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many stimulating discussions and valuable insights (‘aha Erlebnisse’) during the sec-
ond half of my PhD.
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Abstract

Magnetic impurities can at low temperatures significantly change the physical prop-
erties of seemingly ordinary metals. In minuscule amounts (parts-per-million) local
moments cause anomalies in the transport and thermodynamic properties of metals
such as gold or copper. In the stoichiometric compounds periodic local moments of
rare earth ions can cause a strong renormalization of the Fermi liquid resulting in
heavy-fermion materials. Additional complexity arises if the bulk is in a conventional
superconducting phase. In this case, competition arises between the singlet Cooper
pair formation and screening of the magnetic impurity—the Kondo effect.

New possibilities in terms of fabrication and experimental techniques like Scan-
ning Tunneling Microscopy (STM) have sparked renewed interest in the topic of the
effects of impurities in condensed matter—in particular on superconductors due to
their potential in industrial applications such as quantum spintronics and quantum
computing. Local effects of impurities have become increasingly resolvable. Hence,
theoretical work addressing what can be observed in situ with a focus on nano length
scales is gaining appreciable interest.

Important questions with regards to systems of magnetic impurities on top of su-
perconductors are to what extent quantum fluctuations introduce deviations from what
is known from classical spins, and what is the signature of inter-impurity coupling on
the sub-gap bound states and/or bands. Secondly, the driving mechanism of uncon-
ventional superconductivity in the high-Tc heavy-fermion superconductors remains a
puzzling question, with both s-wave as well as nodal order parameters being reported.

In light of the recent surge in interest in the interplay between magnetic impurities
and superconductors, this thesis will look at two theoretical models using state-of-
the-art numerical methods employed in the field of theoretical condensed-matter re-
search in the strongly-correlated regime. Being that these systems are in the strongly-
correlated regime, it necessitates the application and development of new numerical
techniques for yielding novel insights.

We shall first investigate a model where a single impurity is placed on top of an
s-wave superconducting thin-film substrate, placed parallel along an external Zeeman
field. The effect of the Zeeman field on a thin-film is that of a splitting of the density
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of states per spin (so-called spin-split superconductors), and before our work it was
not know what was the effect of the Zeeman field on the in-gap states which are
the result of the proximity effect between superconducting substrate and impurity.
We solve the impurity problem using the Numerical Renormalization Group impurity
solver, an advanced numerical method allowing for access to spectral functions at
arbitrarily small energy scales near the Fermi level. This enables us to study the
spectral properties of the in-gap states as a function of field strength, alignment and
coupling of the impurity to the substrate.

We find that the subgap spectrum depends on the ratio of the bulk and the impu-
rity g-factors. Control over the g-factor can be achieved through strain engineering,
nanostructuring, or by electrical tuning in quantum dots and, therefore, treating the
bulk g-factor on equal footing with the impurity’s g factor is important for modeling
and understanding of the experimental results. We find that in the absence of spin-
orbit coupling, due to conservation of spin, there is no broadening of the resonance
when it overlaps with the continuum of the opposite spin. However, the spin-orbit
coupling (in our work modeled by a transverse field component) does introduce broad-
ening effects. Lastly, we report the (B,∆) phase diagram of the model, and map the
phase boundary between the singlet and doublet ground states as a function of the
relative impurity and bulk magnetic field couplings.

In the subsequent work we address the problem of a periodic lattice of spin-1
2 lo-

cal moments on top of an s-wave superconductor. For diluted impurities it is known
that the competition between superconducting pairing and Kondo screening can cause
reentrant behavior of the superconducting phase, where below a second critical tem-
perature Tc2 < Tc the system enters back into its normal phase through a first-order
transition. This is explained as a consequence of Kondo physics and it appears when
the characteristic Kondo temperature TK is much smaller than the critical temperature
of the clean system Tc0. Here we study the periodic Anderson model with the addi-
tion of an on-site pairing (attractive Hubbard) interaction acting on the conduction
c-electrons. The repulsive interaction U on the f -orbitals is treated within dynamical
mean field theory (DMFT) while the on-site pairing is treated on the static mean-field
level.

Using hybridization expansion Continuous-Time Quantum Monte Carlo as impu-
rity solver, we find a first-order transition from the normal phase into the supercon-
ducting phase at surprisingly large BCS coupling. This transition is accompanied by
hysteresis and it also exhibits reentrant superconducting behavior. We find that the
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superconducting solution strongly depends on the presence of even non-interacting f -
electrons. Here we also find competition between the Cooper pairing and hybridization
which leads to the reentrant superconductivity for certain ranges of parameters and
doping levels.

We offer a compelling argument for this scenario by the qualitative reproduction
of our phase diagrams through the introduction of a non-interacting dual model. The
dual model is in exact agreement with our actual model in several limits, and interpo-
lates between these limits by excluding higher-order correlations, treating interaction
effects beyond Hartree-Fock on a single-particle level. This shows that for a lattice of
periodic impurities it is not the strong-correlation effects which drive reentrant behav-
ior such as in the dilute limit, but a simpler band-physics mechanism.

Keywords: strongly correlated systems, superconductivity, Yu-Shiba-Rusinov states,
periodic Anderson model
Research field: Physics
Research subfield: Condensed matter physics
UDC number: 538.9
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Sažetak

Magnetne nečistoće mogu na niskim temperaturama da značajno promene fizička
svojstva po svemu drugom običnih metala. Već pri malim koncentracijama (jedan
u milion) lokalni magnetni momenti dovode do anomalija u transportnim i termodi-
namičkim svojstvima metala poput zlata ili bakra. U stehiometrijskim jedinjenjima
periodični lokalni momenti jona retkih zemalja mogu da dovedu do jake renormal-
izacije Fermijeve tečnosti u jedinjenjima koja nazivamo teški fermioni. Dodatni efekti
se javljaju u materijalima koji su čistom stanju konvencionalni supravodnici. U ovom
slučaju nastaje kompeticija izme -du formiranja singletnih Cooper-ovih parova i ekrani-
ranja magnetne nečistoće, odnosno Kondo efekta.

Nove mogućnosti u fabrikaciji uzoraka i u mernim eksperimentalnim tehnikama kao
što je skenirajuća tunelna mikroskopija (STM) dovele su do obnovljenog interesovanja
za efekte nečistoća. Od posebnog značaja je uticaj nečistoća na superprovodnike zbog
potencijalnih primena u spintronici i kvantnom računarstvu. Lokalni efekti nečistoća
mogu sve bolje da se okarakterǐsu u eksperimentima. Otuda teorijske studije koje
proučavaju efekte nečistoća na nanoskali postaju sve zastupljenije.

Važna pitanja u vezi sa magnetnim nečistoćama na površini superprovodnika su u
kojoj meri kvantne fluktuacije uvode odstupanja od rezultata koji su dobijeni prouča-
vanjem efekata klasičnih spinova i kakav je efekat kuplovanja izme -du nečistoća na
vezana stanja unutar energijskog procepa. Tako -de, otvoreno je i pitanje mehanizma
nekonvencionalne superprovodnosti u jedinjenjima teških fermiona, gde su nedavni
eksperimentalni rezulatati ukazali na mogućnost superprovodnog sparivanja s, a ne d-
tipa. U svetlu ovih istraživanja, ova disertacija će se fokusirati na dva teorijska modela
koristeći za njihovo rešavanje savremene numeričke metode iz fizike jako korelisanih
sistema.

U prvom delu disertacije proučavamo model sa jednom nečistoćom na površini
tankog superprovodnika u spoljašnjem Zeeman-ovom magnetnom polju koje je para-
lelno ravni superprovodnika. Zeeman-ovo polje paralelno superprovodniku dovodi do
pomeraja u gustini stanja, odnosno superprovodnog procepa, u zavisnosti od projek-
cije spina. Cilj rada je da se odredi uticaj Zeeman-ovog polja na vezana stanja unutar
superprovodnog procepa koja nastaju usled nečistoća. Problem nečistoće rešavamo
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metodom numeričke renormalizacione grupe koja omogucáva da odredimo spektralne
funkcije na proizvoljno malim energijskim skalama blizu Fermi nivoa. Ovo nam omogu-
ćava da odredimo spektralne funkcije unutar superprovodnog procepa u funkciji jačine
polja i njegovog pravca, kao i jačine kuplovanja nečistoće i superprovodnog supstrata.
Nalazimo da položaji rezonanci, odnosno energije vezanih stanja, zavise od odnosa
g-faktora u superprovodniku i nečistoći. Ispravno tretiranje efekata spina je posebno
važno pošto vrednost g-faktora možemo da podešavamo modifikovanjem uzorka ili
primenom napona na spoju. U odsustvu spin-orbitne interakcije spin je očuvan i na-
lazimo da se rezonanca ne širi čak iako se preklopi po energiji sa kontinuumom stanja
suprotnog spina. Me -dutim, prisustvo spin-orbitnog sprezanja (koje modeliramo do-
dajući poprečnu komponentu magnetnog polja) dovodi do širenja rezonance. Odredili
smo (B,∆) fazni dijagram modela (B je magnetno polje, a ∆ superprovodni procep),
tj. odredili smo granicu izme -du singletnih i dubletnih stanja za različite vrednosti
g-faktora.

U drugom delu disertacije proučavamo efekat periodičnih magnetnih momenata u
superprovodniku s-tipa. U slučaju male koncentracije magnetnih nečistoća poznato
je da kompeticija izme -du superprovodnog sparivanja i Kondo ekraniranja može da
dovede do umetnute superprovodne faze u intervalu temperatura Tc2 < T < Tc1, pri
čemu se sistem vraća u normalnu fazu na T < Tc2 faznim prelazom prvog reda. Ovo se
objašnjava kao posledica Kondo fizike i javlja se u slučaju kada je Kondo temperatura
TK mnogo manja od kritične temperature čistog sistema Tc0. U disertaciji proučavamo
periodični Anderson-ov model sa pridodatom (privlačnom Hubbard-ovom) interakci-
jom sparivanja izme -du provodnih c-elektrona. Odbojnu interakciju U na f -orbitalama
tretiramo u okviru teorije dinamičkog srednjeg polja (DMFT) dok je interakcija spari-
vanja uračunata na nivou statičkog srednjeg polja.

DMFT jednačine smo rešili koristeći kvantni Monte Carlo metod u kontinualnom
vremenu u razvoju po hibridizaciji. Nalazimo prelaz prvog reda iz normalne faze u
superprovodnu fazu, ali samo za iznena -dujuće veliki BCS parametar sparivanja. Ovaj
fazni prelaz je praćen pojavom histerezisa pri menjanju BCS parametra, a tako -de i
nalazimo i umetnuto superprovodno rešenje za interval temperatura Tc2 < T < Tc1

kao posledicu kompeticije superprovodnog sparivanja i hibridizacije c i f elektrona.
Fazni dijagram smo na kvalitativnom nivou reprodukovali koristeći pojednostav-

ljeni neinteragujući dualni model. Ovaj model se svodi na polazni u nekoliko graničnih
slučajeva, a rešenje izme -du graničnih slučajeva je približno i ne uzima u obzir mnogočestični
Kondo efekat. Ovim pokazujemo da je efekat umetnute superprovodnosti za Tc2 <
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T < Tc1 u periodičnom slučaju posledica zonske strukture, a ne Kondo fizike što je
slučaj za razre -dene nečistoće.

Ključne reči: jako korelisani sistemi, superprovodnost, Ju-Šiba-Rusinov stanja, pe-
riodični Andersonov model
Naučna oblast: Fizika
Uža naučna oblast: Fizika kondenzovane materije
UDK broj: 538.9
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Introduction

Impurities usually do not significantly change the physical properties of metals.
Their influence on the charge transport is mostly seen as a small residual resistivity
at low temperatures when the scattering due to lattice vibrations becomes negligible.
A notable exception are magnetic impurities, which can lead to a pronounced increase
in the resistivity at low temperatures [1]. Magnetic impurities also strongly affect
conventional superconductors since even a small amount of magnetic impurities can
completely suppress superconductivity [2]. A more subtle effect is the appearance of
bound states within the superconducting gap [2]. The interest in these in-gap states
induced by magnetic impurities has revived with recent advances in nanotechnology
[3, 4].

In 1934 de Haas et al. [5] observed that certain highly-pure compounds, such as
silver and gold, showed a minimum in the resistivity at temperatures of a few kelvin.
In 1962 Clogston et al. [6] realized that the minimum was linked to minuscule amounts
of magnetic impurities (one per million) present in these metals. Anderson proposed
[7] that these magnetic moments coupled antiferromagnetically to the conduction elec-
trons, whereas Kondo calculated [8] that this caused a logarithmic correction to the
resistivity at low temperatures, thus confirming the magnetic origin of the resistivity
minimum. Full understanding of the influence of magnetic impurities on the charge
transport is reached only with the development of the renormalization group (RG)
method and its numerical implementation by Wilson [9].

The Numerical Renormalization Group (NRG) identifies several transport regimes.
The low-temperature physics is governed by a characteristic temperature scale TK ,
known as the Kondo temperature. At T � TK local moments are almost decou-
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Chapter 1 Introduction

pled from the conduction band and weakly influence resistivity. However, as tempera-
ture approaches TK , local-moment scattering increases substantially and the resistivity
starts to increase. At temperatures smaller than TK , the magnetic moments are effec-
tively screened forming a singlet state with the conduction electrons, which is known
as the Kondo effect. This reduces the spin-flip scattering.

The study of the effects of impurities on conventional superconductors (SC) goes
back to the late 1950s, with seminal papers by Anderson [10] and Abrikosov & Gor’kov
[11]. Non-magnetic impurities have weak influence on the gap size and the critical
temperature, as opposed to magnetic impurities which break time-reversal symmetry
and thus the Cooper pairs, leading to the strong suppression of Tc. A suppression
of Tc in a system with diluted magnetic impurities has been observed in numerous
experiments often in quantitative agreement with the Abrikosov-Gor’kov theory.

A notable deviation from the Abrikosov-Gor’kov theory is observed in some al-
loys, like La1−xCexAl2 [12, 13]. In these systems Tc initially decreases with increasing
the concentration x similar as in Abrikosov-Gor’kov theory, but near the critical con-
centration there is a regime where the system is superconducting below an “upper”
critical temperature Tc1 , but it “reenters” the normal phase at nonzero Tc2. This
reentrant superconductivity is explained as a consequence of Kondo physics [14, 15],
and it appears when the characteristic Kondo temperature TK is much smaller than
the critical temperature of the clean system Tc0. The impurity scattering and the
pair-breaking parameter acquire strong temperature dependence. At temperatures
T � TK the impurity spins are weakly coupled to the conduction electrons and the su-
perconducting (SC) phase persists, while the normal phase reappears at temperatures
T ∼ TK when the scattering becomes stronger. More recently, reentrant supercon-
ductivity is obtained from a solution of the Eliashberg equations supplemented by the
quantum Monte Carlo solution of the Anderson impurity problem [16]. The critical
concentration for the full suppression of superconductivity grows with increasing the
electron-phonon coupling, but it typically remains of the order of 1%.

Another striking consequence of the scattering on a magnetic impurity is the for-
mation of Shiba states, or Yu-Shiba-Rusinov states (YSR). These are in-gap bound
states of Bogoliubov quasiparticles, which appear as very sharp spectral resonances
inside the superconducting gap. The existence of subgap states was predicted in the
late 1960s by Yu [17], Shiba [18], and Rusinov [19], who studied the scattering of Bo-
goliubov quasiparticles on classical spins. The classical spin S acts as an effective local
magnetic field h = JS which couples to the electron spins. For weak coupling the total
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ground state consists of paired BCS electrons and has an unscreened impurity spin.
The first excited state has the impurity spin S partially screened by the electrons of
opposite spin. For the antiferromagnetic coupling J the total spin becomes S − 1/2.
As the exchange coupling is increased, the energy levels cross for J = Jc and the state
with the spin S − 1/2 becomes the ground state [20]. The excitation energy EYSR

is always below the superconducting gap and the local spectral function features two
subgap resonances at energies ±EYSR.

This physical picture does not change much in the case of a quantum impurity,
which can be modeled as an Anderson impurity coupled to a superconducting bath. For
the impurity spin 1/2 and small J the total ground state is a spin doublet, whereas for
large antiferromagnetic J the ground state becomes a spin singlet. NRG calculations
[21, 22] found a first order quantum phase transition for TK ≈ 0.3∆, where ∆ is the
superconducting gap.

Increased interest in Shiba states appeared with recent advances in scanning tun-
neling microscopy (STM) and nanostructure engineering. Shiba states were observed
in pioneering work of Yazdani et al. [23] in 1997 on superconducting niobium with
Mn and Gd adatoms. The resolution of STM experiments has since further improved,
leading to a number of studies on Shiba states in adatom materials of the last ten years
[4]. Shiba states have also been studied in quantum dot superconductor-semiconductor
heterostructures [24]. Additional interest was triggered when Shiba states were pro-
posed as a host for Majorana zero modes in relation to quantum computing [25].

In this thesis we will address two problems in the physics of magnetic impurities
coupled to a superconducting host. In the first work [26] we study Shiba states in
a magnetic field which couples both with the impurity spin and the spins in the
superconducting lead. Generally, the external magnetic field couples also to the orbital
motion of the electrons. However, if the magnetic field is pointed along the surface
of a thin-film superconductor, the orbital pair-breaking is significantly reduced as
compared to the spin pair-breaking contribution. In this case the dominant effect
is the Zeeman splitting of the Bogoliubov quasiparticle states [27–29]. Earlier work
has focused on the effect of an external magnetic field on the Shiba in-gap states by
disregarding the Zeeman coupling to the superconducting host [30–32]. However, since
the Kondo temperature, superconducting gap and the Zeeman splitting are generally
of comparable amplitude, it is important to include the Zeeman terms both in the
impurity and in the bulk part of the Hamiltonian.

In the second research topic presented in this thesis we address the influence of
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periodic magnetic moments coupled to the superconducting electron band [33]. As-
sembly of Kondo impurities into periodic lattices, attained in materials which contain
rare-earth or actinide ions leads to ‘heavy fermion’ (HF) materials [34], such as CeAl3
[35]. In these materials, the screening regime at low temperature results in a strongly
renormalized Fermi liquid with electron masses exceeding their bare mass by typically
a factor 100, sometimes 1000. These materials, which contain typically Ce, U or Yb
atoms, are modeled by the lattice extension of the single-impurity spin-1

2 Kondo model;
the relevant lowest-lying spin degree of freedom of the impurity ions is a Kramer’s dou-
blet.

In 1979 Steglich et al. reported [36] a SC phase below T ≈ 0.5K in the HF system
CeCu2Si2. This was surprising since magnetism breaks time-reversal symmetry, nec-
essary for BCS pairing, suggesting a non-conventional pairing mechanism. Although
the SC transition temperature Tc of HF superconductors is typically low compared to
for instance the cuprate superconductors, HF superconductivity can be thought of as
‘high-temperature’ superconductivity (HTSC) since the renormalized Fermi tempera-
ture T ∗F is only of the order of 10K in HF materials [37].

The unconventional pairing mechanism in these HF materials is thought to emerge
out of a Fermi liquid of heavy electrons [38], i.e. not mediated by electron-phonon
coupling. In this case, d-wave or p-wave symmetry of the superconducting order pa-
rameter results in nodes or lines where the gap is 0 along the Fermi surface, allowing
for arbitrarily small quasi-particle excitations, such as spin-density waves (SDW) [39],
that mediate the pairing. There is however currently no clear consensus on the nature
of the pairing mechanism. Recent reports suggest the possibility of s-wave pairing
in HF compounds [40–42] too whereas Bodensiek et al. theorized [43] that a lattice
of Kondo impurities may give rise to an s-wave superconductor mediated by strong
local spin fluctuations. Kasuda and Yamamoto suggested [44] s-wave pairing may
consist of c− f pairs. Moreover, there are Kondo systems where the low-temperature
phase is entirely unlike a Fermi liquid [45], which may still develop pressure-induced
superconductivity [46].

Here we study the periodic Anderson model with additional attractive Hubbard in-
teraction between the conduction band electrons. This work was motivated by the con-
troversial finding of s-wave superconductivity in the Kondo lattice model from Ref. [43],
contradicting common wisdom that superconductivity in the Kondo/Anderson lattice
model is of unconventional d-wave nature originating from the proximity to the antifer-
romagnetic quantum critical point. While earlier work on the Anderson/Kondo lattice
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model with additional attractive Hubbard term focused at charge and magnetic order
at half-filling [47–50], here we explore the system away from half-filling and discuss a
possible connection with the physics of reentrant superconductivity found in the limit
of diluted impurities.

The remaining part of the thesis is organized as follows. Chapter 2 contains a brief
introduction into the research field with the key results and seminal papers outlined.
Chapter 3 overviews the numerical methods that were used in the original research
work presented in Chapters 4 and 5. The conclusions are presented in Chapter 6.
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Magnetic impurities in metals and
superconductors

In this chapter we briefly review several striking effects that magnetic impurities
have on the charge transport and spectral functions in metals and superconductors.
The observation of a resistivity minimum at temperatures of a few kelvin in otherwise
good metals due to the presence of small amount of magnetic impurities, lead to
enormous research activity, especially during 1960s. A full understanding required the
development of the new theoretical concepts of renormalization group and its numerical
implementation. Equally interesting are the effects that magnetic impurities have on
the superconducting state, where the most intriguing one is the appearance of subgap
Shiba states which are proposed as possible building blocks for topologically ordered
systems exhibiting Majorana edge states. Studies of materials with periodic local
moments hybridized with the conduction band opened another subfield of condensed
matter physics dealing with unconventional superconductivity.

2.1 Diluted magnetic impurities in metals and the

Kondo effect

The increase in low temperature resistivity in good metals was observed in the work
of de Haas et al. [5] from 1930s, see Figure 2.1. However, the origin of this minimum
was not understood until mid 1960s and theoretical work of Anderson and Kondo.

