lognormal distribution represents the best fit for all
communities.

distribution
Meetup

city London
Meetup
city NY Reddit

R p R p R p

exponential -6.27e4 0.00 -5.11e4 0.00 -1.26e5 7.31e-125
stretched

exponential -1.01e4 1.96e-287 -6.69e3 1.46e-93 -1.39e4 0.00

power law -2.29e5 0.00 -3.73e5 0.00 -4.38e4 0.00
truncated
power law -9.28e4 0.00 -1.55e5 0.00 -9.12e4 0.00
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4.3. The growth of real social groups

Figure 4.9: The comparison between lognormal and stretched exponential fit to simulated group size
distributions. The parameters for lognormal fits are 1) for city London µ = −0.97 and σ = 1.43, 2)
for city NY µ = −0.84 and σ = 1.38, 3) for Subreddits µ = −1.63 and σ = 1.53.

4.3.2 Users partition in bipartite network - degree distribution

So far, the group growth model has focused on the degree distribution of groups and under what rules
the universalities in the system reflected in the lognormal distribution of group sizes emerge. The
model parameter pa controls the users’ activity level; otherwise, it shapes the degree distribution of
users in the bipartite network. As this probability is constant and uniform among all users, we do
not expect rich properties of users’ degree distribution. The expected distribution is exponential for
growing random graph [130], and the groups’ growth model produces the same property. In Figure
4.10, blue dots show degree distributions of modeled Meetup and Reddit systems. This distribution is
very well fitted with exponential form. Furthermore, in empirical data, these distributions are long-
tailed, green dots in Figure 4.10, so the model can not reproduce the degree distribution of the users.
In real systems, the probability that the user is active does not have to be uniform and constant. The
previous work proposed that each user has a specific lifetime [131], but different linking rules could
play an important role in shaping users’ degree distribution. For example, pa could be preferential
toward high-degree users or even be time-dependent.
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Figure 4.10: Users degree distributions from empirical data are compared to degree distributions
observed by groups growth model.
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4.4 Conclusions

We apply complex network theory and statistical physics methods to describe the evolution of online
social groups, Meetups in London and NewYork and Reddits. Instead of studying user interaction
networks in a single group, which is a common approach, we are interested in quantifying how users
interact with the system of multiple groups and determining which processes drive the growth of
groups. Similar systems have been analyzed before. For example, it was found that the distribution
of the cities or firms follows the lognormal and stays stable, showing universal behavior. Contrary,
the previous work on online social groups indicated that group size distributions of LiveJournal and
Youtube follow power-law [125]. On the other hand, for Meetup and Reddit, we find the emergence of
lognormal distribution of group sizes, and the distribution of Reddit is much broader. Furthermore,
these systems grow exponentially in the number of groups and new users.

Meetup and Reddit may be platforms with different purposes, but on the lower level, both systems
could be described with the same processes users perform: they can join existing groups or create new
ones. Also, in these systems, new users constantly arrive. As we find the lognormal distribution in
group sizes, our first attempt was to describe this system with the Gibrat model. It is a proportional
growth size model, where group size distribution converges to the lognormal distribution while the
log rates take the normal distribution. The second condition still needs to be met, so we need to use a
more intricate method.

To explore the growth of these systems in more detail, we used a model where the social system
is presented with evolving bipartite and social networks [125]. The bipartite network has partitions of
users and groups, and a link exists if a user is a group member. The social network describes the social
connections between members. At each time step, new users arrive in the system, following the time
series of new users, and with probability, pa old members also decide to be active. The active users
can create a new group with probability pg; otherwise, they will join existing groups. Their decision to
select a group based on social connection is determined with probability paff ; otherwise, the choice
is random.

We estimated model parameters pa, pg, and paff from empirical data. We saw that model ap-
proximates well the empirical distributions. For Meetup groups in London and New York, the paff
parameter is smaller, while for Reddit, paff is higher, resulting in broader group size distribution. It
also means that for Reddit members, social connections are more important for the choice of groups.

With results in this chapter, we contribute to the knowledge of the growth and segmentation of
the socio-economic systems. Our work was motivated by the Co-evolution model [125]. The authors
explore the social groups in which group size distribution scales as power-law. We identified different
universality class, the system where group size distribution follows log normal. Further, we marked
off a set of linking rules which led to lognormal group size distribution and compared these two cases.
By this, we expanded the classes of social systems that can be modeled.
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Chapter 5

The sustainability of evolving
knowledge-based communities

One of the key findings from the research on complex networks is that the structure of social interac-
tions plays a significant role in their sustainability [117, 132]. Social interactions can be positive and
negative, playing a vital role in shaping network dynamics. Positive interactions, such as cooperation,
can lead to the formation of clusters or communities within the network, promoting its sustainability
[133, 134]. In contrast, negative interactions, such as competition, can lead to the breakdown of the
network structure and decrease its sustainability [135, 132]. Social interactions can also influence the
emergence of collective behavior, which can significantly impact its sustainability [117, 132]. In this
chapter, we study Stack Exchange communities’ structure, dynamics, and sustainability.

The Stack Exchange (SE) is a network of question-answer websites on diverse topics. In the
beginning, the focus was on computer programming questions with Stack Overflow 1 community. Its
popularity led to the Stack Exchange network, which counts more than 100 communities on different
topics. The SE communities are self-moderating, and the questions and answers can be voted, allowing
users to earn Stack Exchange reputation and privileges on the site.

