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who taught me about the modeling and simulation techniques.

I would also like to thank my family and friends for being here for me and supporting

me throughout my studies.

in Belgrade, December 2009 Marina Radulaški
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Introduction

Within the traditional research approach, completely parallel with analytic and synthetic
approach to science, two main epistemological paradigms can be distinguished: experiment
and theory. Rapid computer development enabled the appearance of the third paradigm:
numerical simulations.

Motivations for numerical approach to the description of nature are various:
- the system considered is too complicated for full theoretical or numerical treatment

(too many variables to consider, too many structural elements),
- microscopic behavior of the system is not completely known (effective interactions of

structural elements),
- one is interested in analysis of a simplified model (in less dimensions),
- description of the original system is non-realistic in the used mathematical formalism

(change to the imaginary time scale).
This approach allows for numerical experiments with systems whose behavior is (relatively)
easy to implement in numerical algorithms, as well as for the investigation of theoretical
models of complex natural phenomena.

This thesis studies numerical simulations of a specific physical system: ultra-cold atom
gas in a rotating magneto-optical trap. At low enough temperatures, this system exhibits a
phase transition – Bose-Einstein condensation. The thesis presents how to investigate Bose-
Einstein condensate properties using numerical simulations. The focus is on the examination
of the structure and complexity of the algorithms used in these simulations.

1.1 Bose-Einstein Condensation

In the second half of 19th century, Maxwell1 and Boltzmann2 developed a theory which
describes how particles of matter occupy energy levels in the state of thermodynamic equi-
librium. In 1920, Bose3 wrote an article in which he showed that particles of light, photons,
do not obey Maxwell-Boltzmann statistics. At first, the validity of Bose’s work was not
recognized in Europe. This made him write in 1924 directly to Einstein4 who translated
the paper into German and got it published for Bose. Einstein not only recognized the

1James Clerk Maxwell (1831-1879), Scottish teoretical physicist and mathematician.
2Ludwig Eduard Boltzmann (1844-1906), Austrian physicist.
3Satyendra Nath Bose (1895-1974), Indian physicist.
4Albert Einstein (1879-1955), German theoretical physicist.
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2 1. INTRODUCTION

significance of Bose’s work, but also expanded his conclusion to mass particles with an in-
teger value of spin5 value. The theoretical work of these two physicists predicted a new
phase for bosons6 at low temperatures (close to the absolute zero). Today, that phase is
known as Bose-Einstein condensate (BEC), while the according phase transition is called
Bose-Einstein condensation.

In order to gain a better understanding of the underlying phenomenon, we will start from
the classification of elementary particles into bosons and fermions. Bosons (e.g. photons)
have integer spin values, while fermions (e.g. electrons) half-integer. More than one boson
can occupy the same quantum state characterized by the equal values of all quantum num-
bers, while fermions are forbidden to do so by the Pauli7 exclusion principle. This is nicely
illustrated through the examples: on the one hand, laser light consists of photons, all in the
same quantum state, while on the other hand, during the filling of atomic orbitals, only two
electrons can occupy the same orbital and must have opposite spin values to fulfill Pauli
principle.

Bose-Einstein condensation [1, 2, 3] represents the macroscopic occupation of the ground
(lowest) energy state of a boson system. At low temperatures this occurs naturally since ev-
ery physical system tends to minimize its energy. Condensate particles are in a macroscopic
coherent state. Therefore, BEC is the origin of the superfluidity and superconductivity phe-
nomena, where particles travel with no internal resistance (viscosity, electrical resistance).

Fermi8 thought that BEC can’t be achieved in practice. Theoretically, this phase tran-
sition happens when the interaction between the particles is small. Fermi believed that
interactions in nature are too high to allow the transition. Today we know Fermi was not
right and this discovery started a whole new field in physics (cold quantum gases).

The development of cooling techniques achieving the temperatures of the order of 100nK
was crucial for the experimental realization of BEC. After decades of work, in 1995, BEC
was finally observed in laboratory conditions [4, 5]. The Nobel prize in physics was awarded
for this discovery in 2001. BEC is most often realized by cooling neutral alkali atoms (iso-
topes with an even number of neutrons in the nucleus, which act as bosons), such as 87Rb,
23Na, 7Li, 133Cs, to temperatures close to the absolute zero. When the temperature of a
boson system gets below the critical temperature of Bose-Einstein condensation, particles
start to macroscopically occupy the lowest energy state.

This thesis considers the case of an ideal boson gas in a grand canonical ensemble [6],
which is the system of noninteracting bosons that allows for the energy and particle ex-
change with its surroundings.

The main physical variable for the BEC phenomenon is the condensation temperature Tc.
It represents the temperature below which the number of particles N0 occupying the ground
state is macroscopic, and above which a negligible number of atoms can be found in the
ground state. For a system of ideal bosons [1, 2, 3], the number of atoms in the ground

5Spin represents one of the main parameters of a particle quantum state description.
6Bosons are the particles whose spins have integer values.
7Wolfgang Ernst Pauli (1900-1958), Austrian theoretical physicist.
8Enrico Fermi (1901-1954), Italian physicist.
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state can be determined by the equation:

N0 = N −
∞

∑

m=1

[emβE0Z1(mβ) − 1],

where N represents the total number of particles in the system (number of atoms in a
magneto-optical trap), β = 1

kBT
is called the inverse temperature, kB is the Boltzmann

constant, and T is the thermodynamic temperature. In the upper equation E0 represents
the ground state energy for a single-particle potential, and Z1(β) is a single-particle partition
function, defined as:

Z1(β) =

∞
∑

k=0

e−βEk .

