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Sažetak

Proučena je dinamika probnih fundamentalnih struna u nekoliko pozadinskih geometri-
ja: Anti de-Siter-Švarcšildova, crna D3 brana i D1-D5-p crna struna. Iako je dinamika
otvorenih struna u ovim geometrijama integrabilna, klasične jednačine kretanja imaju
pozitivne Ljapunovljeve eksponente u blizini termalnog horizonta, zbog postojanja ne-
stabilne sedlaste tačke. Ljapunovljev eksponent nerotirajućih struna dostiže Maldasena-
Šenker-Stenfordovu (MSS) granicu ("maksimalni haos"). Pokazano je da je to posledica
delovanja generatora Lijeve algebre sl(2) u okolini horizonta. Kod otvorene probne stru-
ne u pozadini D1-D5-p crne strune on odgovara vremenskoj skali termalizacije teškog
kvarka u jako kuplovanoj kvark-gluonskoj plazmi, pošto se može povezati sa spektrom
kvazi-normalnih moda, koje odgovaraju vremenskoj skali disipacije fluktuacija na fun-
damentlanoj struni. Dinamika rotirajućih zatvorenih struna je neintegrabilna, ali njihov
Ljapunovljev eksponent nije povezan sa MSS granicom: one opisuju raspad vakuuma u
dualnoj super-Jang-Milsovoj gejdž teoriji. Zaključak je da holografska interpretacija Lja-
punovljevog eksponenta u asimptotski Anti de-Siterovim prostorima nije povezana sa
haosom, već sa neravnotežnim fluktuacijama u dualnoj teoriji polja.





Abstract

We study the dynamics of fundamental strings in Anti de-Sitter Schwarzschild, black D3
brane and D1-D5-p black string backgrounds in the probe limit. Despite the fact that
the dynamics of open strings in these backgrounds is integrable, the classical equations of
motion exhibit positive Lyapunov exponents near thermal horizons, due to an unstable
saddle point. For non-spinning strings the Lyapunov exponents saturate the Maldacena-
Shenker-Stanford (MSS) bound on chaos. We suggest that this is a consequence of the
action of sl(2) Lie algebra generators in the near-horizon region. For a straight open string
in the D1-D5-p black string background it corresponds to the thermalization timescale
of a heavy quark in strongly coupled quark-gluon plasma, since it can be related to
the spectrum of quasi-normal modes, i.e. the decay rates of the fundamental string
fluctuations. For spinning closed strings the dynamics is nonintegrable but the Lyapunov
exponents are unrelated to the MSS bound: they describe the decay of an unstable vacuum
in the super-Yang-Mills dual gauge theory. In conclusion, the holographic interpretation
of the bulk Lyapunov exponent is not related to chaos but to off-equilibrium fluctuations
of the dual field theory.
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Chapter 1

Introduction

Chaos in string theory has traversed the way from an arcane and little-noticed topic to
a mainstream field, thanks to the ideas of fast scrambling and black holes as the fastest
scramblers in nature [1], the Maldacena-Shenker-Stanford (MSS) maximum chaos bound
for strongly coupled field theories with black hole duals [2] and the notion of out-of-
time ordered correlators (OTOC) [3, 4, 5] and their applications in the physics of chaotic
strongly coupled systems [6, 7, 8]. An important motor of the field is also the connection
to recent progress on the black hole information problem [9, 10, 11, 12] and the related
puzzle of factorization [13, 14, 15, 16, 17, 18, 19, 20]. The guiding idea through all these
topics is of course the AdS/CFT duality, the unifying principle of many topics in string
theory and gravity. Our primary interest thus lies in the dynamics in asymptotically AdS
backgrounds.

The current paradigm of holographic chaos starts by noticing that a perturbation of
the black hole horizon has universal dynamics determined solely by the temperature of the
horizon: thanks to the infinite redshift, all details of the perturbation become macroscop-
ically invisible within a time of order ∼ 1/T where T is the Hawking temperature. This
is called scrambling: the information is there but it takes very long time (or many qubits
of Hawking radiation) to reconstruct it. The holographic consequence of the fast scram-
bling idea is the universal timescale of quantum chaos. Quantizing the classical notion
of exponential sensitivity to initial conditions, we can look at the operator ϵ [X(t), P (0)]
where X and P can be understood as some conjugate pair of a generalized coordinate
and momentum operator. Since P generates translations, the meaning of this object is
that at time zero we shift X by ϵ and then let it evolve for time t. The commutator itself
is in general complex, but the square of its module | [X(t), P (0)] |2 (droping the irrelevant
constant ϵ) is a real quantity that should show exponential growth. This is indeed what
happens for AdS black holes and their strongly coupled, large-N CFT duals: the square
of the commutator (usually called OTOC) shows universal growth ∼ exp(2λLt) where the
quantum Lyapunov exponent λL = 2πT is known as the MSS bound or the chaos bound:
it is the maximum possible value according to the fast scrambling result [1, 2].

We shall not discuss in any detail those aspects of the fast scrambling which do not
directly concern this thesis. What we aim for is a better understanding of the connection
between the bulk dynamics in black hole backgrounds and dual field theory: the shock
wave perturbations which determine the OTOC are but one of many probes whose orbits
we can study in the bulk. How is all this bulk information encoded in field theory? This
is the main motivation of this work.

Among the many questions which have opened up, there is one seemingly technical but
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in fact physically important subtlety. Several papers have reported the saturation of the
MSS bound for bulk orbits of particles [21, 22], or its slight modification/generalization
for fields [21] and strings [23, 24, 25]; the systematic answer to the question of the bulk
Lyapunov exponent is given in [26]. However, a very simple question arises: why should
there ever be an MSS bound for bulk Lyapunov exponents? The OTOC exponent and its
MSS bound λ = 2πT in principle have no simple relation to the classical bulk motion and
its Lyapunov exponent: the former is a property of a time-dependent correlation function
in dual CFT, determined by a 4-wave scattering amplitude in the bulk, and the latter is
the solution of a bulk equation of motion, for a single orbit, with no scattering and thus
no OTOC-like interpretation in the bulk. This relates to a more general question: what is
the CFT dual of a bulk orbit (and its Lyapunov instability exponent)? Some important
work was done on this issue [27, 28, 29, 30, 31, 32], and the outcome is that a bulk particle
is dual to a shock wave perturbation of the dual CFT. But many details are still missing;
in particular, the answer cited above holds for a geodesic with both endpoints on the AdS
boundary; it is less clear what the CFT dual is for an orbit not reaching the boundary.

Paradoxically, a string in the bulk, specifically an open string, is perhaps an easier
case for study. It is long known that a static or dragging string, with one endpoint in the
interior and the other on the boundary, is dual to a heavy quark in the quark-gluon plasma
of the supersymmetric Yang-Mills gauge theory [33, 34]. Likewise, an open string with
both endpoints on the boundary represents a quark-antiquark pair [35, 36, 37, 38, 39], and
encodes information on the confinement mechanism. It is thus a convenient framework
to pose our main question: what is the meaning of the bulk Lyapunov exponent and what
does it have to do with the MSS bound?

In this work we give a partial answer to the question and demonstrate it by a number of
case studies involving bosonic open strings in various backgrounds.1 There is, in fact, no
unique answer to the question of the CFT dual to a Lyapunov exponent: just as various
string configurations have various field theory duals (a quark, a bound pair of quarks,
an EPR pair, an accelerating quark...), likewise the Lyapunov stability of these different
solutions will have different meanings. Furthermore, on the string worldsheet there are
two coordinates thus we have two Lyapunov exponents, with different CFT meanings.

Our leading idea is that the variational equation that determines the Lyapunov ex-
ponent is really the second variation of the classical action (the first variation yields the
equations of motion for the string itself, the second variation for its Lyapunov exponent).
The second variation can then be added to the on-shell action, allowing us to identify the
variation of the classical solution with a two-point correlation function (similar to how
the solution itself determines a two-point function through the usual dictionary of the
gauge/string duality [40, 41]). If the variation is over the worldsheet time, it typically
corresponds to time-dependent response function in field theory, describing the behavior
of the quark under an external (momentary) kick. If the variation is over the compact
(spacelike) worldsheet coordinate (along the string), the Lyapunov exponent rather has the
meaning of the energy/renormalization group (RG) scale on which the flows toward dif-
ferent infrared (IR) fixed points start to diverge, and describes the scale of off-equilibrium
fluctuations.

We also find that the MSS form of the exponent is really a red herring: in the strict
1While the dynamics of a superstring would be an interesting problem to study, in this work we stick

solely to the bosonic sector. This is enough to understand the principles, and also to model holographically
the dynamics of a heavy quark in Yang-Mills plasma.
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infinite-coupling, infinite-N limit, 2πT becomes a natural scale which has to appear in
all fluctuation equations. As soon as we decrease symmetry (e.g. by considering a D1-
D5-p bound state in the bulk that breaks rotational invariance) or include stringy effects,
the bulk exponent (as well as OTOC [5] and other CFT correlation functions) undergo
corrections, and do not coincide anymore (neither among themselves nor with the MSS
bound). Recent work on universal near-horizon symmetries [42, 43] has shone additional
light on the issue, allowing us to view the MSS scale as the fundamental property of black
hole horizons, so it can appear in any CFT correlator which is sensitive to temperature
T , i.e. which probes the energy scales smaller than T . The puzzle of "why 2πT pops out
everywhere" is thus a fake issue: it disappears as soon as leading corrections are taken
into account.

Our results so far have a quality of a collection of solid examples and calculations
unified by a somewhat handwaving general idea. Nevertheless, we feel that we now un-
derstand much better the origin of the MSS expression 2πT in bulk dynamics, and also the
reason why its connection to chaos is fake.2 We want to argue that the study of chaotic
dynamics of geodesics and strings in holographic backgrounds is a fruitful field which can
still show surprises, but one has to be careful about the field theory interpretation, which
is not as simple as previously thought.

The plan of the thesis is the following.

• In Chapter 2 we motivate our research and some of the conclusions by considering
point particles and their orbits (geodesics) and their holographic meaning: these
are for the most part known results but we show them in a novel light, demon-
strating that the chaos bound appears generically when considering orbits and their
instabilities, without actual connection to chaos.

• In Chapter 3 we introduce the static open string in AdS-Schwarzschild (AdSS)
spacetime and describe the fluctuations along the string. We discuss the integrability
of this system and also introduce the analytic method by which we estimate the
Lyapunov exponent from the near-horizon variational equation of the string. We
find that the MSS bound is saturated by the bulk Lyapunov exponent both in AdSS
and in a general hyperscaling-violating extension of black holes in AdS.

• In Chapter 4, as a warm-up exercise for the Chapter 5, we extend our study of
static open string to the black D3 brane background and find that the universal
MSS bound is still saturated. This gives a hint as to its meaning.

• In Chapter 5 we discuss some of the most important results of our work. We
begin with a brief review of some nice features of D1-D5-p black string geometry
and apply our near-horizon analytic method to estimate the Lyapunov exponent
in this background. We find that the Lyapunov exponent is modified in rotating
backgrounds. In the non-rotating limit we recover the universal MSS bound value.
We continue our discussion in the spirit of Chapter 2, studying the time-dependent
dynamics of transverse fluctuations along the string and calculating the retarded
Green’s function in the IR region in absence of rotation, where we find how the
MSS scale emerges naturally in the resulting propagator. We study the poles of

2It is fake in our context, where it appears as a bulk Lyapunov exponent. In the OTOC calculation,
its relation to chaos is undisputable.
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the retarded Green’s function, find how the Lyapunov exponent is related to the
spectrum of quasi-normal modes and discuss its implications for the interpretation
of the bulk Lyapunov exponent in situations where bulk chaos is not present, but
the MSS bound is saturated.

• In Chapter 6 we consider a very different system – closed spinning strings in AdS5×
S5 spacetime, the celebrated testing ground for holography where holographically
computed dispersion relations for heavy operators can be compared to gauge theory
results at strong coupling. This is a time-dependent and horizon-less setup which
shows the meaning of bulk Lyapunov exponents as tracing the RG flow in field
theory from an unstable to a stable fixed point.

• In Appendix A we briefly consider time-dependent configurations of open strings
instead of spatial fluctuations that we focus on in most of the thesis and show
that time-dependent dynamics is trivial; the sole interesting aspect is the spatial
configuration.

• In Appendix B we review the algebra of Killing vectors in AdS3 and non-rotating
BTZ spacetimes. We show how they are related to the sl(2) Lie algebra that is
essential for understanding the universality of the MSS bound 2πT even in integrable
systems.

• In Appendix C we use the Brown-York tensor to derive total energy and angular
momentum of the rotating BTZ black hole that we encounter in the near-horizon
limit of near-extremal D1-D5p black string.
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Chapter 2

Overture: particles and shock waves in
AdS

2.1 A particle in AdS and its holographic dual
As we have argued in the Introduction, the open string with one end at the boundary
(i.e., a heavy quark in thermal plasma) is the simplest setup for exploring the meaning
of the bulk Lyapunov exponent. However, it is instructive to briefly sketch the case of
geodesics, i.e. point particle orbits in the bulk. Several works have explored specifically
the Lyapunov exponent of particle orbits, mainly at the black hole horizon, obtaining the
MSS value λ = 2πT in most cases [22, 44] but there are exceptions [21, 25]. Crucially,
the analysis in [26] has shown that the variational equation of an orbit circumventing the
horizon of a fairly generic black hole indeed predicts the MSS value for the exponent,
however that need not be the maximum value (i.e., away from the horizon one might
obtain a larger value). Therefore, this bulk geodesic chaos is neither necessarily maximal,
nor obviously connected to quantum chaos in the dual CFT. So what is its meaning? A
full answer is beyond the scope of this paper – bulk geodesics correspond to insertions of
heavy operators in CFT, and it is not clear how to interpret the variational equations in
the bulk, i.e. the divergence rate of orbits.

On a qualitative level however we can argue that the variation of a bulk geodesic
represents simply a non-equilibrium correlator in dual CFT, in a state corresponding to
a point particle in the bulk. The bulk response to such a source is a non-analyticity (a
wedge) in the geometry. A similar thing appears (with very different boundary conditions)
in the calculation of OTOC in dual CFT [5], where the bulk metric develops a shock
wave, i.e. again a discontinuity, as backreaction from pointlike particles (waves in eikonal
approximation) at the horizon. Roughly for this reason the variation of the bulk equation
of motion in black hole backgrounds exhibits the same exponential growth (with the MSS
rate) as the four-wave eikonal scattering, even though the physics differs. In order to show
this, we first review the known results on the dual meaning of a bulk particle.