The new site topics are proposed through site Area51 2, and if the community finds them rele-
vant, they are created. Every proposed StackExchange site needs interested users to commit to the
community and contribute by posting questions, answers, and comments. After a successful private
beta phase site reaches the public beta phase, other members can join the community. The site can be
in the public beta phase for a long time until it meets specific SE evaluation criteria for graduation.
Otherwise, it may be closed with a decline in users’ activity. However, SE criteria for graduation have
not been applied consistently on every SE site, as many sites graduated without reaching all required
thresholds. As those measures only quantify the overall number of questions, answers, or highly active
users, we want to understand how the SE community structure evolves and identify factors that influ-
ence sustainability. The need to share knowledge with others motivates users to use Q-A platforms.
Still, the fact that they interact with each other reveals their sense of belonging to the community and
the presence of trust among users. Our proxy for measuring trust in the community is the Dynamic
Interaction Based Reputation Model.

1More information about StackOverflow is available at https://stackoverflow.co/, and a broad introduc-
tion to the SE network is available at: https://stackexchange.com/tour.

2Visit https://area51.stackexchange.com/faq for more details about closed and beta SE communities
and the review process.
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5. The sustainability of evolving knowledge-based communities

We focused analysis on four pairs of SE communities with the same topic. Astronomy, Literature,
and Economics are active communities 3 The first time, these communities were unsuccessful and thus
closed. We also compare closed Theoretical Physics with the Physics site, considering that those two
topics engage similar type of users.

5.1 Network properties of Stack Exchange data

On Stack Exchange sites, the interaction between users happens through posts. As we are interested
in examining the characteristics of the users, we map interaction data to the networks. Using com-
plex network theory, we can quantify the properties of obtained networks and compare different SE
communities, e.g., alive and closed SE sites.

In the user interaction network, the link between two nodes, user i and j, exists if user i answers
or comments on the question posted by user j or user i comments on the answer posted by user j. The
created network is undirected and unweighted, meaning that we do not consider multiple interactions
between users or the direction of the interaction.

The first approach is to aggregate all interactions in the first 180 days and study the properties of
the static network. Many local and global network measures are dependent [12], and it was shown
that degree distribution, degree-degree correlations, and clustering coefficient are sufficient for the
description of the properties of complex networks [136].

We calculate the degree distribution, Figure 5.1, and compare the distributions of active and
closed communities of the same topic. Degree distributions between active and closed communities
follow similar lines.
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Figure 5.1: Degree distribution of four pairs of Stack Exchange websites: Physics, Economics, As-
tronomy and Literature.

If we take a look into neighbor degree depending on the node degree knn(k), Figure 5.2, we find
that there are structural differences between networks formed in the active and closed communities.
On average, k-degree users in active communities have neighbors with a larger degree than is the
case in closed communities. The results are consistent for Physics, Economics, and Literature. For
Astronomy, we find different behavior, where the knn(k) distributions of closed communities are on
top of the distributions of the active ones.

A study on dynamics of social group growth shows that links between one’s friends that are mem-
bers of a social group increase the probability that that individual will join the social group [128].

3Astronomy, Literature, and Economics graduated on December 2021, and during our research, they were still in the
public beta phase.
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Figure 5.2: Neighbor degree dependence on the node degree of four pairs of Stack Exchange websites:
Physics, Economics, Astronomy and Literature.

Furthermore, successful social diffusion typically occurs in networks with a high value of clustering
coefficient [137]. These results suggest that high local cohesion should be a characteristic of sustain-
able communities. The dependence of the clustering coefficient on the node degree is shown in Figure
5.3. As expected, we find that active communities are more clustered.
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Figure 5.3: Clustering coefficient dependence on the node degree of four pairs of Stack Exchange
websites: Physics, Economics, Astronomy and Literature.

Instead of creating a static network from the data in the first 180 days of community life, we study
how network snapshots evolve. At each time step t, we create network snapshot G(t, t + τ) for the
time window of the length τ . We fix the time window to τ = 30 days and slide it by t = 1 day through
time. A discussion of how the length of the sliding window influences the results is given in Appendix
A. Sliding the time window by one day; we can capture changes in the network structure daily, as two
30 days of consecutive networks overlap significantly.

Here we investigate how the SE community’s clustering coefficient changes with time by calculat-
ing its value for all network snapshots. We compare the behavior of clustering for active and closed
communities on the same topic to better understand how the cohesion of these communities is changing
over time. Figure 5.4 shows the evolution of the mean clustering coefficient for all eight communities.
All communities still alive are clustered, with the value of the mean clustering coefficient higher than
0.1. Physics, the only launched community, has a clustering coefficient value above 0.2 for the first
180 days.

During the larger part of the observed period, an active community’s clustering coefficient is higher
than its closed pair’s clustering coefficient. Let’s compare active communities with their closed coun-
terpart. The closed communities have a higher value of the mean clustering coefficient in the early
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Figure 5.4: Mean clustering coefficient of four pairs of Stack Exchange websites: Physics, Eco-
nomics, Astronomy and Literature.

phase, while later communities that are still active have higher clustering coefficient values. These
results suggest that all communities have relatively high local cohesiveness and that lower clustering
coefficient values may indicate its decline in the later phase of community life.

5.2 Core-periphery structure

Previous research on Stack Exchange communities has attempted to explain how different types of
users interact. In Question-Answer communities are expected to be popular and casual users [138,
139]. Popular users generate the majority of interactions in the system; they are experts in the com-
munity and take care of answering questions and engaging the discussions through comments. As
popular users, they considered the 10% of the most active users and showed that popular users are
highly connected with themselves and casual users.