In an influential paper Anderson [7] introduced a simple model that describes
necessary conditions for the presence or absence of a localized moment when a magnetic
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Chapter 2 Magnetic impurities in metals and superconductors

Figure 2.1: The minimum in the electrical resistivity of gold. The origin of this
minimum were most likely iron impurities present in the sample which was not known
at the the time of the experiment. (taken from Ref. [5])

atom is immersed in a conduction host. The Anderson impurity model (AIM) is given
by the Hamiltonian

HAIM =
∑
k,σ

εknk,σ +
∑
k,σ

[
Vkc

†
k,σfσ + V ∗k f

†
σck,σ

]
+ εfnf + Unf↑nf↓. (2.1)

Here εk is the dispersion relation of conduction electrons, c†k,σ (ck,σ) are the conduction
electron creation (annihilation) operators and nk,σ = c†k,σck,σ. The last two terms
describe an isolated impurity with energy level εf and an on-site repulsive interaction
Unf↑nf↓, where nfσ = f †σfσ. The second term describes the hybridization between the
f and c electrons.

The local moment formation requires a large interaction U which protects double
occupation of the f orbital. Also the εf energy level needs to be below the Fermi
energy such that the occupation of the orbital is close to 1. In this regime the AIM
reduces to the Kondo model given by the Hamiltonian

HKM =
∑
k,σ

εknk,σ + JS · s(r = 0), (2.2)

where s(r = 0) = 1
2
∑

kk′αβ c
†
kασαβck′β is the spin density of the conduction electrons

at the impurity site. The Kondo coupling J can be obtained from the AIM by the
Schrieffer-Wolf transformation [51] and it is equal to

J = 2V 2
(

1
|εf − µ|

+ 1
|U + εf − µ|

)
, (2.3)
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Figure 2.2: (left panel) Magnetic moment of Fe impurities immersed into the NbMo
and MoRe alloy, taken from Ref. [6]. (right panel) The resistivity minimum appears
only in those alloys with formed local moments, taken from Ref. [52].

where we assumed that the coupling V is k-independent.
The existence of local moments is easy to establish from measurements of the

susceptibility, which acquires the Curie-Weiss form [1]

χ ∼ C

T + θ
. (2.4)

Here C and θ are constants. θ is usually only a few kelvin in the case of impurities in
metals. The presence of local moments on Fe impurities was systematically established
in the work of Clogston et al. [6] and Sarachik et al. [52] on MoNb alloys, Figure 2.2.

Kondo [8] considered scattering of conduction electrons on the Anderson/Kondo
impurities. He calculated the resistivity to the third order in the antiferromagnetic
coupling J and found that the resistivity logarithmically diverges at low temperatures.
The resistivity takes the form

ρ(T ) = aT 5 + cimpR0 − cimpR1 ln(kBT/D), (2.5)

where cimp denotes the concentration of impurities and D is the half-bandwidth. The
parameter R0 ∝ J2 and R1 ∝ J3. The first term is due to electron scattering with
phonons, the second term is the temperature independent part of the scattering on the
impurities, and the last term is due to the spin dependent scattering on local moments.

Kondo’s calculation explained the resistivity minimum. However, the perturbative
calculation could not explain how the resistivity saturates as T → 0. The quest for the
low temperature solution lead to the development of the renormalization group (RG)
method by Anderson, which provides a non-perturbative solution of the AIM. Quanti-
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Figure 2.3: (a) The temperature dependence of resistivity normalized to ρ(T = 0)
can be collapsed to a single curve if the temperature is scaled with TK . (b) A sketch of
the spin susceptibility (b) and specific heat (c) shows almost free local moment regime
at high T and (local) Fermi liquid at low T , see text. (taken from Ref. [53])

tative solution throughout the whole range of temperatures was subsequently obtained
with the numerical renormalization group (NRG) method developed by Wilson [9].

RG theory establishes a characteristic temperature TK of the AIM (called the
Kondo temperature), which determines different transport regimes. At

TK ∼ D exp
[
− 1
ρ0J

]
(2.6)

the Kondo interaction can no longer be treated perturbatively. Here ρ0 is the density
of states of the clean system at the Fermi level. At T . TK the local moment is
screened by the conduction electron spins and the total ground state becomes the
spin singlet, which is known as the Kondo effect. This has important consequences
both for transport and thermodynamic properties. The Kondo effect removes the
divergence from low temperature calculations of the resistivity. Experimental data for
the resistivity can be collapsed to a single curve if the resistivity is normalized to ρ(T =
0) and the temperature scaled with TK , see Figure 2.3(a). The spin susceptibility
has the Curie-Weiss form (2.4) with θ ∼ TK . It shows a clear crossover from the
Curie χ ∼ 1/T form at high temperatures to the Pauli temperature-independent
susceptibility χ ∼ 1/TK for T smaller than TK . This crossover is also seen in the
entropy and the specific heat. At T > TK the entropy approaches to the free local
moment value of kB ln 2, while at T � TK the spin is screened and the specific heat
acquires the Fermi liquid form CV = γT , where γ ∼ 1/TK (see the illustration in
Figure 2.3). The Kondo effect also leaves a signature in the density of states, where a
resonance of the width ∼ TK appears at the Fermi level.
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2.2 Diluted magnetic impurities in superconduc-

tors

The influence of magnetic impurities on conventional s-wave superconductors has been
intensively explored since the early 1960s [2, 11, 54, 55]. In a seminal work Abrikosov
and Gor’kov (AG) showed [11], within the second-order Born approximation, that the
scattering from impurity spins breaks the Cooper pairs and suppresses superconduc-
tivity. AG theory predicts the decrease in transition temperature Tc determined by a
universal function of the pair-breaking parameter

α ≡ τ−1
s = nimpN0J

2S(S + 1), (2.7)

where nimp the concentration of classical spin S impurities, J is the exchange interac-
tion, and N0 is the density of states at the Fermi level in the normal phase.

The transition temperature is obtained from the relation

ln Tc
Tc0

= ψ
(1

2

)
− ψ

(1
2 + 1

2πτsTc

)
, (2.8)

where ψ(x) is the digamma function and Tc0 is the transition temperature of the pure
metal. Superconductivity is completely suppressed when αc = τ−1

s ≈ 0.88Tc0. There
is excellent quantitative agreement between AG theory and numerous experiments on
conventional superconductors with rare-earth impurity ions [54, 56, 57]. In the left
panel of Figure 2.4 we show a comparison of the experimentally-determined critical
temperature for LaAl2 with Gd impurities and the Abrikosov-Gor’kov result.

A notable deviation from AG theory is observed in some alloys, like La1−xCexAl2
[12, 13]. In these systems Tc initially decreases with increasing the concentration x

similar to AG theory, but near the critical concentration there is a regime where the
system is superconducting below an “upper” critical temperature Tc1, but it “reenters”
the normal phase at nonzero Tc2. This reentrant superconductivity is explained as a
consequence of Kondo physics [14–16], and it appears when the characteristic Kondo
temperature TK is much smaller than the critical temperature of the clean system
Tc0. An approximate form for the pair-breaking parameter, derived in the work of
Müller-Hartmann and Zittartz [14], is given by

α(nimp, T ) ∼ nimp

[
π2S(S + 1)

[ln(T/TK)]2 + π2S(S + 1)

]
. (2.9)
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Figure 2.4: (left panel) Reduced superconducting transition temperature Tc/Tc0 as
a function of the reduced impurity concentration nimp/n

c
imp for La1−xGdxAl2. Critical

concentration of the Gd impurities is ncimp = 0.590 %. The critical temperature in the
clean system is Tc0 = 3.24 K. (adapted from Ref. [54])

The impurity scattering and the pair-breaking parameter acquire strong temperature
dependence. At temperatures T � TK the impurity spins are weakly coupled to the
conduction electrons and the superconducting (SC) phase persists, while the normal
phase reappears at temperatures T ∼ TK when the scattering becomes stronger. In the
right panel of Figure 2.4 we show the normalized critical temperature Tc/Tc0 in LaAl2
doped with Ce impurities. The solid line is the interpolation through the experimental
points and the dashed line shows the AG curve for comparison. The inset shows the
Müller-Hartmann-Zittartz curve for Tc0 � TK and Tc0 � TK which is used for fitting
the measurements on La3−xCexIn and Th1−xUx.

2.3 Shiba subgap states

The existence of localized bound states at the impurity site was theoretically found
by Yu (1965) [17], Shiba (1968) [18] and Rusinov (1969) [19]. The energy of the Shiba
state falls within the superconducting gap which is reflected by the appearance of
in-gap resonances in the local density of states. The existence of Shiba (YSR) states
was first established for classical spins, but similar bound states also appear in the
case of quantum impurities, which are dynamically coupled to the superconducting
bulk [21, 22]. Shiba states were first experimentally detected by Yazdani et al. in 1997
[23] in the STM tunneling spectra on Mn and Gd adatoms on superconducting Nb.
Interest in the Shiba states on adatoms followed through further improvements in STM
resolution [4]. Another important realization of Shiba states appears through using
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Figure 2.5: (left panel) Schematic figure of the unscreened state Ψ0 and partially
screened state Ψ1. For weak coupling Ψ0 is the ground state. (right panel) Local
spectral function has two resonances at ω = ±EYSR. (adapted from Ref. [2])

quantum dots in superconductor-semiconductor heterostructures or by using carbon
nanotubes [3].

In the classical impurity limit we set S → ∞ while keeping JS = const. J

denotes the exchange coupling between the impurity and the host. In this limit,
the longitudinal component of the exchange interaction persists, while the transverse
(spin-flip) components decrease as 1/S and hence drop out of the problem. If we set
the impurity spin along the z-axis the Hamiltonian is given by

H =
∑
kσ

ξkc
†
k,σck,σ −∆

∑
k

(
c†k,↑c

†
−k,↓ + H.c.

)
+ JSsz(r = 0), (2.10)

where sz(r = 0) is the conduction electron spin at the position of the impurity. ∆ is
the superconducting gap. The impurity spin acts as an effective local field h = JS.
The bound-state energy is equal to [18]

EYSR = ∆1− α2

1 + α2 , (2.11)

where α is the dimensionless impurity coupling parameter α = πρ0h/2 = πρ0JS/2 and
ρ0 is the density of states at the Fermi level in the normal state. For weak exchange
coupling, i.e. for small α, in the ground state, all conduction electrons form Cooper
pairs and the local spin is not screened. In the excited bound state the spin S is
partially screened and the total spin of the system is equal to S − 1/2 (Fig. 2.5). In
the local Green’s function two symmetric poles appear at ω = ±EYSR. These two
resonances correspond to a single excited state since the excitations are a mixture of
particles and holes.

As the coupling increases the position of the resonances moves towards the center
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Figure 2.6: Sketch of the two coupling regimes of a spin 1/2 impurity coupled to the
quantum dot. (a) For TK/∆ & 0.3 the impurity spin is screened by the conduction
electrons and the total spin is zero. The excited state, which can be reached by a
tunneling electron, has the spin 1/2. For weak coupling, TK/∆ & 0.3, the spin is
reversed. (b) The weight of the particle-like and hole-like components of the Shiba
state is reversed at the level crossing (adapted from Ref. [4]).

of the band. For α = 1 the energy levels of the ground and the excited states cross,
which corresponds to a first order phase transition. For α > 1 the ground state has
one electron unpaired and the total spin is equal to S − 1/2, while the total spin of
the excited state is equal to S (Fig. 2.5).

A quantum spin 1/2 impurity is described by the Anderson impurity model where
the conduction bath obtains also an anomalous component

H =
∑
k,σ

εkc
†
kσckσ−∆

∑
k

(c†k↑c
†
−k↓+H.c.)+V

∑
k,σ

(d†σckσ+H.c.)+εd
∑
σ

nσ+Un↑n↓. (2.12)

The impurity orbital is here denoted by d. A complete solution can be obtained
only through using the sophisticated method of the numerical renormalization group
[3, 21, 22]. The hybridization strength can be quantified with parameter Γ = πρV 2.
For U & πΓ and in the case of particle-hole symmetry (for |εd − µ| = U/2) the
AIM maps to the Kondo model with TK ≈ U

√
ρJ exp(−1/ρJ). Qualitatively, the

subgap state and subgap resonances are similar as in the case of a static impurity.
For TK/∆ > 0.3 the impurity spin is screened due to the Kondo effect and the total
ground state is the spin singlet. The level crossing appears for TK/∆ ≈ 0.3 and the
ground state becomes a spin doublet for TK/∆ . 0.3 (see the illustration in Figure
2.6).
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Chapter 2 Magnetic impurities in metals and superconductors

2.4 Periodic magnetic moments, heavy fermions and

superconductivity

Heavy fermion (HF) materials were discovered in 1975 [35]. It was observed that
CeAl3 at low temperatures is metallic but with a Pauli susceptibility and specific heat
coefficient γ = C/T of about 1000 times larger than those in conventional metals. This
corresponds to very large effective mass which is the origin of the name given to this
class of materials. Temperature dependence of the resistivity is also very peculiar: the
resistivity increases with lowering the temperature up to ∼ 10 K and than suddenly
drops. At small temperatures the resistivity obtains the Fermi liquid ρ = ρ(T =
0) +A T 2 form, but with very large value for coefficient A. These properties originate
from Ce ions which act as local moments weakly hybridized with the conduction band
of Al electrons. At high temperatures the behavior is similar as for diluted impurities.
However, at temperatures T < TK , the Ce ion local moments are Kondo screened,
and the scattering of conduction electrons on periodic impurities becomes coherent
due to translational invariance. Hence the resistivity decreases. This is nicely seen in
CexLa1−xCu6 alloys, where we can observe a sudden decrease in resistivity at T . 10K
for the stoichiometric compound CeCu6, see Figure 2.7.

The interest in heavy fermion compounds was substantially increased in 1979
with the discovery of superconductivity by Steglich et al. in heavy-fermion compound
CeCu2Si2 [36]. It was quickly realized that the origin of Cooper pairing cannot be the
electron-phonon interaction. It is rather the strong electron-electron interaction which

Figure 2.7: At high temperatures the resistivity curves of CexLa1−xCu6 for different
content of La are similar. At low temperatures ρ(T ) becomes temperature indepen-
dent, except in the case of translational symmetry for x = 1. (taken from from [58])

14



Chapter 2 Magnetic impurities in metals and superconductors

Figure 2.8: (left panel) Doniach’s phase diagram [taken from [38]]. (right panel)
Phase diagram of CeRhIn5. (taken from [59])

leads to superconductivity. The Cooper pairs in heavy fermions usually have d-wave
symmetry. The discovery of superconductivity in heavy fermion materials was rather
surprising since in the case of conventional superconductors the magnetic moments
strongly suppress superconductivity.

Many compounds which contain partially filled 4f or 5f orbitals are heavy fermions.
A model that describes generic properties of heavy fermions is the periodic Anderson
model (PAM). It is given by the Hamiltonian [53]

HPAM = −t
∑
〈i,j〉σ

c†iσcjσ + V
∑
iσ

(f †iσciσ + c†iσfiσ) + εf
∑
iσ

f †iσfiσ + U
∑
i

nfi↑n
f
i↓. (2.13)

Here t is the hopping parameter in the conduction band, V the hybridization strength
between f and c electrons, εf sets the energy level of the f -electrons, and U is the
on-site repulsion between f electrons on the same orbital. For strong interaction U

and for εF below the Fermi level so that 〈nf〉 ≈ 1 this model reduces to the Kondo
lattice model (KLM)

HKLM = −t
∑
〈i,j〉σ

c†iσcjσ + J
∑
i,σ

Si · si, (2.14)

where si = 1
2
∑
αβ c

†
iασαβciβ is the conduction electron spin at site i. Similar as in the

case of diluted impurities, the characteristic energy scale (coherence temperature) in
the PAM/KLM is T ∗ ∼ TK ∼ D exp(−1/ρ0J).

At low temperatures inter-site correlations between the f spins are often important

15



which leads to the antiferromagnetic phase. Inter-site interactions JJKKY ∼ ρ0J
2,

mediated by the conduction electrons, is called the RKKY interaction (Ruderman-
Kittel-Kasuya-Yosida). A generic phase diagram of the PAM/KM was proposed in
1977 by Doniach [60] (see Figure 2.8). The nature of the quantum critical point
between the antiferromagnetic and Fermi liquid phase is still an open problem. d-
wave superconductivity often appears near this quantum critical point.
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Numerical methods

In this Chapter we give an overview of the numerical methods used in the thesis.
For the study of the spectral properties of a quantum impurity coupled to a supercon-
ducting lead we use the Numerical Renormalization Group (NRG) [9, 61, 62]. This
nonperturbative method for solving the Anderson impurity model (AIM) is able to
resolve fine features in the electron spectra near the Fermi level which is crucial for
the numerical study of the Shiba states.

The study of the periodic Anderson model is done within Dynamical Mean Field
Theory (DMFT) [63]. This method reduces to solving the AIM supplemented by a self-
consistency condition. The DMFT equations are solved iteratively by implementing
the self-consistency loop. For the so-called impurity solver we primarily used the
Continuous-Time Quantum Monte Carlo method (CTQMC) [64, 65], a method which
offers a numerically exact solution to the impurity problem, but subject to statistical
noise and only capable of reproducing dynamic quantities on the Matsubara axis. We
also used the Exact Diagonalization (ED) [66] impurity solver, which truncates the
number of orbitals in the conduction band to a number which allows for the numerical
diagonalization of an approximate Hamiltonian matrix of relatively small size. We
did not have available an implementation of the NRG code for the superconducting
DMFT case, and thus we used NRG only in the case of a single impurity.

3.1 Numerical renormalization group

Impurity models are characterized by a ‘small’ system with few degrees of freedom
(the impurity), coupled to a ‘large’ system with many degrees of freedom (the bath).
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Chapter 3 Numerical methods

As a result, in studying these models, one has to typically consider a wide range of
energies, from a couple of electronvolts associated with the continuum, to arbitrarily
small excitations [61]. A very efficient way of systematically treating such systems was
formulated by K. G. Wilson in the 70s [9], known as the Numerical Renormalization
Group (NRG), which is fully non-perturbative.

The NRG starts with a logarithmic discretization of the conduction band, which
is mapped onto a semi-infinite chain, with the impurity being the first site, Fig. 3.1.
One may diagonalize this chain iteratively starting with the impurity site, where due
to the logarithmic discretization the hopping parameters fall off exponentially. I.e., by
moving along the chain one encounters decreasing energy scales. The NRG may be
leveraged for thermodynamic quantities as well as dynamic quantities at zero and non-
zero temperature, making it a particularly strong and valuable method in condensed-
matter physics. Here we have used the NRG implementation of R. Žitko1 [67, 68].
Below we shall largely follow the arguments contained in the review paper of Bulla et
al. Ref. [61], which reveals many details not included here for sake of brevity.

If the entire influence of a bath coupling to an impurity is captured by a hybridiza-
tion function

Γ(ω) = π
∑

k
V 2

k δ(ω − εk) (3.1)

i.e.,
∆(z) =

∫
dω

Γ(ω)
z − ω

, (3.2)

c.f. Eq. (3.45), then we are free to rewrite the model’s Hamiltonian in a variety of
ways which leave the hybridization function ∆(z) intact. One such way (for a half-
bandwidth D = 1) is the continuous band representation

H = Hatom +∑
σ

∫ 1
−1 dεg(ε)a†εσaεσ +∑

σ

∫ 1
−1 dεh(ε)

(
f †σaεσ + H.c.

)
. (3.3)

Here a are standard fermionic operators, and the hybridization function is related to
the dispersion g(ε) and hybridization h(ε) as

Γ(ω) = π
dε(ω)
dω

h[ε(ω)]2 (3.4)

where ε(ω) is the inverse function to g(ε), i.e. g[ε(ω)] = ω.
Next one introduces the logarithmic discretization parameter Λ > 1 as per Fig. 3.1a.

1http://nrgljubljana.ijs.si
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Chapter 3 Numerical methods

Figure 3.1: Figuring illustrating the main procedures of the NRG method, taken
from [61]. a) An impurity (green dot) couples to a bath with hybridization function
∆(ω). One introduces a logarithmic discretization of the bath by a parameter Λ. b)
Each subinterval is approximated by a single state and coupled to the impurity. c)
The whole system is mapped onto a semi-infinite chain. The impurity is coupled to
the first conduction electron site through the hybridization parameter V , whereas the
parameters of the tight-binding model are {ti, εi}.

It defines a set of intervals in the conduction band with discretization points

xn = ±Λ−n, n = 0, 1, 2, . . . (3.5)

and interval widths dn = Λ−n(1−Λ−1). In each interval a set of complete orthonormal
set of functions is introduced

ψ±np(ε) =


1√
dn
e±iωnpε for xn+1 < ±ε < xn

0 otherwise
, (3.6)

p ∈ Z. Next the aεσ are expanded in this basis, viz.

aεσ =
∑
np

(
anpσψ

+
np(ε) + bnpσψ

−
np(ε)

)
(3.7)
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where the coefficients’ inverse transform reads

anpσ =
∫ 1
−1 dε

[
ψ+
np(ε)

]∗
aεσ, bnpσ =

∫ 1
−1 dε

[
ψ−np(ε)

]∗
aεσ. (3.8)

After the necessary manipulations it can be shown that above Hamiltonian Eq. (3.3)
can be cast in a form

H = Hatom +
∑
nσ

(
ξ+
n a
†
nσanσ + ξ−n b

†
nσbnσ

)
+ 1√

π

∑
nσ

[
f †σ
(
γ+
n anσ + γ−n bnσ

)
+
(
γ+
n a
†
nσ + γ−n b

†
nσ

)
fσ

]
(3.9)

which has the discretization as shown in Fig. 3.1b. I.e., the continuum has been approx-
imated by a discrete set of states which becomes exponentially denser for increasingly
smaller energy scales. Here a(b)nσ ≡ a(b)n0σ,

γ±n =
∫ ±,n

dε∆(ε), (3.10)

∫±,n ≡ ± ∫±xn±xn+1
and

ξ±n =
∫±,n dε∆(ε)ε∫±,n dε∆(ε)

. (3.11)

Indeed, we have dropped the p 6= 0 terms, which constitutes an approximation which
in practice appears to reproduce reliable results. This is partly due to the fact that
the p 6= 0 states only couple indirectly and weakly to the impurity, through the p = 0
states.

Eq. (3.9) can be further cast into a one-dimensional chain Hamiltonian where the
impurity only couples to the first conduction electron degree of freedom, c.f. Fig. 3.1c.
This Hamiltonian takes the following form

H = Hatom +
√
ξ0π−1

∑
σ

(
f †σc0σ + H.c.