2.1.1 Kink from a bulk particle in AdS and BTZ background

The holographic meaning of a (massive) particle in the bulk is known [30, 31, 45, 46, 47]:
it is a kink excitation of the dual field theory, localized in spacetime and highly delocalized
in energy-momentum. Let us remind the reader how this works. Consider a heavy scalar
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field of conformal dimension ∆ in global AdS3 spacetime with the metric:

ds2 =
(
r2 + 1

) (
−dt2 + dϕ2

)
+

dr2

r2 + 1
, (2.1)

where t, ϕ and r correspond to time, angle on the boundary circle and the radial direction
(0 < r < ∞). According to [30], the bulk-to-bulk propagator for a heavy scalar field
between two points x1 = (t, r1, ϕ1) and x2 = (t, r2, ϕ2) is well-described in the eikonal
approximation as a sum over the classical geodesic solutions g (there may be more than
one) connecting the points:

G(x1;x2) =
∑
g

e−∆Lg(x1,x2), (2.2)

where Lg(x1, x2) is the length of the geodesic. Taking the points x1,2 to the boundary, [30]
obtain the CFT propagator G(t, ϕ1; t, ϕ2) simply as the limit of Eq. (2.2) when r1,2 → ∞.1
In pure global AdS3, the geodesic is unique and its length is

L = 2 log

(
2 sin(ϕ1 − ϕ2)

ϵ

)
, (2.3)

where ϵ is the ultraviolet (UV) cutoff, i.e. we take r1,2 = 1/ϵ instead of infinity. Plug-
ging this into Eq. (2.2) yields the expected two-point CFT correlator G(t, ϕ1; t, ϕ2) =
1/(2 sin(ϕ1 − ϕ2))

2∆.
Consider now a point particle of mass m in AdS3. Such a particle introduces a wedge

in spacetime by its backreaction (its stress-energy tensor is proportional to a Dirac delta
as shown in [28]). Therefore, the leading 1/N effect from the massive particle will modify
the result (2.3) as we now have to look at the global AdS3 with an excised wedge of defect
angle 2π − 2γ, where γ is related to the particle mass m as γ = π −m. Now there are
two geodesics between x1 and x2, the first one outside the wedge and the second one
passing through the tear in spacetime; which one is dominant (shorter) is determined by
the relative magnitude of ϕ1 − ϕ2 and γ:

L(i) = 2 log

(
2 sin(ϕ1 − ϕ2)

ϵ

)
, 0 ≤ ϕ1 − ϕ2 ≤

π − γ

2
(2.4)

L(ii) = 2 log

(
2 sin(ϕ1 − ϕ2 + γ)

ϵ

)
,

π − γ

2
< ϕ1 − ϕ2 < π − γ. (2.5)

Therefore, right at ϕ1−ϕ2 = π−γ there is a kink where the solutions meet. Parametrizing
the geodesic by some proper time s as ϕ(s = 0) = ϕ1, ϕ(s = π) = ϕ2 and inserting into
(2.4-2.5), the kink can be expressed as

∂ logG

∂s
|ϕ(s)=π−γ+ − ∂ logG

∂s
|ϕ(s)=π−γ− = 2∆ tan

γ

2

∂ϕ(s)

∂s
|ϕ(s)=π−γ. (2.6)

The above can be generalized for non-equal-time geodesics (with t1 ̸= t2) and for the BTZ
black hole [31] by boosting the point x2 and employing the method of images, respectively.

1This is of course not obvious and does not in general work like this in AdS/CFT; detailed justification
is found in [30].
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The detailed account of how this works can be found in [31]. The outcome is that the
bulk-to-bulk propagator in a BTZ background with the metric

ds2 = −r2f(r)dt2 + 1

r2f(r)
dr2 + r2dϕ2, f(r) = 1−

(rh
r

)2
(2.7)

becomes a sum over images enumerated by n:

G(t1, ϕ1; t2, ϕ2) =
( rh
2r

)2∆ ∞∑
n=−∞

1

[cosh (rh (ϕ1 − ϕ2 + 2πn))− cosh (rh (t2 − t1))]
∆
, (2.8)

where rh is the horizon radius. Here we already see the MSS scale, as rh = 2πT in the
BTZ geometry. We have obtained it without any connection to chaos or OTOC – merely
as the energy scale of a thermal, non-stationary correlation function.

2.1.2 Shock waves from OTOC calculation

The basic recipe for the calculation of OTOC in the large-N limit [1, 3, 4, 5] reduces to
the calculation of backreaction from an infalling wave at late times. At late times, the
wave is practically at the horizon and thus receives a huge redshift; evolving the wave
back to the UV makes its energy very high, so that it can be considered as effectively
classical, justifying the eikonal approximation. The latter is precisely equivalent to the
backreaction from a particle (for localized shocks), or from a spherical shell (for spherical
shocks) [27, 28]. We now work in Rindler-AdS3 spacetime as it is the only exactly solvable
case. However, we keep the factors 2πT even though 2πT = 1 in Rindler-AdS, in order to
see the MSS scale explicitly and bearing in mind that the scaling will remain valid also
in more complicated geometries with a thermal horizon.

The wavefunction of an outgoing scalar field ψ of conformal dimension ∆ with momen-
tum pV , propagating from the point at x in the bulk to the point (t1, x1) at the boundary,
reads:

ψ(pV , x; t, x1) =

∫
dUeı

pV U
2 K∆(U, V = 0, x; t1, x1)O(t1, x1), (2.9)

where O(t1, x1) is the value of ψ at the boundary, K(U, V, x; t1, x1) is the bulk-to-boundary
propagator from (U, V, x) to (t1, r = ∞, x1), and pV is the V -component of the momentum
(conjugate to U). We use the standard Kruskal-Szekeres coordinates in the bulk (hence
U, V appear instead of t, r). In the Rindler-AdS background, one can find the momentum-
space propagator in analytic form as in [5]:

K∆(p
V , x; t1, x1) =

1

(Ue2πTt1 − V e−2πTt1 + cosh (x− x1))
∆

(2.10)

which, upon plugging in into Eq. (2.9) and integrating over U (i.e., Fourier-transforming)
yields the expression for the wavefunction:

ψ(pV , x; t1, x1) = Θ
(
pV
) 2iπe−2πTt1

Γ(∆)

(
2ipV e−2πTt1

)∆−1
e−2ipV e−2πTt1 cosh(x−x1) (2.11)

This is all familiar and can be found in [5] and earlier works; computing the wavefunc-
tions for all four waves (two infalling and two outgoing) and computing their scattering
amplitude yields the OTOC. But it has remained largely unnoticed that a single-wave
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Figure 2.1: The single-operator amplitude ⟨O1(t1, x1)⟩ in a black hole background (corre-
sponding to a shock-wave fluctuation from a classical particle moving in the bulk) describes
a one-point CFT correlation function G(t1, x1), which consists from a kink (blue) and an
antikink (red) located at t = x = 0; the amplitude decays exponentially with time t > 0
and the distance from zero |x|. The sum of the kink and antikink is a constant, as the
expectation value of an operator in static and homogeneous background does not depend
on time or location. We show the correlator at constant-time slice as a function of x
(A) and at constant-x slice as a function of t (B). The temperature is T = 1/2π and the
conformal dimension is ∆ = 5.

amplitude, when there is no scattering (the outgoing wave is then just the continuation
of the infalling wave), describes a kink excitation in dual CFT.

Let us start from a single insertion ⟨O1(t1, x1)⟩, considering only the outgoing wave
(2.11). This case is not very interesting physically, but it will serve to make a formal
connection with the kink found for a massive particle in pure AdS. By definition, the bulk
amplitude that determines the one-point function ⟨O1(t1, x1)⟩ is given by

⟨O(t1, x1)⟩ =
∫
dx

∫
dpV ψ(pV , x; t1, x1)e

−S1 , S1 =
1

2

∫
dx

√
−ghV V T

V V = 0. (2.12)

The on-shell action equals zero because there is no scattering – we only have a single wave
which comes out from the horizon. We are left with the integral of the wavefunction in
(2.12), yielding:

⟨O(t1, x1)⟩ = 2iπe−2πTt1
∆

∆+ 1

[
Ae−(∆+1)x1

2F1

(
∆+ 1

2
, 1 + ∆,

3 + ∆

2
;−e−2x1

)
+

+ Be(∆+1)x1
2F1

(
∆+ 1

2
, 1 + ∆,

3 + ∆

2
;−e2x1

)]
. (2.13)

The two branches have coefficients A = B = 1/2 and correspond to the left- and right-
moving kink, as shown in Fig. 2.1. Their sum is just a constant, i.e. the norm of the wave.
Analyzing the hypergeometric functions in (2.13), one finds that the kink magnitude is
exactly ∆ – different from (2.6) but still a kink, now corresponding to an infalling particle
instead of a static particle at r = 0. The time dependence already has the 2πT factor,
but for the single-point function it is not very interesting, as we just have an exponential
decay.

What happens if we consider a perturbation which falls from one boundary at (t1, x1)
and arrives to the other boundary at (t2, x2)?2 Now we have two waves in the bulk, the

2Of course, physically all quantities are computed on the right boundary but we can represent each
wave on any bulk slice for computational convenience.
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outgoing wave (2.11) and the infalling wave

ψ(qU , x′; t2, x2) = Θ
(
qU
) −2iπe2πTt2

Γ(∆)

(
−2iqUe2πTt2

)∆−1
e2iq

Ue2πTt2 cosh(x′−x2). (2.14)

The resulting amplitude describes the propagation from the point (t1, x1) to the point
(t2, x2):

⟨O(t1, x1)O(t2, x2)⟩ =
∫
dx

∫
dx′
∫
dpV

∫
dqUψ(pV , x; t1, x1)ψ

∗(qU , x′; t2, x2). (2.15)

The action S1 is now nonzero as the two waves scatter off each other. In the eikonal
approximation, one easily finds the result from the shock-wave solutions given in [28, 5]:

T V V = gUV gUV TUU =
2

rh
pV δ(U)δ(x− x1), hV V =

1

2
pUδ(V )e−

√
2πTrh|x| (2.16)

S1 =
1

2

∫
dx

√
−ghV V T

V V =
1

rh
pUpV . (2.17)

We were unable to solve exactly the integral (2.15) with the above phase shift, but for
long times t2 ≫ t1 we can expand in exp(−2πT (t2 − t1)) and obtain

⟨O(t1, x1)O(t2, x2)⟩ ∼ 2π
(
1 + e2πT (t2−t1)

)−∆
2F1

(
∆+ 1

2
, 1 + ∆,

3 + ∆

2
;−e−2|x2−x1|

)
.

(2.18)
There is a kink solution in both time and space, with the time kink amplitude rh = 2πT ,
the universal MSS scale (Fig. 2.2). This object – a single orbit in the bulk between the
points (t1, x1) and (t2, x2), which determines some two-point function ⟨O(t1, x1)O(t2, x2)⟩
– is found also in the calculation of the Lyapunov exponent. It shows the same universal
scale, which in this context has little to do with chaos. At a purely formal level, it
is guaranteed to appear in any particle/eikonal amplitude in the presence of thermal
horizons.

In the next chapter we will introduce open strings and study their Lyapunov stability.
Open strings are not pointlike objects hence they will not give rise to shock waves. Their
correlation functions (in the bosonic sector) behave effectively as scalar fields in the bulk
and do not in general contain kinks. Nevertheless, the universal MSS scale will show up,
and the morale of this story will be reiterated: it is the scale of near-horizon fluctuations
which can appear in various correlation functions.
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Figure 2.2: Two-point function G(t1, x1; t2, x2) corresponding to the scattering of an in-
falling and an outgoing wave in AdS-Rindler background, at temperature 2πT = 1. In (A)
we show the spatial dependence G(t1 = 0, x1, t2 = 0, x2), in (B) we plot the time depen-
dence G(t1 = 0, x1 = 0, t2, x2), in both cases at three locations x2 (blue, red, magenta).
The function has the form of a single kink located at t2 − t1 = x2 − x1 = 0. The MSS
scale and the kink structure arise as a consequence of shock waves in the bulk, without
relation to chaos.
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Chapter 3

Static open string in black hole
background

We start with the simplest case, that of static open string stretching from the horizon to
the boundary of AdS-Schwarzschild (AdSS) background. This is the zero-velocity limit
of the celebrated dragging (trailing) string model of [33, 34] and numerous follow-up
papers: the dragging string describes a heavy quark moving in a thermal plasma with
drift velocity v, thus the static case describes a heavy quark at rest, but in both cases
there is the Brownian motion from interactions with the quark-gluon plasma. We use
this simple setup also to introduce the general formalism of the near-horizon expansion
of variational equations by which we estimate Lyapunov exponent. We will here study
the AdSS background in general dimension D; it is easy enough to do the calculation for
any D, and the outcome can be compared with the dynamics of open strings in various
D-brane backgrounds – the D1-D5-p black string contains AdS3, while the stack of D3
branes, the quintessential system for holography, contains the AdS5 throat.

3.1 AdS Schwarzschild back hole: setup
Throughout the paper we will consider only the bosonic sector of the string. Most of the
time we will use the Polyakov action, but sometimes we will switch to the Nambu-Goto
action, depending on the problem at hand. Some analytic solutions to the equations of
motion are much easier to obtain using the Nambu-Goto action, while the Polyakov action
works better with numerics.

3.1.1 Nambu-Goto action

Dynamics of strings in D-dimensional AdS-Schwarzschild spacetime on the Poincare patch
with the time coordinate t, radial coordinate r and transverse spatial coordinates xi,
i = 1, . . . D − 2

ds2 ≡ Gµν(x)dx
µdxν = r2

(
−h(r)dt2 + dx⃗2

)
+

dr2

r2h(r)
, h(r) = 1−

(rh
r

)(D−1)

, (3.1)

can be described by the Nambu-Goto action of the following form

SNG =
1

2πα′

∫
dτdσ

√
− det γ, (3.2)
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obtained by constructing an invariant worldsheet volume integral out of an induced metric
γαβ = Gµν∂αX

µ∂βX
ν on the worldsheet embedded in spacetime geometry given by (3.1).

Here and in the rest of the paper α, β, · · · ∈ {τ, σ} and µ, ν, · · · ∈ {t, r, x⃗} stand for
worldsheet and spacetime indices respectively. Latin indices i, j, · · · count the transverse
coordinates x1, . . . xD−2. A set of scalar fields that live on the string worldsheet Xµ =
{t(τ, σ), R(τ, σ), Xi(τ, σ)} are the dynamical variables of the theory. One can easily show
that equations of motion are consistent with the static gauge and the ansatz

t = τ, R = σ, X1 = X1(τ, σ), Xi = 0, i = 2, . . . , D − 1. (3.3)

This solution represents a fluctuating string stretched from the boundary to the horizon in
the r−x1 plane; identifying time and radial coordinate with the worldsheet coordinates τ
and σ respectively is known as the static gauge. In [48] it is argued that small fluctuations
of X1 around the straight string solution X1 = 0 encode for chaotic dynamics in field
theory, thanks to the existence of a horizon. The argument goes as follows. Consider
the worldsheet geometry corresponding to the background (3.1), with the ansatz (3.3) at
X1 = 0:

ds2ws ≡ γαβdX
αdXβ = −r2f(r)dt2 + dr2

r2f(r)
. (3.4)

This is formally a two-dimensional black hole solution with a thermal horizon. Since black
holes are known as fast scramblers [1] and maximally chaotic systems [2], any additional
stringy fluctuations on top of (3.4) would show some chaotic features of the dual field
theory. In [48, 49], this is made concrete by computing the worldsheet OTOC which
turns out to saturate the chaos bound. But this does not answer our main question: what
is the meaning of bulk chaos?

3.1.2 Polyakov action

To study the bulk chaos, it is more convenient to abandon the static gauge and use the
conformal gauge instead, where the worldsheet metric is diagonal. The easiest way is to
write the Polyakov action for the string, solve the constraint and fix the residual gauge
freedom by equating the worldhseet metric to the unit matrix. The Polyakov action for
the same open string setup in the same AdS-Schwarzschild metric (3.1) reads:

SP = − 1

2πα′

∫
dτdσ ηαβ∂αX

µ∂βX
νGµν(X). (3.5)

The dynamics of a planar open string stretching from the horizon at r = rh to the
boundary at r = ∞, now imposes the ansatz

t = t(τ), R = R(σ), X1 = X1(τ, σ), Xj = Xj(τ), j = 2, . . . , D − 2. (3.6)
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Equations of motion together with the Virasoro constraints read

ẗ(τ) = 0, Ẍj(τ) = 0, j = 2, . . . , D − 2 (3.7)
−2h3(R)R4(σ)− (R(σ)h′(R) + 2h(R))R′2(σ) + 2h(R)R(σ)R′′(σ) +

+h2(R)R4(σ)

[
−R(σ)h′(R) + 2

(
X ′

1
2
(τ, σ) + Ẋ1

2
(τ, σ) +

D−2∑
j=2

Ẋj
2
(τ)

)]
= 0,(3.8)

2R′(σ)X ′
1(τ, σ) +R(σ)

(
X ′′

1 (τ, σ)− Ẍ1(τ, σ)
)
= 0, (3.9)

R′2(σ)

R4(σ)
+ h(R)

(
−h(R)ṫ2(τ) +X ′

1
2
(τ, σ) + Ẋ1

2
(τ, σ) +

D−2∑
j=2

Ẋj
2
(τ)

)
= 0, (3.10)

X ′
1 · Ẋ1 = 0. (3.11)

The equations for t, X2, . . . , XD−2 (3.7) are trivially satisfied when these are functions
linear in τ , thus we can set t = τ and Xj = const. Moreover, the second constraint (3.11)
requires X1 to depend on one variable only. We choose X1 = X1(σ) as the more relevant
case for us – the static open string/heavy quark.1 Now the remaining equation for R(σ)
(Eq. 3.8), together with the nontrivial Virasoro constraint (3.10), also decouples from
X1(σ) and simplifies to the following form

4h3(R)R3(σ) + h2(R)h′(R)R4(σ) + h′(R)R′2(σ)− 2h(R)R′′(σ) = 0. (3.12)

The same equation can be derived from the effective Lagrangian, obtained by first substi-
tuting the trivial solutions t = τ and Xj = 0, ∀j ̸= 1 into the Polyakov Lagrangian, and
then making use of Virasoro constraint (3.10) to eliminate X ′

1
2:

Leff =
−h2(R)− f(R)R′2(σ)− h(R)X ′

1
2(σ)√

f(R)h(R)
. (3.13)

This Lagrangian describes a static open string stretching from the boundary to the hori-
zon, i.e. the static case of the fluctuating ansätze (3.3,3.6). It has the worldsheet energy
as its integral of motion and is thus integrable, as we will argue more rigorously in the
following section.