To calculate the condensation temperature, the energy spectrum of the theory is required.
In other words, one needs to calculate the values of the single-particle system energy levels
Ek. These are the eigenvalues of the system energy operator Ĥ (Hamiltonian). We used
the method described in Refs. [7, 8] to determine the spectrum of the theory. The system
considered evolves in a short (imaginary) time ǫ and the transition amplitudes from the

position r to the position r′ for the given time have the form A(r, r′; ǫ) = 〈r′|e−ǫĤ |r〉. The
eigenvalues of the evolution operator matrix A defined this way are given as e−ǫEk . There-
fore, if matrix A is known and there is a way to calculate its eigenvalues, it is also possible
to calculate energy levels Ek for the system of ideal bosons, as well as BEC condensation
temperature and other global thermodynamic properties of the condensate.

The matrix elements of the evolution operator can not be calculated in an exact way for
the general case and this represents the main problem in non-trivial potential system exam-
ination. On the contrary, the transition amplitudes A(r, r′; ǫ) can be numerically efficiently
calculated by the effective action method, developed in Refs. [7, 8, 9, 10, 11]. The error
introduced to the energy level values by this method scales with ǫp, where integer p repre-
sents the chosen effective action level (see 3.1 in Results). Thus, for short evolution times
(ǫ < 1), the error of the calculation of the transition amplitude becomes negligible for big
enough p. The elements of the matrix A can be calculated by choosing the appropriate
space discretization of the system [7, 8, 9, 10, 11]. The eigenvalues and eigenvectors can be
numerically found in an exact way by using one of the diagonalization9 algorithms. This
leads to the solution of the examined problem.

1.2 Rotating Bose-Einstein Condensate

Condensates in rapidly rotating magneto-optical traps take important part in the current
BEC experiments. Their significance lies in the contribution to the understanding of the for-
mation and evolution of quantum vortices, an intriguing fundamental physics phenomenon
[12, 13], which represents the reaction of the superfluid to the excitations of the rotational

9Diagonalization represents transformation of a matrix into its equivalent diagonal form; when the matrix
is transformed into this form its nonzero elements (found on the main diagonal) are equal to the eigenvalues
of the matrix.



4 1. INTRODUCTION

system - quantum rotations. In the experiment, this can be seen as a formation of smaller
independent whirlpools, which are characterized by the vorticity – a variable that takes
quantized values.

In the experiment of Dalibard and coworkers [14], atoms of 87Rb are trapped in harmonic
potential with a small anharmonic part in x − y plane. The whole system rotates around
z-axis with the angular speed Ω, which makes atoms feel the potential:

V (x, y, z) =
M

2
ω2
⊥(1 − r2)(x2 + y2) +

M

2
ω2

z +
kn

24
(x2 + y2)2,

where M represents the mass of a particle, kn the anharmonicity, ω⊥ = 407.15Hz the har-
monic frequency of the trap in x − y plane, ωz = 69.115Hz the frequency of the trap along
the z-axis, and r is the parameter of the system rotation, r = Ω

ω⊥

. In order to operate with
dimensionless values, natural units were introduced where M = ~ = 1. The accordingly
rescaled anharmonicity kn is expressed in the units of ~

M2ω3
⊥

and equals kn = 0.00195, while

the length is expressed in the units of
√

~

Mω⊥

.

The potential appears in the calculation of the transition amplitudes which is the first
step in the determination of the condensation temperature within the considered approach.

1.3 Purpose of the Thesis

In the determination of the BEC condensation temperature using the described approach,
the main numerical challenge is given by the calculation of the eigenvalues and eigenvectors
of the evolution operator. Numerically, this problem can be solved by the diagonalization of
the matrix of spatially discretized operator. Accurate description of such a physical system
demands a big number of eigenvalues and eigenvectors, which is possible only with a very
fine discretization. Surely, this requires matrices of big dimensions which makes diagonal-
ization very demanding in the means of processor time and memory.

There are many availible algorithms for diagonalization. The goal of this thesis is to in-
vestigate the accuracy, time and memory complexity of the Lanczos algorithm [15] com-
pared to the standard implementation of the full diagonalization algorithm, for solving the
eigenproblem of the evolution operator for the described rotating Bose-Einstein condensate,
considered as a gas of ideal 87Rb bosons.
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Numerical Simulations of
Bose-Einstein Condensates

Within the approach used for the numerical description of Bose-Einstein condensates, it
is necessary to introduce an appropriate space discretization. The discretization has to be
chosen in a controlled way, so that the error can be estimated and therefore avoided for
some set of parameters. In Ref. [7], the analytical error introduced by the discretization is
approximated, while in Ref. [8], it is shown how this error can be eliminated for the appro-
priately chosen set of discretization parameters. This paper uses the mentioned approach.
The spatial coordinates of the atoms are chosen to take values n∆, where the integer n

takes L = 2N + 1 values from the set [−N, N ]. Because numbers are represented in binary
system, many numerical algorithms run faster for matrices with even size. Therefore, the
set of values for n is usually redefined to n ∈ [−N, N), which makes the number of points
per spatial dimension even, L = 2N . With this kind of discretization, the matrix of the
evolution operator is represented as a D × D matrix, where D = Ld, and d is the num-
ber of dimensions. The most important problem in numerical simulations of Bose-Einstein
condensates is to determine the eigenvalues λ of this matrix:

Av = λv,

where v represents the according eigenvector.

Since the examined matrix A is real A ∈ R
D2

and symmetric AT = A, there exists an
orthogonal10 matrix P which can be transformed into a diagonal matrix by the similarity
operation P TAP . Diagonal values of P TAP are eigenvalues of the matrix A, while the
vectors that matrix P consists of (its columns) are the eigenvectors of the matrix A. The
number of eigenvalues and eigenvectors obtained in such a way is equal to the linear matrix
dimension D.

The following sections present the two diagonalization algorithms investigated in this thesis:
full diagonalization algorithm and Lanczos algorithm.

10Orthogonal matrix P is characterized by the property PPT = I.

5



6 2. NUMERICAL SIMULATIONS OF BOSE-EINSTEIN CONDENSATES

2.1 Full Diagonalization Algorithm

Full diagonalization algorithm determines all eigenvalues and eigenvectors exactly. Their
number is equal to the matrix linear dimension D. The algorithm consists of two steps
illustrated on Figure 2.1.