)
+

∞∑
n=0,σ

[
εnc
†
nσcnσ + tn(c†nσcn+1σ + H.c.)

]
(3.12)

where the c are related to the a and b operators by an orthogonal transformation, viz.

cnσ =
∞∑
m=0

(unmamσ + vnmbmσ), (3.13)

and ξ0 =
∫ 1
−1 dε∆(ε). The parameters εn, tn and unm and vnm can be determined by
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recursive relations, as given in Ref. [69]. What is however key is that the hopping
parameters tn fall off with their distance to impurity n exponentially.

Since there are some computational issues involved with solving for the Hamiltonian
parameters of the semi-infinite chain, another approach is to view the Hamiltonian as
a series of Hamiltonians HN which approach H in the N →∞ limit, i.e.

H = lim
N→∞

Λ−(N−1)/2HN . (3.14)

There exists a recursion relation HN+1[HN ] which can be understood in terms of a
renormalization group transformation R, viz.

HN+1 = R(HN). (3.15)

If we succeed in finding the eigenenergies of Hamiltonian HN , i.e. we diagonalize

HN |r〉N = EN(r)|r〉N (3.16)

with r = 1, . . . , dim(HN), then we succeed in characterizing the RG flow towards the
model’s fixed points. An iterative diagonalization scheme can be employed to find
these eigenergies (flows), since we can construct bases

|r; s〉N+1 = |r〉N ⊗ |s(N + 1)〉 (3.17)

with |s(N + 1)〉 a suitable basis for the added site, such that

HN+1(r, s; r′, s′) = N+1〈r; s|HN+1|r′; s′〉N+1. (3.18)

With these relations the chain Hamiltonian can be iteratively diagonalized. Knowing
the RG flow of the system, we have successfully approximated the original impurity
problem by a discretized system. The maximum value of the index N (number of di-
agonalization iterations necessary) is typically chosen such that the system approaches
its low-temperature fixed point. Note that a truncation scheme is necessary since the
number of eigenstates grows exponentially with N . This truncation scheme involves
dismissing the part of the spectrum at each iteration above a set threshold. The
challenge in using the NRG method for DMFT ends is in how to construct the con-
tinuous band Hamiltonian Eq. (3.3) out of the previous DMFT iteration’s Weiss field,
especially in channel-mixing cases [70].
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3.2 Dynamical mean field theory

As described in the previous chapter the physics of solid-state systems is often driven
by interaction strengths of the order or larger than the hopping strength. As a result
perturbation theory breaks down. Dynamical Mean-Field Theory (DMFT) is based
on the mapping of lattice models of strongly-correlated electron systems onto a single
quantum impurity problem subject to a self-consistency condition [63, 71]. The DMFT
approach assumes not all degrees of freedom to be frozen: it holds spatial fluctuations
constant, but takes full account of local quantum fluctuations (i.e. temporal fluctuation
between quantum states at the given lattice site). The approach becomes exact in the
limit where the number of spatial dimensions d becomes infinite. I.e., in this limit
spatial fluctuations cease to affect the local dynamics of the selected site. Except at
very low temperatures this is typically a good approximation for lattice models, where
e.g. the coordination number of a cubic lattice is 6 and 12 for a face-centered cubic
lattice.

In its original formulation DMFT treats single-site problems. The effects of the
surrounding lattice on this site are captured through a self-consistency condition, and
treated as a bulk effect (”effective medium”). Hence, for instance in the context of
heavy-fermion materials where there is competition between the RKKY interaction
and a metallic state resulting from Kondo singlet formation, the DMFT method falls
short. The RKKY interaction, a non-local phenomenon, cannot be captured with
single-site DMFT. Extensions were formulated such as cluster-DMFT [72, 73], which
allows for solving the DMFT self consistency equations for impurities consisting of
clusters of two or more impurity sites. Indeed, with two lattice sites it is possible to
recover the antiferromagnetic insulating phase of the Doniach phase diagram [74].

3.2.1 Cavity method and self-consistency

The cavity method [63] allows for the derivation of the DMFT self consistency equation
by focusing on a single lattice site and integrating out the degrees of freedom of all
other lattice sites. The resulting problem resembles the Anderson single-impurity
problem but with an effective hybridization function ∆(ω), capturing the effects of the
rest of the lattice on the impurity.

The starting point is the Hubbard Hamiltonian in its tight-binding formulation,
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i.e.
HHubbard = −

∑
ijσ

tijc
†
iσcjσ − µ

∑
iσ

c†iσciσ + U
∑
i

ni↑ni↓ (3.19)

where niσ ≡ c†iσciσ and µ , for which the action takes the form

SHubbard[c̄, c] =
∫ β

0
dτ

∑
iσ

c̄iσ(∂τ − µ)ciσ −
∑
ijσ

tij c̄iσcjσ + U
∑
i

c̄i↑c̄i↓ci↓ci↑

 (3.20)

where ciσ = ciσ(τ) are fermionic Grassmann fields and c̄ indicates the complex conju-
gate field. To continue we want to focus on one given site on the lattice, say in some
chosen origin i = 0. The crucial step in DMFT is now to explicitly integrate out all
the degrees of freedom on the other sites i 6= 0 and divide the action into three parts.
In this way one can derive an effective bath ∆(ω) for the selected site.

The action is rewritten into three parts: the on-site part of the chosen site S0, the
interaction of the given site with the other sites Shyb and the remaining lattice action
S(0) in the presence of the ‘cavity’.

S0 =
∫ β

0
dτ

(∑
σ

c̄0σ(∂τ − µ)c0σ + Uc̄0↑c̄0↓c0↓c0↑

)
, (3.21)

Shyb = −
∫ β

0
dτ

∑
i 6=0,σ

(t0ic̄0σciσ + ti0c̄iσc0σ) (3.22)

and

S(0) =
∫ β

0
dτ

∑
i 6=0,σ

c̄iσ(∂τ − µ)ciσ −
∑

i,j 6=0,σ
tij c̄iσcjσ + U

∑
i 6=0

c̄i↑c̄i↓ci↓ci↑

 . (3.23)

We continue by reconstructing the partition function and by expanding in Shyb, this
leads to

Z =
∫
D[f †, f ]e−Sf

∫
D[c†, c]e−S(0)

(
(1−

∫ β

0
dτShyb(τ)

+ 1
2

∫ β

0
dτ1

∫ β

0
dτ2TShyb(τ1)Shyb(τ2)− . . .

)
(3.24)
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such that by averaging over cavity action S(0) (denoted by 〈 〉(0)) we find

Z =
∫
D[f †, f ]e−SfZ(0)

(
(1−

∫ β

0
dτ〈Shyb(τ)〉(0)

+ 1
2

∫ β

0
dτ1

∫ β

0
dτ2〈TShyb(τ1)Shyb(τ2)〉(0) − . . .

)
. (3.25)

T is the time-ordering operator.
As the hybridization part of the action contains two terms creating and annihilating

electrons on the impurity, all odd-order terms in the expansion must be zero. Thus
we determine the lowest order contribution to be

1
2

∫ β

0
dτ1

∫ β

0
dτ2

∑
i,j 6=0

∑
σ

ti0t0j c̄0σ(τ1)〈Tciσ(τ1)c̄jσ(τ2)〉(0)c0σ(τ2) (3.26)

(the cross term), which equals

1
2

∫ β

0
dτ1

∫ β

0
dτ2

∑
i,j 6=0

∑
σ

ti0t0j c̄0σ(τ1)G(0)
ij (τ1 − τ2)c0σ(τ2). (3.27)

By the Linked Cluster Theorem one arrives at an effective action Seff including the
n-th order term:

Seff = Sf +
∞∑
n=1

∑
i1,...,jn

∫
dτi1 · · ·

∫
dτjnti10 · · · t0jnf †σ(τi1) · · · f †σ(τin)

× fσ(τj1) · · · fσ(τjn)G(0)
i1,...,jn(τi1 , . . . , τjn) + const. (3.28)

which is an infinite series. However, it simplifies remarkably in the limit of infinite
dimensions [75], in which only the single-particle Green’s function survives. The re-
sulting effective action takes the form

Seff
d→∞= −

∫ β

0
dτ1

∫ β

0
dτ2f

†
σ(τ1)G−1

0 (τ1 − τ2)fσ(τ2) + U
∫ β

0
dτnf↑(τ)nf↓(τ) (3.29)

where the so-called Weiss field (its quantum-generalization from statistical physics)

G−1
0 (τ1 − τ2) = − (∂τ − µ) δτ1τ2 −

∑
ij

ti0t0jG
(0)
ij (τ1 − τ2) (3.30)

was introduced. It describes the local quantum fluctuations on the impurity between
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its atomic eigenstates. The Fourier transform in the time domain is given by

G−1
0 (iω) = iω + µ−

∑
ij

ti0t0jG
(0)
ij (iω). (3.31)

The (unknown) Weiss field describes the connection between an impurity and its ex-
ternal electronic environment.

Self-consistency

To obtain a closed set of relations the next step is to obtain the cavity Green’s function
G

(0)
ij which describes the propagation of the electrons in the lattice with a cavity. In

the limit of infinite dimensions the relation that connects the cavity’s Green’s function
to the Green’s function of the original (no DMFT treatment) lattice Gij reads

G
(0)
ij = Gij −

Gi0G0j

G00
. (3.32)

Here G00 is the local density Green’s function of the lattice at site 0, viz.

Gij(τ1 − τ2) = −〈Tciσ(τ)c̄jσ(τ2)〉. (3.33)

Its Fourier representation is given by

Gij(iωn) =
∑

k
eik·(Ri−Rj)Gk(iωn). (3.34)

Here, Gk is the Green’s function of the original lattice problem

Gk(iωn) = (iωn + µ− εk − Σ(k, iωn))−1 (3.35)

in the presence of a self energy Σ (as a result of the on-site interaction). In the limit of
infinite dimensions it can be shown [63] that a remarkable simplification occur, namely

Σ(k, iωn) −→ Σ(iωn), (3.36)

i.e., the self energy becomes entirely local.
We forge a connection between the sum rule for the Weiss field Eq. (3.31)

G−1
0 (iω) = iω + µ−

∑
ij

ti0t0j

(
Gij −

Gi0G0j

G00

)
(3.37)
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and the lattice Green’s function at the impurity’s site. This sum rule greatly simplifies
in Fourier space, for which we need to derive two identities. Knowing Eq. (3.35), we
can set ξ = iω + µ− Σ(iω), such that

Gk(iω) = (ξ − εk)−1 (3.38)

and thus

∑
k
εkGk = ∑

k εk
1

ξ−εk
= ∑

k
εk−ξ+ξ
ξ−εk

= −1 +∑
k

ξ
ξ−εk

= −1 + ξG00 (3.39a)

whereas

∑
k
ε2

kGk = ∑
k
εk(εk−ξ)+εkξ

ξ−εk
= ∑

k
εk(εk−ξ)
ξ−εk

+ ξ
∑

k
εk
ξ−εk

= ξ(−1 + ξG00) (3.39b)

where in the second step of the second equation we used that the energy has its zero
at the Fermi level. Following Eq. (3.34)

G00(iω) =
∑

k
Gk(iω) (3.40)

while εk = ∑
j tije

ik·(Ri−Rj). Then, with the help of some algebra

−G−1
0 (iω) + iω + µ = ∑

ij ti0t0j
(
Gij − Gi0G0j

G00

)
= ∑

k ε
2
kG00 −

(∑k εkGk)2

G00

= −ξ + ξ2G00 − 1−2ξG00+ξ2G2
00

G00

= iω + µ− Σ(iω)−G−1
00 . (3.41)

This leads us to the central equation of the DMFT method (the Dyson equation)

G−1
0 (iω) = Σ(iω) +G−1

00 (iω) (3.42)

which connects the Weiss field to the local lattice’s Green’s function in the limit of
infinite dimensions. Thus, in order to successfully employ DMFT, we have to determine
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Figure 3.2: Sketch of the forward substitution method employed in solving the DMFT
self-consistency relation. A DMFT procedure is started by an initial guess for the
effective bath G0(iωn) based on a known limit such as the atomic limit, Hartree-Fock
result or the non-interacting limit. Based on this bath, an impurity solver determines
the on-site self energy of the impurity (top arrow), leading to a local Green’s function
G(iωn) = G00(iωn). Using the Dyson equation an update for G0 is determined (bottom
arrow), after which the process starts anew till the procedure converged up to required
precision. Note that there is no guarantee for convergence, which can especially be a
problem in the vicinity of phase boundaries or with unstable phases.

the impurity’s Green’s function

G00 = Gimpurity[G0]. (3.43)

Anderson Impurity Model equivalence

We can determine Gimpurity[G0] by observing that the action Eq. (3.29) describes a
single Anderson impurity immersed in an effective bath described by G0. I.e., taking
the AIM [Eq. (2.1)] and integrating out the c-electrons gives a Weiss field of the form

G−1
0 (iωn) = iωn + µ−∆(iωn) (3.44)

with a ‘hybridization function’ of the form

∆(iωn) =
∑

k

|Vk|2

iωn + µ− εk
. (3.45)

Thus, by either analytically or numerically solving the Anderson impurity problem,
we may solve the self consistency equation Eq. (5.12) of the DMFT method by for-
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ward substitution, as detailed in Fig. 3.2, which amounts to finding the two sets of
parameters {Vk, εk} → {V, ε̃}1···N that effectively capture the interaction effects in the
bulk of the lattice of the Hubbard model Eq. (3.19).

3.2.2 Impurity solver I: Continuous-time quantum Monte Carlo

Monte-Carlo methods are well known from numerical simulations of interacting clas-
sical systems, for instance the Ising model. Generally speaking, the algorithm starts
with a random state of the model, and proceeds by randomly applying a single change
to the system (e.g. spin flip). If this state change lowers the overall energy it is ac-
cepted. If it does not, Monte Carlo defines a certain acceptance ratio for such case,
based on model parameters like the temperature and interaction strength.

The ‘Continuous-Time’ implementation [76] of the quantum variant of this algo-
rithm carries out above procedure in the space of all possible Feynman diagrams.
Continuous time here means that, in this implementation, we do not discretize the
(imaginary) time, in contrast to the earlier ‘Hirsch-Fye’ [77] implementation of the
quantum Monte Carlo algorithm. A downside of the method is a so-called ‘sign prob-
lem’ arising in fermionic models. It occurs in simulations when, for instance, two
electrons trade places, which causes very poor convergence of the algorithm. This
problem is however to a large extent circumvented in the case where one considers im-
purity models, such that CTQMC algorithms are widely adopted as impurity solvers.

In the following we shall focus on the ‘hybridization expansion’ (CTHYB) formu-
lation of the CTQMC method as formulated by Haule [64], since this is the method
employed in the body of this work. For other expansions (CTINT, CTAUX), please
refer to, e.g., [65].

CTHYB determines by Monte-Carlo sampling the expansion in Shyb of Eq. (3.24)
and thus the local two-body Green’s function in infinite dimensions. By the central
DMFT consistency relation Eq. (3.42) it is then possible to compute the self energy
of the interacting impurity problem. We write the action of the Anderson Impurity
Model (2.1) as S[HAIM]. After integrating out the c-electrons, we define ∆S as

∆S ≡ S[HAIM]− S[Hatomic] =
∫ β

0 dτ
∫ β

0 dτ
′∑

σ f̄σ(τ)∆(τ − τ ′)fσ(τ ′) (3.46)

with ∆ the retarded hybridization of the impurity with the bath as per Eq. (3.45).
It is now straightforward to write the partition function in terms of a Feynman path
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integral (Satom ≡ S[Hatomic])

Z =
∫
D[f̄ , f ]e−Satom−

∫ β
0 dτ

∫ β
0 dτ ′

∑
σ
f̄σ(τ)∆(τ−τ ′)fσ(τ ′). (3.47)

Next we expand in terms of ∆S to arrive at

Z =
∫
D[f̄ , f ]e−Satom

∑
r

1
r!

[∑
αα′

∫ β

0
dτ
∫ β

0
dτ ′fα′(τ ′)f̄α(τ)∆αα′(τ − τ ′)

]r
, (3.48)

for which we can separate the local (impurity or ‘cluster’) contribution from the bath
contribution

Z=
∫
D[f̄ , f ]e−Satom

∑
r

1
r!

∫ β

0

r∏
i=1

dτidτ
′
i

∑
αα′

r∏
m=1

[
fα′m(τ ′m)f̄αm(τm)

] r∏
n=1

∆αnα′n(τn, τ ′n).(3.49)

In this manner it becomes clear that the partition function is a product of two terms:
the average over the impurity operators f and the average over the bath ∆.

It is important to group together all diagrams of the same perturbation order. In
this way one prevents for the fermionic minus-sign problem to become too severe. The
result can be written as a determinant

Z = Zatom
∑
r

1
r!

∫ β

0
dτ1

∫ β

0
dτ ′1 · · ·

∫ β

0
dτr

∫ β

0
dτ ′r

∑
{α}r{α′}r

× 〈Tfα′1(τ ′1)f̄α1(τ1) · · · fα′r(τ
′
r)f̄αr(τr)〉f

detr∆jl(τ, τ ′)
r! (3.50)

where Zatom =
∫
D[f̄ , f ]e−Satom , 〈O〉atom =

∫
D[f̄ , f ]Oe−Satom/Zatom, and the determi-

nant is taken over the r-dimensional matrix ∆. This is the central equation for the
CTQMC algorithm, or sampling, around the atomic limit.

Monte-Carlo sampling of the diagrams The set of diagrams, which is associated
with the chosen set of times {τ1, τ

′
1, . . . , τr, τ

′
r} and band indices {α1, α

′
1, . . . , αr, α

′
r}

can be visited by a Monte-Carlo (Metropolis) algorithm with the weights given by
Eq. (3.50). The effect of hybridization fα′(τ ′)f̄α(τ)∆αα′(τ, τ ′) is that of creation of a
‘kink’ in the time evolution of the impurity (cluster). I.e., to destroy one electron at
τ ′ and to create one on the cluster at time τ . Due to particle-number conservation the
number of kinks is always even.

To compute diagrams more efficiently two Monte Carlo steps need be implemented
(Markov chain): (i) insertion of two kinks at τnew and τ ′new chosen on [0, β) correspond-
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ing to random baths α, α′ and (ii) removing of two kinks by removing one annihilation
and one creation operator. Another step greatly reducing computation time is for
instance the random displacement of an operator on [0, β). Insertion of multiple kinks
is also possible.

A requirement on these moves is given by the ‘Detailed Balance Condition’ [64],
which states that the probability of inserting two kinks at random times τnew, τ

′
new ∈

[0, β) is given by

Padd = min
( βNb

r + 1

)2 Znew

Zold

Dnew

Dold
, 1
 (3.51)

where Nb is the number of baths, r the current perturbation order (number of kinks/2)
and Znew the updated cluster matrix element

Znew = 〈Tfα′new(τ ′new)f̄αnew(τnew)fα′1(τ ′1)f̄α1(τ1) · · · fα′r(τ
′
r)f̄αr(τr)〉atom (3.52)

and Dnew/Dold is the ratio between the old and the new determinants of the baths ∆.
This ratio can be evaluated using the ‘Shermann-Morrison’ formulas. Similarly, the
probability of removing two kinks is given by

Premove = min
( r

βNb

)2 Znew

Zold

Dnew

Dold
, 1
 , (3.53)

randomly chosen between [0, . . . , r].
A significant simplification occurs when the hybridization turns out block diagonal.

Then, the determinant will be a product of several smaller sub-determinants, one for
each block of hybridization. Then, in general the probability to add two kinks follows
as

Padd =
(
βNα

b

rα + 1

)2 Znew

Zold

Dαnew
Dαold

(3.54)

where Nα
b is the number of bands forming an off-diagonal block in the determinant.

Thus, the size of the hybridization determinant that needs to be computed can con-
siderably be reduced when ∆ is block diagonal. The cluster term Z however cannot
be broken into separate contributions for each bath, rather, the full trace needs to be
computed explicitly. Therefor, it is essential to find a fast way of computing 〈· · ·〉atom.

30



Chapter 3 Numerical methods

Exact diagonalization of the cluster There exists a way to diagonalize the atomic
Hamiltonian Hatom to efficiently calculate the traces of the atomic contribution. I.e.,
Hatom|m〉 = Em|m〉, such that in terms of Hubbard operators X Hatom takes the form
Hatom = XmmEm. In terms of this diagonal Hamiltonian the cluster traces can now be
efficiently computed. It is important to take into account conservation of the various
quantum numbers such as particle number, total spin and total momentum. A typical
contribution to the cluster part of the trace that needs to be evaluated at every step
in the CTQMC reads

Z0 = Tr
[
T exp

(
−
∫ β

0
dτHatom

)
fα1(τ ′1)f̄α2(τ2) · · · fαn−1(τ ′n−1)f̄αn(τn)

]
(3.55)

which can be expressed in matrix elements (F̄αi)nm ≡ 〈n|f †αi |m〉 and cluster energy
eigenvalues as

Z0 =
∑
{m}

e−Em1τ
′
1( Fα1)m1m2e

−Em2 (τ2−τ ′1)(F̄α2)m2m3 · · ·

×(Fαn−1)mn−1mne
−Emn (τ ′n−1−τn)(F̄αn)mnm1e

−Em1 (β−τn). (3.56)

The actual order of the operators follows by their time ordering, and as such annihi-
lation operators do not have to follow creation operators.

Having simplified the necessary traces, the bottleneck of the approach is that the
typical number of cluster states |m〉 that have to be visited is very large. As a result
the matrices F are in general very large, and one would need to multiply several
hundreds of very large matrices at each Monte Carlo step. However, there are several
simplifications that can be embedded in the method:

1. Most matrix elements vanish. Thus a fast algorithm is needed that determines
which ones are non-zero.

2. The size of the F matrices can be considerably reduced by including symmetries.

3. The insertion or removal of a kink is very local in time. It is convenient to store
both products (3.55) & (3.56) and when inserting a new kink only recompute
the new trace between inserted times τnew and τ ′new.

4. During simulation, the probability for visiting any cluster state can be recorded,
and can be used in the next step to remove the irrelevant atomic states from
the trace in Eq. (3.56). In this way the cluster base can be updated dynamically
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to describe the particular regime studied by the minimum number of relevant
states.