We tested this theory on all eight communities. We focused on 30 days of sub-networks and showed
how the Number of links per node among popular users and between popular and casual users evolves,
Figure 5.5. We also compare active and closed communities of the same topic, so links per node in
active sites are more significant than in closed communities.

Although we find the difference between active and closed communities, the split according to 10%
most active users does not guarantee that all popular users will be considered. Furthermore, the smaller
group of frequently active users is similar to the core users in the core-periphery structure. This is why
we will detect the core of each 30-day network. By this, separation is based on the network structure
and is more consistent, as using the algorithmic approach, we optimize the connectivity inside the
core, periphery, and among them. The core-periphery structure has a core that is a densely connected
group of nodes, while the periphery has a low density [77, 66].

We use the Stochastic Block Model (SBM) to infer the core-periphery structure of each 30 days
network snapshot and analyses how the core structure evolves. The SBM algorithm is adapted for
inferring the core-periphery structure, [66]. For each 30 days network, we run the sample of 50 iter-
ations and choose the model parameters according to the minimum description length. As stochastic
models start from the random configuration, they can converge to different states, so we analyzed the
stability of the inferred structures. More details are given in the appendix. We found that obtained
structures differ, but the minimum description length does not fluctuate much. Also, different similar-
ity measures between inferred core configurations take values higher than 0.9, indicating that the core
structure is stable.

The Number of users in the core of active communities is higher than in closed communities, the
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Figure 5.5: Links per node among popular users (top 10% of users) and between popular and casual
users (everyone but popular users) of four pairs four pairs of Stack Exchange websites: Physics,
Economics, Astronomy and Literature.

top panel on Figure 5.6. On the other hand, we do not find a big difference between the fraction of core
users in the closed and active communities. Furthermore, the fraction of users in core differs from the
10%, and it is constantly changing, bottom panel 5.6.
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Figure 5.6: The size of the core (top) and a fraction of users in the core (bottom) of four pairs four
pairs of Stack Exchange websites: Physics, Economics, Astronomy and Literature.

The Number of users is constantly changing. To quantify the stability of the core structure, we
compute the Jaccard’s coefficient between core users in networks at time points t1 and t2. The Jaccard
coefficient range from 0 to 1, so the larger values of the Jaccard index indicate the more similar cores.
The highest values are found around diagonal elements where we compare networks closer in time,
see Figure 5.7. The core membership changes over time, and the change is more frequent in closed
communities.
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Figure 5.7: Jaccard index between core users in sub-networks at time points t1 and t2 for four pairs
of Stack Exchange websites: Physics, Economics, Astronomy and Literature.

The average Jaccard index between cores in networks separated by time interval ti − tj with the
standard deviation confidence interval are shown in Figure 5.8. The Jaccard index decreases with the
relative time difference between networks faster in closed communities. The relatively high overlap
between distant networks confirms that active networks have a more stable core.
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Figure 5.8: Jaccard index between core users in 30 days sub-networks for all possible pairs of 30 days
sub-networks separated by time interval |ti − tj| for four pairs of Stack Exchange websites: Physics,
Economics, Astronomy and Literature.

Finally, we examine how the users’ connectivity in and between the core and periphery evolves. In
Figure 5.9, we show the L/N in the core, which is proportional to the average degree of the network
2L/N . The Physics community has more than twice the connectivity than closed Theoretical Physics.
For Literature, we also find higher connectivity. Still, at the end of the observation period, the con-
nectivity in the active site drops and becomes similar to that in the closed one. The difference between
active and closed sites is unclear for Economics and Astronomy. At the beginning of the period, con-
nectivity is similar for the sites on the economic topic. After 50 days of community life, connectivity
in active communities is starting to rise, while in the case of closed economics, it is dropping. As-
tronomy connectivity is higher in closed communities in the first 50 days. After this period, we find a
sudden rise in the connectivity of active astronomy, but again it drops and becomes comparable to the
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connectivity values in the closed site. Similar conclusions can be drawn for the connectivity between
the core and periphery. The largest difference between active and closed sites is observed in Physics.

0 50 100 150
0

2

4

6

8

10

L/
N 

wi
th

in
 c

or
e

Physics

active
closed

0 50 100 150
0

2

4

6

Economics

0 50 100 150

1

2

3

4

5
Astronomy

0 50 100 150
0

2

4

6

Literature

0 50 100 150
Time [days]

0.5

1.0

1.5

2.0

2.5

L/
N 

co
re

 to
 p

er
ip

he
ry

0 50 100 150
Time [days]

0.5

1.0

1.5

2.0

0 50 100 150
Time [days]

0.50
0.75
1.00
1.25
1.50
1.75
2.00

0 50 100 150
Time [days]

0.5

1.0

1.5

Figure 5.9: Number of links per node in core (top panel) and between core and periphery (bottom
panel) for four pairs of Stack Exchange websites: Physics, Economics, Astronomy and Literature.

5.3 Dynamical Reputation on Stack Exchange communities

We further explore the difference between active and closed communities through the dynamic repu-
tation model. With this model, we calculate each user’s reputation in the community, and reputation
is directly connected with the collective trust in the network.
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Figure 5.10: Number of active users (top panel) and mean reputation (bottom panel) of four pairs of
Stack Exchange websites: Physics, Economics, Astronomy and Literature.
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Dynamical reputation model, introduced in section 2.6, has three parameters. We explored dif-
ferent parameter combinations to find the set of parameters the most suitable for a given system of
Stack Exchange communities. First, the basic reputation is set to Ibn = 1. The cumulative factor is
α = 2, as we want to emphasize the frequent interactions. The parameter β controls the reputation
decay due to user inactivity. After the last activity, the user has a positive reputation for some period
and is still impacting the other users. We optimized the Number of users with a reputation larger than
1 according to the number of users in the 30 days network and concluded that parameter β = 0.96. A
more detailed discussion about the choice of parameters is in the appendix B.