2.1: The illustration of the full diagonalization algorithm: matrix is firstly transformed to its tridiagonal
form and then to diagonal.

In the first step, the matrix is being transformed into a real symmetric tridiagonal11 matrix

A = QAQQT

where Q is a suitably chosen orthogonal matrix. To reach this form, the DR decomposition
is used. It was developed in 1961 by Francis12 and Kublanovskaya13.

In the second step, eigenvalues and eigenvectors of the tridiagonal matrix AQ are being
calculated. This matrix can be decomposed as AQ = SADST , where AD is a diagonal
matrix whose elements are at the same time its eigenvectors, while matrix S is made of
eigenvectors of the matrix AQ. If Z is set to be Z = QS then the relation A = ZADZT

holds. Therefore the values on the diagonal of AD represent the eigenvalues of the matrix A

and Z is the matrix of the eigenvectors of the matrix A. One can notice that the eigenvalues
for the matrices A, AQ and AD are equal.

The accuracy of this diagonalization algorithm depends solely on the computer numeri-
cal precision. The algorithm itself does not introduce an error in the calculation of the
matrix eigenvalues, but its numerical implementation limits the number of significant digits
obtained. Since the calculated eigenvalues in the problem examined are equal to e−ǫEk,
a small change in the value of the energy Ek causes exponential change of the eigenvalue,
which illustrates the importance of the accurate calculation within the investigated problem.
This thesis uses LAPACK [17] implementation of the full diagonalization algorithm.

2.2 Lanczos Diagonalization Algorithm

Lanczos algorithm [15] is an exact iterative algorithm for calculation of an a itrary number
(maximum D) of matrix eigenvectors and eigenvalues. It is especially suitable for large

11Tridiagonal matrix has all the elements equal to zero accept those on the main diagonal and the first
two parallel diagonals.

12John G. F. Francis (1934-), English computer scientist.
13Vera Nikolaevna Kublanovskaya (1920-), Russian mathematician.
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sparse14 matrices. It was developed by Lanczos15 in the middle of the 20th century. Like
the full diagonalization algorithm, it consists of two steps illustrated on Figure 2.1: trans-
formation into tridiagonal form T and diagonalization of the tridiagonal matrix.

Lanczos algorithm is based on the following. Let q1 be a random vector from which an
array of vectors qk is formed by multiplication with a matrix A as qk+1 = Aqk. It can be

shown that for such an array the value ‖qk+1‖

‖qk‖
will converge to the largest eigenvalue and

qk

‖qk‖
to the corresponding eigenvector of the matrix A. Vectors qk form a so-called Krylov16

subspace. Lanczos algorithm uses these vectors to determine the elements αi, βi of the
tridiagonal form T of the matrix A:





















α1 β1 0 . . . 0
β1 α2 β2 . . . 0
0 β2 α3 . . . 0
. . . .

. . . .

. . . βk−1

0 0 0 . . βk−1 αk





















The number of iterations depends on the number of desired eigenvalues and the conver-
gence of the algorithm. Typically, the number of iterations is twice the number of desired
eigenvalues neig. In order to improve the accuracy of the algorithm, it is necessary to or-
thogonalize the set of vectors qk after every iteration.

The iterations of the Lanczos algorithm can be presented as a pseudo-code:

q1 = qrand

‖qrand‖

for k = 1 to m − 1 do
qk+1 = Aqk

αk = qT
k qk

qk+1 = qk+1 − αkqk

if k > 1 then
qk+1 = qk+1 − βk−1qk−1

end if

reorthogonalize
βk = ‖qk+1‖

if βk = 0 then
qk+1 =

qnew

rand

‖qnew

rand
‖

reorthogonalize
end if

14Matrices with a large number of zero elements.
15Cornelius Lanczos (1893-1974), Hungarian mathematician and physicist.
16Alexei Nikolaevich Krylov (1863-1945), Russian navy engineer and applied mathematician.
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qk+1 = qk+1

βk

end for

Function reorthogonalize orthogonalizes the set of vectors qk using the standard Gram17-
Schmidt18 procedure [16].

The advantage of Lanczos algorithm compared to full diagonalization algorithm is that
the matrix does not change through the iterations, therefore it is not necessary to store it
in the memory. When a function for calculating matrix elements exists, it can be used as
an alternative to the storage of the matrix. Such a function is then called in every iteration
to calculate the elements needed. This allows for the diagonalization of very large matrices
which are too big to be stored in computer memory.

Of course, the storage of the matrix in the memory or the calculation of the matrix el-
ements through the iterations, influence the time and memory needed for the execution of
the program.

The accuracy of the Lanczos algorithm depends not only on numerical precision, but also
on the size of the evolution operator matrix, as well as on the desired number of eigenvalues.
The algorithm does not converge for all sets of parameters and performs best for problems
where a small number of eigenvalues is required, neig . 100. Despite these flaws, fast con-
vergence and the possibility to work with large matrices favor Lanczos algorithm in many
applications.

2.3 Implementation

All algorithms described have been implemented in C/C++ programing language.

For full diagonalization (FD) LAPACK [17] library was used. It is a library for the solving
of linear algebra problems, written in Fortran 77 programing language. The corresponding
code is given in the Appendix A.1. The time complexity of this algorithm is

τFD = O(D3),

where D represents the linear dimension of the matrix being diagonalized. Memory com-
plexity of the algorithm is

MFD = O(D2),

and the main factors of this dependence are due to the need to store the matrix which is
being diagonalized, as well as the calculated eigenvectors.

The program for Lanczos diagonalization has been developed in the C/C++ programing
language and is given in the Appendix A.2. The program has two main modes which have
been studied separately:

1. Evolution matrix is being calculated at the beginning of the algorithm and stored

17Jørgen Pedersen Gram (1850-1916), Dutch actuary and mathematician.
18Erhard Schmidt (1876-1959), German mathematician.



2.3. IMPLEMENTATION 9

completely in the memory during the algorithm execution (LDm).
2. Evolution matrix is not stored in memory, but its elements are being calculated during

the algorithm iterations when needed (LDnm).