The explicit solution of Eq. (3.12) can only be found numerically. For numerical
integration it is better to make a coordinate transformation r 7→ 1/r ≡ z, that will in this
context also act as a worldsheet field redefinition. For convenience we will write here the
equation of motion also for the Z coordinate obtained simply from plugging R 7→ 1/Z
into Eq. (3.12):

4h3(Z)− h2(Z)h′(Z)Z(σ)− (h′(Z)Z(σ)− 4h(Z))Z ′2(σ) + 2h(Z)Z(σ)Z ′′(σ) = 0, (3.14)

where h(z) = 1− (z/zh)
D−1.

For an open string one needs to supply boundary conditions for both endpoints. The
physical interpretation of the string as a quark implies that one endpoint has to sit on

1In Appendix A we show that the opposite case – time-dependent straight string with X1 = X1(τ) –
has a trivial dynamics with zero Lyapunov exponent. For a fully general dynamics of X1(τ, σ) we would
need a more general ansatz, leading to a system of partial differential equations. This is beyond the scope
of this paper.
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Figure 3.1: Profile of the stationary open string lying in the z − x1 plane of AdS-
Schwarzschild geometry, hanging from the boundary z = 0 to the horizon z = zh (we
have rescaled the worldsheet coordinate σ so that it goes from 0 to π), obtained by solv-
ing numerically Eq. (3.14) with Dirichlet boundary conditions at both ends. We show
the radial profile (A) and the shape of the string in the z − x1 plane (B), for the horizon
radii zh = 15 (blue) and zh = 30 (red dashed). While extremely simple, this system has
nontrivial radial fluctuations.

the boundary [33, 34], therefore we impose the Dirichlet condition on the AdS boundary
Z(σ = 0) = 0. The location of the other end determines the quark mass: a string
reaching the horizon describes a "heavy" quark2 whereas ending the string on a flavor
brane between the boundary and the horizon makes the quark mass finite. For simplicity
and also in order to explore the near-horizon dynamics, we opt for the first option and fix
the other end at Z(σ = π) = zh, solving the equation with Dirichlet boundary condition
at both ends.3

Finally, one word of caution is in order. Looking at the static gauge ansatz (3.3),
one might worry that the radial profile R(σ) and its variation δR(σ) are parametrization-
dependent, i.e. correspond to changing the gauge from R = σ to some nontrivial function
R(σ). This is not true, as the parametrization invariance is partially fixed by imposing
the conformal gauge, and the residual invariance is fixed by imposing the flat worldsheet
metric and the boundary condition for the transverse coordinate X1. Therefore, in this
setup, the radial dynamics is physical; had we not fixed the boundary conditions, the
same physics would be encoded in the residual parametrization invariance as in [49].

At this point we give the basic information on the numerics. Here and in further
numerical work, we solve the two-point boundary value problem for the string using
the collocation pseudospectral algorithm originally developed in [50]. Alternatively, it is
possible to use the built-in NDSolve routine in Wolfram Mathematica, however in most
cases this does not work so well. The same method is used for the variational equations.

3.2 Integrability in AdS-Schwarzschild
Let us now prove that the motion of an open string in AdS-Schwarzschild background
is integrable, unlike the motion of closed string which is nonintegrable in the presence

2The quark is heavy in the sense that its mass is much larger than all other energy scales in the
problem.

3The range of the σ coordinate depends on the parametrization, we keep the textbook range 0 ≤ σ < π
just for convenience.
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of a black hole [51, 52]. We will preform the same type of analysis that is done in [51],
exploiting the Kovacic algorithm [53, 54, 55, 51, 56]. The algorithm can be described as
follows:

1. Find an integrable solution to the equations of motion. This solution will represent
one member of a class of solutions differing only by first integrals (i.e., conserved
quantities); the whole class forms an invariant (hyper)plane of solutions.

2. Write down the equation of motion for a variation normal to the previously described
invariant plane of solutions, the so-called normal variational equation (NVE).

3. Solve the NVE so obtained and check whether it is expressible in terms of Liouvillian
functions. These are the elementary functions (powers, exponentials, trigonometric
functions and their inverses), rational functions of such elementary functions, and
their integrals. The existence of such a solution is equivalent to the solvability of
the identity component G0 of the Galois group; conversely, their nonexistence is
equivalent to G0 being not solvable, and hence non-Abelian. Non-Abelian nature
of G0 tells us that no complete system of integrals of motion in involution exists,
therefore the system is nonintegrable.

We want to show the integrability of the system described by the effective Lagrangian
given by Eq. (3.13). One obvious invariant plane is the R−X1 plane for a straight string
solution:

R(σ) = rh, X1(σ) = const. ≡ Xc. (3.15)

One can see that this plane is invariant simply by observing that the canonical momentum
corresponding to the off-plane motion is zero: p′X = ∂Leff/∂X1 = 0. The corresponding
normal variational equation along the X1-direction is trivial: δX ′′

1 = 0, yielding the
conclusion that the system is integrable. In the next section we will see that despite being
integrable, this system exhibits an exponential growth of the in-plane variation with a
positive Lyapunov-like exponent in the near-horizon region. This is likely a consequence
of the near-horizon symmetries of non-extremal black holes, as argued in [42, 43] and
elaborated in Appendix B. By itself this is not surprising: a local instability can always
lead to a growing mode even in a trivially integrable system, the simplest example being
the inverse chaotic oscillator [57]. This is similar to findings of [26] where it is noted that
horizons are really a nest of chaos in holography. Namely, even integrable systems can
display local instability in the vicinity of thermal horizons.

We need to make one thing clear. The integrability of the static open string Lagrangian
(3.13) that we have demonstrated in no way conflicts the established nonintegrability of
string motion in black hole and D-brane backgrounds proved in [51, 55]. The fact that
a ring string in these backgrounds is nonintegrable, as found in the aforementioned ref-
erences, is enough to prove the nonintegrability of string motion in these geometries in
general. On the other hand, the existence of special solutions and boundary conditions
which are integrable (and therefore nonchaotic) is perfectly expected also in a noninte-
grable system.
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3.3 Lyapunov exponent near the AdS-Schwarzschild hori-
zon

Instead of calculating the out-of-time-ordered correlators that are typically used in the
literature to calculate the Lyapunov exponent in field theory, either with a gravity dual in
which case it can be done holographically, or through the usual field-theoretical perturba-
tion theory by summing the ladder diagrams, here we exploit a much simpler technique,
motivated by the one used in [21, 23, 26], and appropriate for the study of bulk chaos.
We want to know whether we can learn something about the field theory side by studying
classical fluctuations around some stringy solutions in the bulk. Something similar is done
in the study of pole-skipping of the metric fluctuations [58] where the special points in the
energy-momentum plane for the metric fluctuations determine the OTOC, a four-point
function. We will find that the variation of worldsheet string solutions (with given start-
and endpoint) can tell us about off-equilibrium two-point correlation functions in dual
CFT.

Studying spatial dependence of the worldsheet field, i.e. the function R(σ) and call-
ing it dynamics as we do might be controversial; so is the term Lyapunov exponent for
the growth exponent of the variation δR(σ). The important difference between σ and
τ dynamics is that the worldsheet time is unbounded and one can define asymptotic
quantities as is usually done for the Lyapunov exponent (defining it as the limit of small
initial variation and long-time evolution λ = limt→∞ limδx(0)→0 log (δx (t)) /t, for some
generic coordinate x). The extent of the σ coordinate is finite and there is no analogue to
limt → ∞. Therefore, while we talk all the time of Lyapunov exponents, we really study
what is often called finite-time Lyapunov indicator in the context of time evolution, i.e.
the exponent defined locally rather than aymptotically. This is however often assumed as
a matter of course: the bulk Lyapunov exponent (in time) computed, e.g. in [21, 23, 59],
is also the finite-time quantity.

For solving the variational equations it is convenient to go again for the Polyakov
action in the conformal gauge. The ansatz for the static open string is the same as in
Eq. (3.6). Here we are particularly interested in studying the variation near the horizon.
To that end, we substitute R(σ) 7→ rh + εδR(σ) into Eq. (3.12) and expand it in ε small
to linear order. This yields the near-horizon variational equation:

δR′′ − (D − 1)2r2hδR = 0. (3.16)

The solution is thus δR ∝ e±2λLσ with a pair of Lyapunov exponents of equal magnitude
and with opposite signs, as it has to happen in a Hamiltonian system. The exponent
saturates the Maldacena-Stanford-Shenker (MSS) bound [2]:

λL =
(D − 1)rh

2
= 2πT. (3.17)

The reason why we define the Lyapunov exponent with a factor of 2, i.e. through δR ∝
e±2λLσ instead of δR ∝ e±λLσ is that the same expression appears also in the OTOC
growth, and follows from the definition of OTOC on the thermal circle. Here, for bulk
equations of motion, this argument is irrelevant but we nevertheless want to stay consistent
with the definition of the MSS bound as we want to compare and relate the two situations.

We have shown that the MSS bound is saturated regardless of the spacetime dimension
or any other parameters save the temperature. While it is tempting to call this "maximal
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chaos in the bulk", we already know from our integrability analysis that this system is
not chaotic at all. How then should we interpret the result? Since our system is not
chaotic, we are left with the conclusion that we have actually encountered some sort of
unstable saddle point in our system. Therefore we should interpret λL not as Lyapunov
exponent in dual field theory, but as some characteristic scale that will likely correspond
to relaxation time of some perturbations around a thermal horizon.

3.4 Lyapunov exponent near a general hyperscaling-
violating horizon

In order to further corroborate the universality of the result (3.17), we closely follow the
idea of [26] and study bulk motion in a broad class of bulk geometries: hyperscaling-
violating horizons at finite temperature, constructed in [60, 61, 62, 63] as gravity duals of
effective field-theories with scaling and long-range entanglement, thought to be ubiquitous
in quantum-many body systems. In [26], it is shown the bulk geodesics, i.e. particle orbits
also have the MSS value of the Lyapunov exponent in a broad part of the parameter
space (though not everywhere); here we show that static strings/holographic heavy quarks
always have the MSS value. The background metric reads

ds2 = −r2ζ−
2θ

D−2f(r)dt2 +
1

f(r)r2+
2θ

D−2

dr2 + r2dx⃗2, f(r) = 1−
(rh
r

)D−2+ζ−θ

, (3.18)

and depends on two parameters, the Lifshitz exponent ζ that measures the anisotropy of
space versus time scaling (so that Lorentz-invariant backgrounds correspond to ζ = 1) and
the hyperscaling exponent θ which measures the deviation from the dimensional scalinig
of free energy and roughly corresponds to long-range-entangled degrees of freedom. By
definition, the temperature of the horizon at rh is found as:

4πT = − g′tt(rh)√
gtt(rh)grr(rh)

= (D − 2− θ + ζ)rζh. (3.19)

We can easily redo the same analysis as for the AdSS configuration, keeping the same
ansatz (3.6) and the equations of motion analogous to (3.7-3.11). When everything is
said and done, we obtain the near-horizon variational equation

δR′′(σ)− (D − 2− θ + ζ)2r2ζh δR(σ) = 0, (3.20)

which, according to (3.19), implies again λL = 2πT with the ansatz δR ∼ exp(2λLσ).
Finally, while one might naturally be interested also in the dynamics of transverse

coordinates such as X1(τ, σ),4 we have already mentioned (after the equations of motion
(3.7-5.10) and in Appendix A) that time-dependent fluctuations are always linear and
thus irrelevant for the study of bulk instabilities (let alone chaos).5

4In most applications related to holographic heavy quarks, it is precisely the dynamics of Xi coordi-
nates that describes drift, diffusion and other relevant phenomena, such as in pioneering works [33, 34]
and later developments [64]; the field-theory correlation functions are determined by the near-boundary
behavior of the transverse fluctuations.

5As a side note, a special exact solution of the equations of motion is a string lying on the horizon,
i.e. with nontrivial profile X1(σ) but with R(σ) = rh. In this case, the variational equation (3.16) also
becomes exact on the whole worldsheet, yielding again λL = 2πT as in Eq. (3.17). Such a solution is
however difficult to interpret holographically so we do not study it further.
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Chapter 4

Intermezzo: Static open string in black
brane backgrounds

In this chapter we generalize the findings for the AdS black hole backgrounds to black
brane geometries. These geometries arise generically as semiclassical supergravity so-
lutions at finite temperature. Indeed, AdS black holes typically appear as near-brane
expansions of these more general solutions. Although the full brane geometries typically
have flat asymptotics and thus do not have a holographic dual, they serve a double pur-
pose in our work. First, they will provide additional evidence that a thermal horizon is
the source of local instability leading to the MSS Lyapunov exponent, no matter what
the far-from-horizon physics is. Second, considering the leading deformation away from
AdS geometry in the near-brane region corresponds to a Coulomb deformation in dual
CFT [29]. Therefore, the black brane calculation can actually serve as the starting point
in exploring the dynamics of a heavy quark in a Coulomb-deformed plasma.

To the best of our knowledge no systematic work was done on string dynamics in
brane backgrounds, except for the general proofs of nonintegrability in [51, 55]. A black
brane setup was considered in [33] but with different field content and metric than in our
case (they consider D7 branes while we consider D3 branes).

4.1 Extremal black D3 brane
Consider first the extremal black brane geometry made out of a stack of Q coincident
D3-branes. This is a well-known stringy analog of an extremal charged black hole in
Einstein-Maxwell theory, which develops an infinite throat interpolating between flat space
at infinity and AdS2 × S2 near-horizon region. Equivalently, extremal black brane can
be thought of as interpolating between the ten-dimensional Minkowski spacetime and
AdS5 × S5 space. In this context it is the embedding of the textbook holographic theory,
the classical supergravity on AdS5 × S5 [40]. The metric reads

ds2 =
ηµνdx

µdxν

f 2(r)
+ f 2(r)

(
dr2 + r2dΩk

)
, µ = 0, . . . n− 1 (4.1)

f(r) =

(
1 +

Q

rn

)m

, n = 4,m =
1

4
, k = 5. (4.2)

Here, r is the radial coordinate, xµ are the directions on the brane, while dΩk is the
k-sphere with coordinates Φ1, . . .Φk. The string configuration we consider is completely
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analogous to the static open string studied previously in AdS black hole backgrounds:

t = t(τ), X1 = x1, X2 = x2, X3 = x3,

R = R(σ), Φ1 = Φ1(τ), Φ2 = Φ2(τ), Φ3 = ϕ3, Φ4 = ϕ4, Φ5 = ϕ5 (4.3)

The equation of motion for T requires ẗ(τ) = 0 so we choose a gauge in which t(τ) = vτ .
We have one nontrivial Virasoro constraint and an additional constraint coming from the
above ansatz, i.e. the assumption that R only depends on σ:

Φ̇2
1 + sinΦ2

1Φ̇
2
2 ≡ ℓ2, (4.4)

where ℓ2 is the conserved squared angular momentum on the 5-sphere. The constraints
decouple the dynamics of R from Φ1 and Φ2:

R′′ − R′2

R
+ v2

1 + 2Rf ′/f

f 4R
= 0 (4.5)

Φ̈1 +
(
Φ̇2

1 − w2
)
cotΦ1 = 0. (4.6)

We have some analytical control over the above equations in two opposite limits, for small
R where we recover the AdS5 × S5 throat, and for large R, in the flat space limit.1 These
cases are both integrable, as shown in [51]. The question is thus what happens with
integrability for some generic value of Q. Again [51] provides the general answer: string
motion at finite Q is nonintegrable. But we have seen in the AdS black hole case that a
static open string can live in an integrable sector. We thus check the integrability of our
ansatz (4.3) with the Kovacic algorithm. The result is that this system is integrable, just
like in the AdSS background, due to the relatively simple form of the string configuration
(4.3).