The concept of ‘superstates’ For instance, let us consider the concrete exam-
ple of a cluster in a one-band model. The bath index α runs over momenta k and
spin orientation σ. As such, the eigenstates of the cluster can be written in the form
|N,Sz,K;S, γ〉. Here N is the total number of electrons in the state, S and Sz are the
total spin and its z-component, K is the total momentum of the cluster state while γ
represents the rest of the quantum numbers.

In this base, the matrix elements of the creation operator are greatly simplified,
e.g.

f †qσ|N,Sz,K;S, γ〉 = |N + 1, Sz + σ,K + q;S ± 1/2, γ〉. (3.57)

Therefore, it is convenient to group together those states that share the same {N,Sz,K},
and treat the rest of the quantum numbers as internal degrees of freedom of the cluster
superstate |i〉 ≡ |{N,Sz,K}〉. The superstate |i〉 is a multi-dimensional state with
internal quantum numbers |m[i]〉 = |{S, γ}〉. It is clear that the action of a creation
operator on a superstate creates a unique superstate |j〉 = f †qσ|i〉, and it is enough
to store a single array j = F †α(i) to figure out how the Hilbert subspaces are visited
under a generic sequence of creation and annihilation operators, such as in Eq. (3.56).

In a general impurity problem, to compute the trace in Eq. (3.56) one starts with
the unity matrix in each subspace of superstate |i〉 and apply both the time operator
e−Em(τl−τ ′l ) and the kink by multiplication with the matrix (F †α)mn or (Fα)mn. One
arrives then at the next superstate |j〉 being either F †α(i) or Fα(i). Here, the time
operation and kink application are repeated. After r steps this procedure gives the
desired result for the trace Eq. (3.56).

Green’s functions evaluation It is efficient to compute the electron Green’s func-
tions by recognizing that it can be computed through the logarithmic derivative of the
partition function

G ηη′(τ ′i − τj) = − δ lnZ
δ∆ηη′(τj − τ ′i)

≡ 1
Z

∫
D[f̄ , f ]eSatom−

∫ β
0 dτ

∫ β
0 dτ ′

∑
σ
f̄σ(τ)∆(τ−τ ′)fσ(τ ′)f̄η(τj)fη′(τ ′i). (3.58)
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The derivative of the partition function which is sampled in the CTQMC is given by

δ lnZ
δ∆ηη′(τj − τ ′i)

= Zatom

Z

∑
r

1
r!

∑
α1,...,α′r

r∏
l=1

∫ β

0
dτl

∫ β

0
dτ ′l

× 〈Tfα′1(τ ′1)f̄α1(τ1) · · · fα′r(τ
′
r)f̄αr(τr)〉atom

× 1
r!

δ

δ∆ηη′(τj − τ ′i)
detr


∆α1α′1

(τ1 − τ ′1) · · · ∆α1α′r(τ1 − τ ′r)
... . . . ...

∆αrα′1
(τr − τ ′1) · · · ∆αrα′r(τr − τ ′r)

 .(3.59)

We recognize that the derivative gives a non-zero contribution whenever ∆ηη′(τj − τ ′i)
appears in the determinant. In this case, the result is a similar determinant, but with
a row and a column removed from the matrix, both containing ∆ηη′(τj − τ ′i).

It turns out to be convenient to introduce the inverse of the hybridization matrix

M ≡


∆α1α′1

(τ1 − τ ′1) · · · ∆α1α′r(τ1 − τ ′r)
... . . . ...

∆αrα′1
(τr − τ ′1) · · · ∆αrα′r(τr − τ ′r)


−1

. (3.60)

It will become apparent that this matrix is closely connected to the local Green’s
function. The ratio of determinants that was needed before, is expressed in terms of
M as

Dnew

Dold
= detMold

detMnew
. (3.61)

The before-mentioned Shermann-Morrison formulas allow for fast manipulation of
these matrices trough the formulas

(A−1 + u⊗ v)−1 = A− Au⊗ vA
1 + vAu

(3.62)

with A a matrix and u and v vectors. Determinants are given by

det(A−1 + u⊗ v)detA = 1 + vAu. (3.63)

Using these two formulas, one arrives at the expression for the ratios when removing
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or adding kinks:


adding: detMold

detMnew
= ∆nn −

∑
l,l′<n

∆nlMll′∆l′n

removing: detMold

detMnew
= (−1)i+jMij

(3.64)

where we removed column i and row j.
Continuing with determining the derivative in Eq. (3.59), we find that when taking

a derivative of the determinant of a matrix with respect to one of its elements, this
means that we remove a ‘cross’ out of the old determinant and are left with a new
determinant of one dimension less up to a sign. E.g.,

∂

∂A22
det


A11 A12 A13

A21 A22 A23

A31 A32 A33

 = A11A33 − A13A31 = +det
A11 A13

A31 A33

 . (3.65)

In other words, setting ∆ = M−1, the result of the derivative in Eq. (3.59) is (in
simplified form)

δdetr∆
δ∆ηη′(τj − τ ′i)

≡ δDold

δ∆ηη′(τj − τ ′i)

= (−1)i+jdetr−1



∆11 · · · ��∆1i · · · ∆1r
... . . . ... ...

�
��∆j1 · · · �

�∆ji · · · �
��∆jr

... ... . . . ...
∆r1 · · · ��∆ri · · · ∆rr


(3.66)

which is by definition equal to Dnew. Then, multiplying by 1, Eq. (3.59) is written as

δ lnZ
δ∆ηη′(τj − τ ′i)

= Zatom

Z

∑
r

1
r!

∑
α1,...,α′r

r∏
l=1

∫ β

0
dτl

∫ β

0
dτ ′l

× 〈Tfα′1(τ ′1)f̄α1(τ1) · · · fα′r(τ
′
r)f̄αr(τr)〉f

Dold

r!
Dnew

Dold
. (3.67)

The last ratio is exactly equal to the ratio given by Eq. (3.64) for removing a row and
a column, while the factors before are exactly that what is sampled by the CTQMC
for the partition function Z [Eq. (3.50)] giving the Monte Carlo weight WMC , such

34



Chapter 3 Numerical methods

that

G(τ ′i − τj) = −
∑
MC

WMCMτ ′iτj
(3.68)

is the central equation in the CTQMC for sampling the local (impurity) Green’s func-
tion. Fourier transforming given equation gives each contribution to the Green’s func-
tion in imaginary-frequency space

G(iω) = − 1
β

∑
MC

WMC

∑
ij

eiωτ
′
iMτ ′iτj

e−iωτj . (3.69)

Last two equations show that only the matrix M = ∆−1 needs to be stored during a
CTQMC simulation.

3.2.3 Impurity solver II: Exact diagonalization

Exact Diagonalization impurity solvers provide a solution to the impurity problem by
truncating the continuum to a finite number of orbitals, and diagonalizing the resultant
Hamiltonian by brute force. A priori there is no apparent advantage to prefer this
method over advanced computational methods like CTQMC and NRG, however, its
application deserves attention as an impurity solver in the DMFT context. In that
case, where one solves full lattice problems iteratively by coupling the impurity to
an effective bath, very good results are possible (on par with CTQMC and NRG)
by dynamically fitting the discretized continuum variables of the Hamiltonian to the
Weiss function within each DMFT iteration loop [66]. In our work we have deployed
this method mainly to benchmark the NRG and CTQMC impurity solvers, and to
provide comparison of results. We have used the ED impurity solver provided by M.
Civelli.

In the exact diagonalization method the single-impurity problem is solved exactly
by approximating its effective bath G0 with few orbitals only. I.e., instead of finding all
2N parameters {V, ε̃}1···N , one tries to find {V, ε̃}1···ns with ns bound by computational
resources, symmetry requirements of the Hamiltonian and temperature. Typically
ns ∼ 10. The ED procedure sums up as follows:

G−1
0 ≈ G−1

ns ({Vl, ε̃l})
diag. Hns−−−−−−→ G −→ G−1

0
min. χ2
−−−−−→ {V ′l , ε̃′l} −→ G−1

ns ({V ′l , ε̃′l}), (3.70)

In terms of the truncated number of orbitals ns, the Weiss function is as follows
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approximated:
G−1

0 ≈ G−1
ns = iωn + µ−

ns∑
l=2

V 2
l

iωn − ε̃l
, (3.71)

(where l = 1 is the local impurity orbital itself). An effective Hamiltonian Hns is con-
structed from these parameters, and diagonalized by numerical methods. Knowing the
eigenenergies and eigenstates of Hns allows for constructing Hns ’s Green’s function’s
in the Lehmann representation, viz.

G(iωn) = 1
Z

∑
i,j

(〈i|cc†|j〉)2

Ei − Ej − iωn
(e−βEi + e−βEj). (3.72)

Having constructed the Green’s function, a Weiss field G0 is determined through the
Dyson equation. By then utilizing a minimization procedure such as a conjugent-
gradient search algorithm on the measure

χ2 ≡ 1
nmax + 1

nmax∑
n=0

∣∣∣∣G−1
0 (iωn)− G−1

ns (iωn)
∣∣∣∣2 (3.73)

one determines updated parameters {V ′l , ε̃′l}. These parameters are used for another
pass through the DMFT iteration loop.

The ED method is typically quite efficient in providing a solution to the DMFT
method. This is because the {V, ε̃}1···ns parameters are free to adjust themselves,
and thus the exact diagonalization procedure is performed on an ‘adaptive grid’ in
ω. The minimization of the distance χ2 at every iteration allows for relatively fast
convergence of this method. Moreover, baths are compared on the Matsubara axis,
whereas the poles of the Green’s functions all lie on the real axis. Additional speed of
computation may be achieved by employing the Lanczos method for diagonalization,
although this method only provides access to the ground state of the model. In this
case too, calculations are performed on a Matsubara grid of imaginary frequencies,
where β plays the role of a pseudo temperature providing a high-energy cutoff.
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Magnetic impurities in spin-split
superconductors

Hybrid semiconductor-superconductor quantum dot devices are tunable physical
realizations of quantum impurity models for a magnetic impurity in a superconduct-
ing host. The binding energy of the localized sub-gap Shiba states is set by the gate
voltages and external magnetic field. The unequal g-factors in semiconductor and su-
perconductor materials result in respective Zeeman splittings of different magnitude.
Below we consider both classical and quantum impurities. In the first case we analyt-
ically study the spectral function and the sub-gap states. The energy of bound states
depends on the spin-splitting of the Bogoliubov quasiparticle bands as a simple rigid
shift. For the case of collinear magnetization of impurity and host, the Shiba resonance
of a given spin polarization remains unperturbed when it overlaps with the branch of
the quasiparticle excitations of the opposite spin polarization. In the quantum case, we
employ numerical renormalization group calculations to study the effect of the Zeeman
field for different values of the g-factors of the impurity and of the superconductor.
We find that in general the critical magnetic field for the singlet-doublet transition
changes non-monotonically as a function of the superconducting gap, demonstrating
the existence of two different transition mechanisms: Zeeman splitting of Shiba states
or gap closure due to Zeeman splitting of Bogoliubov states. We also study how in
the presence of spin-orbit coupling, modeled as an additional non-collinear component
of the magnetic field at the impurity site, the Shiba resonance overlapping with the
quasiparticle continuum of the opposite spin gradually broadens and then merges with
the continuum.

The interest in bound states induced by magnetic impurities in superconduc-
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tors, predicted in the early works of Yu, Shiba, and Rusinov [17–19], has been re-
cently revived by the advances in the synthesis and characterization of semiconductor-
superconductor nanostructures [78–83] and in the tunneling spectroscopy of magnetic
adsorbates on superconductor surfaces [23, 32, 84–87]. In particular, hybrid devices
based on quantum dots can be used as fully controllable physical realizations of quan-
tum impurity models with gapped conduction bands [2, 20–22, 55, 88–94]. The ground
state of the quantum dot can be tuned to be either a spin singlet or a spin doublet
depending on the impurity level and the hybridization with the bulk superconductor
[16, 79, 80, 95–97]. The Coulomb interaction on the quantum dot favors the spin
doublet ground state, while the spin singlet can be stabilized by the Kondo effect
or by pairing due to the superconducting proximity effect [98–102]. The position of
the in-gap (Shiba) resonances, as determined from the tunneling conductance, agrees
even quantitatively with the calculations based on the simple single-orbital Anderson
impurity model [24, 103], Eq. (2.1).

Research has focused on the effects of the magnetic field on the in-gap states
[31, 104–112] because systems of this class have been proposed as possible building
blocks for topologically ordered systems exhibiting Majorana edge states [25, 113–
115]. These are significant for fundamental reasons and might also find application
in quantum computation [116–118]. When an external magnetic field is applied to
a thin-film superconductor in the parallel (in-plane) direction, the superconducting
state persists to relatively large fields. The quasiparticle states become, however,
strongly spin polarized and the coherence peaks in the density of states become Zeeman
split [27–29, 119, 120]: systems in this regime are known as spin-split or Zeeman-
split superconductors, and play a key role in the emerging field of superconducting
spintronics [121].

The spectral function of a spin-split superconductor has two band edges with di-
verging coherence peaks separated by the bulk Zeeman energy, reflecting the fact that
the Bogoliubov excitations have spin-dependent energies Ekσ =

√
ξ2
k + ∆2+gbulkµBBσ.

Here ξk = εk − µ is the energy level εk of electron with momentum k measured with
respect to the chemical potential µ, ∆ is the gap, gbulk is the g-factor of the super-
conductor, µB is the Bohr magneton, B is the magnetic field, and σ = ±1/2 is the
quasiparticle spin. Since the Shiba states can be considered as bound states of Bo-
goliubov quasiparticles, the spectral properties of magnetic impurities in spin-split
superconductors are modified.

The theoretical work has, so far, mainly focused on the effect of a local magnetic

38



Chapter 4 Magnetic impurities in spin-split superconductors

field applied on the position of the impurity only [109, 110]. For bulk electrons in the
normal state, this approximation is usually justified because the impurity magnetic
susceptibility is typically much larger (χimp ∝ 1/TK , where TK is the Kondo tempera-
ture) than that of the bulk electrons (Pauli susceptibility, χbulk ∝ ρ ∝ 1/D, where ρ is
the density of states at the Fermi level and D is the bandwidth). In superconductors,
however, the Zeeman splitting of the Bogoliubov quasiparticle bands and the Zeeman
splitting of the doublet sub-gap states are of comparable magnitude: the splitting of
the first is simply the Zeeman energy gbulkµBB, while the splitting of the second is
g̃impµBB, where g̃imp is the impurity g-factor gimp renormalized by the coupling with
the bulk. Generically, both splittings are comparable with the possible exception of
nanowire quantum dots made of materials with extremely strong spin-orbit (SO) cou-
pling and hence very high bare gimp. For this reason, it is important to include the
Zeeman terms both in the impurity and in the bulk part of the Hamiltonian.

We introduce the ratio r of the Landé g-factors which describe the magnitude of
the Zeeman splittings:

r = gbulk/gimp. (4.1)

For many elemental superconductors the g factor is close to the free electron value,
gbulk ≈ 2. In semiconductors the g factor usually differs strongly from this value due
to SO coupling. The effective g factors are quite variable [122]: they can be very large
positive, as well as very large negative, or can even be tuned close to 0. The control
of g can be achieved through strain engineering [123], nanostructuring [124], or by
electrical tuning in quantum dots [122, 125–127]. In the r = 0 limit, the Zeeman term
is only present on the impurity site: this limit is appropriate for materials with very
large positive or negative g factor, where the Zeeman splitting in the superconductor
is indeed negligible. Another special limit is r = 1, where all sites (bulk and impurity)
have the same g-factor. In general, however, the value of r is essentially unconstrained.

Using analytical calculations for a classical impurity (with no internal dynamics)
and with the numerical renormalization group (NRG) method [9, 61, 67, 68, 91, 128–
130] for a quantum impurity (which incorporates the effect of spin flips) we study the
spectral properties of the Shiba states. In the classical case we perform a calculation
along the lines of Refs. [17–19], but include the effect of the Zeeman term in the super-
conductor, see also Appendix A. In the quantum case we focus on the single-orbital
Anderson impurity and discuss the changes in the singlet-doublet phase transition as
the ratio of the g-factors of the impurity and the bulk is varied. We study the fate of a
sub-gap resonance when it approaches the continuum of the Bogoliubov quasiparticles
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with the opposite spin, with and without the additional transverse magnetic field that
mimics non-collinearity in the presence of SO coupling.

4.1 Classical impurity

The impurity is described using a quantum mechanical spin-S operator, which is ex-
change coupled with the spin-density of the conduction band electrons at the position
of the impurity at r = 0. The corresponding Hamiltonian is H = HBCS +Himp with

HBCS =
∑
kσ

ξkc
†
k,σck,σ −∆

∑
k

(
c†k,↑c

†
−k,↓ + H.c.

)
+
∑
k

bbulksz,k,
(4.2)

and
Himp = JS · s(r = 0), (4.3)

where bbulk = gbulkµBB is the magnetic field expressed in the energy units (i.e., the
Zeeman splitting), sz,k = 1

2 (n↑,k − n↓,k), and s(r = 0) = 1
N

1
2
∑

kk′αβ c
†
kασαβck′β. J

is the exchange coupling between the impurity and the host. The classical impurity
limit consists of taking the S → ∞ limit while keeping JS = const. In this limit,
the longitudinal component of the exchange interaction persists, while the transverse
(spin-flip) components decrease as 1/S and hence drop out of the problem. The
Hamiltonian then becomes non-interacting. We introduce the effective local field

h = JS (4.4)

and the dimensionless impurity coupling parameter

α = πρh/2 = πρJS/2, (4.5)

where ρ is the density of states (DOS) at the Fermi level in the normal state. We will
first assume that the bulk field bbulk and the effective local field h are collinear and of
the same sign. To be specific, we choose bbulk > 0, h > 0.

The non-perturbed Green’s function of the Zeeman-split superconductor is

G0
k(z) = (z − bbulk/2)τ0 + εkτ3 −∆τ1

(z − bbulk/2)2 − (ε2k + ∆2) . (4.6)
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Here τ1, τ2, τ3 are the Pauli matrices, τ0 is the identity matrix, and z is the frequency
argument. To obtain the local Green’s function at the origin, G0

loc, we sum over the
momenta k and switch over to an integral over energies assuming a flat DOS in the
normal state. In the wide-band limit we find

G0(z) = −πρ(z − bbulk/2)τ0 −∆τ1√
∆2 − (z − bbulk/2)2

. (4.7)

The Dyson’s equation to include the impurity effect can be written as [17–19]

[G(z)]−1 = [G0(z)]−1 − hτ0. (4.8)

We have

[G0(z)]−1 = −

√
∆2 −

(
z − bbulk

2

)2

πρ[
(
z − bbulk

2

)2
−∆2]

[(z − bbulk/2)τ0 + ∆τ1], (4.9)

and finally

G(z) = −πρ 1
D

a ∆
∆ a

 , (4.10)

where

D = 2α
(
bbulk

2 − z
)

+ (α2 − 1)

√√√√∆2 −
(
bbulk

2 − z
)2

,

a = bbulk/2− z + α
√

∆2 − (bbulk/2− z)2.

(4.11)

The spin-up spectral function is A↑(ω) = −(1/π)=G11(ω + iδ), while the spin-down
spectral function is A↓(ω) = −(1/π)=[−G22(−ω − iδ)] = −(1/π)=G22(−ω + iδ).

The 11 (spin-up) matrix component of G(z) has two poles:

ω1,2 = bbulk/2±∆1− α2

1 + α2 . (4.12)

Only one pole has a finite residue. For h > 0 (hence α > 0) we find a sub-gap resonance
in the spin-up spectral function at

ω↑ = bbulk/2−∆1− α2

1 + α2 . (4.13)
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Figure 4.1: Spin-projected spectral functions (blue for spin-up, red for spin-down)
for a range of the dimensionless impurity coupling α = πρJS/2 in a Zeeman-split
superconductor with bbulk/∆ = 0.4.

Conversely, the spin-down spectral function has a resonance at ω↓ = −ω↑:

ω↓ = −bbulk/2 + ∆1− α2

1 + α2 . (4.14)

We emphasize that the spin-projected spectral functions have a single sub-gap reso-
nance, one for each spin. This is to be contrasted with the behavior of the quantum
model discussed in the following section which has (in the spin-singlet regime for finite
magnetic field) two resonances in each spin-projected spectral function. This is a clear
indication of the different degeneracies of states in the classical and quantum impurity
models.

Some representative spectra are plotted in Fig. 4.1. The α = 0 case corresponds
to the limit of a clean Zeeman-split superconductor. Each quasiparticle continuum
branch has a characteristic inverse square root divergence at its edge.

For small α = 0.25, the Shiba bound states emerge out of the quasiparticle contin-
uum, the spin-up resonance in the negative part of the spectrum, and the spin-down
resonance in the positive part, in line with Eqs. (4.13) and (4.14) for small α. The shift
by bbulk/2 is expected, since the spin-up Shiba state is generated by the Bogoliubov
states with spin up, which are themselves shifted by the same amount. Conversely,
the spin-down Shiba state is generated as a linear superposition of Bogoliubov states
with spin down which are shifted by −bbulk/2. We observe that all four branches of
the quasiparticle band lose their inverse square-root singularity and contribute spec-
tral weight to the nascent Shiba state, see also Ref. [112], not only the “inner” ones
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(spin-up occupied and spin-down unoccupied).
With increasing α, the Shiba states move toward the gap center (chemical poten-

tial) and they cross when the condition

bbulk/2 = ∆1− α2

1 + α2 (4.15)

is met, i.e., at

α∗ =

√
1− bbulk/2∆√
1 + bbulk/2∆

. (4.16)

For bbulk/∆ = 0.4, as used here, this happens at α∗ ≈ 0.82 < 1. This signals the occur-
rence of the quantum phase transition in which the fermion parity of the (sub)system
changes. We also note that alternatively, for constant α < 1, the transition can be
driven by the external magnetic field.

For still larger α = 2.5, the spin-up Shiba resonance overlaps with the spin-down
quasiparticle continuum (and vice versa for the spin-down Shiba resonance), but since
the spin is assumed to be a good quantum number there is no broadening of the Shiba
resonances. (See below, Sec. 4.2.2, for a discussion of the SO effects in the case of a
quantum impurity.)