For both implementations of Lanczos algorithm the time complexity is approximated to

τLD = O(n3
eig + neigD

2) ≈ O(neigD
2),

but in the second case (LDnm) the prefactor is significantly higher and depends on the
complexity of transition amplitude function, or in this case the level of effective action p. In
the Appendix A.3, an example of the effective action function is shown for one-dimensional
system and the level p = 6. The memory complexity for the implementation with the
storage of the matrix is approximated as

MLDm = O(D2).

Here, the memory is dominated by the matrix being diagonalized, while in the case without
the storage of the matrix the required memory is much smaller and the main part of the
memory is used for the storage of the vectors qk which makes the memory complexity much
lower

MLDnm = O(n2
eig + neigD) ≈ O(neigD).

Besides the mentioned theoretical approximations of the algorithms complexities, all these
dependencies are shown in the next chapter based on the results of the numerical simulations
where the runtime and the occupied memory were measured.
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Results

The results are obtained from the simulations run in Linux on computers with quad-core
64-bit Intel Xeon E5345 processors and dual-core 64-bit Intel Core 2 Duo T5500 with 32-bit
OS. All the equations have been rescaled in order to operate with dimensionless units.

The first results shown present the errors introduced by the used approach: error due
to the approximation of matrix elements, error and numerical error. Afterwards, the time
and memory complexities are analyzed and, at the end, the global and local properties of
the ideal 87Rb gas in a rotating magneto-optical trap in BEC phase are shown.

In order to check the accuracy of the effective action method used for the calculation of
the evolution matrix elements and determine the time interval of the propagation ǫ for
which the satisfactory level of precision is obtained, the values of harmonic oscillator en-
ergy levels calculated by this method are compared to the known analytic results. Figure
3.1 shows the error introduced into the ground state energy by the effective action method
which has a power-law dependence on propagation time and is proportional to ǫp, where p

is a chosen effective action level. For the level p = 21, on the left side of the plot, com-
puter numerical precision limits the precision of the result more than applied approximative
method, and the error saturates around 10−15.

Due to the introduced space discretization and the numerical error in the calculation of
matrix A, the eigenvalues and eigenvectors for only a certain set of the eigenstates can be
determined precisely. Figures 3.2 and 3.3 analyze the correctness of the energy level eval-
uation (eigenvalues), while Figures 3.4 and 3.5 show the correctness of the state vectors
(eigenvectors). These plots illustrate a similar accuracy of the full diagonalization and the
Lanczos algorithm.

In the numerical approach to the given problem, the matrix diagonalization represents the
most expensive step in the use of computer resources. Figure 3.6 shows that time complexity
of the full diagonalization algorithm scales as the third power of the matrix dimension.

Figures 3.7, 3.8, 3.9 show that the time complexity for all implementations of Lanczos
diagonalization algorithm (with and without the storage of the matrix which is being diago-
nalized, for different number of desired eigenvalues and eigenvectors, for different complexity
of evolution operator functions, which corresponds to different levels of effective action p)
scales as the square of matrix dimension D2, while the multiplicative constant of D2 rises

11
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3.1: The error of calculation of the ground energy state for one-dimensional harmonic oscillator (E0 = 1
2~ω)

using effective action method with levels p = 6 and p = 21 as a function of propagation time ǫ. Fitted power
law dependences ∆Ep=6

0 (ǫ)/~ω = 1.730(9) · 10−4 ǫ6 and ∆Ep=21
0 (ǫ)/~ω = 9.67(9) · 10−13 ǫ21 are also shown.

Simulation used matrix of dimension D = 2000 for the area |x| ≤ 10, ∆ = 0.01 and rotation parameter
r = 0.
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3.2: The first 70 energies of one-dimensional harmonic oscillator calculated with full diagonalization
algorithm (FD) and analytical solution (HO) given with En = (n + 1

2 )~ω. Simulation used matrix of
dimension D = 2000 for the area |x| ≤ 10, ∆ = 0.01, rotation parameter r = 0 and the level of effective
action p = 21.
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3.3: The first 70 energies of one-dimensional harmonic oscillator calculated with Lanczos algorithm (LD)
and analytical solution (HO) given with En = (n + 1

2 )~ω. Simulation used matrix of dimension D = 2000
for the area |x| ≤ 10, ∆ = 0.01, rotation parameter r = 0 and the level of effective action p = 21.

with the number of desired eigenvalues and complexity of the calculation of the matrix ele-
ments of the evolution operator.

Figures 3.10 and 3.11 show that, for both implementations of Lanczos algorithm, the time
complexity is linear in the number of the desired eigenvalues. Figures 3.7–3.11 verify that
the time complexity of Lanczos algorithm is O(neigD

2), as it was stated in the previous
chapter.

Numerical diagonalization is also demanding memory-wise. Figure 3.12 shows that for full
diagonalization the memory complexity scales as a square of the matrix linear dimension D.
The same memory complexity is obtained on Figure 3.13 for Lanczos algorithm with the
storage of the matrix, while a significant improvement in memory usage is achieved with
Lanczos algorithm without the storage of the matrix, which memory usage is linear in the
matrix dimension D, as it is shown on Figure 3.14.