Finding the explicit solution for R(σ) and Φ1(σ) in terms of elementary functions is a
hopeless task. However, this is not necessary, as we mainly want to analyze the variational
equations in the near-horizon limit. The radial variational equation reads

δR′′ − 2R′

R
δR′ + 2v2

(
R′2

2R2
+
Rf ′′ − 2f ′

f 5R
− 1

2f 4R2
− 5f ′2

f 6

)
δR = 0, (4.7)

and just like the on-shell equations it is also tractable in the two extremal cases: in the
AdS throat and in the far (flat-space) region. In the former case, (4.7) becomes

δR′′ − (3ϵ2v2/Q)δR = 0, (4.8)

where R ∼ ϵ, i.e. the small parameter is the distance from the brane; since this limit
means ϵ → 0, the bulk Lyapunov exponent vanishes. In the flat-space limit we obtain
δR′′−ϵ2v2δR = 0, where now R ∼ 1/ϵ, so again the Lyapunov exponent vanishes. There is
no instability at zero temperature. We will see the opposite situation with black D-branes,
in the presence of a thermal horizon.

1Alternatively one can think of these two limits as Q → ∞ and Q → 0.
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4.2 Non-extremal black D3 brane
We will now consider a non-extremal black brane, the finite-temperature generalization
of the extremal solution at temperature T :

ds2 = −h(r) dt2

f 2(r)
+

dx⃗2

f(r)2
+ f 2(r)

(
dr2

h(r)
+ r2dΩ2

k

)
(4.9)

f(r) =

(
1 +

Q

rn

)m

, h(r) = 1−
(rh
r

)4
, n = 4,m =

1

4
, k = 5 (4.10)

1

T
=

4πf(rh)√
h′(rh)(h(r)/f 2(r))′

∣∣
r=rh

=
π
√
Q+ r4h
rh

. (4.11)

In the limit rh → 0 (equivalently, T = 0) the black brane becomes the previously studied
extremal black brane. The coordinates are the same as in the extremal solution (4.2).
The dΩ5 sector is insensitive to temperature, which can be seen from the fact that its
metric is independent of the redshift function h. The effect of the thermal horizon is thus
seen solely in the equation of motion for R:

h(R)R(σ)R′′(σ) + h(R)R(σ)

(
f ′(R)

f(R)
− h′(R)

2h(R)

)
R′2(σ) +

+
v2h3(R)R(σ)

f 4(R)

(
f ′(R)

f(R)
− h′(R)

2h(R)

)
− ℓ2h2(R)R2(σ)

f 4(R)

(
1 +R(σ)

f ′(R)

f(R)

)
= 0, (4.12)

where ℓ2 has the same meaning as in Eq. (4.4). The system again has two independent
degrees of freedom, one of which, the radial coordinate R(σ), exhibits integrable dynamics
at T = 0, as we have shown explicitly through the Kovacic algorithm, and presumably at
T ̸= 0.

We can use nontrivial Virasoro constraint

f 2(R)

(
R′2(σ)

h(R)
− ℓ2R2(σ)

)
− v2h(R)

f 2(R)
= 0 (4.13)

to eliminate ℓ2 from the equation (4.12), yielding

2h(R)R(σ)R′′(σ)− (2h (R) +R (σ)h′ (R))R′2(σ) +

+
2v2h3(R)

f 4(R)

(
1−R(σ)

(
h′(R)

2h(R)
+ 2

f ′(R)

f(R)

))
= 0. (4.14)

Following the same logic as before, we find the near-horizon variational equation:

δR′′ − 16r2h
Q+ r4h

δR = 0 (4.15)

Looking for a solution of a form ∼ exp(2λLσ) and using Eq. (4.11), we find that λL =
2πT . The ubiquitous MSS bound is present even in a non-holographic geometry, again
in the context of integrable dynamics with an unstable saddle point. We thus strengthen
the important realization from the previous chapter and [26]: thermal horizons are the
generators of instability, not necessarily chaos. The holographic meaning of this instability
is theory-dependent, and may not exist when there is no AdS asymptotics.
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4.3 Numerical solutions
In this section we solve the equations of motion numerically as this is the only way to
obtain a look at the string in the whole space. We will see explicitly that the dynamics
is integrable and yet that the variational equations have exponentially growing solutions.

The aim is to solve Eq. (4.14) and its variational equation. In order to do so, it is more
convenient to use the coordinates z = 1/r, so that the relevant equation now becomes

Z ′′ − Z ′2

Z
− h′(Z)Z ′2

2h(Z)
− v2h2(Z)Z3

f 4(Z)

(
1− Z

(
2f ′(Z)

f(Z)
+
h′(Z)

2h(Z)

))
= 0. (4.16)

We impose Dirichlet conditions at the brane and Neumann conditions at the other end
(open strings should be attached to branes but they can float freely in the asymptotically
flat outer region). Once we have the solutions R(σ) we can use that solution to solve also
the variational equation:

δZ ′′ − (2h(Z) + Zh′(Z))Z ′

Zh(Z)
δZ ′ +

1

2Z2

[
Z ′2 (2h2(Z) + Z2h′2(Z)− h(Z)Z2h′′(Z)

)
h2(Z)

− 20v2h2(Z)Z6f ′2(Z)

f 6(Z)
+

4v2h(Z)Z5 (3f ′(Z) (2h(Z) + Zh′(Z)) + h(Z)Zf ′′(Z))

f 5(Z)

−
v2Z4

(
6h2(Z) + Z2h′2(Z) + h(Z)Z (8h′(Z) + Zh′′(Z))

)
f 4(Z)

]
δZ = 0. (4.17)

For δZ the meaningful boundary condition is the fixed (and small) difference between
the on-shell trajectory and its clone at the brane (δZ(σ = 0) = ϵ) and the Neumann
condition at infinity (since the strings float freely so does the difference between to string
profiles). The outcome is given in Fig. 4.1. Along with the radial profiles of the string
for different temperatures, we plot the near-horizon values of the numerically computed
Lyapunov exponent λ(n)L = log (δZ (σ0) /ϵ) /2, where σ0 is some near-brane cutoff (we want
the Lyapunov exponent near the brane thus σ0 should cut off the far-from-brane part).2
The numerics is reasonably close to the MSS result, providing an additional confirmation.
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Figure 4.1: Radial profile Z(σ) (A) and the numerical Lyapunov exponent λ
(n)
L =

log (δZ (σ0) /ϵ) /2 (B) for the static open string in thermal black brane background, for
a range of temperatures T . We take σ0 = 0.2 for the cutoff but values between 0.1 and
0.5 yield similar results. We compare the numerical result for the Lyapunov exponents to
the analytic estimate (i.e., the chaos bound) and find reasonable agreement.

2Of course, one needs to check that the results do not strongly depend on σ0.
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Chapter 5

Open string in D1-D5-p black string
background

5.1 Introduction
So far we have explored the bulk instability of open strings in black hole and black brane
backgrounds and we have found the saturation of the MSS bound, clearly unrelated to
chaos as the system is integrable. Now we will interpret this finding and relate it to the
thermalization rate and thermal correlators in a theory which is particularly interesting
as we know something not only about the (super)gravity solution and the corresponding
large-N field theory, but also about the microscopics: the D1-D5-p black string [65, 66, 67,
40, 41]. This setup is celebrated also for being the first black hole solution in string theory
for which the entropy was computed by counting the microscopic degrees of freedom,
obtaining for a horizon area A the semiclassical Bekenstein-Hawking result S = A/4
[66]. Another famous result is the calculation of the greybody factor in [65], the logical
macroscopic extension of the entropy calculation. The idea is that the Hawking radiation,
emitted by the horizon with perfect blackbody spectrum, is itself scattered by the black
hole, therefore an asymptotic observer will measure a different spectrum; the ratio between
the two spectra (the asymptotically measured one to the blackbody spectrum) at given
energy and angular momentum is called the greybody factor. It is easy to see from [65]
that the greybody factor is obtained as the absorption cross section for a wavepacket
in the black hole background. In holographic setups, where the relevant near-horizon
dynamics is dual to a two-dimensional CFT, the absorption cross section can be obtained
from the imaginary part of the retarded Green’s function.

Our idea here is twofold. First, we will study the Lyapunov stability in D1-D5-p
background – this may (and will) yield some surprises as the geometry has a global
rotation with angular velocity Ω. So far we have only studed static geometries and it is
not obvious whether the conclusions carry over to the rotating case. Second and more
important, we will relate the Lyapunov exponent to the retarded propagator in dual field
theory and pinpoint what it tells us about the microscopic meaning of bulk instability.
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5.2 Setup
The background describing the D1-D5-p black string reads

ds2 =
1√
f(r)

(
−dt2 + dx25 +

r20
r2

(coshΣdt+ sinhΣdx5)
2

)
+

+
√
f(r)

(
dr2

h(r)
+ r2

(
dψ2 + sin2 ψ

(
dθ2 + sin2 θdϕ2

)))
, (5.1)

f(r) =

(
1 +

r21
r2

)(
1 +

r25
r2

)
, h(r) = 1− r20

r2
. (5.2)

Here, t and r are the time and radial coordinate respectively, ψ, θ and ϕ are the angles
on a 3-sphere, and xi (i = 1, . . . 5) are the Cartesian coordinates in the plane. This is a
classical solution of ten-dimensional type IIB supergravity compactified on T 5 ∼= T 4 × S1

[65, 41]. It is charged under the Ramond-Ramond field of the corresponding theory; since
D1 and D5 branes are magnetically dual to each other we get electric and magnetic charges
that are related to the radii r1 and r5, respectively. One can think of these charges also as
representing the number of copies in the stack of D1 branes compactified on S1 along the
x5 direction, and in the stack of D5 branes wrapping the whole T 4×S1 manifold. There is
also an additional charge associated to the p-momentum along D1-brane, i.e. the Kaluza-
Klein (KK) mode on S1, related to factors of r20 cosh

2Σ in the metric (5.1-5.2). One also
notices that this solution is anisotropic and rotating for Σ ̸= 0 due to the presence of
non-vanishing tx5-component in the metric tensor (5.1). The temperature and entropy
are given by

1

T
=

2πr1r5 coshΣ

r0
, S =

2π2r1r5r0 coshΣ

4
. (5.3)

We now remind the reader on some interesting features of this solution. The first is that
in the extremal case (T, S ∝ r0 = 0), also known as the extremal D1-D5 bound state
system, the near-horizon geometry becomes AdS3 × S3. We can show this by performing
the coordinate transformation t→ t/εL, r → εLr, x5 → x5/εL in the metric (5.1), where
L2 = r1r5: in the limit ε→ 0 we recover the AdS3 × S3 geometry

ds2NHE ≈ r2

L2

(
−dt2 + dx25

)
+ L2dr

2

r2
+ L2dΩ2

3. (5.4)

On the other hand in the near-extremal case (r0 → 0, Σ → ∞), the p-momentum survives
and we still have the full D1-D5-p system, with a near-horizon geometry of the rotating
Banados-Teitelboim-Zanelli (BTZ) black hole:

ds2NHNE ≈ r2

L2

(
−dt2 + dx25

)
+ L2 dr2

r2 − r20
+
r20
L2

(coshΣdt+ sinhΣdx5)
2 + L2dΩ2

3. (5.5)

The procedure to derive this is the same as in the extremal black string case, except
that now we also need to take r0 → εLr0. In order to translate the metric (5.5) into the
standard coordinates for BTZ black holes we have to perform an additional coordinate
transformation:

r2 = w2 − w2
−, w+ = r0 coshΣ, w− = r0 sinhΣ. (5.6)
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For convenience we will write down the metric of rotating BTZ in these coordinates:

ds2BTZ = −
(w2 − w2

+)(w
2 − w2

−)

L2w2
dt2 +

L2w2dw2

(w2 − w2
+)(w

2 − w2
−)

+
w2

L2

(w+w−

w2
dt+ dx5

)2
.

(5.7)
The angular velocity is given by Ω = w−/Lw+ = tanhΣ/L. Here we can use the Brown-
York tensor for AdS gravity [68] to calculate conserved charges. This is done in Ap-
pendix C where we have derived the energy and angular momentum of this black hole
solution:1

E =
w2

+ + w2
−

8L2
, J =

w+w−

4L2
. (5.8)

We should note that our terminology on what is extremal or near-extremal black string
is governed by r0 and Σ parameters, despite the fact that in both limits we get extremal
D1-D5 and extremal D1-D5-p states, respectively, i.e. the states which preserve a certain
number of supersymmetry generators and are thus Bogomolny-Prasad-Sommerfield (BPS)
states that saturate a BPS bound [41]. One crucial difference between the two arising from
the additional KK momentum in D1-D5-p is that it has nonzero horizon area and entropy,
while also being extremal in the sense that it saturates a BPS bound. This particular
feature was exploited in [66] to derive the Bekenstein-Hawking area law by counting the
degeneracy of BPS states. On the other hand, the extremal D1-D5 bound state was used
in the celebrated Maldacena’s paper [67] to conjecture the AdS3/CFT2 correspondence.

We can contrast this solution with a more familiar charged black hole solution in
Einstein-Maxwell theory, namely the Reissner-Nordström (RN) geometry. An extremal
RN solution also saturates the BPS bound due the fact that Einstein-Maxwell theory can
be embedded into supergravity theories [69].2 Furthermore, in the near-horizon limit of a
non-extremal RN we encounter Rindler×S2, while in the extremal case the near-horizon
geometry becomes AdS2 × S2, also known as the Robinson-Bertotti geometry. It is a
well known fact that AdS spaces are unstable under small perturbations [70]. We can
imagine throwing neutrally charged matter into an extremal RN black hole that would
make it slightly non-extremal and therefore would produce such a huge gravitational
backreaction that near-horizon geometry would transition from AdS2 to Rindler space,
spoiling AdS asymptotics. On the other hand, if we consider an extremal black string,
adding a quantum of momentum p along the D1 direction would result in the transition
from AdS3 to BTZ black hole.

This simple analysis leads us to an important prediction: we should expect a vanishing
Lyapunov exponent in the extremal black string geometry, but a non-vanishing one away
from extremality. The logic is that any growing mode (i.e., a variation with a positive
Lyapunov exponent) would destroy the extremal background, hence the growth rate has
to be zero; but no such constraint exists away from extremality.

1It is worth mentioning that when Σ = 0 from (5.6) we also get w− = 0, which gives vanishing
angular momentum J = 0 in Eq. (5.8). We see that in the non-rotating limit the BTZ black hole in the
near-horizon region has zero angular momentum.