With selectedmodel parameters, we calculated the reputation of each user. If a user has a reputation
larger than 1, it is considered active, but when the reputation drops below this threshold means that
the user has not been active long enough; it does not make a valuable contribution to the community.
The Number of active users and their mean reputation for different SE sites is shown in Figure 5.10.

From the properties of networks, we found that active communities are more cohesive and have
a more stable core. Furthermore, we focus our analysis on the dynamic reputation of the core users.
Figure 5.11 shows the evolution of mean user reputation within the core. Active communities have a
larger reputation than their closed counterpart. As it is previously suggested, the largest difference is
found in the Physics community. For other communities, the difference is not so striking; on average,
the core of active communities has a larger reputation than the core of closed communities.
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Figure 5.11: Dynamical reputation within the core of four pairs of Stack Exchange websites: Physics,
Economics, Astronomy and Literature.

In the network’s core are active users, and we expect a higher dynamic reputation than the total
reputation of users belonging to the periphery. The ratio between core and periphery in Physics is
always higher than in Theoretical Physics, and similar conclusions are observed in the Literature. In
the early days of Economics, we find a different pattern; the core-periphery reputation ratio is larger
for closed Economics, but later it changes in favor of active Economics. Astronomy shows different
behavior where the closed community where dominant; closed astronomy had a larger core-periphery
reputation ratio.

The distribution of the dynamic reputation of SE communities is skewed. We calculated the Gini
coefficient to better express the difference between distribution reputations. This measure quantifies
the inequality among users’ reputations. The Gini coefficient is calculated based on reputation values
for each day; see Figure 5.13. The Gini coefficient is larger than 0.5 in the first 180 days. Also,
the active communities showed more reputation inequality, and dynamical reputation has a larger
variation.

Further, we investigate how the properties of user interaction networks correlate with the user’s
reputation. For example, we can measure the assortativity coefficient among connected users in the
network. For each 30 days user interaction network, we calculate the reputation assortativity, using
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Figure 5.12: Ratio between the total reputation within network core and periphery of four pairs of
Stack Exchange websites: Physics, Economics, Astronomy and Literature.
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Figure 5.13: Gini index of dynamic reputation within the population of four pairs of Stack Exchange
websites: Physics, Economics, Astronomy and Literature.

the reputation value observed on the last day of the time window in which the network is constructed.
With this measure, we quantify whether users tend to connect with users with similar reputations or
not. Figure 5.14 shows results where we compare each SE community’s active and closed sites. Assor-
tativity has small values in all communities’ reputations, not larger than |0.3|. In active communities,
this is a mostly negative measure showing expected user behavior: popular users, who often have a
high dynamical reputation, interact with users with low dynamical reputations. Astronomy is an out-
lier again; during the first 100 days active community had a positive reputation for assortativity, and
after this period, it started behaving similarly to other active communities.
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Figure 5.14: Dynamic Reputation assortativity in the network of interactions of four pairs of Stack
Exchange websites: Physics, Economics, Astronomy and Literature.
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Finally, we are interested in how dynamical reputation correlates with network measures. We
compare the node’s centrality in the 30-day network and the node’s reputation on the last day of the
30-day sliding window. The correlation coefficient between dynamic reputation and node degree is
very high; see the top panel on 5.15. The bottom panel shows correlations between dynamic reputation
and betweenness centrality in the network, which are also high. We find that correlations are mostly
higher in active communities; only for astronomy do they take similar values during the observed
period.
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Figure 5.15: Coefficient of correlation between users’ Dynamic Reputation and users’ network degree
(top) and users’ betweenness centrality (bottom) of four pairs of Stack Exchange websites: Physics,
Economics, Astronomy and Literature.

5.4 Conclusions

The Stack Exchange sites bring together users interested in knowledge sharing. They create different
topic communities where each member can post topic-related questions and get the correct answer
from other users. The SE developed, in one sense, the trust among users, as many people see the SE
as a valuable source of knowledge and seek their answers directly in these communities. Not all SE
sites were launched, and some were closed because they did not fulfill the Stack Exchange criteria of
the successful community. These criteria rely on basic measures such as the number of active users,
posted questions, and answers, so we were interested in investigating the structure and dynamics of
SE communities to understand how trustworthy and self-sustainable community emerges.

This chapter presented results on four pairs of SE communities: Astronomy, Literature, Economics
and Physics. The first time each of them failed to create a sustainable network, but later the same topic
was proposed communities are still active. While this sample may be small, we wanted to focus only
on communities on the same topic, so our comparison between closed and active communities is not
topic related. Also, we chose two communities from STEM and two from humanities which allowed
us to remove field-related biases.

We studied how network properties evolve during the first 180 days. To closely examine the struc-
ture, we constructed the sub-networks within a 30days window. Sliding window by day, we contin-
uously measure the structure of the network. The clustering coefficient is higher in active commu-

68



5.4. Conclusions

nities. The previous study suggested two groups of users in Q-A communities, popular and casual
users [139]. This observation motivated us to closely analyze the network segmentation in the core-
periphery structure. Based on Bayesian Stochastic modeling, we identify each 30-day network core
user. Furthermore, using the DIBRM model[67], we quantify each user’s reputation. This reputation
is our proxy of trust, and its dynamics reflect some of the essential properties of trust. When a user is
frequently active, the reputation increases; when inactivity declines, the user becomes less important.