The developed algorithm of Lanczos diagonalization of the evolution operator matrix A

has been applied to investigate the ideal boson gas of 87Rb trapped in a rotating magneto-
optical trap. Figure 3.15 shows the occupancy of the ground state for temperatures less
than or equal to condensation temperature Tc, for which the ground state occupancy be-
comes practically zero. This dependence is well known in the literature [1, 2, 3] and can be
used to determine Tc. Figure 3.16 shows how the condensation temperature rises with the
number of bosons in the system. Theoretically [1, 2, 3], in the case of harmonic oscillator
(kn = 0), this dependence has the form Tc ∼ N1/2 for a condensate in a harmonic trap.
This dependence is similar for the studied system with small anharmonicity (kn = 0.00195),
which is shown through an appropriate power-law fit. Figure 3.17 shows particle density
for the position in the x− y plane at temperature below Tc, close to the absolute zero. The
obtained sharp peak has the characteristic shape which is seen in BEC experiments [1, 2, 3]
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and represents a confirmation for the system phase transition.
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where Hn represents the Hermite polynomial. Simulation used matrix of dimension D = 2000 for the area
|x| ≤ 10, ∆ = 0.01, rotation parameter r = 0 and the level of effective action p = 21.
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· D2.006(5) and τLDm
neig=10(D) = 5.1(2) · 10−6s · D2.006(2). One-dimensional BEC potential with anharmonicity

kn = 1 has been diagonalized for the area |x| ≤ 10, ∆ = 20
D

, rotation parameter r = 0, propagation time
ǫ = 0.1 and the level of effective action p = 21.
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3.8: The runtime of Lanczos diagonalization (LDnm) algorithm without the storage of the matrix while
calculating 1 and 10 eigenvalues as a function of the matrix size, fitted by power-laws τLDnm

neig=1(D) = 1.4(1) ·

10−4s · D1.93(1) and τLDnm
neig=10(D) = 1.34(3) · 10−4s · D2.004(3). Other system parameters are same as at the

previous figure.
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3.9: The runtime of Lanczos diagonalization (LDnm) algorithm without the storage of the matrix, while
calculating one eigenvalue for functions with different effective action level p, as a function of the matrix
size fitted by power-laws τLDnm

p=2 (D) = 2.21(6) ·10−6s · D2.000(3), τLDnm
p=4 (D) = 2.68(4) ·10−6s · D2.000(2) and

τLDnm
p=6 (D) = 3.88(3) · 10−6s · D1.993(1). One-dimensional BEC potential with anharmonicity kn = 1 has

been diagonalized for the area |x| ≤ 10, ∆ = 20
D

, rotation parameter r = 0 and propagation time ǫ = 0.1.
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3.10: The runtime of Lanczos diagonalization (LDm) algorithm with the storage of the matrix as a
function of the desired number of eigenvalues fitted linearly τLDm(neig) = 0.103(4)s · neig + 15.7(2)s. One-
dimensional BEC potential has been diagonalized with the matrix size D = 2000 for the area |x| ≤ 10,
∆ = 0.01, anharmonicity kn = 10−3, rotation parameter r = 0, propagation time ǫ = 0.1 and the level of
effective action p = 21.
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3.11: The runtime of Lanczos diagonalization (LDnm) algorithm without the storage of the matrix as
a function of the desired number of eigenvalues fitted linearly τLDnm(neig) = 13.5(4)s · neig + 300(20)s.
One-dimensional BEC potential has been diagonalized with the matrix size D = 2000 for the area |x| ≤ 10,
∆ = 0.01, anharmonicity kn = 10−3, rotation parameter r = 0, propagation time ǫ = 0.1 and the level of
effective action p = 21.
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3.12: The memory usage of a full diagonalization (FD) program for solving the eigenproblem of the
evolution matrix A, for one-dimensional system, as a function of the linear dimension D of the matrix being
diagonalized, fitted to a power-law MFD(D) = 9.6(3) · 10−5MB · D1.995(3). One-dimensional BEC potential
has been diagonalized for the area |x| ≤ 10, ∆ = 20

D
, anharmonicity kn = 0, rotation parameter r = 0,

propagation time ǫ = 0.1 and the level of effective action p = 21.
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3.13: The memory usage of a Lanczos algorithm with the storage of the matrix (LDm) program for solving
the eigenproblem of the evolution matrix A, for one-dimensional system, as a function of the linear dimension
D of the matrix being diagonalized, fitted to a power-law MLDm(D) = 1.05(6) · 10−5MB · D1.971(6). One-
dimensional BEC potential has been diagonalized with ∆ = 0.1 for the area |x| ≤ D∆/2, anharmonicity
kn = 0, rotation parameter r = 0, propagation time ǫ = 0.1 and the level of effective action p = 21.
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3.14: The memory usage of a Lanczos algorithm without the storage of the matrix (LDnm) program
for solving the eigenproblem of the evolution matrix A, for one-dimensional system, as a function of the
linear dimension D of the matrix being diagonalized, fitted linearly MLDnm(D) = 7.83(3) · 10−4MB
· D + 25.4(9)MB. Other system parameters are same as at the previous figure.
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3.15: The fraction of N = 10000 particles which occupy the ground state as a function of the temperature,
lower than condensation temperature, Tc = 44.567 nK. Two-dimensional BEC potential has been diago-
nalized. Simulation used matrix of dimension D = 10000 for the area |x|, |y| ≤ 20, ∆ = 0.4, propagation
time ǫ = 0.1, anharmonicity kn = 0.00195, rotation parameter r = 0.95833 and the level of effective action
p = 21.
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3.16: The condensation temperature Tc dependence on the number of bosons N in the system fitted
to a power-law Tc(N) = 0.58(6)nK· N0.48(2). Two-dimensional BEC potential has been diagonalized.
Simulation used matrix of dimension D = 10000 for the area |x|, |y| ≤ 20, ∆ = 0.4, propagation time
ǫ = 0.1, anharmonicity kn = 0.00195, rotation parameter r = 0.95833 and the level of effective action
p = 21.
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3.17: The particle density n dependence on the position in x−y plane for a gas of N = 10000 ideal bosons
in rotating anharmonic potential at the temperature T = 0.01Tc, Tc = 44.567nK. Two-dimensional BEC
potential has been diagonalized. Simulation used matrix of dimension D = 10000 for the area |x|, |y| ≤ 20,
∆ = 0.4, propagation time ǫ = 0.1, anharmonicity kn = 0.00195, rotation parameter r = 0.95833 and the
level of effective action p = 21.
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Discussion

Numerical results presented in the previous chapter illustrate and verify the theoretically
derived complexities of studied algorithms, as well as the previously derived errors of the
applied method.