2One should think of both the near-extremal D1-D5 bound state and the extremal D1-D5-p state as
higher-dimensional multi-charge versions of the extremal RN solution, while the non-extremal analogue
is given by a generic D1-D5-p black string geometry (5.1-5.2).
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5.3 Analytic estimate of the Lyapunov exponent
Now we return to our old setup and consider an open string in this background. In
particular we postulate the following string configuration

t(τ, σ) = vτ, R(τ, σ) ≡ R(σ),

Ψ(τ, σ) ≡ ψ(τ), Θ(τ, σ) ≡ π/2, Φ(τ, σ) ≡ ϕ(τ), X5(τ, σ) ≡ X5(σ). (5.9)

All the τ -dependent transversal degrees of freedom {Ψ,Θ,Φ} decouple, as in all other
cases studied in this paper. The remaining fields R and X5 also decouple from each
other, since we can combine the equation of motion for R(σ) with the nontrivial Virasoro
constraint

− v2 +
f(R)R′2(σ)

h(R)
+X ′

5
2
(σ) +

r20
(
v2 cosh2Σ + sinh2ΣX ′

5
2(σ)

)
R2(σ)

= 0 (5.10)

to obtain the following equation

2v2fh2
(
−2r20 cosh

2Σ +R2
)
+ v2f ′h2R

(
−r20 cosh2Σ +R2

)
+

+f 2R2
(
− (2h+Rh′)R′2 + 2hRR′′

)
= 0. (5.11)

The effective Lagrangian for the coordinates R and X5 takes the form

L =
1√
f(R)

(
v2
(
−1 +

r20 cosh
2Σ

R2

)
− f(R)R′2

h(R)
−
(
1 +

r20 sinh
2Σ

R2

)
X ′

5
2

)
, (5.12)

and reproduces Eq. (5.11) when combined with the Virasoro constraint (5.10).
We will assume that we are in the dilute gas regime, like in [65], defined by r0, r0 coshΣ ≪

r1, r5. This boils down to the condition T ≪ 1/r1, 1/r5. We are particularly interested to
get an analytic solution to the variational equation of (5.11) in two distinct regions: (i)
near-horizon region r ∼ r0, r0 coshΣ ≪ r1, r5 and (ii) far region r0, r0 coshΣ ≪ r ∼ r1, r5.

Expectedly, the system described by the Lagrangian (5.12) is integrable. Applying
again the normal variational equation methods, we can choose the invariant plane to be
{t = τ, R = r0,Ψ = 0,Θ = π/2,Φ = 0, X5 = const.}. Since X5 is a cyclic coordinate
in (5.12), its conjugate momentum is constant: p′X5

= ∂L/∂X5 = 0. Therefore, the
R−X5 plane is indeed invariant under the evolution of the system (along σ). The normal
variational equation therefore corresponds to the variations in the X5-direction, yielding
δX ′′

5 = 0. Just like the open string dynamics in AdS-Schwarzschild spacetime, this system
is integrable. In both cases, the extra integrals of motion are simply the transverse
momenta.

5.3.1 Near-horizon limit

We first solve the variational equation of the radial coordinate in (5.11) obtained by
perturbing the horizon solution R(σ) = r0, R ∼ r0 + δR(σ):3

δR′′ − δR′2

2δR
− v2a4

r60f
2(r0)

δR = 0, (5.13)

a4 ≡ r20(r
2
1 + r25) + 2r21r

2
5 + r20

(
2r20 + r21 + r25

)
cosh(2Σ) (5.14)

3One would expect that a variational equation should be linear, but we here encounter non-linear one.
This is due the fact that Eq. (5.11) contains redshift function h(r) in front of every term, so that upon
expanding around r0 linear terms would vanish since h(r0) = 0.
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It is possible to find an analytic solution, which depends on the parameter C (determined
by the initial conditions):

δR(σ) = cosh2

(
v
√
a4 (−σ + 2Cr60f

2(r0))√
2r30f(r0)

)
(5.15)

We are interested in the asymptotic growth of the solution ∼ e2λLσ. The exponent reads:

λL =
r0v

r1r5

√
1 +

r20(r
2
1 + r25)

2r21r
2
5

cosh(2Σ). (5.16)

In terms of the Hawking temperature (5.3) and left-/right- moving teperatures TL,R =
1
2π

r0e±Σ

r1r5
we can recast this result in the following form (we set v = 1)

λL = 2πT coshΣ
√

1 + π2 (r21 + r25) (T
2
L + T 2

R). (5.17)

In the dilute gas regime (when r0, r0 coshΣ ≪ r1, r5) the quantity π2 (r21 + r25) (T
2
L + T 2

R) =
r20(r

2
1+r25)

2r21r
2
5

cosh(2Σ) is small, so we can expand the previous equality

λL = 2πT coshΣ

(
1 +

π2

2

(
r21 + r25

) (
T 2
L + T 2

R

)
+ · · ·

)
(5.18)

Importantly, the Lyapunov exponent does not equal the chaos bound. It depends on r1,5
and TL,R in addition to T , and its temperature dependence is a nonlinear function. But
the leading term in the expansion has a simple form:

λ
(0)
L ≈ r0

r1r5
= 2πT coshΣ. (5.19)

This result is the leading-order term of the dilute-gas expansion, thus in the dilute gas
regime the near-horizon Lyapunov exponent is λL = 2πT coshΣ.4 This value differs
from MSS bound [2] by a factor of coshΣ which equals unity when Σ = 0, i.e. when
there is no rotation. In absence of rotation the MSS bound is saturated, as expected
from our previous analysis of Lyapunov exponent for open string in near-horizon limit of
AdS-Schwarzschild black holes.

We can translate our result into the standard variables for rotating BTZ solutions.
Since in standard coordinates for BTZ black holes we have Ω = w−/Lw+, using Eq. (5.6)
it follows that LΩ = tanhΣ. Therefore, after exploiting another trivial identity coshΣ =

1/
√
1− tanh2Σ, we get

λL =
2πT√

1− L2Ω2
, LΩ ∈ [0, 1). (5.20)

We could express this results in terms of the left and right temperature TL,R, making use
of the relation 2/T = 1/TL + 1/TR ⇒ T = 2TLTR/(TL + TR). However, we do not get a
particularly simple or more intuitive form than (5.20), which in fact nicely shows how a
nonzero rotation rate Ω deforms us away from the universal 2πT scaling.

4One may worry whether this expression remains finite in the near-extremal limit where we take
Σ → ∞. We should pay attention to the fact that there is a factor of r0 hidding inside the temperature
T . In the near-extremal limit we also take a limit r0 → 0, while keeping r0 coshΣ fixed.
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This result should be compared to the one found in [71], where chaos in dual CFT was
studied by calculating the OTOC correlators of rotating BTZ black holes. The calculation
done in [71] obtains two different Lyapunov exponents λ±L = 2πT/(1∓LΩ) in the presence
of rotation, one of which is above the MSS bound and the other one bellow it, presuming
that Ω ̸= 0. Our result (5.20) turns out to be exactly equal to the geometric mean of
{λ+L , λ

−
L}, implying that λ−L < λL < λ+L . Both results suggest that in systems without

rotational invariance the MSS scale should be modified.
We note in passing that our near-horizon analysis yields a single Lyapunov exponent,

rather than a Lyapunov spectrum with two (in general different) exponents as one would
expect in this background (and as [71] finds in the rotating BTZ case) – rotation breaks
isotropy so the two directions normal to the invariant plane should be inequivalent. This
could be because the quanta of p-momentum in D1-D5-p are only left-moving, thus we
only see the Lyapunov exponent associated with the temperature of left-moving modes.

5.3.2 Far from horizon

Now we consider the opposite limit when r ≫ r0, r0 coshΣ and r ≫ r1, r5. In this case
Eq. (5.11) reduces to

R2
(
v2 −R′2 +RR′′

)
= 0. (5.21)

There is the trivial solution R = 0 and we can write a variational equation around it by
putting R(σ) ∼ ϵ+ δR(σ), leading to

δR′′ +
2v2

ϵ
δR = 0. (5.22)

This is a harmonic oscillator (with positive frequency squared) thus the Lyapunov expo-
nent is zero: we have a vanishing Lyapunov exponent in this region. This makes sense,
as we already noted that we can think of six-dimensional black string as an interpolation
between AdS3 × S3 and Minkowski spacetime. The far region corresponds to the latter.

So far we have found that the Lyapunov exponent of the unstable (but integrable)
saddle point on the horizon depends on the rotation rate and in general differs from
the MSS bound when the symmetry of the background is reduced. We have also seen,
comparing to [71], that the bulk Lyapunov exponent is not related to the chaos exponent
of field-theoretical OTOC. Now we will relate it to the retarded propagator of the string
endpoint, i.e. quasiparticle in contact with a thermostat.

5.4 Retarded Green’s function in the static limit
Our goal is to find the retarded Green’s function dual to the fundamental open static string
in the bulk, which is known [33, 34] to correspond to a heavy quasiparticle interacting
with a thermal background.5 While such a calculation is maybe the most elementary
application of AdS/CFT there is, in the D1-D5-p geometry it poses some formal problems.
Therefore we go step by step and start from the static limit of the IR propagator, i.e. we
compute the propagator G̃R(ω = 0) in the near-horizon area, leaving the question of

5In the context of D1-D5 CFT it does not make sense to talk of quarks as the symmetries of the theory
are different.
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matching to the UV regime, i.e. finding the propagator for the UV-complete theory for
the next section.6

To make the calculations easier, we make the coordinate transformation

r 7→ r20
r2

≡ ζ, (5.23)

which in our setup also acts as field redefinition.7 In the new coordinate ζ, the boundary
is located at ζ = 0 while the horizon r = r0 is at ζ = 1. We can rewrite Eq. (5.11) in new
coordinates:

4v2f(Z)h2(Z)Z3
(
1− 2 cosh2ΣZ

)
+ 4v2f ′(Z)h2(Z)Z4

(
−1 + cosh2ΣZ

)
+

+r20f
2(Z)

(
(2h(Z) + Zh′(Z))Z ′2 − 2h(Z)ZZ ′′

)
= 0, (5.24)

f(ζ) = 1 +
r21 + r25
r20

1

ζ
+
r21r

2
5

r40

1

ζ2
, h(ζ) = 1− ζ. (5.25)

This equation can be solved numerically, as shown in Fig. 5.1 where we have plotted two
numerical solutions with the same parameters (r0, r1, r5, Σ), but with different boundary
conditions at the horizon (Dirichlet vs. Neumann). Both solutions reach the horizon (that
was not the case for the open string in AdSS background). Therefore, the correct physical
solution is the one with the Neumann condition – it still feels the heat bath but also has
vanishing energy density at the horizon, keeping it stable.

Dirichlet-Dirichlet

Dirichlet-Neumann

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

σ

Z
(σ
)

Figure 5.1: Radial profile of the static open string Z(σ) in the coordinates from Eq. (5.23),
obtained by solving numerically the equation of motion (5.24), with parameters r0 =
10, r1 = 100, r5 = 200, Σ = 1. On AdS boundary only the Dirichlet boundary condition
is meaningful; in the interior both conditions (Dirichlet or Neumann) are possible and
both solutions end at the horizon, but the Dirichlet-Neumann solution (blue) has a lower
energy than the Dirichlet-Dirichlet solution (red).

We want to find an approximate analytic solution to the equation of motion in the near-
horizon region, and then also for the fluctuation equation which determines the Green’s

6With some hindsight, we denote this propagator by G̃R, with a tilde, leaving the notation GR for a
slightly different correlation function, obtained from transverse fluctuations, to be studied in the next
section.

7Notice that ζ as defined here differs from the more usual z coordinate in AdS space defined as z = 1/r.
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function. We will attempt to do so via the matching procedure, namely by solving the
relevant equation in two distinct regions (far and near the horizon) and matching them in-
between [40, 41]. The matching region is at small σ, since we the boundary at σ = 0. The
matching condition is the nontrivial Virasoro constraint F which plays the role analogous
to the Wronskian for quantum-mechanical scattering problems (i.e., a conserved quantity
which stays constant all the way from the near region to the far region):

F ≡ v2
(
−1 + cosh2ΣZ

)
− (r21 + r20Z) (r

2
5 + r20Z)Z

′2

4r20(Z − 1)Z5
= 0,

dF
dσ

= 0. (5.26)

Substituting Z ∼ 1 + δZ(σ) into Eq. (5.24), we find the fluctuation equation:

δZ ′′ − 2r20v
2a4

(r20 + r21)
2
(r20 + r25)

2 δZ = 0. (5.27)

A general solution is again a combination of modes with Lyapunov exponents of equal
absolute value and opposite signs:

δZnear = A e2λLσ + B e−2λLσ, λL = 2πTv coshΣ. (5.28)

We also want the solution in the far region. In the far region the leading-order approxi-
mation for the on-shell solution is Z = 0, so we can expand around it near the boundary
z = 0: [

1 +

(
−3

2
+ 2r20

(
1

r21
+

1

r25

))
Z

]
Z ′2 − ZZ ′′ = 0, (5.29)

and put in Z ∼ ϵ+ δZ(σ), yielding simply −ϵδZ ′′ = 0 with the general solution

δZfar = Cσ +D. (5.30)

Now we use (5.26) to match the two solutions:

Znear = 1 +Ae2λLσ + Be−2λLσ, (5.31)
Zfar = Cσ +D. (5.32)

We first evaluate F for Znear and Zfar and then equate them to get

C = 1 +Ae2πλL + Be−2πλL . (5.33)

Expanding the near-region solution in the far region around σ = 0 yields

Znear = 1 + S +Rσ +O(σ)2, S ≡ A+ B, R = 2 (A− B)λL. (5.34)

Now equating the near- and far-region solutions we get

A = −1− C
2

+
D
4λL

, (5.35)

B = −1− C
2

− D
4λL

. (5.36)

Finally, after combining the results from Eqs. (5.33), (5.35) and (5.36) we get

A =
D

2λL (1− e2πλL)
(5.37)

B = Ae2πλL , (5.38)
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yielding the following form of retarded Green’s function at ω = 0

G̃R(ω = 0) =
R
S

= −2λL tanh (λLπ) , Im G̃R(ω = 0) = 0. (5.39)

This is by construction the time-independent solution, as we have ignored the τ -dependence
from the very beginning. We notice that the IR Green’s function at ω = 0 is purely real –
there is no imaginary part, implying there is no absorption at ω = 0. We will understand
the meaning of this surprising fact in the next section. Before that, let us make it clear
what quantity we study by computing GR – on the gravity side, the imaginary part of the
propagator is the absorption cross section for an open string (i.e., the probability that
the horizon absorbs a probe string) – this is distinct from the familiar greybody factor
computed in [65] which is the absorption cross section for the Hawking radiation; its CFT
meaning is the transparency of the thermal plasma to radiation. The greybody factor is
certainly nonzero; why the dissipation for a heavy quark is zero we shall understand when
we do the calculation also for ω ̸= 0.

5.5 Dynamics of transverse fluctuations
Now we want to obtain the retarded Green’s function for a general ω value. It is quite
challenging to solve for time-dependent fluctuations δR in the Polyakov gauge. Instead,
we will consider a slightly different setup (and thus a different Green’s function): we
switch to the Nambu-Goto formalism with the action (3.2) and work in the static gauge,
so that instead of studying perturbations in the radial direction of the string, we will now
consider a setup in which only the fluctuations along the x5-direction are present. That
will allow us to study t-dependent dynamics. A similar calculation was already done in a
slightly different setup [72], where the authors study the bulk dynamics of a fundamental
string in an extremal and near-extremal Reissner-Nordström black hole background.