Used methods have several parameters which need to be tuned according to specific systems prop-
erties. First of all, we showed that the choice of the sliding window does not influence our conclusions,
as observed system properties follow similar patterns for different values of sliding windows. Tuning
the DIBRM parameters was more changeling. Our primary assumption was that the number of users
with a positive reputation should resemble the number in the 30-day window.

Our results suggest that core members are important for the sustainability of the community. The
core members have a high reputation and contribute to the community’s survival. The core is more
connected in active communities, and larger connectivity is found between the core and periphery
in active communities. The most noticeable difference between closed and active communities is in
Physics. Physics is the only community that graduated after 90 days, while other active communities
stayed in the beta phase for a couple of years; recently, their status changed to beta. On the other
hand, closed Astronomy showed larger network properties than active one, but as time progressed,
this changed in favor of the active community. The larger mean reputation and its dynamics among
core users in active networks are important indicators of a thriving community.
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Chapter 6

Conclusions

In this thesis, we studied the complex network models to understand the evolution of online social
systems. The complex systems change over time, even though we often find the system’s collective
behavior that stays universal. The specific interactions among elements could lead to different kinds
of organizational patterns. This thesis aims to understand the factors that drive the system’s growth
and change its structural properties and sustainability. The underlying methodology is introduced in
chapter 2. The first part explained the most important properties of network structure and the growing
network models. The second part describes the statistical methods useful for the empirical analysis of
the properties of the complex system.

In chapter 3, we discussed how nonlinear growth signal shapes the structure of the complex net-
work. The previous models combined linking rules with constant growth; however, empirical analysis
of various real systems and agent-based simulation [39, 40] have indicated that properties of growth
signal influence the dynamics of complex systems, as well as the structure of its interaction network.
To investigate the connection between the features of the growth signal and the structure of an evolv-
ing network, we added one more parameter in the growth of the aging network model, the fluctuat-
ing growth signal, and examined how network properties change with the signal features. The most
considerable influence is found on scale-free networks. Many interaction networks from social, tech-
nological, or biological systems have scale-free structures; they are correlated and clustered. These
results suggested that it is important to study growing signals’ properties. Signals from natural sys-
tems show trends and cycles and are characterized by long-range temporal correlations. The structure
of the generated complex networks depends on the signal properties, and it is necessary to quantify
these properties as they affect the network’s topology differently. For example, the most significant
difference between networks generated with fluctuating and constant signals is found for signals with
multi-fractal properties. This difference is more negligible for monofractal signals or uncorrelated
white noise. Fluctuating signals promote the creation of hubs in the network and shorten the paths
between nodes.

Chapter 4 presented the results of the universal characteristics of the growth of online social
groups—the growth of the system influence the structure of the interaction network. The distribu-
tion of the sizes of the complex systems usually follows some universal curve. In many cases, it is
lognormal or power-law. The distribution of the dimensions of the city sizes could be explained with
Zipf law [140]. The number of citations scales as lognormal distribution [21]. In this thesis, we empir-
ically analyzed the growth of online social systems. They consist of groups whose growth is universal.
The empirical analyses of Meetup groups and Reddits showed their group size distribution follows
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universal lognormal distribution, stable over time. This research aimed to examine the structure and
dynamics of the interaction network. We proposed the bipartite group model to gain a deeper under-
standing of the factors that affect the growth of social groups in a complex system. The growth in
this model is driven by fluctuating signals, similar to the paper presented in chapter 3: we use a time
series of new members from Meetup and Reddit. The number of groups also grows as each user can
create a new one; otherwise, the user joins the old group, and different linking rules determine his
decision. One option is that the user joins a group where she already has friends; it’s determined with
affiliating probability paff , while with probability 1− paff , the user chooses a random group. Group
size distribution in this model is lognormal. The width of the lognormal distribution depends on the
probability paff ; it becomes broader with a larger probability paff .

In chapter 5, we focused on the factors that influence the sustainability of evolving complex net-
works. Specifically, we investigated the sustainability of social groups on the Question-Answers plat-
form Stack Exchange. Each site goes through several phases before being successful and launched.
During that period, the site may be closed. We selected several topics in which sites for the first time
were closed, but in the second attempt, they survived and are still active. We provide a detailed anal-
ysis of active and closed Stack Exchange sites, compare their properties and identify what is crucial
for the community’s survival. We map user interactions observed in 30 days onto complex networks.
Further, we slide the window by one day and follow the evolution of the network.

According to the clustering properties of these networks, sustainable communities have a higher
value of local cohesiveness. We use the Bayesian stochastic blockmodeling approach [66] to determine
the core-periphery structure of these networks. We find that sustainable communities develop stable,
better-connected cores. To analyze the evolution of collective trust in SE communities, we modify
the Dynamic InteractionBased Reputation Model [67] (DIBR) model. We use the DIBR model to
measure the user’s reputation based on the frequency of their activity and its evolution during the first
180 days. The trust between core members of active communities develops early and is higher than in
closed communities during the first 180 days. The early emergence of a stable, trustworthy core may
be a crucial factor in determining a knowledge-sharing community’s sustainability.