For very large values of α, the Shiba states eventually merge with the continuum
again. This trend is accompanied by the reappearance of the inverse square-root
resonances, an indication of which is visible for α = 5 in Fig. 4.1.

We now discuss the case of anti-aligned fields, taking bbulk > 0 and h < 0. In this
case, for small |α| the spin-up Shiba state occurs at

ω↑ = bbulk/2 + ∆1− α2

1 + α2 , (4.17)

and hence overlaps with the continuum of spin-down quasiparticles for |α| <

1/
√

2∆/bbulk − 1. The quantum phase transition occurs for

|α∗| =

√
1 + bbulk/2∆

1− bbulk/2∆ > 1. (4.18)

For large |α| the Shiba states again merge with the continuum at the inner edges of
the Bogoliubov bands. The regimes that the system goes through for α < 0 are thus
in the opposite order to those for α > 0.

The main deficiency of the impurity model in the classical limit is the reduced
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multiplicity of the sub-gap states. Physically, this is due to the fact that in the classical
limit the effective impurity potential for particle-like excitations is attractive for one
spin orientation and repulsive for the other, hence a single bound state is generated
for a given spin orientation. The spin-flip processes in the quantum model lead to a
situation where the effective potential is attractive for both spin polarizations, hence
twice the degeneracy. We discuss this more general situation in the following section.

4.2 Quantum impurity

We consider a single spin-1
2 impurity level with on-site Coulomb interaction. The

Hamiltonian is given by

H =
∑
k,σ

εkc
†
kσckσ −∆

∑
k

(c†k↑c
†
−k↓ + H.c.)

+ V
∑
k,σ

(d†σckσ + H.c.) + εd
∑
σ

nσ + Un↑n↓

+ gimpµB(BSz +BxSx) + gbulkµBB
∑

k
sz,k. (4.19)

d†σ is the creation operator on the impurity which is hybridized with the bulk by V

and has the energy level εd. nσ = d†σdσ, Sz = 1
2(d†↑d↑ − d

†
↓d↓), Sx = 1

2(d†↑d↓ + d†↓d↑),
sz,k = 1

2(c†k↑ck↑ − c†k↓ck↓). The magnetic field B couples with the quantum dot by the
g-factor equal to gimp and with the superconductor by gbulk. The transverse magnetic
field which can flip the spin is introduced through the parameter Bx. We will consider a
flat particle-hole symmetric band of half-width D so that ρ = 1/2D. The hybridization
strength is characterized by Γ = πρV 2.

We employ the NRG method to solve the problem. There are two ways to introduce
a bulk Zeeman field in the NRG: as local Zeeman terms on all sites of the Wilson chain,
or through a separate discretization of spin-up and spin-down densities of states shifted
by the Zeeman term [131]. The former approach is suitable for models with a spectral
gap, as discussed here, while the latter has to be used for spin-polarized metals with
finite DOS at the Fermi level. We use a fine discretization mesh with twist averaging
over Nz = 64 grids so that high spectral resolution is possible inside the gap and in the
vicinity of the gap edges, which are the regions of main interest in this work. The only
conserved quantum number in the presence of an external field along the z-axis is the
projection of total spin Sz, i.e., the problem has U(1) spin symmetry. Other parameters
are Λ = 2, the NRG truncation cut-off energy is 10εN where εN ∝ Λ−N/2 is the energy
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Figure 4.2: (a) Schematic phase diagram for B = 0. (b) Sub-gap splitting for finite
field B.

scale at the N -th step of the iteration and at least 200 states were used at late iterations
N when the gap is opened. The spectral functions are computed with the DMNRG
algorithm [129] with the N/N + 2 scheme for patching the spectral functions. This
approach allows maximal spectral resolution at zero temperature. The broadening is
performed on a logarithmic mesh with a small ratio r = 1.01 between two energies
outside the gap, and on a linear mesh inside the gap. As can be seen in the figures
further down, the use of these different broadening kernels leads to some artifacts at
the continuum edges. All calculations are performed in the zero-temperature limit,
T = 0.

Unless otherwise specified, the model parameters are U/D = 1, ∆/U = 0.02,
εd = −U/2.

The ground state of the Anderson impurity model, Eq. (4.19), in the absence of
the magnetic field is either a singlet or a doublet depending on the ratio of the Kondo
temperature [9, 128] TK ≈ 0.18U

√
8Γ/πU exp(−πU/8Γ) and the superconducting gap

∆. The impurity spin is screened by the conduction electrons for ∆ < ∆c forming a
spin singlet, while for ∆ > ∆c the local moment is unscreened and the ground state
forms a spin doublet; here ∆c ≈ TK/0.3 [21, 22, 91] in the limit U/Γ � 1. At the
quantum phase transition the energy of the excited many-particle state goes to zero,
and the energy levels cross. The transition is accompanied by a jump in the spectral
weight of the in-gap resonances and a change of sign of the pairing amplitude [100].
The Zeeman field B lifts the degeneracy of the doublet state [31, 109, 110, 132]. For
a spin singlet ground state, the in-gap resonances corresponding to the doublet state
are split in the magnetic field B. In the case of doublet ground state, the positions of
the singlet Shiba resonances are shifted in the Zeeman field.
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Figure 4.3: Spectral function of the impurity for the spin singlet (a) and spin doublet
ground state (b). The parameters are bimp/U = 0.005, ∆/U = 0.02. For the singlet
ground state Γ/U = 0.2 and for the doublet Γ/U = 0.075. The spectrum for r =
gbulk/gimp = 0 is shown in central panels, the adjoining panels show the evolution
of the position of the Shiba resonances as |r| increases, and the top/bottom panels
correspond to r = 1 and r = −1, respectively.

Fig. 4.2 shows a schematic phase diagram in zero magnetic field and the evolution
of the energy levels of the ground and excited states with increasing Zeeman magnetic
field. This evolution of the in-gap resonances with changes of the hybridization and
the magnetic field has been recently observed in tunneling experiments and agrees with
the theoretical predictions in the case when the field is coupled only with impurity
[31, 109–111]. Here, we explore the fate of the subgap states when the magnetic field
is also Zeeman coupled with the bulk superconductor.

4.2.1 Spectral function for non-zero field

We discuss the spectral function of the impurity in different parameter regimes and
identify the boundary of the singlet-doublet phase transition in the (B,∆) parameter
plane for different values of the g-factor ratio r.

We first consider the case of singlet ground state. In the magnetic field the subgap
resonance (which is a spin doublet) splits to its spin up and spin down components.
The impurity spectral function for Γ/U = 0.2, bimp/U = 0.005 is shown in Fig. 4.3(a)
for r = 0 (central panel), r = 1 (top panel), and r = −1 (bottom panel). The
additional panels show how the position of the resonances shifts as the parameter r
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is varied. For r = 1 the expectation value of the spin projection 〈Sz〉 at the impurity
site is 〈Sz〉 = 0 (see Fig. 4.4(c) and Appendix A). Such compensation holds also in
the particle-hole asymmetric case as long as gimp = gbulk. If the g-factors are different,
there will be net magnetization at the impurity site even if the ground state is a spin
singlet and there is a finite gap to excited states.

We next consider the case of smaller hybridization, Γ/U = 0.075, so that the
impurity is in the doublet ground state. The spectral functions for r = 0, r = 1
and r = −1, as well as the evolution between them, are shown in Fig. 4.3(b). A
single resonance is now visible for ω > 0, since the ground state has spin projection
Sz = −1/2, and the only possible excitation is adding a spin-up particle to form a
Sz = 0 singlet state. We also observe notable differences in the appearance of the gap
edges for both spin projections, related to the strong spin polarization of the impurity
state in the doublet regime. We emphasize that this distinguishing feature is not
present in the classical impurity model discussed above.

4.2.2 Phase diagram in de (B,∆) plane

The phase diagram in the (B,∆) plane is shown in Fig. 4.4. In the absence of a
magnetic field, the ground state changes from singlet to doublet for ∆ = ∆c = 0.13U .
Here, TK ≈ 0.018U and TK/∆c = 0.138 for the chosen value of Γ/U = 0.2. For ∆ < ∆c

the transition can be also induced by changing the magnetic field. For r = 0 the
magnetic field is coupled only with the impurity. In this case, as shown in Ref. [109],
the critical magnetic field Bc for the singlet-doublet transition linearly depends on
the gap, Bc ∼ ∆c − ∆. For r 6= 0, however, Bc has non-monotonic dependence on
∆: it increases approximately linearly with ∆ as it gets reduced from ∆c, reaches
a maximum and then decreases to zero as ∆ → 0. For ∆ ∼ ∆c the singlet-doublet
transition is a consequence of a competition of three characteristic energies: ∆, TK and
B. For very small values of ∆ (for ∆ � ∆c) the singlet-doublet transition coincides
with the closure of the superconducting gap for bbulk = 2∆. The phase boundary for
small value of ∆ is shown in Fig. 4.4(b). We note that for small ∆ the transition to the
normal phase would actually occur for smaller value of B, B = Bcl = √g∆ ≈

√
2∆,

known as the Clogston limit [133, 134]. For B > Bcl the normal phase has lower free
energy than the superconducting one. Our main focus is, however, on larger values of
the superconducting gap when it is comparable to the Kondo temperature.

The average value of the projection of the local spin 〈Sz〉 abruptly changes at the
phase transition, Fig. 4.4(c). For gimp = gbulk, i.e., for r = 1, the average value 〈Sz〉 = 0
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Figure 4.4: (a) Phase diagram in the (B,∆) plane for several values of r = gbulk/gimp.
Here Γ/U = 0.2, ∆c/U ≈ 0.13. (b) For small ∆ the singlet-doublet transition coincides
with the closure of the SC gap for bbulk ≈ 2∆. (c) The expectation value 〈Sz〉 and
(d) the pairing amplitude 〈d↑d↓〉 abruptly change across the phase transition. Here
∆ = 0.385∆c.
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Figure 4.5: Panel a) Spin up in-gap resonances and continuum of excitations for
several values of r. Here bbulk/U = 0.01 was kept constant. The finite width of
the Shiba resonances is a broadening artifact: these resonances are true δ-peaks at
zero temperature. Panel b) Spectral function of the spin up Shiba resonance and
the quasiparticle continuum for several values of the spin flipping transverse magnetic
field. As bx increases, the Shiba resonance broadens.

in the singlet case (see also Appendix A). For r 6= 1, 〈Sz〉 is nonzero but small for
singlet ground state, and it jumps to large absolute value by increasing the magnetic
field at the transition to doublet ground state. The pairing amplitude on the impurity,
〈d↑d↓〉, shows a characteristic sign change at the transition, Fig. 4.4(d).

When the spin-up Shiba state begins to overlap with the spin-down branch of Bo-
goliubov excitations, it remains unperturbed, as in the classical impurity model. This
is the case in spite of the spin-flip processes in the quantum model, and is a simple
consequence of the conservation of the spin projection Sz quantum number. In other
words, the spin-up Shiba state is a bound state of spin-up Bogoliubov quasiparticles
which are orthogonal to and do not mix with the spin-down Bogoliubov quasiparti-
cles. This is illustrated in Fig. 4.5(a). Here gbulk and B were kept constant, while the
position of the up-spin resonance was changed by changing gimp. A transverse mag-
netic field, however, flips the spin and the Shiba resonances broaden, as illustrated
in Fig. 4.5(b). Such broadening effects are expected in realistic systems due to SO
coupling.

4.3 Discussion

We have analyzed the behavior of magnetic impurities coupled to superconductors
subject to an applied magnetic field that does not fully suppress the superconducting
order but strongly spin-splits the Bogoliubov quasiparticle continua because of the
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Zeeman coupling. This situation commonly occurs when the field is applied in the
plane of a superconducting thin layer and leads to clearly observable effects.

For a classical impurity, approximated as a static local point-like magnetic field
(and aligned with the external field), we find that the position of the Shiba state is
shifted linearly with the external field as a simple consequence of the shifting edges of
the quasiparticle bands. In fact, the only effect of the spin-splitting of the Bogoliubov
states is that the frequency argument in the impurity Green’s function is shifted as
ω → ω + bbulk/2 for spin-up and ω → ω − bbulk/2 for spin-down particles. The parity-
changing quantum phase transition no longer occurs at α = πρJS/2 = 1, but rather
when the condition bbulk = gbulkµBB/2 = ∆(1 − α2)/(1 + α2) is met. This occurs
for α = α∗ < 1. We observed that for large α the Shiba state of a given spin may
overlap with the quasiparticle continuum of the opposite spin and still remain a sharp
resonance (a δ peak). This remains true as long as there is no matrix element linking
the quasiparticles of both spins.

We then turned to the case of a quantum impurity with far more complex behav-
ior. The Zeeman coupling is present both in the bulk and on the impurity site, and
generically the corresponding g-factors are different: this is typically indeed the case
in the nanoscale hybrid superconductor-semiconductor devices. We find a very signif-
icant effect of the Zeeman splitting of the quasiparticle continua: the phase diagram
of the possible many-particle ground states (singlet or doublet) in the (∆, B) plane
actually has two very different regimes. In the ∆→ ∆c limiting regime, the transition
occurs because a strong enough field decreases the energy of spin-down doublet state
below that of the singlet state. In this regime, the phase boundary in the (∆, B) plane
has a negative slope: the closer ∆ is to ∆c, the smaller the separation between the
singlet and doublet states in the absence of the field, hence a smaller Zeeman splitting
is necessary to induce the transition. We have established that for finite r = gbulk/gimp

the splitting between the doublet sub-gap states is larger than for r = 0, hence the
separation between the singlet and the spin-down doublet is smaller, thus the transi-
tion occurs for a smaller value of the magnetic field. In the other limiting regime of
small ∆, the transition occurs because the gap between the spin-polarized Bogoliubov
bands closes and the transition line is given asymptotically as bbulk/2 = ∆, hence the
transition line has a positive slope. In reality, such transition is of course preempted
by a bulk transition to the normal state (Clogston limit). Nevertheless, even in the
physically accessible regime we observe that the actual behavior is determined by a
competition of both trends and that the slope of the transition line changes at some
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intermediate point where the system crosses over from one limiting behavior to an-
other. The actual transition line is therefore bell-shaped and depends on the value of
r. The straight line found in the limit r → 0 is, in fact, highly anomalous, and for
realistic values of the ratio r there will be a significant degree of curvature.

We have confirmed the possibility of a sharp Shiba resonance overlapping with the
continuum of opposite-spin Bogoliubov quasiparticles. In addition, we have considered
the gradual widening of the Shiba resonance if local spin-flip processes are allowed
(generated, e.g., by SO coupling leading to non-collinear effective magnetic fields):
such processes lead to the hybridization of the Shiba state and its gradual engulfing
in the continuum.

In conclusion, we have established the importance of including the Zeeman splitting
in the bulk of the superconductor when discussing the effect of the external magnetic
field on the sub-gap states induced by magnetic impurities in superconductors.
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Periodic impurities in s-wave
superconductors

We have seen in Chapter 1 and 2 that magnetic impurities tend to quickly suppress
superconductivity. Can superconductivity and reentrant behavior still persist in the
case of periodic impurities, i.e. in the presence of a second band of interacting disper-
sionless electrons hybridized with the conduction band? Reentrant superconductivity
is indeed observed in several ternary [135–138] and quaternary conventional super-
conductors [139] with periodic weakly hybridized rare-earth magnetic ions. Reentrant
behavior is here attributed to the magnetic ordering for T < Tc2 and not to Kondo
physics. More recently, reentrant superconductivity is observed also in some iron-based
superconductors like EuFe2As2 [140, 141].

In heavy fermion compounds the superconductivity is mediated by spin fluctuations
instead of the electron-phonon coupling [142]. This generically leads to d-wave pairing,
though recent studies on CeCu2Si2 surprisingly indicated a fully gapped s-wave state
[143]. Hence, theoretical work on the systems with periodic magnetic moments was
mostly focused on unconventional d-wave pairing near the antiferromagnetic quantum
critical point in the Kondo/Anderson lattice model [144–146], with few exceptions that
treated attractive on-site pairing interaction in the Kondo lattice model [47–50].

We consider the Anderson lattice model with the addition of an on-site pairing
(attractive Hubbard) interaction acting on the conduction c-electrons Eq. 5.1. The
repulsive interaction U on f -orbitals is treated within DMFT (Sec. 3) using continuous
time hybridization expansion quantum Monte Carlo (Cthyb QMC, Sec. 3.2.2) impurity
solver[64], while the on-site pairing g is treated on the static mean field level. This
model is closely related to the Kondo lattice model Eq. (2.14) that has been very

52



Chapter 5 Periodic impurities in s-wave superconductors

recently studied [47, 48], but here we focus on finite temperatures and away-from half-
filling where magnetic and charge density wave instabilities are expected to be weaker.
We study the superconductivity phase diagram for different pairing coupling g and
hybridization V .

For strong coupling g we find reentrant superconductivity which resembles the
one seen in the diluted impurities case. In the weak coupling case we could not
identify if the reentrance persists due to the very small relevant energy scales that
cannot be accessed by the QMC solver. We have also solved the model for parameters
away from the Kondo limit and found that reentrant superconductivity may appear in
some cases due to band structure physics, i.e. due to the competition between single-
particle hybridization and superconducting pairing. In order to better understand the
electronic spectrum of the model Hamiltonian, we have also introduced and solved an
approximate noninteracting dual model[147, 148], see Appendix D.

5.1 Model and methods

We solve the periodic Anderson model (2.13) with an additional attractive Hubbard
interaction in the conduction band. The Hamiltonian is given by

H = HPAM − g
∑
i

c†i↑c
†
i↓ci↓ci↑ (5.1)

where g is the attractive coupling for the conduction band c-electrons. This model
reduces to the attractive Hubbard model with decoupled impurities in the limit V → 0,
whereas in the limit g → 0 we recover the standard Anderson lattice model. We take
as a unit of energy the half-bandwidth D = W/2 corresponding to the noninteracting
c electrons. We will restrict to the paramagnetic solution

We start with a static mean-field decoupling of the c-electron attractive interaction
in the Cooper channel, viz.

g
∑
i

c†i↑c
†
i↓ci↓ci↑ → ∆BCS

∑
i

(c†i↑c
†
i↓ + H.c.), (5.2)

where ∆BCS = g〈c†i↑c
†
i↓〉 = g〈ci↓ci↑〉 = gΦc is the superconducting order parameter.

This recasts the problem in the form of a self-consistently determined Hamiltonian
H[∆BCS], featuring both the pairing terms and the repulsive Hubbard interaction.

We now introduce momentum-dependent fermionic Grassmann fields in orbital-
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Nambu space:

Ψk(τ) =
ck(τ)

fk(τ)

 ,
ck(τ) =

 ck↑(τ)
c̄−k↓(τ)

 , fk(τ) =
 fk↑(τ)
f̄−k↓(τ)

 . (5.3)

Here τ is the imaginary time variable and overbar indicates the conjugate field. In
Grassmann field formalism, the action for the self-consistent Hamiltonian reads

S = −
∫ β

0 dτ
∫ β

0 dτ
′∑

k Ψ̄k(τ)G−1
0,k(τ − τ ′)Ψk(τ ′)

+U
∫ β

0 dτ
∑

k,k′,q f̄k+q↑(τ)f̄k′−q↓(τ)fk′↓(τ)fk↑(τ). (5.4)

β is the inverse temperature and G0,k is the bare propagator, implicitly dependent on
∆BCS. In Matsubara frequency domain, the bare propagator reads

G0,k(iωn) = [iωnI−H0,k]−1 . (5.5)

Here ωn are fermionic Matsubara frequencies ωn = (2n+ 1)π/β, I is the 4-dimensional
identity matrix, and H0,k is the non-interacting Hamiltonian matrix in the orbital-
Nambu basis, i.e.

H0,k =



ξk −∆BCS −V 0
−∆BCS −ξk 0 V

−V 0 εf − µ 0
0 V 0 −εf + µ

 , (5.6)

where ξk ≡ εk − µ.
The full (interacting) Green’s function in the Matsubara domain is defined component-

wise as

Gk = −〈Ψk ⊗ Ψ̄k〉 ≡



Gc,k Fc,k Gcf,k Fcf,k
Fc,k −G∗c,k Fcf,k Gcf,k

−G∗cf,k Fcf,k Gf,k Ff,k
Fcf,k −G∗cf,k Ff,k −G∗f,k


≡

Gc,k Gcf,k

Gfc,k Gf,k

 . (5.7)
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where we have used Gc/f,k(−iωn) = G∗c/f,k(iωn), and the lattice inversion symme-
try k → −k. The second equivalence states the definitions of the c and f Nambu
(two-dimensional) Green’s functions in their respective orbital subsectors, and the
ωn-dependence is implicit.

The full Gk is to be determined through the Dyson equation

G−1
k (iωn) = G−1

0,k(iωn)−Σk(iωn) (5.8)

where Σ is the matrix self-energy capturing the on-site correlation effects, viz.

Σk =



0 0 0 0
0 0 0 0
0 0 Σk Sk

0 0 Sk −Σ∗k

 . (5.9)

Sk is the self-energy’s anomalous component, and satisfies Sk(iωn →∞) = UFf,k(τ =
0). The superconducting order parameter is determined from the scalar c-electrons’
Green’s function as

∆BCS = g
Nk

∑
kFc,k(τ = 0). (5.10)

Here Nk is the total number of momenta in the discretized first Brillouin zone. Hence-
forth, the local quantities will be indicated by omitting the k index, while the nor-
malization constant N−1

k will be absorbed into the sum—e.g. Eq. (5.10) then reads
∆BCS = gFc(τ = 0).