The ansatz is now:

t(τ, σ) = τ ≡ t, R(τ, σ) = σ ≡ r,

Ψ(τ, σ) ≡ ψ(t), Θ(τ, σ) ≡ π/2, Φ(τ, σ) ≡ ϕ(t), X5(τ, σ) ≡ X(t, r). (5.40)

We expand X(t, r) in Fourier modes

X(t, r) =

∫
dω

2π
e−iωtXω(r), (5.41)

and the relevant equation of motion obtained by varying the Nambu-Goto action reads

X ′′
ω(r) +

(
r20
(
−3r2 + r20 + (r2 − r20) cosh

2 (2Σ)
)

r (r2 − r20)
(
−2r2 + r20 + r20 cosh

2 (2Σ)
) − f ′(r)

f(r)
+
h′(r)

2h(r)

)
X ′

ω(r)

− 2r2ω2f(r)(
−2r2 + r20 + r20 cosh

2 (2Σ)
)
h(r)

Xω(r) = 0. (5.42)

In the special case when there is no rotation (Σ = 0) this equation simplifies to

X ′′
ω(r) +

(
r20

r3h(r)
− f ′(r)

f(r)
+
h′(r)

2h(r)

)
X ′

ω(r) +
ω2f(r)

h2(r)
Xω(r) = 0. (5.43)

From now on we will assume that there is no rotation. Since the problem can be divided
into two regions, we will again employ the matching procedure in order to gain some
analytic control of the equation.
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5.5.1 Near region: extremal case

We first consider the near-horizon region of the extremal black string, i.e. at temperature
T = 0 on the field theory side. In this case the IR geometry is given by Eqs. (5.4). The
relevant equation of motion for string fluctuations along the x5-direction in this regime is

X ′′
ω(r) +

4

r
X ′

ω(r) +

(
L2ω

r2

)2

Xω(r) = 0, (5.44)

with general solutions of the form

Xω(r) = A
(
1− iL2ω

r

)
e

iL2ω
r + B 1

2L4ω2r

(
1− ir

L2ω

)
e−

iL2ω
r . (5.45)

Imposing the infalling boundary condition (appropriate for the retarded propagator) at
the horizon requires B = 0. Expanding this solution in the matching region r0 ≪ r ≪ L,
we get

Xω(r) = A

(
1 +

(L2ω)
2

r2

)
. (5.46)

From this we can calculate retarded Green’s function at T = 0 in the IR region r0/r, ωL≪
1 ≪ L/r:

G(T=0)
R = L4ω2 ⇒ ImG(T=0)

R = 0. (5.47)

Therefore, we again get a vanishing absorption cross-section in the presence of the horizon,
i.e. ImG(T=0)

R = 0. While for ω = 0 this could be ascribed to the special static limit, now
we need to understand why the extremal horizon does not absorb anything even though
it is a horizon (with finite area and finite greybody factor). From the bulk viewpoint,
one way to see the reason is to rewrite the fluctuation equation (5.44) in the Schrödinger
form:

∂2r X̃ω(r)− Veff(r)X̃ω(r) = 0, Veff(r) =
2r2 − L4ω2

r4
. (5.48)

The effective potential is shown in Fig. 5.2 for various values of ω. For ω = 0 a zero
imaginary part could be expected for two reasons. First, for ω = 0 the effective potential
is positive and (quadratically) divergent at the horizon, thus there is no absorption, i.e.
all incoming waves are reflected backward. Also, we have already studied the ω = 0 case
(though for radial fluctuations) and shown that Im G̃R = 0 at all temperatures.

The nonstatic case ω ̸= 0 is more interesting. As we see from Eq. (5.48) and Fig. 5.2,
the potential is now attractive (negative) and diverges as 1/r4 for r → 0. It is known
that the scattering problem for attractive central potentials diverging as 1/rs for s > 2
is not well-defined [73]: such potentials always lead to a wave "falling toward the center"
and the solution to the Schrödinger equation in this case is always localized around zero
– there is no absorption because the infalling plane wave at infinity is not a consistent
boundary condition. We will see in the following section that we can infer the result for
the retarded Green’s function in the extremal case by considering the limit ω ≪ T of the
thermal correlator obtained in a near-extremal case.
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Figure 5.2: The effective Schrödinger potential (5.48) for the extremal D1-D5 geometry
with L = 1, for four values of the frequency ω. The static case ω = 0 (red full line) is
qualitatively different because the potential is strongly repulsive: there is no absorption
because plan waves coming from infinity are reflected away. For ω > 0 (blue, green, black
dotted lines) the potential is strongly attractive, diverging as 1/r4 at the origin r = 0.
This again implies zero absorption cross section as there are no solutions behaving as
plane waves at infinity.

5.5.2 Near region: near-extremal case

At low but finite temperatures or equivalently in the near-extremal case we would be
interested in dynamics of open string in the metric given by Eq. (5.5). Therefore, we look
for the solution of open string equations in BTZ×S3 geometry. For simpicity we assume
that there is no rotation (Σ = 0). The relevant equation can be written in a compact
form reminiscent to the relativistic wave equation in curved background:

h(r)

r4
d

dr

(
h(r)r4

dXω(r)

dr

)
+
L4ω2

r4
Xω(r) = 0. (5.49)

It is again instructive to look at the Schrödinger form of the equation, obtained by plugging
in Xω(r) = h−1/2(r)r−2Ψ(r) into Eq. (5.49):(

d2

dr2
− Veff(r)

)
Ψ(r) = 0, Veff(r) =

2r2 − 3r20 − L4ω2

(r2 − r20)
2 . (5.50)

The second term inside the brackets is the effective Schrödinger potential, plotted in
Fig. 5.3.
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Figure 5.3: The effective Schrödinger potential (5.50) for a near-extremal D1-D5-p system
with the parameters r0 = 0.1, L = 1, for Lω = 1, 5, 10, 15 (red, blue, green, black).
Already from the expression in Eq. (5.50) it is obvious that in the near-extremal case
nothing special happens in the static limit ω = 0. For all frequencies, the potential
has the form typical of near-horizon effective potentials [40, 41], where a high but finite
potential barrier is followed by the infinite well at the horizon r = r0.

Proceeding further toward the analytic solution to Eq. (5.49) we again change the
radial variable to ζ = r20/r

2, as in Eq. (5.23). In order to reduce Eq. (5.49) to a hypergeo-
metric differential equation,8 we will make a further coordinate transformation ζ 7→ 1−ξ.
The equation now reads

X ′′
ω(ξ)−

1

2ξ

2− ξ

1− ξ
X ′

ω(ξ) +
1

ξ2(1− ξ)

(
L2ω

2r0

)2

Xω(ξ) = 0. (5.51)

We can solve this equation at the horizon ξ = 0, by making the substitution y = − log ξ
in Eq. (5.51). The solution at the horizon takes the form Xω ∼ e±iαy = ξ±iα, with
α = L2ω/2r0. The boundary condition at the horizon requires the outgoing modes to
vanish, yielding

Xω(ξ) = Ã ξ−iα. (5.52)

In order to get the full near-horizon solution, we plug the ansatz Xω(ξ) = ξ−iαF (ξ) into
Eq. (5.51), yielding

ξ(1−ξ)d
2F

dξ2
+

[
1− 2iα−

(
1− iα− 1

2
− iα

)
ξ

]
dF

dξ
−(−iα)

(
−1

2
− iα

)
F (ξ) = 0, (5.53)

where the parameter α = L2ω/2r0 is the same that we encountered in the solution at the
horizon. We recognize Eq. (5.53) as the hypergeometric equation with parameters

a = −iα, b = −1

2
− iα, c = 1− 2iα. (5.54)

The corresponding regular solution reads

F (ξ) = Ã 2F1 (a, b, c; ξ) + B̃ ξ2iα 2F1 (a+ 1− c, b+ 1− c, 2− c; ξ) . (5.55)
8Since Eq. (5.49) has three regular singular points at r = 0, r0 and ∞, we can be sure that it can be

written in the form of the hypergeometric differential equation.
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We impose the infalling boundary condition (5.52) at the horizon, implying that B̃ = 0,
thus the near-horizon solution becomes

Xω(ξ) = Ã ξ−iα
2F1 (a, b, c; ξ) . (5.56)

This completes the near-region solution.
We can now use the following identity to express solution (5.56) in terms of functions

depending on ζ, instead of ξ = 1− ζ:

2F1 (a, b, c; ξ) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1 (a, b, 1 + a+ b− c; ζ) +

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
ζc−a−b

2F1 (c− a, c− b, 1 + c− a− b; ζ) . (5.57)

The matching region r0 ≪ r corresponds to ζ ≪ 1, so we expand Eq. (5.57) in small ζ:

2F1 (a, b, c; ξ) ≈
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
+

Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
ζc−a−b, (5.58)

We observe that the full solution in the matching region is of the form

Xω(r) ∝ S̃ r−d+∆ + F̃ r−∆, d = ∆ = 3, (5.59)

which allows us to read off the retarded Green’s function as the ratio F̃/S̃:

G(T )
R (ω) ∝ Γ(c− a)Γ(c− b)

Γ(a)Γ(b)
=

Γ
(
1− i ω

2λL

)
Γ
(

3
2
− i ω

2λL

)
Γ
(
−i ω

2λL

)
Γ
(
−1

2
− i ω

2λL

) . (5.60)

We can take the imaginary part of (5.60) to get the absorption cross-section:

σabs = ImG(T )
R (ω) ∝ α

4
+ α3, α =

ω

2λL
, λL = 2πT. (5.61)

This is the central result of our calculation – the IR propagator and the absorption cross
section for a heavy quasiparticle. Let us think what this result means:

1. The only energy scale in the Green’s function is the MSS scale 2πT . This is despite
the fact that the system has two independent scales (r1/r0 and r5/r0 or equivalently
T and Ω) and despite the fact that the greybody factor depends nontrivially on all
three whereas the bulk Lyapunov exponent depends on two of them.

2. This is in line with the problem of drift of a heavy quark through neutral N = 4
super-Yang-Mills (SYM) plasma, dual to a dragging string in AdSS background
[33, 34, 74] and many subsequent works in the same setup [75, 76, 77, 78, 79]: the
D1-D5 quasiparticle also does not see the charges of the D1-D5-p system, it does not
even see the global rotation.9 This can be ascribed to the fact that the additional
charges of D1-D5-p system are global and the quasiparticle is neutral with respect
to them.

9At least, this is the case in our current setup with no drift; it would be interesting to check if this
conclusin remains in force in presence of drift.
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3. The form of the propagator (Eq. 5.60) could be expected from the BTZ asymptotics
of the near-extremal geometry [80], as it has the form of conformal quantum me-
chanics, i.e. 0+1-dimensional CFT [81] (we know that in the near-horizon region
of the BTZ geometry the transverse spatial coordinate decouples and the geometry
becomes AdS2 × S, so that AdS2 gives the 0+1-dimensional CFT).

4. The imaginary part behaving as ∼ ω+ω3 suggests that in addition to the usual drag
force f ∝ ẋ we have also a third-order term f̃ ∝ dx3/dt3. This is in fact expected –
all odd-power terms10 in velocity are allowed symmetry-wise and the leading-order
holographic Green function already captures the first two terms.

5. This result could not be reproduced either from the static limit nor from the extremal
limit – these two limits are singular, which is expected for the static limit but
somewhat strange for the extremal limit.

As a sanity check we consider the high-frequency limit ω ≫ T where one should get
a result for the extremal case.11 In this limit we can compare our calculation to the pure
CFT result for the two-point correlation function. We consider a two-point correlation
function in a 2+1-dimensional CFT for an operator with scaling dimension ∆: this behaves
as ⟨O∆(t)O∆(0)⟩ ∼ |t|−2∆, i.e. ∼ ω2∆−d, where d is the spacetime dimensionality. For an
operator with a scaling dimension ∆ = 3 living in d = 3 spacetime dimensions, one should
indeed expect ∼ ω3 power-law behavior of the thermal correlator in the high-frequency
limit.

5.5.3 Signals of instability

What else can we learn from the two-point thermal correlator (5.60) that would be relevant
for the main objective of this paper? We should note that poles in the retarded Green’s
function are related to transport properties of the thermal field theory; on the gravity
side, they define a spectrum of quasinormal modes (QNM) [40, 41]. More specifically, the
relaxation times in field theory are given by the imaginary part of the QNM spectrum
in the bulk [82, 83]. Since our retarded Green’s function (5.60) is singular at an infinite
number of points in the complex plane, due to the presence of the gamma functions in
the numerator, we can extract the whole QNM spectrum from it. Singular points are
given by c − a = −n or c − b = −n, for n ∈ Z+ (a set of non-negative integers), thus
ωn = −2i(n+ 1)λL or ωn = −2i(n+ 3/2)λL. Considering the union of the two sets yields
the following spectrum:

ωn = −2i(n+ 1)λL, n = 0,
1

2
, 1,

3

2
, · · · (5.62)

or equivalently
ωm = −i(m+ 1)λL, m = 1, 2, 3, · · · . (5.63)

10Even-power terms (like ẋ2) are not expected as their sign is independent of the sign of velocity, i.e. a
proper drag force (opposing the motion) would have to look like −ẋ2sgnẋ but that implies the breaking
of some discrete symmetry which we do not have.

11In this limit we consider wavelengths well below T−1 (ω−1 ≪ T−1) that are insensitive to thermal
fluctuations and thus resemble the behavior for extremal background geometry.
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We write the solution in these two obviously equivalent ways in order to facilitate the
comparison with the literature.12 Another way to derive the QNM spectrum is directly
from the solutions to the equations of motion by imposing the infalling boundary condition
at the horizon and the Dirichlet boundary condition at the boundary. The latter requires
the solution at infinity to vanish.13 The equivalence of the two approaches should be
obvious, since the same set of requirements that force the solution (5.58) to vanish at
infinity also describe the poles of the retarded Green’s function (5.60). This gives us a
more intuitive picture of QNM: they tell us how a local near-horizon instability decays.
Therefore, we can think of the inverse of the Lyapunov exponent λ−1

L as some characteristic
timescale for decay of perturbations along the open string that has nothing to do with
chaos.

This result is qualitatively the same as the one obtained by for scalar perturbations
in a nonrotating BTZ black hole background [82], except that the spectrum (5.63) also
includes half-integer values of n. More importantly, a similar relationship between QNM
and the Lyapunov exponent was found in the studies of null unstable geodesics in quite
general asymptotically flat backgrounds (more precisely, for any stable, stationary, spher-
ically symmetric and asymptotically flat spacetime) [59]. The message of [59] is that
the instability timescale of the geodesic motion is related to the inverse of the Lyapunov
exponent, thus we can think of our work as stringy generalization of their result in asymp-
totically AdS spaces.

Finally, we should also comment on the field theory interpretation of quasi-normal
modes spectrum that we have just found in the bulk. We already mentioned that an open
string in the bulk stretched from the boundary to the thermal horizon via gauge/gravity
duality corresponds to a heavy quasiparticle in thermal plasma. Perturbations along the
string describe thermal perturbations in the plasma. We can summarize the findings from
above by noting that a Lyapunov exponent is really related to the quasi-normal modes
frequencies, which describe how local near-horizon instabilities on the string decay. Decay
rates of those instabilities are given by the spectrum of quasi-normal modes, so on the
field theory side they describe how thermal fluctuations in plasma die off. Thus, they
predict thermalization timescale of a quasiparticle as a thermal perturbation of a thermal
state describing the background plasma at a finite temperature in the dual CFT theory
[82].

5.5.4 Far region solution

Now that we have the IR propagator the usual recipe would be to obtain also the prop-
agator in the UV regime and perform the matching procedure between the near- and
far-region solution. We will now explain why this fails for the D1-D5-p system. We
first need a quantity conserved along the radial direction which provides the matching
condition. This is typically the Wronskian of the two independent bulk solutions. The
Wronskian for Eq. (5.43) is

W [ψ1, ψ2; r] =
h(r)

f(r)
[ψ1∂rψ2 − ψ2∂rψ1] , ∂rW = 0. (5.64)

12The form (5.63) is simpler and more natural but (5.62) has the same form as the scalar QNM solution
[82] that we want to benchmark against.

13On the other hand, in an asymptotically Minkowski spacetime we would require outgoing boundary
condition at infinity.
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We shall see soon that the far-region solution corresponds to the usual near-boundary
behavior of a scalar in AdS but with a plane-wave modulation along the radial direction.
Far from horizon (r ≫ r0), Eq. (5.42) reduces to

X ′′
ω(r) +

2 (r2 (r21 + r25) + 2r21r
2
5)X

′
ω(r)

r (r2 + r21) (r
2 + r25)

+
(r2 + r21) (r

2 + r25)ω
2Xω(r)

r4
= 0. (5.65)

In order to implement the low-energy condition ωr1, ωr5 ≪ 1, we make the substitutions
Xω(r) ≡ r−3/2ψ(r) and ρ = ωr, yielding

−
(
ρ2 + ω2r21

) (
ρ2 + ω2r25

)
ψ(ρ) +

ρ2ω2 ((r21 + r25) ρ
2 + 2r21r

2
5ω

2) (3ψ(ρ)− 2ρψ′(ρ))

(ρ2 + ω2r21) (ρ
2 + ω2r25)

−

−15

4
ρ2ψ(ρ)− ρ3 (−3ψ′(ρ) + ρψ′′(ρ)) = 0, (5.66)

from which the low-energy conditions ωr1,5 ≪ 1 together with the obvious inequality
ωr1,5

r1,5
r

≪ 1 imply (
1 +

15

4ρ2

)
ψ(ρ)− 3

ρ
ψ′(ρ) + ψ′′(ρ) = 0, (5.67)

with a general solution
ψ(ρ) = ρ3/2

(
C1e

−iρ + C2e
iρ
)
. (5.68)

This implies that Xω = r3/2ψ ∼ r0 × (exp (iρ) + exp (−iρ)). The leading r0 behavior is
just what we expect from the IR region and the identification of the string worldsheet field
as a massless scalar, however the rapidly oscillating terms for r → ∞ cannot be matched
to the IR expansion. This can happen – there is guarantee that the convergence radi of
the IR and UV expansion overlap. In this case the full propagator can only be found
numerically, however we postpone that for further work. The key information of interest
(the thermalization timescale and the role of the MSS bound) can be seen already from
the IR calculation.