Figure 3.1 shows that effective action method for ǫ < 1 and different values of p parameter
gives high precision, proportional to ǫp. Most of the simulations used in this thesis have
the values p = 21 and ǫ = 0.1. The plot shows that for these values the method introduces
smaller error than the usual, which originates from the computer representation of real (dou-
ble) numbers, therefore for p = 21 the error saturates around ∆E0 ∼ 10−15. This implies
that the chosen method for the evolution matrix elements calculation does not introduce a
significant error and matrix elements can be taken as exact.

Figure 3.2 shows the calculated values of energy levels with full diagonalization algorithm.
Since the discretization and double precision are introduced in the calculation, errors in en-
ergy values are obtained. Figure 3.3 shows energy levels calculated with Lanczos algorithm.
Comparing the error of these values with the errors on the previous plot, one finds the two
very similar. Thus, for the purpose of this thesis, the correctness of the Lanczos algorithm is
considered to be equal to that of the full diagonalization algorithm. In practice, this should
always be checked. A good criterion is the comparison of numerically obtained density of
states with its semiclassical approximation [8].

Figures 3.4 and 3.5 show that state functions calculations (as evolution matrix eigenvec-
tors) both with full diagonalization and Lanczos, algorithms give results which excellently
match the analytic results, when they are known19. This implies that Lanczos algorithm
successfully calculates particle eigenstates as well.

As it is shown on Figure 3.6, full diagonalization algorithm time complexity is τFD = O(D3),
while Lanczos diagonalization has much more favorable complexity τLD = O(neigD

2) (Fig-
ures 3.7–3.11). In case when all the eigenvalues are required, both algorithms are of the
same time complexity class. For applications in physics, it is usually enough to calculate
only a few of the first eigenvalues and therefore Lanczos algorithm can significantly speed
up the problem solving. If the number of desired eigenvalues is constant (e.g. neig = 10) the
relation τLD

∼ (τFD)2/3 holds, and the time complexities for different number of dimensions
are given in Table 4.1.

19Notice that state functions are calculated for the levels with precisely calculated energies.
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time complexity τ d = 1 d = 2 d = 3

full diagonalization algorithm (FD) O(L3) O(L6) O(L9)
Lanczos algorithm (LD) O(L2) O(L4) O(L6)

Table 4.1: The time complexity for full diagonalization and Lanczos algorithm with constant number of
desired eigenvalues in one, two and three dimensions in which coordinates take discrete values {−L

2 ∆,−(L
2 −

1)∆, ..., (L
2 − 2)∆, (L

2 − 1)∆} and ∆ represents discretized space step.

Memory complexity for full diagonalizaion algorithm is MFD = O(D2), the same as for
Lanczos algorithm with the storage of the matrix being diagonalized MLDm = O(D2),
while Lanczos algorithm without the storage of the matrix has more favorable memory
complexity, MLDnm = O(neigD). In the case all the eigenvalues are required, this com-
plexity becomes the previously mentioned O(D2). Lanczos algorithm without the storage
of the matrix is, even though of same time complexity class, in principle slower than its
analogue with the storage of the matrix, because the matrix elements have to be calculated
in each iteration separately. Still, in the case when the memory is a limiting factor, Lanc-
zos algorithm without the storage of the matrix can come out as the only solution to the
problem. If the number of desired eigenvalues is kept constant (e.g. neig = 10) the rela-
tion MLDnm

∼ (MFD)1/2
∼ (MLDm)1/2 holds, which is proven in Figures 3.12–3.14. The

memory complexities for different number of dimensions are given in Table 4.2.

memory complexity M d = 1 d = 2 d = 3

full diagonalization algorithm (FD) O(L2) O(L4) O(L6)
Lanczos algorithm with the storage of the matrix (LDm) O(L2) O(L4) O(L6)

Lanczos algorithm without the storage of the matrix (LDnm) O(L) O(L2) O(L3)

Table 4.2: The memory complexity for full diagonalization and Lanczos algorithms with constant num-
ber of desired eigenvalues in one, two and three dimensions in which coordinates take discrete values
{−L

2 ∆,−(L
2 − 1)∆, ..., (L

2 − 2)∆, (L
2 − 1)∆} and ∆ represents discretized space step.

The studies of algorithm time and memory complexity and their practical implementation
is the key element for the application of numerical simulations. Based on the results pre-
sented in this chapter, it is possible to choose the optimal algorithm for BEC investigation
(as well as for other phenomena which require exact diagonalization) depending on the sys-
tem parameters and available computer resources. Besides the principal power-laws shown,
the crucial elements in optimization are the actual values of constant prefactors, which can
happen to favor a certain algorithm for a given set of parameters, despite the opposite ex-
pectations of the general analysis (e.g. O(L2) versus O(L3)).

The success of the application of the developed Lanczos diagonalization algorithm onto
the studied system of a gas of ideal 87Rb bosons is shown on Figures 3.14–3.16, where the
obtained dependencies agree with those known from the literature: ground state occupancy
during the system cooling below the condensation temperature, rise of the condensation
temperature with the number of bosons in the system, particle density sharp peak in the
center of the system for temperature below the condensation temperature.
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Conclusions

This thesis studies numerical simulations of Bose-Einstein condensates in rotating magneto-
optical trap, as well as their crucial numerical step in calculating the condensation tem-
perature in the diagonalization of space-discretized evolution operator. Accuracy, time and
memory complexity are compared for full diagonalization algorithm and Lanczos algorithm
in two versions, with (LDm) and without (LDnm) the storage of the matrix being diago-
nalized. Full diagonalization program used LAPACK library functions (the code is given in
Appendix A.1), while for Lanczos diagonalization a C/C++ program has been developed
with the two described options (the code is given in Appendix A.2). The code of effective
action function for the level p = 6 is presented in Apendix A.3. The developed Lanczos
algorithm program has been applied to the gas of ideal bosons of 87Rb and the obtained
dependencies correspond to the theoretical predictions and known experimental results.