5.1.1 DMFT

We solve the self-consistent action Eq.(5.4) using DMFT. The local self energy is
computed from an effective single-impurity problem

Simp = −
∫ β

0 dτ
∫ β

0 dτ
′f̄(τ)G −1

0 (τ − τ ′)f(τ ′) + U
∫ β
0 dτ f̄↑(τ)f̄↓(τ)f↓(τ)f↑(τ), (5.11)

with G0 the matrix Weiss field. It is to be determined self-consistently through satis-
fying the condition

Gf = Gimp. (5.12)
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Here, Gimp is the Green’s function of the single impurity problem Eq. (5.11)

G−1
imp(iωn) = G −1

0 (iωn)−Σimp(iωn), (5.13)

whereas Gf is the local Green’s function of the lattice in the f -sector, cf. Eq. (5.7)

Gf (iωn) =
∑

k
Gf,k(iωn) (5.14)

The lattice self-energy Eq. (5.9) needed to calculate Gf,k(iωn) through Eq. (3.35) is
approximated as

Σk →

0 0
0 Σimp

 . (5.15)

We satisfy the DMFT self-consistency condition by the standard iterative forward-
substitution algorithm. A single DMFT iteration proceeds as follows:

1. given the Σimp and ∆BCS from the previous iteration, get new G using (3.35)

2. from Fc determine ∆BCS using (5.10)

3. With the updated ∆BCS determine a new G using (5.6),(5.5),(3.35)

4. update G0 cf. G −1
0 (iωn) = G−1

f (iωn) + Σimp(iωn). (v) given the G0 solve (5.11)
to calculate Σimp.

The last step is performed using an impurity solver, as outlined in Chapter 3.2. We
note that steps (2)-(3) may be performed in two ways: either determine ∆BCS self
consistently for given Σimp, or make a single ∆BCS update and solve the BCS problem
in parallel with the DMFT problem. It was determined that for speed of convergence
the latter approach was optimal.

Bethe lattice self-consistency

On the Bethe lattice there is no translational invariance, but we may solve the single
impurity effective action Eq. (5.11) as follows. We start with the full (interacting)
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Matsubara-domain Green’s function in orbital-Nambu space

G(iωn, ε) =
Gc(iωn, ε) Gcf (iωn, ε)
Gfc(iωn, ε) Gf (iωn, ε)



=



iωn + µ− ε −∆BCS −V 0
−∆BCS iωn − µ+ ε 0 V

−V 0 iωn + µ− εf − Σ(iωn) −S(iωn)
0 V −S(iωn) iωn − µ+ εf + Σ∗(iωn)



−1

(5.16)

For the infinitely-connected Bethe lattice again the lattice self energy becomes equiv-
alent to the single impurity self energy Σ → Σimp in the limit of infinite dimensions.
By integrating over the density of states we extract local quantities on the lattice, viz.

G(iωn) =
Gc(iωn) Gcf (iωn)
Gfc(iωn) Gf (iωn)


=
∫D
−D dερ0(ε)G(iωn, ε) (5.17)

with D = 2|t| the half bandwidth and ρ0(ε) = 2
π

√
1− ε2 the D = 1 Bethe lattice

density of states. The Weiss field is defined as G −1
0 (iωn) = G−1

f (iωn) + Σimp(iωn). On
the Bethe lattice the effect of the electronic bath on the impurity is slightly simplified
since it can be captured via a hybridization function of the form

∆f (iωn) = V(iωn1 + µ− tGc(iωn)t−∆BCS)−1V. (5.18)

Here the boldface hamiltonian parameters V , t, µ and εf mean that they are diagonal
in Nambu space, e.g. V ≡ V

(
1 0
0 −1

)
, while ∆BCS is off-diagonal ∆BCS ≡ ∆BCS

(
0 1
1 0

)
and 1 =

(
1 0
0 1

)
. The Weiss field follows then as

G −1
0 (iωn) = iωn1 + µ− εf −∆f (iωn). (5.19)

Given these equations the same forward substitution strategy as outlined in Sec. 5.1.1
may be employed.

5.1.2 Dual model

We also devise and solve a non-interacting model that is approximately dual to model
Eq. (5.4): it exactly reproduces certain limits and interpolates between them. The
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ability of the dual model to reproduce the reentrant behavior as observed in the DMFT
solution, will be a strong indication that the higher-order correlations captured by
DMFT do not play an important role. In addition, the dual model solution will give
us insight into the spectral functions.

To motivate the specific form of our non-interacting dual model, we start by noting
that there are several limits in which the self-consistent model H[∆BCS] reduces to a
clean BCS superconductor with decoupled atomic impurities. Such is the case for
V → 0, g → ∞ and/or εf → ±∞. In the particle-hole symmetric case U → ∞
reproduces this case as well.

Next, we observe that for an isolated Hubbard atom one can write down an exactly
dual non-interacting model which reproduces the full Green’s function of the original
model, but not the higher-order correlation functions. This non-interacting dual model
features two non-interacting orbitals connected by an appropriate hopping. One of
the orbitals is dual to the original Hubbard atom, while the other can be considered a
“hidden fermion” state [147, 148]. The coupling to the hidden fermion state plays the
role of the self-energy for the dual orbital. The derivation of the non-interacting dual
model for the Hubbard atom is shown Appendix D.

We now establish a correspondence of the Hubbard atom operators (d and D) for
the Anderson lattice model with a spin-mixing pairing term in the c−band, [i.e. Hamil-
tonian (5.1)]. In simple terms, we take the non-interacting part of Eq. (5.1) and couple
a hidden fermion state F to each f -orbital, so that each pair f − F on their own is
the exact dual model to the atomic limit. Then, we introduce a copy C of the c-band
and attach it to the F states in such a way that at particle-hole symmetry the hidden
states C and F become equivalent to the dual states c and f . This model repro-
duces exactly the Green’s function of the model c.f. action (5.4) in the non-interacting
limit (U = 0) as well as in all the aforementioned limits where the f -orbitals remain
effectively decoupled from the c-band.

We may identify d with f↑, but since we are interested in solutions for any doping,
we cannot identify D with f↓. However, for n→ 1−n we may identify D with f †↑ , thus
〈dd†〉 = 〈f↑f †↑〉, but 〈DD†〉 = 〈f †↓f↓〉 for the opposite doping. Therefore the solution
is to couple the model (5.1) to its dual at the opposite doping, where the model has
the symmetry that ∆BCS is the same regardless of the ‘sign’ of the doping (i.e. n or
1− n),

〈f †σ(τ)fσ(0)〉[n] = 〈fσ(τ)f †σ(0)〉[1− n]. (5.20)
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Thus,
〈fσ(τ)f †σ(0)〉 = 〈F †σ(τ)Fσ(0)〉, (5.21)

whereas
〈f↑(τ)f †↑(0)〉 = 〈f↓(τ)f †↓(0)〉 (5.22)

(similarly for c and C). Hence, using the spinors Ψk =
(
ck↑ c

†
−k↓ fk↑ f

†
−k↓ Ck↑ C

†
−k↓

Fk↑ F
†
−k↓

)T
, the Hamiltonian acquires the form

Hdual[∆BCS, nfσ] = HHF
0 [∆BCS]

−
∑
kσ
ξk(C†kσCkσ + H.c.)−∆BCS

∑
k

(
C†k↑C

†
−k↓ + H.c.

)
+ V

∑
kσ

(C†kσFkσ + H.c.) + (µ+ U(nfσ − 1))
∑
kσ
F †kσFkσ

+
√
U2nfσ(1− nfσ)

∑
k

(
f †k↑F

†
−k↓ + F †k↑f

†
−k↓ + H.c.

)
, (5.23)

where HHF
0 [∆BCS] is the reduced Hamiltonian introduced in Sec. 5.1, without the

repulsive interaction term, and with a Hartree-shifted f -level energy εf → εf + Unfσ.
The model is self-consistently solved for the f -level occupation number per spin

nfσ ∈ [0, 1]. The problem reduces to a BCS theory in an 8-dimensional orbital/Nambu
space. In orbital-Nambu space the Hamiltonian matrix acquires the form

Hdual[∆BCS, n]

=
∑

k
Ψ†k



ξk −∆BCS −V 0 0 0 0 0
−∆BCS −ξk 0 V 0 0 0 0
−V 0 εf,1 0 0 0 0 A

0 V 0 −εf,1 0 0 A 0
0 0 0 0 −ξk −∆BCS V 0
0 0 0 0 −∆BCS ξk 0 −V
0 0 0 A V 0 εf,2 0
0 0 A 0 0 −V 0 −εf,2



Ψk, (5.24)

with εf,1 = −µ+ ΣHF and εf,2 = −ε (spin indices are dropped). If setting V → 0 there
are two decoupled copies of the single-band BCS problem with decoupled f electrons
at opposite doping. Setting U → 0 results in two separate copies of the non-interacting
model.

Below we present the results in several distinct cases: for parameters which cor-
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respond to the Kondo lattice limit of the Anderson lattice model (nf ≈ 1 and small
double occupancy of f orbitals), away from the Kondo limit where the occupation of
f -electrons deviates significantly from half-filling, and at particle-hole symmetry.

5.2 Kondo-lattice limit

We study first the superconductivity for model parameters which correspond to the
local moment regime, i.e to the limit of the Kondo lattice [74]. We set εf = −0.4,
U = 1.2 and µ = 0.03 in energy units D = 1, and take the semicircular density
of states for c-electrons corresponding to the Bethe lattice (c.f. Sec. 5.1.1). These
parameters give nf,σ ≈ 0.5 and total occupation ∑

σ(nc,σ + nf,σ) ≈ 1.9. We solve the
model for different values of hybridization V and pairing parameter g. Fig. 5.1(a)
shows the pairing amplitude of c-electrons Φc = 〈ci↓ci↑〉 as a function of the coupling
g at temperature T = 0.0025. At large coupling Φc approaches the single band BCS
result, indicated with the dashed-dotted line. Transition to the superconducting phase
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Figure 5.1: (a) Pairing amplitude Φc as a function of coupling constant g for several
values of V . The gray line represents the V = 0 BCS result. There is a discontinuous
transition from the normal into the superconducting phase accompanied by hysteresis.
(b) Superconducting gap as a function of temperature. The reentrant superconducting
phase appears in a broad temperature range accompanied also by a hysteresis. (c) Inset
shows the estimate of the Kondo temperature.
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is accompanied with hysteresis as a function of g: as the BCS interaction g increases
there is a discontinuous transition to the SC phase at g = gc2, while as g decreases
the normal phase is entered at a gc1 < gc2. For weaker hybridization the SC solution
appears for smaller values of coupling g while the hysteresis region gradually shrinks.

A pronounced feature of this model is the reentrant superconductivity that we find
for strong coupling g, Fig. 5.1(b). At the critical temperature Tc1 there is a continuous
transition to the SC phase. With decreasing temperature the SC phase persists until
Tc2, and below this temperature the normal phase abruptly reappears. There is also
a hysteresis in temperature since with the increase of T the SC phase appears at
T ′c2 > Tc2. The reentrant superconductivity resembles to what is found for diluted
impurities, but a direct connection is difficult to confirm since we cannot reach very
small temperatures and hence we are restricted to large g.

At temperatures T � TK the impurity spins are screened and a Fermi liquid is
formed from composite heavy quasiparticles. Fig. 5.1(c) shows the estimate of the
Kondo temperature Eq. (2.6). Here ρ0 is the density of states of bare c-electrons at
the Fermi level and JK is the Kondo coupling Eq. (2.3). One may assume that the
formation of coherent quasiparticles will facilitate the superconductivity for smaller
coupling g. However, for example for V = 0.26 we have T = 0.0025� TK ∼ 0.05, but
the critical g coupling is large. In order to understand better why the superconductivity
is so sensitive to the presence of the second band of f -electrons, we consider next the
solution of the model in the non-interacting U = 0 case.

5.3 U = 0 limit

In the non-interacting U = 0 case we have derived an analytical expression for the
free energy and the gap equation, see Appendix C. A numerical solution of the gap
equation (C.13) is shown as a color plot on the V − µ phase diagram at T = 0 in
Fig. 5.2(a) and at T = 0.001 in Fig. 5.2(b). The attractive Hubbard coupling g is
set to 0.25 which gives Tc0 ∼ 0.002 � D for V = 0, while εf was kept to −0.4 − µ.
The occupation number is varied by the chemical potential, Fig. 5.2(c). We observe
that the pairing amplitude is quickly suppressed by increasing the hybridization. The
critical temperature Tc also strongly depends on the occupation number and it goes
to zero at half-filling when hybridization opens the band gap.

This phase diagram can be understood from a simple approximate formula for
Tc(V ) in the weak coupling limit whose derivation we now sketch. We first note that
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Figure 5.2: Superconducting gap in the V −µ plane for the non-interacting (U = 0)
model at T = 0 (a) and T = 0.001 (b). Here g = 0.25 and εf = −0.4 − µ. The total
occupation number is shown in panel (c).

the hybridized band crosses the Fermi level at ε = V 2

εf−µ
+ µ. Then we look for the

contribution of the c and f electrons to the hybridized eigenstate at the Fermi level.
It is easy to check that the contribution of the c-electron is equal to (εf−µ)2

V 2+(εf−µ)2 . Hence,
the hybridized eigenstate is predominantly made up of c-electrons for V � |εf − µ|,
and it has mixed character for V ∼ |εf |. Then, from the usual BCS gap equation in
the weak coupling limit (with the interaction cutoff set to D = 1), ∆BCS = 2e−1/gρ0 ,
we conclude that

∆BCS = 2e
−

V 2+(εf−µ)2

g(εf−µ)2ρ

[
V 2
εf−µ

+µ

]
, (5.25)

where ρ[ V 2

εf−µ
+ µ] is the density of states of the bare c-electrons at the shifted Fermi

level. This expression for the superconducting gap is in excellent agreement with
Fig. 5.2.

5.3.1 Competition between hybridization and pairing

Next we investigate the case g = D, i.e. large phonon coupling. This causes electrons
deep in the Fermi sea to couple to the phonon excitations. Although strictly speaking
such large g does not entirely give valid ground for a mean-field decoupling, it allows
to investigate interesting features of the model present at the non-interacting level due
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Figure 5.3: Non-interacting case U = 0 at ph-symmetry εf = 0. Left column:
Total density of states (black line), and partial densities (blue shading c-character,
red shading f -character). Right column: Corresponding Bogoliubon dispersions (gray
lines). Coloring denotes band character.

to improved resolution.
We illustrate the competition between hybridization and Cooper pairing. We

present U = 0 dispersions and densities of states in three cases (g, V ) = (0, 0.17), (1, 0.17)
and (1, 0.1)—corresponding to the panels a), b) and c) of the Fig. 5.3. Note that the
solutions presented in a) and b) panels are coexistent at g = D.

In the normal phase (panel a) we observe that there is 1-to-1 mixing between the f
and c states along k = (0, π)...(π, 0). This is independent of V . When we turn on the
MF coupling g = D for the same value of V , we can also get a superconducting phase
(panel b). The effect of a finite ∆BCS is that the bands from the previous example
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Figure 5.4: Panel a) Non-interacting model Tc(V ) curves for multiple values of εf .
The three colored curves emphasize three distinct solutions for Tc(V ). For εf & 0.1
the solution is single-valued. However, for values of 0 ≤ εf . 0.1, Tc(V ) has multi-
valued character. In particular, for V 2 . εf . 0.1, for a range of V , there are three
solutions for Tc, where the system enters the superconducting state at an upper Tc1,
enters the normal state at a Tc2 < Tc1 and enters back into the superconducting state
at a Tc3 < Tc2. I.e., the system exhibits ‘re-reentrant’ behavior. At εf . V 2 there is a
range of V for which there exist two solutions for Tc, thus the system exhibits reentrant
behavior. Tc0 ≈ 0.185. Panel b) Non-interacting Tc(V ) curves for multiple values of
g at εf = 0, approaching the BCS weak-coupling limit. As is clear, the curves scale
with g, and reentrant behavior remains visible up to the smallest g rendered (0.3).

become split with a gap of the size precisely equal to ∆BCS (indicated by extent of the
orange annotation on the right). The gap now separates the predominantly f - and
c-character states: the mixing between the c and f states is reduced as they become
further in energy. It becomes even clearer in the V = 0.01 case (panel c) - the f - and
c-character states are separated by a large ∆BCS, and barely mix, which also affects
the shape of the f -character bands (red), i.e. makes them narrower than they would
be at g = 0. Therefore, the bigger the ∆BCS, the weaker the mixing, and the weaker
the hybridization energy.

Fig. 5.4a presents Tc(V ) curves, determined from the gap equation of the non-
interacting model (C.13), for several values of 0 ≤ εf ≤ 0.15. We have emphasized
three curves for εf = 0 (blue), εf = 0.075 (orange) and εf = 0.15 (green) which
are representative for three distinct solutions of Tc(V ). For εf > 0.1 we find that Tc
is monotonic where an increase in hybridization has a direct relation to a lowering
of the superconducting transition temperature. For εf . 0.1 we find that there is
the possibility of up to three solutions. Such non-monotonic Tc, known as ‘reentrant’
superconductivity, is characterized by an upper Tc1 < Tc0, signaling the onset of pair-
ing (Tc0 is the ‘clean’ system’s transition temperature), and a lower Tc2 < Tc1—at
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Figure 5.5: All panels show data of the normal phase of the non-interacting model.
Panel (a) shows the dispersion for V = 0.225 and εf = 0.05 ∼ V 2. At this doping
the lower band starts protruding through zero energy at k = (π, π). Panel (b) shows
δnc,k(0.025) for several values of εf and V = 0.225. Upon increasing εf through V 2

the sudden availability of states at k = (π, π) causes more efficient excitation of states
resulting in the destruction of the superconducting state at Tc3. Panel (c) shows
δnc,k(0.1) for several hybridization strengths. εk is negative for k = (0, 0) and positive
for k = (π, π). As temperature is increased a net redistribution of nk,c from k = (π, π)
to k = (0, 0) causes the formation of a minimum in the kinetic energy. Larger values
of V correspond to a stronger redistribution whereas at V = 0 this effect is absent.
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which point superconductivity is destroyed, and potentially a Tc3 < Tc2 in which case
superconductivity re-appears a second time below Tc3.

The third transition temperature Tc3 results from a doping-driven change of the
non-interacting Fermi-surface. At εf = 0 and at finite V the normal phase of the
model is an insulator. Slightly increasing εf to order ∼ V 2 causes the lower band
to protrude through the Fermi level around k = (π, π), such as shown in Fig. 5.5a.
Hence, in the ground state at weak hybridization, the system is conducting and pairs
are able to form. Increasing temperature erodes the Fermi surface in favor of exciting
pure (inert) |f〉 states towards k = (π, π). Such process is shown in Fig. 5.5b, where
we have plotted δnc,k(T ′) ≡ nc,k(T = 0.025)− nc,k(T = 0.001) for several values of εf
. We show that for εf ∼ V 2 ≈ 0.05 a sudden temperature activation occurs for states
around k ∼ (π, π).

In Fig. 5.4b we present Tc(V ) curves for a range of coupling strengths g at particle-
hole symmetry. The scale of the curves decreases linearly with g, whereas reentrant
behavior remains clearly identifiable up to the smallest value of g tried, i.e. g = 0.3,
close to the BCS weak-coupling limit. Fig. 5.4b shows that reentrant behavior in the
non-interacting model is linked the competition between hybridization and pairing:
Reentrant behavior ensues when the impurity band falls within the superconducting
gap, and the impurity is effectively isolated from the surrounding continuum. In
such situation, hybridization may be lowered enough for pairing to win the ‘tug-of-
war’. However, increasing V can boost hybridization sufficiently where it becomes
energetically favorable to close the superconducting gap and enter the normal phase
of the model.

5.4 Away from the Kondo limit

In the previous section we have found that in the U = 0 PAM, destruction of SC
pairing is driven by hybridization effects of the conduction band with the periodic
lattice of impurities. We have found that the reentrant superconductivity, seen in the
Kondo limit of the PAM, is also present on the level of the non-interacting model,
and stems from a temperature-driven competition between hybridization and pairing
when the impurity level falls within the superconducting gap.

In the following we pose the question whether reentrant behavior in the PAM is
a ubiquitous effect of the model, i.e. present throughout a large part of the phase
diagram including U 6= 0, and perhaps driven by a similar mechanism. To investigate
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Figure 5.6: DMFT (a) vs. the dual model superconducting gap (b) as a function of
temperature. Here εf = 0, µ = 0 and U = 0.4. Spectral function and the dispersion
relations of the c- and f -electrons in the dual model are shown in panels (c) and (d),
for parameters ∆BCS = 0.166, V = 0.14 which correspond to the solution indicated
with purple cross in panel (b).

this hypothesis we introduce the dual model which treats the interaction effects of the
Hubbard term approximately on the single-particle level (see Sec. D).

5.4.1 Dual model solution and in-gap states

The dual Hamiltonian given by Eq. (5.23) is an approximation to model Eq. (5.1) which
in several limits coincides with the exact solution. The dual model also gives access to
the real-frequency data and the spectral function. Additionally, the dual model allows
to gain insight in the band structure at finite U . Our DMFT calculation is performed in
Matsubara formalism, thus one needs the ill-defined analytical continuation to obtain
the spectral function. As this procedure is ultimately unreliable, we restrict to the
dual model results when it comes to the spectral function and local density of states.
The ability of the dual model to reproduce the reentrant behavior as observed in the
DMFT solution, will be a strong indication that the higher-order correlations captured
by DMFT do not play a decisive role.

In Fig. 5.6 we present a comparison of the DMFT superconducting gap (a) and the
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dual model superconducting gap (b) at εf = 0, µ = 0 and U = 0.4. We find that the
dual model approximately reproduces the DMFT results, in particular capturing the
reentrant superconducting solution. Here we adjusted g to 0.98 to make the V = 0.1
results almost coincide. In Fig. 5.6(c) we present the c- and f -electrons spectral
functions. The parameters are ∆BCS = 0.166, V = 0.14 and nσ = 0.337, which
correspond to the purple marker in panel (b). f -character of the bands is indicated
with a red coloring while c-character is indicated with blue. We find spectral weight
within the superconducting gap, which originates predominantly from the f -electrons.
The upper f Hubbard band is situated around ω ∼ U .

In Fig. 5.7 we present spectra, dispersions and occupation numbers for a wide range
of model parameters. We observe that at very high U , ∆BCS no longer depends on V ,
and is correctly captured by the dual model. These are clear signatures of the f -orbital
being effectively decoupled from the c-band. We can understand this by looking at
the local density of states in the dual model at particle-hole symmetry, which we show
in Fig.5.7a. We see that at large U , the f -character states (red) compose two sharp
peaks at ω = −U/2 and ω = U/2. Being quite far in energy from the c-character
states (blue), they hybridize very little, and indeed, there is very little mixing between
the c and f -orbitals. Therefore, increasing U at half-filling effectively decouples the f -
orbitals from the c-band, restoring the clean BCS superconductor regime, and making
our dual model exact.