On the other hand, in holography we always want to decouple the IR region from the
the UV region, since it corresponds to the Minkowski spacetime. One typically invokes a
so called Maldacena’s decoupling limit in order to decouple from the asymptotically flat
region. In that case we are not interested in dynamics of the UV region, so we should not
worry much about the failure to preform the full matching procedure. We can thing of the
matching region r ≫ r0 as the limit in which we reach the boundary of AdS spacetime,
where holographic recipe for calculating correlation functions is well defined. Therefore,
what we call the IR propagator is really a full holographic 2-point function.
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Chapter 6

Spectrum of rotating strings and
energy-angular momentum relations

6.1 Introduction
We explore the meaning of dynamical instability and chaos for spining closed strings in
AdS5 × S5 geometry. Such strings have a a transparent meaning in dual field theory:
a string corresponds to a composite operator with large conformal dimension ∆ in dual
CFT, usually interpreted as glueballs and other bound states in QCD terminology [32,
84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98] (of course, we know that the dual
of AdS5 × S5 is really the SYM theory, but the QCD analogy remains useful at least for
gaining intuition). The rotation rate in AdS and on the sphere S correspond to the spin
S and orbital momentum J of a field theory state, thus the rotating closed string defines
the energy E of a bound state with spin S and angular momentum J .

In general, one might worry that even at large ’t Hooft coupling the gauge opera-
tors with high conformal dimension might be beyond the scope of classical strings on
supergravity backgrounds. However, at large angular momenta S and J the conformal
dimension ∆ is likewise large but such operators are amenable to classical description
in string theory on the classical AdS5 × S5 background. As it was shown in [84], the
corresponding string states are solitonic solutions, describing precisely the rotating closed
string configurations.1 Computing the spectrum yields a relation E = E(J, S), bearing
in mind that E ∼ ∆ at large ∆. In planar space (instead of AdS5 × S5), this yields
the celebrated relation E2 ∼ S (at J = 0), describing the Regge trajectory of massive
hadrons. In AdS (and on the sphere), one explores different corners of the parameter
space; some predictions, like the logarithmic corrections to deep inelastic scattering, can
be checked directly in gauge theory [84, 89, 92, 99] while others are novel and go beyond
what is possible in field theory [32, 86, 93, 95].

Here we show that one can go further in exploring the spectra of high-spin gauge
operators (or generalized Regge trajectories) from the classical string dynamics viewpoint.
This case is very different from the open string dynamics considered in the rest of the
paper: closed rotating strings exhibit nonintegrable dynamics and chaos in the presence
of horizon, they do not generically reach neither the deep interior (or horizon, at finite
temperature) nor the boundary, and thus do not relate to the MSS bound which is a

1They are solitonic in the sense that they are classical but not perturbatively related to the static
string, i.e. the trivial vacuum
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characteristic of thermal horizons.
The plan is as follows. We first introduce the setup (geometry, string action and

ansatz) for a spining closed string in AdS5 × S5, then we derive the variational equations
and compute their growing (Lyapunov) modes, and finally show what they mean in CFT:
they describe the thermodynamic response to the relevant operators which grow in the
IR and deform the CFT, modifying in turn the Regge relations E = E(J, S).

6.2 Setup

6.2.1 Closed spinning string

We consider the global AdS5 × S5 geometry, i.e. the whole geometry dual to the N = 4
SYM field theory:

ds2AdS5
= − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ3

dΩ3 = dθ21 + cos2 θ1
(
dθ22 + cos2 θ2dθ

2
3

)
ds2S5 = dϕ2

1 + cos2 ϕ1

(
dϕ2

2 + cos2 ϕ2dΩ̃3

)
dΩ̃3 = dϕ2

3 + cos2 ϕ3

(
dϕ2

4 + cos2 ϕ4dϕ
2
5

)
. (6.1)

Here, the coordinate ρ parametrizes the radial direction in global AdS, varying from
ρ = 0 (interior) to ρ = π/2 (boundary), t is the usual time coordinate, θi (i = 1, . . . 3)
parametrizes the 3-sphere slice of constant time and radial distance in AdS, and ϕi (i =
1, . . . 5) parametrizes the 5-sphere. The Polyakov action reads:

SP = − 1

2πα′

∫
dτdσ ηαβ∂αX

µ∂βX
νGµν(X). (6.2)

In order to account both for the SO(4) gauge symmetry and the SO(6) R-symmetry of
the SYM dual, we need to have a string spinning both in AdS, with spin S (encoding
for the gauge charge) and on the five-sphere, with spin J (encoding for the R-charge).
This setup, studied in [85] corresponds to the following closed string ansatz in the (τ, σ)
worldsheet coordinates [85]:

t = vτ, ρ = ρ(σ), Θ3 = ωτ, Φ5 = ντ

Θ1 = Θ2 = Φ1 = Φ2 = Φ3 = Φ4 = 0. (6.3)

The sole nontrivial equation of motion and the nontrivial constraint read

ρ′′ +
ω2 − v2

2
sinh 2ρ = 0 (6.4)

ρ′2 − v2 cosh2 ρ+ ω2 sinh2 ρ+ ν2 = 0. (6.5)

In constructing the solution we closely follow the well-known works [84, 85, 86, 32, 90].
The string rotates along one angle in AdS and one angle on the 5-sphere while keeping
a rigid shape (radial profile). Explicit solution to Eqs. (6.4-6.4) can be found in terms
of Jacobi elliptic functions as we alreaduy did for a slightly different closed string ansatz
(ring string) in [23]:

ρ(σ) = arccos cn

(√
ω2 − vv2σ,

ω2 − v2

ω2 − ν2

)
. (6.6)
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This solution has the form of an elongated closed curve with one end at ρ = 0 and the
other end at ρ = ρ0 which can be computed from Eq. (6.5) by putting ρ′(π/2) = 0 (or
directly from the solution (6.6) by putting σ = π/2):

ρ0 = arth
v2 − ν2

ω2 − ν2
. (6.7)

Thus ρ0 is the farthest UV scale the string reaches. Short strings, having ν ≲ v, only
explore a small part of AdS space and to a first approximation see the deep interior of
AdS as almost flat. Long strings, with ν ≲ ω, on the contrary explore almost the whole
AdS space and thus contain almost the full spectrum of the gauge theory. Intermediate
cases fit interpolate between these two extremes.

The energy and angular momenta are given by the conserved worldsheet currents
corresponding to translations along t, θ3 and ϕ5 (we first give the general expression and
then evaluate it for the ansatz (6.3)):

E =
1

2πα′

∫
dσ

∫
dσṫ cosh2 ρ =

v

πα′

∫
dσ cosh2 ρ(σ) (6.8)

S =
1

2πα′

∫
dσ cos2Θ1 cos

2Θ2Θ̇3 sinh
2 ρ =

ω

πα′

∫
dσ sinh2 ρ(σ) (6.9)

J =
1

2πα′

∫
dσ cos2Φ1 cos

2Φ2 cos
2Φ3 cos

2Φ4Φ̇5 =
ν

πα′ (6.10)

The pathway found in [89] to explicitly write down the values of the integrals is to write
dσ = dρ/ρ′ and express ρ′ from the constraint. This yields

E =
v

πα′

∫
dρ

cosh2 ρ√
−ν2 + v2 cosh2 ρ− ω2 sinh2 ρ

(6.11)

S =
ω

πα′

∫
dρ

sinh2 ρ√
−ν2 + v2 cosh2 ρ− ω2 sinh2 ρ

(6.12)

J =
ν

πα′

∫
dρ

1√
−ν2 + v2 cosh2 ρ− ω2 sinh2 ρ

. (6.13)

These complicated expressions still tell us little. The strategy in [84] and many subsequent
works is to consider separately the case of short and long strings, and for each of these
the limit of large vs. small orbital momentum J , i.e. angular velocity ν. The following
regimes are identified:

1. For short strings (ν ≲ v) and small ν, we have E2 − J2 ∼ (2/α′)S – the regime of
the canonical Regge slope as the short string does not see the curvature of the AdS
space.

2. For short strings (ν ≲ v) and large ν, we have E − J − S ∼ (1/2α′)S/J2.

3. For long strings (ν ≲ ω) and small ν, we have E − S ∼ (1/πα′) log(S/α′) +
(π/2α′)J2/ log(S/α′), the log-correction characteristic of theories with gauge in-
variance.

4. For long strings (ν ≲ ω) and large ν, we have E − S − J ∼ 1/(π2α′2) log(S/J)/J ,
again a logarithmic correction, as long strings see that curvature of AdS which
encodes for the gauge invariance.
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One needs to resort to numerical integration in order to interpolate between these extremal
cases. We are however mainly interested in the long string regime, where both the classical
gravity limit of the bulk description and the planar limit of the CFT description are well-
defined. To remind, our goal now is not so much to arrive at new predictions for the
gauge theory but to understand the gauge theory meaning of the bulk instability.

6.2.2 Closed winding spinning string

The alternative configuration that we study is that of a winding spinning string, considered
e.g. in [89, 92, 95]. In this case, in addition to the rotation of Θ3 and Φ5, we also allows
Θ1 to wind n times. This string has interesting dynamics and in the non-rotational case
it can violate the MSS bound for n > 1 [23]. Here we will encounter this solution as a
stable fixed point toward which the systems evolves starting from a non-winding spinning
string in some parameter regime. The winding ansatz reads

t = vτ, ρ = ρ(σ), Θ1 = Θ1(σ), Θ2 = ω2τ, Θ3 = ω3τ, Φ5 = ντ

Φ1 = Φ2 = Φ3 = Φ4 = 0. (6.14)

The equations of motion and the constraint read:

ρ′′ − 1

2
sinh2 ρ

(
v2 − ω2

2 sin
2Θ2 − ω2

3 sinΘ
2
3

)
= 0 (6.15)

Θ′′
1 + 2ρ′ coth ρΘ′

1 +
ω2
2 − ω2

3

2
sin 2Θ1 = 0 (6.16)

ρ′2 + sinh2 ρ (Θ′
1)

2 − v2 cosh2 ρ+ (ω2
2 sin

2Θ1 + ω2
3 cos

2Θ2) sinh
2 ρ = 0. (6.17)

We now follow [89] which finds that ω2 = ω3 ≡ ω is a necessary condition to make the
system analytically solvable. In this case, writing out the equations of motion, one finds
that ρ = ρ0 = const. so that the string stays at fixed distance from the horizon. The
solution is now easily found to be

ρ(σ) = arsh
v

n
√
2
, Θ1(σ) = nσ, ω =

√
v2 + n2. (6.18)

The conserved currents can now be found directly from Eqs. (6.8-6.10), without the need
for the trick from Eqs. (6.11-6.13). We focus now on the small J case, which again can
be studied in the short- and long-string regime:

1. For a short string (v ≪ 1) we have the flat-space Regge trajectory with a subleading
correction: E2−J2−2

√
S = 2S(3/2)+. . ., as a short string barely feels the curvature.

2. For a long string (v ≫ 1) we have the relation E − 2S − 2J = 23/2S1/3.

In this system there are no log-corrections, as the gauge operator is more complicated: it
is not a single-trace but a double-trace operator and its gauge transformation properties
are different [96]. Now we will study the stability of both systems and find how the
sadddle-point instability of the string decribes the RG flow.
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6.3 Lyapunov exponents and the deformations of the
gauge theory

6.3.1 Variational equations and their solutions

Closed spining string

The strategy is the same as before: we find the variational equations by definition and
then we compute finite-time/finite-distance Lyapunov exponents. It is not hard to see
that the variational equations of the worldsheet fields Φ1 to Φ4 are all equal, and likewise
those for Θ1 and Θ2. We thus consider the variational system for δΘ2, δΦ4 and δρ; we
find that turning on δΘ3 and δΦ5 does not lead to interesting consequences (it merely
renormalizes ω and ν). We take the ansatz

δρ = δρ(σ), δΘ2 = δΘ2(τ, σ), δΦ4 = δΦ4(τ, σ), (6.19)

which is the most general form of the variations which still allows the separation of
variables. It turns out that the only possible form of δΘ2 is δΘ2 = exp(−iωt)δθ2(σ) for
some Ω. The variational equations read

δρ′′ +
(
ω2 cosh 2ρ− v2 cosh 2ρ

)
δρ = 0 (6.20)

δθ′′2 + 2 coth ρρ′δθ′2 +
(
Ω2 − ω2

)
δθ2 = 0 (6.21)

δΦ̈4 − δΦ′′
4 + ν2δΦ4 = 0. (6.22)

We seek the solutions that start from given (small) variation ϵ in the IR and grow.
Absorbing ϵ into the amplitude of the variations for simplicity, the solutions read:2

δρ(σ) =
1− σ

π/2

cosh
(√

ω2 − v2σ
) − 2

π
√
ω2 − v2

sinh
(√

ω2 − v2σ
)

(6.23)

δθ2(σ) = cosh
(√

ω2 − v2σ
)

2F1

(
1

2
,
1

2
+

1√
ω2 − v2

,
3

2
, cosh2

(√
ω2 − v2σ

))
(6.24)

δΦ4(τ, σ) = exp−iωτ sin (νσ) . (6.25)

As we see, the variation of the orbital momentum (δΦ4) is harmonic in both τ and σ
and the corresponding Lyapunov exponent is zero. The radial and the spin Lyapunov
exponents read λρ =

√
ω2 − v2 and λΘ2 = 2 + 6

√
ω2 − v2, which is easily obtained by

expanding the solutions. However, the exponents by themselves mean little in this setup,
also because there is no horizon and thus no universal scale.

Closed spinning winding string

For the winding string we try the same ansatz (6.19) for the variations as for the non-
winding case. The equations of motion read

n2

√
2 +

v2

n2
δρ′ +

v

2

√
n2 + v2 sin (2nσ) δΘ̇2 = 0 (6.26)

2n cos (nσ) δΘ′
2 + sin (nσ)

(
δΘ′′

2 − δΘ̈2

)
= 0 (6.27)

δΦ̈4 − δΦ′′
4 + ν2δΦ4 = 0. (6.28)

2We will restore the ϵ dependence later when analyzing how the dispersion relations change due to
the growing instability.
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The second equation implies that the only way the variables can be separated is to have
δΘ2 = δΘ2(σ) and δρ = δρ0 = const. when the variation of the AdS angle is found to be

δΘ1(σ) =
e−iΩσ

sin(nσ)
. (6.29)

For the 5-sphere angle Φ4, the variational equation is the same as before, thus the solution
is also the same as in Eq. (6.25). The Lyapunov exponents of the spinning winding string
are obviously λρ = λΘ = λΦ = 0 – there is no exponentially growing mode.

6.3.2 Deformations of the spectrum of the gauge operators

The response of the energy spectrum is obtained by replacing (ρ,Θ1,Θ2,Φ4) 7→ (ρ +
δρ,Θ1 + δΘ1,Θ2 + δΘ2,Φ4 + δΦ4) in the expressions (6.8-6.10), plugging in the solutions
(6.23-6.25) for the non-winding case, or (6.29) for the winding case, linearizing in the
fluctuations and integrating. We will now show that the growing modes (δρ and δΘ2)
describe the deformation of the spinning solution at constant radius ρ = ρ(σ) toward the
new solution with lower energy (essentially, the tunnelling from false to true vacuum).