The question raised by this study is how trust emerges among users in question answers commu-
nities where the users tend to share knowledge and their communication is neutral or positive. Some
communities started promoting hate speech on different online platforms, resulting in the banning.
But, banned users remained in the online world; they moved their communities to alternative platforms
without strict policies, such as Voat. Later, Voat users also formed no-hate speech topics, and there is
an open question does the emergence of trust differ among different communities? On the other hand,
exploring higher-order representations of online communities would be interesting. Threads, where
more people reply to one post, could be studied using simplicial complexes to reveal complex network
structure patterns. Furthermore, the research that employs agent-based modeling allows us to connect
closer the actions of single users with the emergence of collective phenomena and the rise and fall of
trust in the system.

The results from this thesis contribute to our knowledge about the structure and dynamics of evolv-
ing complex networks and how they are mutually linked. We explored different factors that influence
network growth, structural properties, and sustainability. The growth signal impacts the network’s
structural properties, while social interactions affect group segmentation. The sustainability of evolv-
ing networks depends on core-periphery structure, the core’s stability, and users’ ability to form a
trustworthy core. Research presented in this thesis confirms that dynamics is linked with the struc-
ture of its interaction network, while the structure directly determines the function, organization, and
sustainability of complex systems.

Complex network theory is a rapidly growing field, but many open research questions exist. With
the increase in the availability of the data of various complex systems, the analysis of complex networks
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becomes evenmore popular and shows excellent potential for future work. While wemostly understand
how to describe the network’s structure, and many methods are adapted to deal with evolving complex
networks, we still need insights into how to design networks in order to control their properties, prevent
epidemic outbreaks, and enhance or diminish information diffusion. Incorporating spatial or temporal
constraints in networkmodels could provide a more accurate picture of systems evolution. Community
detectionmethods are beneficial for understanding network structure and function, but it lacksmethods
that easily adapt to network changes over time. The current development of deep learning on graphs
could fill existing gaps and provide more accurate predictions of complex network systems’ behavior.
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Appendix A

Stack Exchange

Stack Exchange data are public and regularly released. As closed communities were active between
180 and 210 days, we extracted only the first 180 days of data. Given that the first few months can be
crucial for the further development of the community [141], we are interested in the early evolution
of Stack Exchange sites.

Detailed information about questions, answers, and comments is available for each SE community.
Each post is labelled with a unique ID, the user’s ID who made the post, and the creation time. On
Stack Exchange, users interact on several layers and those interactions are considered positive:

• Posting an answer to the question; for every question, we extract the IDs of its answers

• Posting a comment on the question or answer; for every question and answer, we selected the
IDs of its comments

• Accepting answer; for each question, we selected the accepted answer ID

Even though posts can be voted on and downvoted, information about a user who voted is absent,
so we do not consider these interactions between users. Comments can not be downvoted, while we
find only around 3% negatively voted answers and questions, Table A.1.

Table A.1: Percentage of negatively voted interactions.

Site Status Questions Answers

Physics
Beta 5% 4%

Closed 1% 2%

Astronomy
Beta 3% 3%

Closed 2% 1%

Economics
Beta 4% 4%

Closed 7% 4%

Literature
Beta 2% 5%

Closed 2% 1%
Average 3.2% 3%
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A. Stack Exchange
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Figure A.1: Number of active questions within seven days sliding windows. Solid lines - active sites;
dashed lines - closed sites.

A.1 Comparison between active and closed SE communities

Table A.2 compares the first 180 days between closed and active communities. Regarding basic statis-
tics, active communities had a larger number of users, questions, answers and comments. Another
simple indicator if the community will graduate or decline can be time series of active questions for
seven days in Figure A.1. The question is active if it had at least one activity, posted answer, or com-
ment during the previous seven days. We find that live communities have more active questions after
the first three months. Still, this difference is smaller for literature and astronomy. For astronomy, we
observe that closed communities had more active questions in the early period of community life.

Table A.2: Community overview for first 180 days, Number of users nu, number of questions nq,
number of answers na, number of comments nc.

Site Status First Date nu nq na nc

Astronomy
Closed 09/22/10 336 474 953 1444
Beta 09/24/13 405 644 959 2170

Economics
Closed 10/11/10 275 368 458 1253
Beta 11/18/14 648 1024 1410 3553

Literature
Closed 02/10/10 284 318 523 1097
Beta 01/18/17 478 910 907 3301

Physics
Closed 09/14/11 281 349 564 2213
Launched 08/24/10 1176 2124 4802 15403

Similarly, the official Stack Exchange community evaluation process considers simplemetrics 1. To
determine the success of sites they measure how many questions are answered, how many questions
are posted per day, and how many answers are posted per question. There are two measures: the
number of avid users and the number of visits that are not easily interpreted from the data. The site
is healthy if it has ten questions per day, 2.5 answers per question and more than 90% of answered
questions. For less than 80% of answered questions, five questions per day and 1 question per answer
site needs some work.

We calculated Stack Exchange statistics for astronomy, economics, literature and physics and re-
sults are presented in Table A.3. After 180 days, only live physics is a healthy site while other live
communities are at least in two criteria labelled as okay. Closed sites mostly need some work; the

1https://stackoverflow.blog/2011/07/27/does-this-site-have-a-chance-of-succeeding/
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A.1. Comparison between active and closed SE communities

exception is closed astronomy. For example, it has excellent percent of answered questions and okay
answer ratio.

Table A.3: Community overview for first 180 days according to SE criteria.