Fig. 5.7a also shows the corresponding nf,k = Gf,k(τ = 0−) in the first Brillouin
zone. Having that at any given k half the f -character states are far below the Fermi
energy and the other half far above, it is clear that nf,k is always equal 1/2. This
feature characterizes SC at particle-hole symmetry, even at relatively low U where the
f -orbital bands remain contained within the superconducting gap. This case is shown
in Fig. 5.7b. We see that the two f -bands are centered around ω = ±U/2 leading to
a flat distribution of nf in the BZ.

There is another feature that becomes obvious in this regime: each f -band is split
in two by hybridization, i.e. features a gap of size ∼ V 2. At very low U on the contrary,
there are two f -bands separated by V 2, each further split by U (see Figs. 5.7c and
5.7d). In this case f -electrons form a Fermi sea around k = (π, π), and the dual model
properly describes nf,k. The transition from one distinct in-gap structure to another
distinct in-gap structure is akin to the quantum phase transition of the ground state
as discussed in Chap. 4. Although here we are outside of the Kondo regime (absence
of well-defined local moments), the increase of hybridization effects for larger U as
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Figure 5.7: Parameters of the calculation are given for each row in the yellow box.
Left two columns: same as Fig. 5.3. Right two columns: color plot of nf,k within the
Brillouin zone, obtained from the dual model calculation and DMFT. In some cases
DMFT is shown at a slightly different U than the dual model to more closely match
the physical regime, as the dual model noticeably overestimates the effect of U .
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Figure 5.8: Left: non-interacting limit U = 0 at ph-symmetry εf = 0. Middle: finite
U in the particle-hole symmetric case ε = −U/2. Right: finite U away from half-filling
ε = 0. Upper row: superconducting order parameter as obtained from DMFT and the
dual model. Bottom row: comparison of different contributions to the total energy.
Full lines are the normal phase energies, dashed lines correspond to the energy in the
superconducting phase.

the bands approach the continuum edge significantly alters the character of the in-gap
impurity bands.

The U -splitting is, however, likely an artifact of the dual model—in reality we
expect the two V 2-separated f -bands to be smeared, but perhaps not split. Indeed,
there is a slight discrepancy between DMFT and the dual model results for nf,k in the
case of small doping and weak interaction, presented in Fig. 5.7d. The U -splitting of
the bottom f -band leads to nf,k ∼ 1/2 around k = (π, π). In contrast, the DMFT
solution predicts the f -orbital to be almost empty around k = (π, π), i.e. there must
be a single peak in the bottom f -band spectral function that emerges above the Fermi
energy around k = (π, π).

Further away from half-filling, we see that large U does not make ∆BCS V -independent
(see lower left panels of Fig. 5.10). This is easy to understand: the two f -character
bands are found at ω = εf and ω = εf + U , causing there to remain an f -band at
ω = 0, which hybridizes with the c-band even if U is very big (see Fig. 5.7e).
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5.4.2 Competition between hybridization, pairing and tem-
perature

In Fig. 5.8 we present the temperature dependence of the pairing amplitude ∆BCS

in three different cases: non-interacting case U = 0, finite-U particle-hole symmetric
case, and the finite-U case away from particle-hole symmetry. The two finite-U cases
correspond to a different choice for εf , i.e. εf = −U/2 and εf = 0, respectively. The
curves display reentrant behavior in a certain range of the hybridization amplitude
V . In panels c and d on the right we present the dual model calculation in a sim-
ilar parameter regime and observe very similar behavior. In all cases, increasing V

ultimately destroys superconductivity altogether.
In the bottom panels of Fig. 5.8 we compare the kinetic energyEkin = ∑

k εkGc,k(τ =
0), the hybridization energy Ehyb = −2V Gcf (τ = 0) and the potential energy Eint =
Ud ≡ U〈nf,↑nf,↓〉, in both the normal (full line) and superconducting phase (dashed),
for various values of V . In all cases, increasing V lowers the hybridization energy,
and is detrimental for superconductivity. Vice versa, superconductivity weakens the
hybridization energy. In no cases do we see that increasing V boosts Tc.

In the non-interacting case, Tc2 roughly coincides with the temperature at which
the Ehyb(T )|V changes trend from saturation to growing. Even at lower V where the
reentrant superconductivity has not developed yet, there is a wide peak in ∆BCS(T )
within the range of temperature where Ehyb(T )|V is growing quickly. Apparently, in
the range of temperature where Ehyb(V )|T is lowered more slowly with an increasing
V , the superconductivity can survive up to higher values of V .

The minimum in kinetic energy for V 6= 0 is the result of a similar nc,k redistribution
which occurs at higher temperatures. In panel (c) of Fig. 5.5 we show δnc,k(0.1)
at εf = 0 for a variety of V . Since εk is negative for k = (0, 0) and positive for
k = (π, π), the reduction in kinetic energy before the onset of the high-temperature
tail is explained by redistribution of nc,k from k ∼ (π, π) to (0, 0).

At finite U there appears to be three separate regimes in Ehyb(T )|V . The first two
are similar to the non-interacting case—at the lowest temperature Ehyb is saturated,
then starts growing at around T ∼ 10−2. Here as well, the reentrant behavior appears
in the regime of growing Ehyb(T )|V , i.e. the regime of more slowly dropping Ehyb(V )|T .
The third regime starts from around T ∼ 0.1 where the growth of Ehyb(T )|V becomes
additionally accelerated. This we do not observe in the non-interacting case, but it is
also less relevant for superconductivity as T ∼ 0.1 is already bigger than the Tc in the
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Figure 5.9: (U, T ) phase diagrams from DMFT data. Orange represents the super-
conudcting phase, blue is normal phase. Transition lines are guides for the eye. Dots
represent the available data points. The color of the dots represents the value of ∆BCS.
Top row: V = 0.165. Bottom row: V = 0.2; the rectangle on the left represents the
range of temperature Tc2 < T < Tc in the U = 0 limit corresponding to the right
column in Fig. 5.8, which otherwise cannot be seen on the logscale. Left: away from
half-filling case, εf = 0. Right: particle-hole symmetric case, εf = −U

2 . The turquoise
line denotes TK . To the right of the TK dome is the local moment regime.

V = 0 limit.
It is also interesting to note that Ekin strongly depends on V in the normal phase,

yet is almost entirely V -independent in the superconducting phase. Note that the
pairing has an adverse effect on kinetic energy. Additionally, there is a dip in Ekin in
the normal phase that appears to coincide with reentrant superconductivity.

Curiously, the major trends in both Ehyb(T ) andEkin(T ) appear regime-independent,
indicating the possibility of common mechanisms at play in all three presented cases.
On the other hand, Eint is weakly affected by superconductivity away from half-filling,
yet at half-filling, superconductivity brings down the double occupancy and reduces
the interaction energy. The difference is due to a pronounced decoupling between the
c and f -orbitals that takes place only at particle-hole symmetry, as previously detailed
in Sec. 5.4.1.
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5.4.3 (U, T ) phase diagram

We have uncovered very similar features for the model in terms of V , U and T , which
appear to permit a conceptually simple single-particle interpretation (the dual model),
we below sketch the phase diagrams of the PAM for the g = D case. We scan the
(U, T )-phase diagram Fig. 5.9 at particle-hole symmetry (εf = −U/2, left panels) and
away from it (εf = 0, right panels), at two different values of V (upper and lower
row). In all cases, the U = 0 limit corresponds to the particle-hole-symmetric case
presented on the left side of Fig. 5.8. Here colored dots indicate the value of ∆BCS.
The beige color region indicates the SC phase, whereas the blue region corresponds to
the normal phase.

For V = 0.165 (top row) we find that at low temperature and small U ∼ 0.05 the
phase diagram exhibits an enclosed normal-phase region. Starting from this region,
going up in temperature, we encounter a reentrant superconducting phase. By in-
creasing the hybridization strength to V = 0.2 (bottom row), we find that the normal
phase now dominates the low-to-moderate U part of the phase diagram, whereas we
find reentrant superconductivity at U ∼ 1.

At small U we are close to the non-interacting solution and we find that the su-
perconducting phase is strongly affected by the hybridization strength, similar as in
Section 5.3. As U increases, the f -orbital occupation number drops and the contribu-
tion of f states to the hybridized state diminishes, allowing for pairing to persist. As
in the U = 0 case, we argue that the reentrant behavior found for U ∼ 1 is caused
by thermal excitations which reduce the hybridization at intermediate temperatures,
allowing for superconductivity, before destroying the Cooper pairing at higher tem-
peratures. In the weak coupling limit (for small g) we expect the phase diagram to
retain these features, however with appropriately scaled T and V .

Depending on the value of V we observe two different scenarios: either there is a
normal phase dome in the middle of a superconucting phase, or there are two separate
superconducting phases, one at low U and the other at high U , separated by a normal
phase. The result is, however, qualitativly independent of the choice of doping, and
therefore appears unrelated to the formation of local moments. The local moments
regime we identify by looking at TK = 0.364V

√
2U/πe−πU/(8V 2) c.f. Ref. [16] which is

indicated by the turquoise region. The local moments form as we increase U and TK

becomes small (the small TK regime at low U does not count).
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Figure 5.10: Top row: (V, U) phase diagrams at fixed T = 0.0025. Dots are available
data points. Color of the dot denotes n̄f = 〈|nf,k − nf |〉. Left: doped case. Right:
particle-hole symmetric case. “SC1” and “SC2” are the superconducting phases, dis-
criminated by n̄f ≷ 0.1. “N” denotes the normal phase. In panel (b) the gray line
indicates the line for which TK(U)|V is maximal while the turquoise line indicates
the line for which TK(U)|V = T = 0.0025. To the right of the turquoise line is the
local moments regime. Bottom two rows: ∆BCS(U) data for a variety of V at fixed
temperature as above, obtained by DMFT and the dual model calculations.

5.4.4 (V, U) phase diagram

To put our results in a wider perspective, we scan the (V, U) plane at a fixed temper-
ature T = 0.0025, in two cases of interest: i) the particle-hole symmetric case where
one expects local moments to form at high U , and ii) the εf = 0 case where the occu-
pancy of the f -orbital drops far below 1/2 as U is increased, so it never behaves as a
local moment. We show the phase diagram and the corresponding ∆BCS(U) curves in
Fig. 5.10.

At low V one observes two distinct superconducting phases which we denote as
‘SC1’ and ‘SC2’. At particle-hole symmetry, the two phases are separated by a sharp
crossover, and away from particle-hole symmetry, the crossover is more gradual. The
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Figure 5.11: Small (V, U) phase diagram of the particle-hole symmetric solution,
including V = 0 and U = 0. Colored dots indicate n̄f . Note that n̄f |V=0 ≡ 0.

two superconducting phases are most easily distinguished by looking at the deviation
from the average occupancy of the f -orbital, averaged over the Brillouin zone

n̄f ≡ 〈|nf,k − nf |〉BZ, (5.26)

which we color plot on the data points. In Fig. 5.11 we show in detail the (V, U) phase
diagram for small U and V , including the V = 0 and U = 0 axes. n̄f |V=0 ≡ 0. The
higher resolution shows that the transition between SC1 and SC2 is gradual, and that
the transition line extends to (V, U) = (0, 0).

At high V in all cases, one recovers a normal phase. The critical hybridization
amplitude Vc is found to be strongly U dependent, and in both cases there is a dip in
Vc(U) at around U ∼ 0.1 leading to the scenario observed in Figs. 5.9c and 5.9d.

In the particle-hole-symmetric case, we observe that at very high U , ∆BCS no longer
depends on V , and is correctly captured by the dual model. These are clear signatures
of the f -orbital being effectively decoupled from the c-band. We can understand this
by looking at the local density of states in the dual model, which we show in Fig. 5.7a.
We see that at large U , the f -character states (red) compose two sharp peaks at
ω = −U/2 and ω = U/2. Being quite far in energy from the c-character states (blue),
they hybridize very little, and indeed, there is very little mixing between the c and
f -orbitals. Therefore, increasing U at half-filling effectively decouples the f -orbitals
from the c-band, restoring the clean BCS superconductor regime, and making our dual
model exact.
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Figure 5.12: Occupation numbers [panels (a) and (b)] and energies [panels (c) and
(d)] from DMFT as a function of U . Left column is the doped solution and the right
column is the particle-hole symmetric solution. d is the double occupation of the
impurity of action (5.11). Increasing U leads in both cases to a smooth reduction in
hybridization energy Ehyb (blue lines). The reduction in hybridization, in the case of
the particle-hole symmetric system, makes it energetically favorable to decouple the
f -orbitals through an increase in gap size. Since in the doped case the lower Hubbard
band remains in hybridization with the continuum, the effect is less abrupt.

Further away from half-filling, we see that large U does not make ∆BCS V -independent
(see lower left panels of Fig. 5.10). This is easy to understand: the two f -character
bands are found at ω = εf and ω = εf +U , so there remains an f -band at ω = 0, that
hybridizes with the c-band even if U is very large (see Fig. 5.7e).

Fig. 5.12 we present in support of the (V, U) phase diagram. Left column represent
the doped case (εf = 0) results whereas right column show particle-hole symmetric
case results. V = 0.1 data is indicated by dots, V = 0.13 by crosses and V = 0.16
by triangles. The top row shows nα and double occupation d [the double occupancy
of the impurity described by action (5.11)], whereas the middle row kinetic energy
Ekin [yellow], Ehyb [blue], Eint [green] and Ebcs = −2∆BCSFc(τ = 0) = −2∆2

BCS/g

[red]. Lower-right panel (e) shows the Kondo temperature defined earlier in Sec. 5.4.3
c.f. Ref. [16].
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We find that the SC2 phase coincides with the formation of free local moments.
For T � TK the band gap at the Fermi level is renormalized to ∼ TK and the
paramagnetic solution is the Kondo insulator. For T � TK and d→ 0 f -orbitals form
local moments decoupled from the conduction band. Increasing U drives a smooth
reduction in hybridization energy, hence it becomes energetically favorable to isolate
the local moments by increasing the superconducting gap size.

In the doped case, since the lower Hubbard band remains at ω = 0 isolation of the
f -orbitals by pairing is incomplete. However, due to the Hartree shift of the chemical
potential, occupation levels of the f -orbitals are reduced significantly, such as seen in
Fig. 5.12a. As the filling of the f -orbitals is lowered the rate of hybridization decreases,
indicated by the reduced hybridization energy of the doped system presented in Fig.
5.12c. As hybridization effects are reduced pairing energy increases accordingly.

5.5 Discussion

We have studied how the presence of inert f -electrons hybridized with the conduction
band influences superconductivity. We solved the periodic Anderson model with an
additional attractive on-site interaction between c-electrons restricting to the param-
agnetic phase and s-wave superconductivity. The superconducting pairing is treated
at the static mean field level and the correlations on the f -orbitals are treated within
DMFT using Cthyb QMC impurity solver. The DMFT equations were supplemented
by the self-consistency condition for the superconducting gap.

We first solved the model in the Kondo regime (nf ≈ 1 and small double occupancy
of f orbitals). We found that a large coupling g was necessary in order to stabilize
the superconducting solution even for small Kondo temperature TK . This suggests
that the many-body correlations that lead to the Kondo effect are not crucial for un-
derstanding the superconducting solution. Suppression of superconductivity is mainly
a consequence of the single-particle physics as can be understood from the noninter-
acting U = 0 limit of the model. We derived a simple formula that shows that the
suppression of the superconducting gap depends on the contribution of the |f〉 states
to the hybridized eigenstate at the Fermi level.

We scanned the phase diagram away from the Kondo limit where the strength
of the hybridization of f -states and appearance of the superconducting phase can
be tuned by changing the parameters V , U , and εf . Better insight into the band
structure is obtained from the approximate dual model whose solution interpolates
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between several exact limits and semiquantitatively reproduces our main results. The
dual model solution features in-gap states of predominantly f character.

The most prominent feature of the model is its reentrant superconductivity. Here
it is observed for large coupling g at temperatures accessible to Cthyb QMC impurity
solver. Though the reentrant superconductivity resembles to what was found previ-
ously for diluted magnetic impurities, we were not able to relate its appearance with
the ratio of TK and single band Tc0. Interestingly, we found reentrant superconductiv-
ity also away from the Kondo limit by tuning the interaction U , which also indicates
that the reentrant superconductivity is here not the consequence of higher-order many-
body correlations, but rather the consequence of thermal fluctuations which weaken
the hybridization of c-electrons making them superconducting at intermediate temper-
atures. We show that the non-interacting data supports the appearance of reentrant
behavior not only for strong coupling but for the weak coupling limit as well. We find
no evidence that reentrant superconductivity is tied to formation of local moments, or
interaction in general. It is worth mentioning that in the work of Ref. [48], a mean field
treatment of the translationally-invariant Kondo lattice model also features reentrant
behavior. This study however cannot bring insight as to whether reentrant behavior is
related to local moments formation, as the Kondo lattice model is always in the local
moment regime, by definition.

We note that our conclusions are not directly relevant to heavy-fermion systems,
mainly due to unphysically large coupling constant g necessary for our CTQMC results.
Future study would, therefore, need to consider finite concentration of impurities, e.g.
by using real-space DMFT and to treat the attractive interaction beyond the simplest
mean-field decoupling.
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Conclusion

In this thesis we have studied the effects of impurities on an s-wave superconduct-
ing bulk. In models where one restricts to a bulk in the paramagnetic phase, the
hybridization of a single spin-1

2 impurity or a periodic lattice of impurities gives rise
to Kondo physics, where at high temperatures the ground state of the system is a
magnetic doublet and at low temperatures a singlet. The crossover between these two
regimes upon lowering temperature is driven by the enhancement of coupling between
the impurities and the bulk. Whereas at high temperature the impurity is essentially
free resulting in a doublet ground state, at low temperatures the enhanced coupling
causes screening effects where the conduction electrons in the vicinity of the impurity
assemble with it in a singlet state. This is the so-called Kondo singlet, which in the
single-impurity case lies at the origin of various anomalies observed in the transport
properties of otherwise ‘common’ metals, while in the periodic case Kondo singlet for-
mation drives the highly-renormalized paramagnetic Fermi liquid phase of materials
known as ‘heavy fermions’.

The introduction of superconductivity in the bulk is a source of additional intricacy
in this physical picture, due to the opening of the superconducting gap at the Fermi
level. When impurity orbitals are positioned close to or at the Fermi level, competition
arises between hybridization processes and pairing, since the effect of opening up a gap
tends to decouple the impurity orbital from the bulk and suppress the Kondo effect.

In Chap. 4 we are interested in what is the effect of a Zeeman field pointing par-
allel along a thin-film conventional superconductor hybridizing with a single quantum
spin-1

2 impurity. We treat the Zeeman field affecting the impurity as well as the bulk
electrons. Prior work has mainly focused on the effects the Zeeman field on the im-
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purity only, which is applicable when one is concerned with a conduction band in
its paramagnetic phase. However, in the superconducting case both impurity and
bulk g-factors become comparable in value, necessitating the treatment of an external
magnetic field on equal footing for both the bulk as well as the impurity.

We first study a system in a Zeeman field of a classical magnetic impurity coupled
to an s-wave superconducting conduction band. We find that per spin projection there
is a single sub-gap resonance inside the gap, whereas in the fully quantum system there
are two resonances per spin projection; signaling a difference in degeneracy of states
in the quantum case as compared to the classical approximation. Upon increasing
the interaction strength, both in-gap resonances detach from the continuum and start
traveling inwards. At a critical interaction strength both resonances cross at zero
energy, signaling a quantum phase transition (QPT) of the system to a new ground
state. Further increasing interaction strength leads to the resonance merging again
with its continuum.

Next we considered a quantum spin-1
2 impurity at particle-hole symmetry. De-

pending on the value of the Kondo temperature and the size of the superconducting
gap the ground state of the system is either a singlet (where the conduction electrons
screen the impurity spin) or a doublet (where the impurity spin is free). For the spin
singlet ground state, the in-gap resonances are of doublet symmetry and are split in
the Zeeman field. For the spin doublet ground state, the in-gap resonances are singlet
and shifted in the Zeeman field.

We have found that as a function of the ratio r of the bulk g factor over the impurity
g factor, there is significant difference in the behavior of the singlet or doublet in-gap
structures for varying r between -1 and 1. In the singlet ground state the doublet
in-gap states decompose into their separate spin up and spin down components and
are mutually split (and can cross) depending on the value of r. In the doublet ground
state the value of r causes the spin up or spin down singlet resonance to simply shift
in energy.

We have scanned the magnetic field strength versus pairing amplitude phase dia-
gram. When the magnetic field only couples to the impurity (i.e. gbulk insignificant)
the phase transition line between singlet and doublet ground states depends linearly
on the superconducting gap. However, for non-zero values of r, the transition line
is non-monotonic, where for small SC gap there is a linear increase in the transition
line independent of r, then it goes trough a maximum and falls off again towards the
critical gap value (i.e., the value of the gap beyond which there exists only the doublet
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ground state due to a very far-off continuum edge).
Both in the classical model as well as in the quantum model, when an in-gap

resonance overlaps with the continuum of the opposite spin projection, it remains
unperturbed. Although the quantum model involves fully the spin-flip scattering pro-
cesses, it is prohibited by the conservation of spin. A possible source of broadening
effects is spin-orbit coupling, modeled in this work by an additional transverse field.
Indeed this additional field component causes substantial broadening of the resonance
dependent on the component’s strength.

Our results show the importance of taking into account the effect that an external
magnetic field has on the sub-gap states introduced by quantum magnetic impurities.
A curious factor remains the nature of the phase diagram which shows the remark-
able linear phase boundary between the singlet and doublet ground state phases at
zero gbulk. Future work may also further investigate the in-gap states in linear-chain
configurations and/or starting with a dual-impurity setup provide a stepping-stone to
mapping predicted exotic quantum behavior at the chain edges.