For the investigated problem (diagonalization of harmonic potential with quartic anhar-
monicity), the correctness of Lanczos diagonalization is found to be similar to full diagonal-
ization and, in both cases, dependent on discretization parameters and computer numerical
precision. Lanczos algorithm is the most favorable in the applications requiring a small
number of eigenvalues. Then this algorithm has a lower class of time complexity compared
to full diagonalization algorithm which is illustrated with the relation

τLD
∼ (τFD)2/3.

In case when memory is the limiting factor, Lanczos algorithm without the storage of the
matrix being diagonalized has a great advantage since its memory complexity is lower than
other algorithms

MLDnm
∼ (MFD)1/2.

Analytical and numerical results presented in this thesis can be directly used for the opti-
mization of the algorithm choice for solving of different problems that require exact diagonal-
ization of large matrices. In addition to this, there are many interesting questions for further
investigations, such as the analysis of the dependence of the energy level calculation error on
discretization parameter values and the convergence of the problem, especially for Lanczos
diagonalization algorithm. After simple simulation code changes, Lanczos algorithm can
easily be applied to other problems requiring efficient diagonalization.
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Appendix A

Program Code

A.1 C/C++ Implementation of Full Diagonalization

Algorithm

Implementation of full diagonalization algorithm for solving the eigenproblem of the evolu-
tion operator matrix A in d = 1 uses LAPACK [17] package functions. To run the program,
the following values are required: the discretization parameters L and L∆, the evolution
time ǫ, BEC potential parameters A = 1 − r2 and anharmonicity kn. Effective action func-
tion S eff() has been left out and should be additionally defined within the program. An
example of such a function is given in Appendix A.3.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <float.h>

#include <time.h>

int main(int argc, char **argv)

{

double S_eff(double, double, double, double, double);

int *ivector(long, long);

double *dvector(long, long);

void free_ivector(int *, long, long);

void free_dvector(double *, long, long);

int *IWORK, INFO;

long NF, LWORK, LIWORK, L, i, k, maxenlev;

double delta, xi, xk, *M, *d, *v, A, kn, eps, Pi, temp, r, g;

FILE *psi;

char JOBZ, UPLO;

time_t t_exec;

if(argc != 7)

{

27



28 APPENDIX A. PROGRAM CODE

fprintf(stderr, "Usage: %s psi L L*delta eps A kn\n\n", argv[0]);

exit(EXIT_FAILURE);

}

t_exec = time(NULL);

psi = fopen(argv[1], "w+");

Pi = 4 * atan(1);

L = atol(argv[2]);

delta = atof(argv[3]) / L;

eps = atof(argv[4]);

A = atof(argv[5]);

kn = atof(argv[6]);

M = dvector(0, 2 * L * 2 * L - 1);

JOBZ = ’V’;

UPLO = ’U’;

NF = 2 * L;

LIWORK = 3 + 5 * NF;

LWORK = 1 + 6 * NF + 2 * NF * NF;

d = dvector(0, NF - 1);

v = dvector(0, LWORK - 1);

IWORK = ivector(0, LIWORK - 1);

INFO = 0;

for(i = 0; i < 2 * L; i++)

{

xi = (i - L) * delta;

for(k = i; k < 2 * L; k++)

{

xk = (k - L) * delta;

M[i + 2 * L * k] = exp(-S_eff(0.5 * (xi + xk), xk - xi, A, kn, eps));

}

}

t_exec -= time(NULL);

t_exec = time(NULL);

dsyevd_(&JOBZ, &UPLO, &NF, M, &NF, d, v, &LWORK, IWORK, &LIWORK, &INFO);

t_exec -= time(NULL);

free_ivector(IWORK, 0, LIWORK - 1);

free_dvector(v, 0, LWORK - 1);

maxenlev = 0;

for(i = 0; i < NF / 2; i++)

{

temp = d[i];

temp = temp < 0 ? DBL_MAX : (maxenlev++, - log(temp * delta

/ sqrt(2 * Pi * eps)) / eps);

d[i] = d[NF - 1 - i];

d[i] = d[i] < 0 ? DBL_MAX : (maxenlev++, - log(d[i] * delta

/ sqrt(2 * Pi * eps)) / eps);
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d[NF - 1 - i] = temp;

}

for(i = 0; i < maxenlev; i++)

{

fprintf(psi, "%d\n1.16le\n", i, d[i]);

}

fprintf(psi, "\n");

fprintf(psi, "Eigenvectors:\n");

for(k = 0; k < 2 * L; k++)

{

fprintf(psi, "%d\t", k);

for(i = 0; i < 10/*maxenlev; i++)

{

fprintf(psi, "%1.16le\t", M[k + 2 * L * (2 * L - 1 - i)]);

}

fprintf(psi, "\n");

}

fclose(psi);

free_dvector(M, 0, 2 * L * 2 * L - 1);

exit(EXIT_SUCCESS);

}

A.2 C/C++ Implementation of Lanczos Diagonaliza-

tion Algorithm

Implementation of Lanczos diagonalization algorithm for solving the eigenproblem of the
evolution operator matrix A in d = 1 offers the options of the storage of the matrix in the
memory and calculating the matrix elements in each iteration [18]. To run the program
the following values are required: the maximal number of iterations (typically double the
number of desired eigenvalues), the discretization parameters D and ∆, the number of
desired eigenvalues and eigenvectors, evolution time ǫ, BEC potential parameters A = 1−r2

and anharmonicity kn, as well as the option with/without matrix storage. Effective action
function S eff() has been left out and should be additionally defined within the program.
An example of such a function is given in Appendix A.3.