Site Status Answered Questions per day Answer ratio

Astronomy
Closed 95 % 2.62 2.02
Beta 96 % 3.57 1.49

Economics
Closed 68 % 2.04 1.25
Beta 84 % 5.66 1.37

Literature
Closed 79 % 1.77 1.65
Beta 74 % 5.04 1.10

Physics
Closed 83 % 1.93 1.64
Beta 93 % 11.76 2.74

Stack Exchange criteria excellent > 90 % >10 > 2.5
needs some work < 80 % < 5 < 1

These simple measurements presented in tables A.2 and A.3 and Figure A.1 do not provide us clear
indications about community sustainability. Only for physics topics the difference between active and
closed communities is evident, while for other communities, it is not so clear. Thus, we need deeper
insights into the structure and dynamics of these communities to understand. The structure of social
interactions within communities and the dynamics of collective trust may provide a better explanation
of why some communities succeed, and others die.
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Appendix B

Selection of Dynamical Reputation Model
parameters

The Dynamical Reputation Model(DIBRM) has several tuning parameters. In previous studies, the
model [67, 142] was used to approximate real reputation on Stack Exchange sites [142], so model
parameters were ta = 2, β = 1, α = 1.4, while the basic reputation value Ibn was +2 or +4. As
β = 1, the forgetting factor is not considered. Our goal was to describe how reputation influences
the sustainability of the community. Further, we wanted to resemble the concept of trust. Our tuning
procedure differs from previous studies on Stack Exchange sites, and we ended up with different model
parameters.

For basic reputation contribution, we selected Ibn = 1. With these values, each interaction has
an initial contribution +1.

For characteristic time ta we choose ta = 1. The median/average time between subsequent
interactions is 1day. If the time window between two interactions is less than 1day, their reputation
will rise; otherwise, the reputation decays.
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Figure B.1: Single users reputations, left panel shows sporadically active user, while user on right
makes frequent interactions.

The parameter α represents the cumulative factor. The burst in activity and recent interactions
lead to higher reputation values with larger parameter α. Figure B.1 represents the reputations of two
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B. Selection of Dynamical Reputation Model parameters

selected users from SE. The first is sporadically active, while the second makes frequent interactions.
We calculate the reputation of these two users for different parameters (α, β). We selected α = 2.

The reputation decay determines the forgetting factor β. We set the parameter on β = 0.96.
The reputation should reflect the properties of the trust. This means we do not expect β to be high,
as inactive users keep larger reputation values. In Figure B.1 for β = 0.99, even for the little active
user, reputation stays higher during the observed period. With lower β, it may drop to the reputation
threshold and indicate that the user stopped to be active.

We compared the number of users with an estimated reputation higher than 1 for different parame-
ters β. We concluded that β close to 0.96 approximates the number of users with recorded interactions
in a given 30-day sliding window. For each pair of communities, we calculated the number of users
with at least one interaction in every 30-day sliding window. Then we estimated several times in series
expressing the number of users with a reputation higher than 1 for fixed β. Then we calculated the
root mean square error (RMSE) between those time series for the first 200 days. Values of RMSE are
shown in Figure B.2. For each community, we can find parameter β that minimizes RMSE. Although
β does not have a unique value across communities, it varies between 0.95 and 0.96.
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Figure B.2: RMSE between the number of active users in a sliding window of 30 days and the number
of users with reputation > 1 for 0.94 < β < 0.97 with step 0.001.

Figure B.3 compares the number of users in the 30-day sliding window and the number of users
for these optimal values β = 0.954 and β = 0.96. For β = 0.96, we observe that the estimated
number of active users in most communities is consistently slightly higher than the actual number of
users who have made at least one interaction in that sliding window. This means that the dynamic
reputation model sometimes overestimates the user’s reputation, but it is far more important because
it never underestimates the real number of active users. Since we base our calculations of total and
average reputation within the community only on users whose reputation is higher than the threshold,
this is important as the model disregards no active users due to the value of the decay parameter.
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Figure B.3: Number of active users in a sliding window of 30 days and number of users with dynamic
reputation higher than 1 for β = 0.954 and β = 0.96 which provide the best fit to the number of users
in 30 days sub-networks for each community.

Finally, it’s important that our dynamic reputation captures the trend of long-term user activity. In
Figure B.4, solid lines show the time series of an estimated dynamic reputation for β = 0.96 while
dashed lines show the number of active users in a given sliding window and continued to be active
in the next one. Although the total estimated number of active users is expectedly to be higher, the
two-time series follows similar trends in different communities.
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Figure B.4: Solid lines represent the number of users with dynamic reputation higher than 1 for
β = 0.96 while dashed lines are the number of users within 30 days sliding window who were active
and remained to be active.
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Appendix C

The choice of the sliding window

To study the evolution of Stack Exchange communities, we chose to at each time step t analyze the
structure of interaction networks created in the period [t, t + τ). By this, we have better insight into
how network properties evolve. However, it is not defined what value the sliding window should take.
The previous studies showed that the value of a sliding window determines how much information is
saved. If τ is small, sub-networks are sparse, while for a large sliding window, important changes in the
measures may not be detected [57, 58]. We analyze how network properties and dynamic reputation
depend on the window size. For example, we use Astronomy and compare the active and closed
communities, Figure C.1 Similar conclusions can be observed for other pairs of communities. The
time window of 30 days approximates one month.

We show the network properties for sub-networks of 10, 30, and 60 days sliding windows. For a
sliding window of 10 days, results may be too noisy, and we may not observe some important trends
in the community. The number of users for beta astronomy seems to fluctuate around some mean
value. On the larger scale, 30 days window, it is more apparent that the number of users slightly
increases over time. Contrary, for too large an aggregation window (60 days), important information
about the time series can be lost, such as the local minimum of the number of users around time
step 80 that is observed for the 30-day sliding window. From network measures such as L/N and
clustering, we conclude that the difference between closed and active sites is more transparent with a
larger aggregation window. Still, on each scale, beta sites show a higher number of nodes, number of
links per node and clustering coefficient.