Subsequently we have turned our attention to the Periodic Anderson Model, Chap. 5.
In the Kondo lattice regime we have studied the model for different strengths of hy-
bridization and pairing, at low temperature T = 0.0025D. We found hysteresis as a
function of phonon coupling g, where as the coupling strength is increased, there is
a discontinuous transition into the SC phase at a g2, whereas when the interaction
strength is reduced, the transition into the normal phase happens at a g1 < g2. For
weaker hybridization the critical values of g are lowered.

At the normal-superconducting phase transition we have found reentrant behavior,
as known from the work on superconductivity in systems containing diluted magnetic
impurities. For given coupling g, at an upper critical temperature Tc1 the system enters
the superconducting phase through a second-order phase transition. Lowering temper-
ature the system exhibits a first order phase transition at a Tc2. This phase transition
too is accompanied by hysteresis, where upon starting from the low-temperature nor-
mal phase, upon increasing the temperature the system enters the superconducting
phase at a T ′c2 > Tc2.

In the non-interacting limit we have solved the analytic form of the gap equation
of our model numerically. In this scenario we were able to probe the model at values
of the phonon coupling in the BCS weak coupling limit; g = 0.25 (Tc0 ∼ 0.002D). We
found that in the non-interacting limit of the PAM (i.e. where the impurity orbitals
comprise a lattice of inert atomic energy levels) the pairing amplitude is strongly
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dependent on the strength of hybridization between conduction band and impurity
orbitals. We have explained this feature through an approximate formula which shows
that for increased hybridization the electronic states at the Fermi level are increasingly
dominated by the immobile |f〉 states.

Subsequently we have studied the non-interacting model at increased pairing strength
g = D. The higher resolution enabled to investigate the nature of the competition
between pairing and hybridization. When the superconducting gap is sufficiently large
compared to the width of the impurity bands (large g), it can be energetically favor-
able for the non-interacting system to isolate the impurity bands through opening a
superconducting gap. Alternatively, when the pairing interaction is weak compared to
the hybridization strength, pairing cannot overcome the pair-breaking effects caused
by hybridization.

Interestingly, in the non-interacting case we found reentrant behavior too, present
both at strong and weak coupling, indicating that reentrant behavior in our model
cannot be traced only to local-moment physics, but can also be driven by different
mechanisms not primarily resulting from higher-order correlations.

Thus we hypothesize that the interplay between pairing and the impurity orbitals
in the model might be governed predominantly by single-particle processes, omitting
higher-order correlations. Based on this assumption, we formulated a ”dual” model
which captures the Hubbard interaction effects beyond Hartee-Fock on a single-particle
level. Indeed, this showed that remarkably the reentrant behavior of the interact-
ing model can be captured qualitatively over a wide range of doping. Moreover,
in the interacting case we can conclude that the mechanism which drives reentrant
behavior in the non-interacting model—competition between isolating the impurity
orbitals through pairing or breaking pairing through hybridization—is to a large de-
gree the mechanism responsible for reentrant behavior in the interacting model. We
have scanned the phase diagrams both in the interaction-temperature plane as well as
in the hybridization-interaction plane, and found considerable agreement between the
dual model and the fully-interacting DMFT results.

Since our work shows a connection to the physics as displayed in the dilute Kondo
systems, the main question is whether the observed competition plays a role in the
dilute impurities limit. Our data suggests the possibility of a continuity of reentrant
behavior starting from the dilute impurity limit up to the translatory-invariant limit.
To confirm such scenario, one would need several further improvements in our the-
ory. First, one should perform a real-space DMFT calculation which explicitly treats
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impurity concentrations between 0 and 100%. Next, one must check whether a pre-
cise form of the attractive interaction might play a role. Also, a more sophisticated
treatment of the attractive interaction may be required: In our calculation we keep
the attractive interaction g artificially strong causing a low TK/Tc0 ratio to help in
bringing the interesting regimes to temperatures sufficiently high for the use of our
quantum Monte Carlo impurity solver. At strong g, however, a mean-field decoupling
is not entirely justified. Finally, in the large concentration limit, non-local correla-
tions between different impurities could lead to various additional effects, including
the instability towards d-wave pairing, and charge order.

Given the above results we believe the contents of this thesis provide valuable
new insights in the interplay between impurities and superconductors with a focus on
the spectral properties of the models studied. Our results support existing research,
both experimental as well as theoretical, through showing that coupling of an external
Zeeman field to the bulk of a thin-film superconductor significantly alters the in-gap
structure, whereas a PAM+BCS model shows the possibility of reentrant behavior
beyond the scope originally explored in early works on dilute systems.
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Non-interacting Anderson impurity in
external Zeeman field

For completeness, in this appendix we define the analytical expression for the non-
interacting Anderson impurity model (U = 0), see also Ref. [149]. We work in the
Nambu space, D† = (d†↑, d↓), C

†
k = (c†k↑, c−k↓). The Hamiltonian can be written as

HSC =
∑
k

C†kAkCk, (A.1)

where

Ak =
εk + bbulk/2 −∆

−∆ −εk + bbulk/2

 . (A.2)

The Green’s function is given by gk(z) = (z − Ak)−1,

gk(z)−1 = (z − bbulk/2)σ0 − εkσ3 + ∆σ1, (A.3)

with σ1,2,3 being Pauli matrices and σ0 the identity matrix, so that

gk(z) = (z − bbulk/2)σ0 + εkσ3 −∆σ1

(z − bbulk/2)2 − (ε2k + ∆2) . (A.4)

The impurity Green’s function is

G(z)−1(z) = zσ0 − εdσ3 − (bimp/2)σ0 − V 2σ3
1
N

∑
k

gk(z)σ3. (A.5)
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In the wide-band limit

− V 2 1
N
σ3
∑
k

gk(z)σ3 = Γ(z − bbulk/2)σ0 + ∆σ1

E(z − bbulk/2) , (A.6)

where Γ = πρ0V
2. T → 0, on real axis, z = x+ iδ:

E(x) = −isgn(x)
√
x2 −∆2, for |x| > ∆, (A.7)

E(x) =
√

∆2 − x2, for |x| < ∆. (A.8)

Finally, we have

G−1(ω) = (ω − bimp/2)σ0 − εdσ3 + Γ(ω − bbulk/2)σ0 + ∆σ1

E(ω − bbulk/2) . (A.9)

Matrix inversion yields

G(ω) = 1
D(ω)

[
(ω − bimp/2)

(
1 + Γ

E(ω − bbulk/2)

)
σ0 −

Γ∆
E(ω − bbulk/2)σ1 + εdσ3

]
,

(A.10)
with

D(ω) = (ω − bimp/2)2
[
1 + Γ

E(ω − bbulk/2)

]2

− Γ2∆2

E(ω − bbulk/2)2 − ε
2
d. (A.11)

Now assume b ≡ bimp = bbulk. We consider two functions G↑(ω) = G11(ω+b/2) and
G↓(ω) = −G22(−ω − b/2)∗. Taking into account the symmetry properties of E(x), it
is easily shown that G↑ = G↓ both inside and outside the gap. This shows that as long
as the system is in the singlet ground state, it is possible to shift the spectral functions
of spin-up and spin-down sub-systems to make them overlap, thus their integrals over
the negative energies (occupied states) are equal, hence 〈Sz〉 = 0. This is also the case
in the interacting case. For bimp 6= bbulk, 〈Sz〉 in the singlet regime will be non-zero but
small. In the doublet regime, irrespective of the value of r = bbulk/bimp, 〈Sz〉 is large.
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B
A

pp
en

di
x

Non-interacting AIM + BCS model
Green’s functions

In the following we are concerned with the non-interacting Anderson Impurity
Model c.f. Eq. (2.1). (Interactions could be reintroduced by substituting back the
self energy.) To derive the Green’s functions for this model we ought to solve their
equation of motion

(ε± iδ −H)G±(ε) = I, (B.1)

where ± denote the retarded or advanced Green’s functions. Introducing the spinor
ψα(x) = (cα(x) c̄−α(x) fα(x) f̄−α(x))T , the matrix G is derived as per 〈T ψα(x)ψ̄α′(x′)〉.
It follows that

Ĝ(ε) =



Gkk′(ε) Fkk′(ε) Gkf (ε) 0
Fkk′(ε) −Gk′k(−ε) 0 −Gfk(−ε)
Gfk′(ε) 0 Gff (ε) 0

0 −Gk′f (−ε) 0 −Gff (−ε)

 . (B.2)

As a consequence of symmetry we may also note that Gαβ(ε) = G†βα(−ε). Hence
following Eq. (B.1), we arrive at the following set of coupled equations and need to be
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solved for four unknowns:

(ε− ξk)Gkk′(ε)−∆BCSFkk′(ε) = δkk′ + VkG
†
k′f (−ε) (B.3a)

(ε+ ξk)Fkk′(ε) = ∆BCSGkk′(ε) (B.3b)

(ε− ξk)Gkf (ε) = VkGff (ε) (B.3c)∑
k
Gkf (ε) = 0 (B.3d)

∑
kk′
Fkk′ = 0 (B.3e)

(ε− εf )Gff (ε) = 1 +
∑

k
V ∗kGkf (ε) (B.3f)

(ε− εf )Gk′f (−ε) =
∑

k
V ∗kGkk′(ε). (B.3g)

We solve the set of equations assuming Vk = V = V ∗. Combining equations (B.3c) &
(B.3f) yields

Gff (ε) = 1
ε+ − εf − V 2∑

k
1

ε+−ξk

. (B.4)

Hence,
Gkf (ε) = V

ε+ − ξk
Gff (ε). (B.5)

Moreover, using eq. (B.5) & (B.3b), we may solve for Gkk′ , viz.

Gkk′(ε) =
δkk′ + V G∗k′f (−ε)
ε+ − ξk −

∆2
BCS

ε++ξk

(B.6)

such that Fkk′ can be determined to read

Fkk′(ε) = ∆BCS

ε+ + ξk
Gkk′(ε) (B.7)

where ξk = εk − µ and εf = Ef − µ.
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C
A

pp
en

di
x

Non-interacting PAM + BCS analytic
results

C.1 Free energy

In the following we derive the free energy functional of the non-interacting PAM+BCS
model Eq. 5.1. The action for the model reads

S[ψ̄, ψ] =
∑
k,n

ψ̄k,n(−iωn +Rk)ψk,n + βV∆2
BCS
g

. (C.1)

Here, ∆BCS = gΦc is the BCS gap which has to be determined self-consistently [Φc is
the c-electron order parameter, i.e. Φc ≡

∑
kFc,k(τ = 0)], g is the coupling constant,

ψ are Nambu fermionic Grassmann fields, while the matrix Rk is given by

Rk =

ξk − V 2

−iωn+µf
∆BCS

∆BCS −ξk − V 2

−iωn−µf

 . (C.2)

Here, µf = Ef − µ and ξk = εk− µ. The partition function of this model assumes the
form

Zn,k = −e−βV
∆2

BCS
g

V 4 + 2V 2
(
ω2
n − µfξk

)
+
(
ω2
n + µ2

f

)(
ω2
n + ∆2

BCS + ξ2
k

)
ω2
n + µ2

f

. (C.3)

In the limit where V → 0 or |Ef | → ∞, one recovers the partition function of the
BCS model. The free energy is expressed in terms of the partition function as F =
−T ∑n,k logZn,k.
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Figure C.1: Fs−Fn [Eq. (C.9)] plotted for fixed g = 0.25, µ = −0.03 and Ef = −0.4.
and varying ∆BCS. Indeed in the BCS limit a minimum forms in the free energy at
finite ∆BCS. As we increase V , this minimum shifts to ∆BCS = 0.

The infinite sum over Matsubara frequencies can be calculated typically by contour
integration viz.

S =
∑
n

L(ωn) = 1
2πi

∮
dzf(z)L(−iz). (C.4)

where L(ωn) equals the fraction in eq. (C.3). Here, f(z) is the counting function
which is β times the Fermi-Dirac distribution f(z) = β/(exp(βz) + 1) [which has its
poles at the Matsubara frequencies]. We can proceed by factoring the polynomial in
the numeral of L(−iz) into the eigenenergies of the Hamiltonian. These are given by

λ1,...,4,k = ±
√
ak ± bk

2 , (C.5)

where

ak = 2V 2 + ∆2
BCS + µ2

f + ξ2
k (C.6)

bk =
√(

∆2
BCS − µ2

f + ξ2
k

)2
+ 4V 2

(
∆2

BCS + (µf + ξk)2
)
.

In terms of the λ’s, the log part of the free energy is merely a sum of logarithms of
the form

Lk(−iz) =
4∑
i=1

log(z − λi,k)− log(z − µf )− log(z + µf ). (C.7)

This is convenient as it is just a sum of terms which are each akin to the result of that

89



Chapter C Non-interacting Anderson impurity in external Zeeman field

of a non-interacting Fermi gas. I.e.,

s = 1
2πi

∮
dzf(z) log(z − α) = log(1 + e−βα). (C.8)

We are now in a position to put back together the free energy, which results in

Fs[∆BCS] = −T
∑

k
log(1 + e−βλ1,k) · · · (1 + e−βλ4,k)

(1 + e−βµf )(1 + eβµf ) + V∆2
BCS
g

. (C.9)

In Fig. C.1 we have plotted the quantity Fs − Fn where Fn ≡ Fs[∆BCS = 0] (the free
energy of the PAM in the paramagnetic phase). As is clear at low V a minimum
forms at ∆BCS 6= 0, which as we increase V shifts towards ∆BCS = 0. For V → 0 the
minimum in Fs − Fn coincides with the value of ∆BCS of a pure BCS superconductor,
since impurity orbitals are fully decoupled.

C.2 Gap equation

The gap equation can be determined by minizing the free energy Eq. (C.9). Here
however we take a different approach and start from the expression of the anomalous
Green’s function

Fc(iωn) =
∑

k

−∆BCS

(iωn + ξk − V 2

iωn+µf
)(iωn − ξk − V 2

iωn−µf
)−∆2

BCS
. (C.10)

By using ∆BCS = gT
∑

kFc,k(τ = 0), upon convergence of the self-consistent solution,
it must hold that

1 = −gT
∞∑

k,n=−∞

1
(iωn + ξk − V 2

iωn+µf
)(iωn − ξk − V 2

iωn−µf
)−∆2

BCS
. (C.11)

Again, the sum over Matsubara frequencies can be performed by contour integration
c.f. the previous section. The fraction can be factored as

Lk(ω) =
ω2 − µ2

f

(ω − λ1,k) · · · (ω − λ4,k) (C.12)

with the λ’s as defined in (C.5). With Lk(ω) only consisting of simple poles, the
sum follows by the residues of L(ω)f(ω) at the poles of L(ω). After carrying out the
necessary algebraic manipulations one finds the gap equation of the non-interacting
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PAM+BCS model

1 = g
∑

k

λ−,k(λ2
+,k − 2µ2

f ) tanh( 1
2
√

2βλ+,k)− λ+,k(λ2
−,k − 2µ2

f ) tanh( 1
2
√

2βλ−,k)
2
√

2 bkλ−,kλ+,k
(C.13)

where λ±,k =
√
ak ± bk. Solving above equation for T while ∆BCS = 0 yields Tc.
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D
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en

di
x

Hubbard model dual

We start by considering a Hubbard atom d

H = −µ
∑
σ

d†σdσ + Ud†↑d
†
↓d↓d↑ (D.1)

with chemical potential µ and interaction strength U , whose Green’s function (for
Matsubara frequencies ωn) reads

Gσ(iωn) = 1− nσ
iωn + µ

+ nσ
iωn + µ− U

. (D.2)

nσ ∈ [0, 1] is the occupation number of spin projection σ. Writing the Dyson equation

G−1(iωn) = G−1
0 (iωn)− Σ(iωn) (D.3)

with G−1
0 (iωn) = iωn+µ the bare propagator, we derive the Hubbard atom self-energy

Σσ(iωn) = Unσ(iωn + µ)
iωn + µ+ U(nσ − 1) . (D.4)

It has the property
Σσ(iωn →∞) = Unσ ≡ ΣHF

σ , (D.5)

which is the static Hartree-Fock shift of the chemical potential. Particle-hole symmetry
is achieved for µ = U/2.

We write the self energy ‘beyond’ Hartree-Fock as

Σ(HF)
σ (iωn) = Σσ(iωn)− ΣHF

σ (iωn) (D.6)
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such that after some manipulations

Σ(HF)
σ (iωn) = U2nσ(1− nσ)

iωn + µ+ U(nσ − 1) . (D.7)

Writing a hybridization function of the general form

∆(iωn) =
∑
α

|Aα|2

iωn − εα
, (D.8)

where α is some degrees of freedom, we recognize that Σ(HF) has the form of a hy-
bridization function with

Aσ = ±
√
U2nσ(1− nσ) (D.9)

and
εσ = −µ− U(nσ − 1). (D.10)

(At particle-hole symmetry Aσ → ±U/2 and εσ → 0.) Thus, we can write a non-
interacting dual model for the Hubbard atom as follows;

Hdual[nσ] = −
∑
σ

(µ− Unσ)d†σdσ (D.11)

−
∑
σ

(µ+ U(nσ − 1))D†σDσ

−
∑
σ

(√
U2nσ(1− nσ)d†σDσ + H.c.

)

where D are the “hidden fermion” operators dual to d, and nσ and µ need to be
determined self-consistently.
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E
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PAM s-wave pairing susceptibility

Here we look at the pairing instability of the PAM due to strong correlations, in the
s-wave channel, potentially leading to unconventional superconductivity as reported
on by Bodensiek et al. Ref. [43] in the KLM [Eq. (2.14)]. See also Ref. [150]. A
straightforward method for establishing whether an electronic system exhibits a su-
perconducting phase is to establish its pairing susceptibility. In principle, when there
exists a superconducting instability for a certain pairing symmetry, one expects the
pairing susceptibility to diverge at a critical temperature Tc. Moreover, for pairing to
be sustainable the inclusion of vertex corrections into the expression must have the
effect of enhancing the susceptibility.

Finite interactions may however introduce a reduction in the single-particle spectral
weight, causing the susceptibility to decrease. To account for such reduction in spectral
weight, one should compare the pairing susceptibility χα,c, calculated as

χα,c = lim
∆BCS→0

Φα[∆BCS]
∆BCS

(E.1)

with Φα ≡
∑

kFα,k(τ = 0) c.f. Eq. (5.7), α = c, f and ∆BCS treated as a constant,
against the pairing bubble

χ0
α = T

∑
iωn,k

∣∣∣Gα,k(iωn)
∣∣∣2, (E.2)

i.e. the zeroth-order term in the susceptibility expansion. Note that this quantity is
determined by using the fully interacting single-particle Green’s function.

Fig. E.1 shows the relevant pairing susceptibilities for s-wave symmetry. Clearly
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Figure E.1: Panel (a). Pairing susceptibility χc,c (solid red line) and pairing bubble
χ0
c (dashed green line) for V = 0.26. The c-electron quasi-particle weight is Z = 0.019.

Panel (b) shows χf,c for V = 0.26, while panel (c) shows the pairing bubbles for
V = 0.22 (circles), V = 0.26 (dots) and V = 0.33 (triangles).

the inclusion of vertex corrections decreases the susceptibility of the PAM for s-wave
pairing compared to the pairing bubble result, as indicated by panel (a). Here, χc,c
was determined for ∆BCS = 0.001. The quasi-particle weight

Z =
[
1−

∣∣∣∣∣ReΣ(iωn)
∂ωn

∣∣∣∣∣
ωn→0

]−1

, (E.3)

of the conduction electrons [where the effective Σ of the c-electrons is determined
through the Dyson equation (5.8)] reads Z = 0.019. Panel (b) shows the pairing
susceptibility of the f electrons, while panel (c) shows the effect on the pairing sus-
ceptibility upon increasing the hybridization strength. The maximum in the suscepti-
bility is reached at the temperature which signals the onset of the increase in coupling
between bulk electrons and impurities, lowering the susceptibility away from the non-
interacting solution (not shown here). The formation of a minimum together with the
upwards slope towards smaller temperatures, typical for each of the panels, is iden-
tifiable with entering the Kondo regime. The minimum is an indicator of the Kondo
temperature, signaling the onset of screening effects in the bulk, which increase for in-
creasing hybridization strength as is evident from panel (c). The screening of the local
moments through the formation of Kondo singlet states with the conduction electrons
causes a reduction in pair-breaking effects, thus slightly increasing the susceptibility.

95



F
A

pp
en

di
x

Impurity solvers benchmark

For the present work we have implemented two impurity solvers, ED and CTQMC,
and performed an extensive benchmark against the Numerical Renormalization Group
(NRG) solver ‘NRG Ljubljana’ [68] on the Bethe lattice (Sec. 5.1.1). The benchmark
was performed by creating the seed Weiss field G0 c.f. Eq. (5.13) for each solver from
the Nambu-Gor’kov Green’s functions

Gc(iωn) ≡
Gc(iωn) Fc(iωn)
Fc(iωn) −G∗c(iωn)


=
∫ D

−D

dερo(ε)
(iωn)2 − (ε− µ)2 −∆2

BCS

iωn + ε− µ ∆BCS

∆BCS iωn − ε+ µ

 (F.1)

following Eqns. (5.18) & (5.19); and to compare the resulting impurity Green’s func-
tions on the level of a single iteration of the solvers.

Setting the c-electron half bandwidth D = 1, model parameters are chosen Ef =
−0.4, µ = −0.03 and U = 1.2. As shown in Ref. [74], these parameters are optimal for
being in the vicinity of the anti-ferromagnetic phase and within in the Kondo regime.

Figure F.1 shows a benchmark for V = 0.4 and ∆BCS = 0.05, comparing CTQMC
with ED for β = 350, which can be regarded as well within the zero-temperature
phase. For several parameter sets it was found that agreement between ED, CTQMC
and NRG impurity solvers was excellent, with errors within the range of a percent.
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Figure F.1: The impurity Green’s function as directly taken from the output of both
the CTQMC (points) and ED (lines) impurity solvers for β = 350 and V = 0.4, for a
single iteration. The number of baths used in the exact diagonalization procedure was
11. The input bath was chosen according to Eq. (F.1) with ∆BCS = 0.05. Shown are
the normal (squares and circles) and anomalous (triangles) components, and excellent
agreement is found with a deviation of the order of a percent between both solvers.
nc = 1.009, nf = 0.854 and 〈nf↑nf↓〉 = 0.079.
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