Short string regime. In the short string regime, the Regge-like behavior is stable and
the variations merely renormalize E and S. We can see this by a double expansion of
E + δE and S + δS in ϵ and 1/ν. The resulting expression yields the off-shell dispersion
relation:

E2 − J2 =
2

α′S + ϵe−iω
v
t

(
E2 − J2 − 2

α′S

)
= 0. (6.30)

In other words, the dispersion relation remains the same upon renormalizing

(E, S, J) →
(
E
(
1 + ϵe−iω

v
t
)
, S
(
1 + ϵe−iω

v
t
)
, J
(
1 + ϵe−iω

v
t
))
. (6.31)

Averaging over time, the renormalization actually averages to zero but even at any fixed
time instant, the dispersion relation does not change (since we multiply all the currents
by 1 + ϵ). The Regge bound state is thus a line of fixed points (the perturbation neither
grows nor decays). This is indeed known from gauge theory which is shown in [92] by
computing the full quadratic perturbation Lagrangian and diagonalizing the system of
fluctuation equations. Here we show it in a much simpler way, solving three decoupled
equations and without any formal stability analysis.

Long strings regime. In this regime the spin perturbation grows with the Lyapunov
exponents λρ and λΘ2 which behave as ∼

√
ω2 − v2 ≫ 1. We thus expect that an

instability will develop. Inserting the variations into the expressions for (E, S, J), one
finds

(E−S)
(
1 + ϵe−iω

v
t+2

√
ω2−v2

)
−J =

1

2πα′

[
S
(
1 + ϵe−iω

v
t+2

√
ω2−v2

)]1/3 (
1 + ϵe−iω

v
t+2

√
ω2−v2

)2/3
+. . .

(6.32)
meaning that, for large ω, the terms proportional to the exponential dominate even for ϵ
small, yielding

E − S =
1

2πα′S
1/3 + . . . , (6.33)

exactly the same dispersion relation as for the winding string. While the instability of
the long-string regime is again known from the literature [85, 90] where it was computed
in the SYM theory, it is not known what the correct vacuum is – our result, based on
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studying the leading growing modes, suggests it is in fact the multi-trace operator dual to
the winding string. Notice that J is irrelevant and only gives subdominant contrbutions in
the new vacuum, i.e. the stable point is the single-spinning string. It would be interesting
to study how far one can go in understanding this in gauge theory.

We can now repeat the stability analysis for the the winding string itself. We will be
brief as the algorithm is exactly the same. For the short-string regime, despite zero Lya-
punov exponents, the system has an instability related to the fact that the perturbation
δΘ1 as given in Eq. (6.29) becomes large for small σ although it is not exponentially large
but only linearly. The dispersion relation is dominated by this small-σ contribution and
reads

E − 2S − 2J =
α′

n
S2 + . . . , (6.34)

which at leading order reproduces the long-string regime but the correction is different
and depends on the winding. We do not know what this regime means in CFT. For the
long string, the story is the same as for the short string without winding (Eq. 6.31), i.e.
the original dispersion relation stays the same, multiplied by a renormalization factor.
This fixed point is thus stable. Therefore, a long non-winding double-spinning string will
evolve toward a long winding single-spinning string and stay there. This can also be
directly checked numerically.

6.4 Discussion and conclusions
What have we done? We have solved for linearized perturbations around the spinning
string solutions. Linearized fluctuation equations that we solve are just a special case (with
special boundary conditions) of the general quadratic fluctuation Lagrangian around the
classical solution, considered e.g. in [85, 94]. The general quadratic fluctuation Lagrangian
(i.e., general linearized fluctuation equations) are the framework for the leading quantum
correction to the classical soliton solution, exploited in [85] and many subsequent works
to obtain the leading finite ’t Hooft coupling corrections in the gauge theory spectrum.

However, we study the equations with different boundary conditions, looking solely at
the leading growing mode. This correctly predicts the instability of the state created by a
spin-2 single-trace operator, which evolves toward a state created by a spin-1 mutli-trace
operator (since the theory is conformal at zero temperature, we are allowed to make such
identifications of states with operators). Therefore, the Lyapunov stability analysis for
closed strings is really the RG analysis in gauge theory. This is different from the straight
open string, where it characterizes the thermalization timescale – but in fact, in the latter
case we can also say that the quark evolves from a pure (non-thermal) state toward a
mixed state corresponding to the thermal regime, and the Lyapunov exponent measures
how rapidly this happens.
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Chapter 7

Discussion and conclusions

The initial motivation for this work was a rather technical question: what is the meaning
of bulk chaos in particle and string motion in AdS spaces, and why it typically saturates
the same universal chaos bound as OTOC in field theory. We were led to the study of open
strings (rather than ring strings or particle geodesics) largely by reasons of calculational
simplicity and direct CFT interpretation: a string with one end on the boundary and the
other in the interior describes the motion of a heavy quark in quark-gluon plasma. The
holographic interpretation is less obvious for other string configurations, and for geodesics
it corresponds to a rather special, high-conformal-dimension limit.

As usual, the chase is almost better than the catch. We have found a number of
surprising properties of bulk dynamics – integrability of open string motion as opposed to
closed strings, horizon as an unstable saddle point and the "fake nest of chaos" with local
instability rate exactly equal to the MSS bound 2πT in the static case but different from
it in the rotating black string geometry. But the holographic interpretation is equally
interesting: the universal MSS scale is a red herring, the artifact of the large-N limit
in field theory, i.e. classical bulk dynamics, when temperature is the only scale, unless
some additional symmetry is explicitly broken. This happens in the D1-D5-p black string,
where the rotation breaks the symmetry between left- and right-moving modes. Just like
in [100], the rotating system deforms away from the MSS exponent, and this shows directly
in the correlation functions. We also note that away from the dilute gas approximation
there are additional higher-order in temperature corrections to the Lyapunov exponent
that will violate MSS bound.

An interesting connection, or maybe we should better call it a generalization, to the
particle motion in a simple asymptotically flat static black hole background is found. A
non-vanishing Lyapunov exponent can be assigned to null unstable geodesics and was
found to be related to the spectrum of quasi-normal modes [59]. In that scenario, a Lya-
punov exponent describes an instability scale of null unstable geodesics. Our calculation
of a thermal correlator for transverse fluctuations of an open string in the non-rotational
limit of black string background also reveals a similar relationship between the poles of a
correlator, namely a spectrum of quasi-normal modes, and the Lyapunov exponent satu-
rating the universal MSS bound. This gives us an important hint to answer our question
about the meaning of the bulk Lyapunov exponent: it is an instability scale associated to
the decay of fluctuations along the string due to thermal dissipation, and has nothing to
do with bulk chaos.

At the end of the day, the variation and its growth rate (i.e., the bulk Lyapunov expo-
nent) is nothing but the linearized fluctuation about the on-shell solution, the bread and
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butter of holographic calculations, that defines correlation functions like susceptibilities,
conductivities and similar. The difference between these calculations and the equation
for the bulk Lyapunov exponent is that the initial condition is different. The Lyapunov
variation has a prescribed small value at t = 0/σ = 0, and is given by the growing
branch for long times/worldsheet distances, unlike the usual correlation functions which
are determined by other boundary conditions:

1. In time, the boundary conditions in the IR determine the contour choice for the
correlation function.

2. In the radial coordinate, they are dictated by stability requirements, i.e. the finite-
ness of the stress-energy tensor.

The Lyapunov growing mode in time violates (i) – the contour choice – so it determines
some other correlation functions rather than the textbook ones (retarded, advanced, etc),
but we have seen in Chapter 5 that the MSS scale will show up in all two-point correlators,
e.g. in GR. The Lyapunov growing mode in the radial coordinate violates (ii) – the
stability requirement – so its meaning is precisely that of an RG flow from an unstable to
a stable fixed point, as we show in Chapter 6.

Finally, the issue of gauge choice might be worth commenting. Our choice to work in
the conformal gauge instead of static gauge most of the time is somewhat unusual. The
static gauge equates the time and radial coordinate with the worldsheet coordinates τ and
σ and thus immediately kills the unphysical (gauge-dependent) degrees of freedom. But
the conformal gauge has several advantages for us: (i) it simplifies many calculations (ii)
it allows us to look at the fluctuations along the holographic RG flow (the radial direction)
which, as we have seen, have an interesting interpretation in field theory (iii) it does not
fully fix the reparametrization invariance on the worldsheet, leaving the SL(2,R) group
of global coordinate transformations, but as argued in [42, 43, 49] this group provides a
nice way to understand the appearance of the universal MSS scale and its disappearance
when we determine the boundary conditions for the transverse fluctuations that fully fix
the gauge on the worldsheet. This approach was exploited in full depth in [49] to study
quantum chaos, i.e. OTOC on the worldsheet of the open string.
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Appendix A

Trivial dynamics of time-dependent
fluctuations

Here we show that the static open string/heavy quark does not exhibit any instability in
the time-dependent fluctuations of the transverse coordinates. In other words, the sole
nontrivial dynamics is that of radial fluctuations, studied in the main text. We work in the
static gauge but now allowing arbitrary dynamics along the x1-direction (for simplicity
we ignore the remaining transverse coordinates as they decouple at linear order):

t = τ, R = σ, X1 = X1(τ, σ), Xi = 0, i = 2, . . . , D − 1. (A.1)

The only nontrivial equation of motion for this ansatz is forX1, obtained from the Nambu-
Goto action (3.2) as

− 2σ4h′(σ)X ′
1 − 2σ3h(σ) (4X ′

1 + σX ′′
1 ) +

2Ẍ1

h(σ)
= 0. (A.2)

If we assume a straight string X1 = X1(τ), the above equation becomes completely
trivial, reducing to X ′′

1 = 0. A generalization with harmonic radial dependence X1 =
X̃1(τ) exp(ikσ) turns out to be inconsistent with Eq. (A.2). If we assume instead a static
but non-straight string X1 = X1(σ), that brings us back to the ansatz from the main
text (in different gauge). Leaving the fully general dependence on both t and r yields
solutions which can exhibit spatiotemporal chaos and possibly turbulence [101]; while
very interesting on its own, this situation is beyond the scope of this paper.
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Appendix B

Symmetries of AdS3 and BTZ spaces

We can describe AdS3 spacetime as a hyperboloid surface embedded in four-dimensional
flat spacetime with a metric signature (−,+,+,−) [102]

GABX
AXB ≡ −X2

0 +X2
1 +X2

2 −X2
3 = −L2, (B.1)

where L is the curvature radius of this surface. In global coordinates (t, ρ, ϕ) we can define
the following mapping

X0 = L cosh ρ cos t, X1 = L sinh ρ sinϕ, X2 = L sinh ρ cosϕ, X3 = L cosh ρ sin t, (B.2)

that gives us the induced metric describing AdS3 in global coordinates

ds2 ≡ gµνdx
µdxν = −L2

(
cosh2 ρdt2 + dρ2 + sinh2 ρdϕ2

)
. (B.3)

Besides the derivation of the metric coefficients, describing AdS space as an embedded
hyperboloid in flat space can be used to extract Killing vectors by projecting vector fields
from flat space onto the lower-dimensional surface. The projection operator

Pµ
A = gµνGAB

∂XB

∂xν
. (B.4)

takes the A-component of a vector field living in flat space and projects it to the µ-
component of the vector field living on the embedded surface. Since we are interested
in symmetries, we will consider the Killing vector fields on the previously described flat
spacetime. They form a Lie algebra so(2, 2) with four boost generators

χi = X0∂i +Xi∂0, χ̄i = X3∂i +Xi∂3, i = 1, 2, (B.5)

and two generators of rotation

ξ = X1∂2 −X2∂1, ξ̄ = X0∂3 −X3∂0. (B.6)

Altogether we have six symmetry generators as one should expect, since AdS spacetime is
maximally symmetric with the maximal number of symmetry generators (d(d + 1)/2) in
d spacetime dimensions. We now act on these vector fields (B.5-B.6) with the projection
operator (B.4):

V1 = Pµ
Aχ

A
1 ∂µ = − sin t sinϕ tanh ρ∂t + cos t sinϕ∂ρ + cos t cosϕ coth ρ∂ϕ (B.7)

V2 = Pµ
Aχ

A
2 ∂µ = − sin t cosϕ tanh ρ∂t + cos t cosϕ∂ρ − cos t sinϕ coth ρ∂ϕ (B.8)

V3 = Pµ
Aχ̄

A
1 ∂µ = cos t sinϕ tanh ρ∂t + sin t sinϕ∂ρ + sin t cosϕ coth ρ∂ϕ (B.9)

V4 = Pµ
Aχ̄

A
2 ∂µ = cos t cosϕ tanh ρ∂t + sin t cosϕ∂ρ − sin t sinϕ coth ρ∂ϕ (B.10)

V5 = Pµ
Aξ

A∂µ = −∂ϕ (B.11)
V6 = Pµ

Aξ̄
A∂µ = ∂t. (B.12)
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In order to show that the isometries of AdS3 form the so(2, 2) ∼= sl2 × sl2 algebra we define
two sets of vector fields:

ζ± =
1

2
(V1 + V4 ∓ i (V2 − V3)) , ζ0 =

1

2
(−V5 + V6) , (B.13)

ζ̄± =
1

2
(V1 − V4 ∓ i (V2 + V3)) , ζ̄0 =

1

2
(V5 + V6) . (B.14)

For readers’ convenience we write down the resulting components of the Killing vectors
ζ± and ζ0:1

ζ± =
1

2

(
e±i(t+ϕ) tanh ρ∂t ∓ e±i(t+ϕ)∂ρ + e±i(t+ϕ) coth ρ∂ϕ

)
, (B.15)

ζ0 =
1

2
(∂t + ∂ϕ) . (B.16)

One can easily check that under the action of the Lie bracket {, }L.B. these generators will
satisfy the sl2 Lie algebra

i{ζ+, ζ−}L.B = 2ζ0, i{ζ±, ζ0}L.B = ±ζ±. (B.17)

This is the symmetry algebra for AdS3 spaces. We are also interested in near-AdS3 spaces,
namely BTZ black hole spacetimes. Since (non-rotating) BTZ is locally AdS3 it will also
possess the same symmetry generators. We have learned from [42, 43] that under certain
circumstances, the maximal chaos exponent is a consequence of sl2 near-horizon symmetry
algebra, as was mentioned in the main text.

1The other set of Killing vectors, namely the bared ones, would be the same up to ϕ → −ϕ.
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Appendix C

Conserved charges in AdS3 gravity

Quasilocal stress-energy tensor can be defined at the boundary of AdS space [68]. In the
case of three-dimensional AdS it reads

8πTµν = Kµν −
(
K +

1

L

)
γµν , (C.1)

where γµν is the induced metric on the boundary, Kµν is its extrinsic curvature tensor
and K is its trace. We can use this stress tensor to calculate conserved charges. Given a
Killing vector ζµ that leaves the boundary metric unchanged, the corresponding conserved
charge is

Qζ =

∫
∂AdS3

d2x
√
γ (uµTµνζ

ν) , (C.2)

where γ = det γµν and uµ is a timelike unit normal to the boundary ∂AdS3. Using this
method we want to calculate conserved charges of rotating BTZ black hole spacetime
(5.7). We expand this solution at the boundary

ds2BTZ ≈ w2

L2
(−dt2 + dx2) +

L2dw2

w2
+ δgµνdx

µdxν , (C.3)

where we keep only the leading terms in δgµν :

δgtt =
w2

+ + w2
−

L2
, δgtx =

w+w−

L2
, δgww =

L2
(
w2

+ + w2
−
)

w4
. (C.4)

We now compute extrinsic curvature tensor and its trace

Ktt = −Kxx =
w2

L3
−
w2

+ + w2
−

2L3
+ 3

(
w2

+ + w2
−
)2

8L3w2
+O

(
1

w

)3

, (C.5)

K = − 2

L
+O

(
1

w

)3

. (C.6)

Therefore, the stress tensor (C.1) becomes

Ttt = Txx =
w2

+ + w2
−

16πL3
+O

(
1

w

)2

, Ttx =
w+w−

8πL3
+O

(
1

w

)2

. (C.7)
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Finally, the conserved charges, namely the energy and angular momentum are

E = L

∫ 2π

0

dx Ttt =
w2

+ + w2
−

8L2
+O

(
1

w

)2

, (C.8)

J = L

∫ 2π

0

dx Ttx =
w+w−

4L2
+O

(
1

w

)2

. (C.9)
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