As before, we study the structure of created sub-networks through the lens of core-periphery struc-
ture. On small scales, within the window of 10 days, there are often few or even no nodes in the core,
and it can affect the calculation of other measures of interest. Such behaviour is more typical for closed
communities. With the size of the sliding window, the number of nodes in the core increases and the
results of core-periphery measures and dynamical reputation between core users and between core
and periphery users become smoother. Finally, the choice of the sliding window does not change the
conclusion that core users in the beta communities produce more activity and make a strong core.
However, our main results are shown for a sliding window of 30 days, as it creates a good compromise
between large and small time scales.
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C. The choice of the sliding window
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Figure C.1: Results for different sliding windows. For astronomy, solid blue lines- active, orange
dashed lines - closed site.
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Appendix D

Robustness of core-periphery algorithm

Precision and recall
Consider the network G(V, L), with a set of nodes V and a set of links between them L. The

stochastic community detection algorithms may converge to different configurations. To quantify the
similarity between the obtained structures and the algorithm’s robustness, we run 50 iterations and
calculate several similarity measures between pairwise partitions C and C ′ .

The core-periphery structure has two groups, so confusion matrix [143] can be defined as:

partition C
core periphery

partition core nTP nFN
C
′ periphery nFP nTN

The diagonal elements correspond to the number of nodes found in the same class in both node
configurations. The number of nodes in the core found in C and C ′ is denoted as true positive nTP ,
while the number of nodes in the periphery in C and C ′ is denoted as true negative nTN . The off-
diagonal elements of the confusion matrix indicate the number of nodes differently classified. We can
define the number of nodes found in the first configuration C in the core but in C ′ in the periphery as
a false positive, nFP , similarly the number of nodes found in the periphery in the partition C, and in
the core in partition C ′ as a false positive, nFP .

From the confusion matrix, we can write the precision P = nTP/(nTP + nFP ) and recall R =
nTN/(nTN + nFN). These measures range from 0 to 1. The precision (recall) corresponds to the
proportion of instances predicted to belong (not belong) to the considered class and which indeed do
(do not) [143].

The F1 measure is the harmonic mean of precision and recall [143]:

F1 = 2
P ·R
P +R

=
2nTP

2nTP + nFN + nFP
. (D.1)

It can be interpreted as a measure of overlap between true and estimated classes; it is 0 for no overlap
to 1 if the overlap is complete.
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D. Robustness of core-periphery algorithm

The Jaccard’s coefficient is the ratio of two classes’ intersection to their union [143]. It can also
be expressed in terms of a confusion matrix:

J =
Ccore ∩ C

′
core

Ccore ∪ C ′core
=

nTP
nTP + nFP + nFN

. (D.2)

Normalized mutual information (NMI) is similarity measure between to partitions C and C ′

based on information theory [144]:

NMI(C,C
′
) =

MI(C,C
′
)

(H(C) +H(C ′)/2
. (D.3)

whereMI is mutual information between setsC andC ′ , whileH(C) is entropy of given partition.
The entropy is defined as H(C) = −

∑|C|
i=1 P (i)log(P (i)), where P (i) = |Ui|/N is the probability

that an object is randomly classified as i (in this special case i = 0, the node belongs to the core, or
i = 1, the node belongs to the periphery). The mutual information between sets C and C ′ measures
the probability that the randomly chosen node is a member of the same group in both partitions:

MI(C,C) =
∑
i

∑
j

P (i, j)log(
P (i, j)

P (i)P ′(j)
). (D.4)

where P (i, j) = |Ui ∩ Uj|/N .

NMI ranges from 0 when the partitions are independent to 1 if they are identical.

Adjusted rand index. For the set of nodes V , with n nodes, consider all possible combination of
pairs (vi, vj). We can select the number of the pairs where nodes belong to the same group in both
partitions, C and C ′ , denoted as a. Similarly, as b, we can define the number of pairs whose nodes
belong to different groups in partitions. Then, unadjusted rand index [145] is given as RI = a+b

(n2)
,

where
(
n
2

)
is number of all possible pairs. The RI between two randomly assigned partitions is not

close to zero; for that reason, it is common to use the adjusted rand index [146], defined as:

ARI =
RI − E[RI]

max(RI)− E[RI]
, (D.5)

where E[RI] is expected value of RI, andmax(RI) is maximum value of RI .
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For example, we show an analysis of an inferred sample of core-periphery structures for 30 days of
closed Astronomy, Stack Exchange networks, Figure D.1. We represent the mean minimum descrip-
tion length (MDL) and the mean number of nodes in the core with standard deviation. MDL does not
change much between inferred core-periphery structures; the difference between obtained configura-
tions is still notable in the number of nodes in the core. To investigate the similarity between obtained
core-periphery configurations in the sample more deeply, we calculate several measures between pair-
wise partitions, such as normalized mutual information, adjusted rand index, F1 measure and Jaccard
index. These measures are greater than 0.5 and, in most cases, greater than 0.9, indicating the stability
of the inferred core-periphery structures.
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Figure D.1: Minimum description length, number of nodes in the core, normalized mutual informa-
tion, adjusted rand index, F1 measure and Jaccard index, among 50 samples for 30-days sub-networks.
Results are given for closed astronomy.
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