#include <stdlib.h>

#include <math.h>

#include <stdio.h>

#include <gsl/gsl_math.h>

#include <gsl/gsl_heapsort.h>
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int Dimension;

//size of Hamiltonian matrix

double** QVector;

//Lanczos vectors, size = maxNbIter * Dimension

int QVsize;

//Lanczos vector size

int Index;

//iteration index

int nbIter, maxNbIter;

//number of iterations and maximal number of Lanczos iterations

double *TDdiagonal, *TDupperdiag;

//Tridiagonal matrix, size = maxNbIteration

double *tempTDdiagonal, *tempTDupperdiag;

//Temporary tridiagonal matrix, size = maxNbIteration

int TDsize;

//Tridiagonal matrix size

int nbEigenvalues;

//number of desired egenvalues

double prevLowest;

//previous lowest eigenvalue

double dx, A, kn, eps;

//phi4 parameters

double **tempEigenvector;

//temporary matrix for Eigenvector evaluation, size = <= maxNbIter * maxNbIter

double **Eigenvectors;

//Eigenvectors, size = Dimension * nbEigenvalues

bool useMatrix;

//true = store Hamiltonian values, false = calculate on the fly Hamiltonian values

double **HamiltonianMatrix;

//Hamiltonian matrix, size = Dimension * Dimension

//function evaluating Hamiltonian value

double HamiltonianValue(int i, int j)

{

if (useMatrix == true) return HamiltonianMatrix[i][j];

double konst = 1./sqrt(2*eps*4*atan(1.));

double S = S_eff((i+j-Dimension)*dx/2,(j-i)*dx,A,kn,eps);

return -konst*exp(-S);

}

//Vector norm

double VectorNorm(double* Vector, int size)

{

double sum = 0;

int i;

for (i = 0; i < size; i++)

{

sum += Vector[i] * Vector[i];

}
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return sqrt(sum);

}

//normalizes vector

void NormalizeVector(double* Vector, int size)

{

int i;

double norm = VectorNorm(Vector, size);

if (norm == 0) return;

for (i=0; i<size; i++)

{

Vector[i] /= norm;

}

return;

}

//realocates for another Lanczos vector

void AddQVector(int nbAdditional)

{

QVsize += nbAdditional;

int i;

for(i = nbAdditional; i > 0; i--)

QVector[QVsize - i] = (double*) calloc(Dimension, sizeof(double));*/

return;

}

//Lanczos initialization

void InitializeLanczos()

{

if (useMatrix)

{

double konst = 1./sqrt(2*eps*4*atan(1.));

double S;

HamiltonianMatrix = new double* [Dimension];

for (int i = 0; i < Dimension; i++)

{

HamiltonianMatrix[i] = new double [Dimension];

for (int j = 0; j < Dimension; j++)

{

S = phi4d1p21((i+j-Dimension)*dx/2,(j-i)*dx,A,kn,eps);

HamiltonianMatrix[i][j] = -konst*exp(-S);

}

}

}

QVector = (double**) malloc((maxNbIter + 2) * sizeof(double *));

int i;

QVsize = 3;
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for(i = 0; i < maxNbIter + 2; i++)

QVector[i] = (double*) malloc(Dimension * sizeof(double));

for (i = 0; i < Dimension; i++)

{

QVector[0][i] = rand()-0.5;

}

NormalizeVector(QVector[0], Dimension);

TDdiagonal = (double*) calloc(maxNbIter, sizeof(double));

TDupperdiag = (double*) calloc(maxNbIter - 1, sizeof(double));

tempTDdiagonal = (double*) calloc(maxNbIter, sizeof(double));

tempTDupperdiag = (double*) calloc(maxNbIter - 1, sizeof(double));

Index = 0;

TDsize = 0;

return;

}

//Printing vector

void printVector(double* Vector, int size)

{

int i;

for (i = 0; i < size; i++)

{

printf("%1.14le\n", Vector[i]);

}

printf("\n");

return;

}

//retun maximal integer out of two given ones

int max(int a, int b)

{

if (a > b) return a;

return b;

}

//resizes Tridiagonal matrix;

void TDresize(int size)

{

TDsize = size;

return;

}
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//p = A*q *time consuming!

void HamiltonianTimesVector(double* q, double* p, int size)

{

int i,j;

for (i=0; i<size; i++)

{

p[i] = 0;

for (j=0; j<size; j++)

{

p[i] += HamiltonianValue(i,j) * q[j];

}

}

return;

}

//Scalar product (p, q)

double ScalarProduct(double* p, double*q, int size)

{

int i;

double sum = 0;

for (i=0; i<size; i++)

{

sum += p[i] * q[i];

}

return sum;

}

//q += a*p

void AddLinearCombination(double* q, double a, double* p, int size)

{

int i;

for (i=0; i<size; i++)

{

q[i] += a * p[i];

}

}

//Lanczos iteration

void Lanczos(int nbIter)

{

int size;

if (Index == 0)

{

size = TDsize + max(nbIter, 2);

TDresize(size);

HamiltonianTimesVector(QVector[0], QVector[1], Dimension);
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TDdiagonal[Index] = ScalarProduct(QVector[0], QVector[1], Dimension);

AddLinearCombination(QVector[1], -TDdiagonal[Index], QVector[0], Dimension);

NormalizeVector(QVector[1], Dimension);

HamiltonianTimesVector(QVector[1], QVector[2], Dimension);

TDupperdiag[Index] = ScalarProduct(QVector[0], QVector[2], Dimension);

TDdiagonal[Index + 1] = ScalarProduct(QVector[1], QVector[2], Dimension);

}

else

{

size = TDsize + nbIter;

TDresize(size);

}

int i,j;

for (i = Index + 2; i < size; i++)

{

AddLinearCombination(QVector[i], -TDdiagonal[Index + 1], QVector[i - 1], Dimension);

AddLinearCombination(QVector[i], -TDupperdiag[Index], QVector[i - 2], Dimension);

if (i > 2)

{

double pom;

for(j = 0; j < i - 2; j++)

{

pom = -ScalarProduct(QVector[i], QVector[j], Dimension);

AddLinearCombination(QVector[i], pom, QVector[j], Dimension);

}

}

double norm = VectorNorm(QVector[i], Dimension);

int errNb = 0;

while (norm < 1e-10)

{

printf("i %d norm %1.18le \n", i, norm);

errNb++;

if (errNb > 20)

{

printf("Lanczos algorithm cannot converge\n");

exit(0);

}

double tmp = 0;

for (j = 0; j < Dimension; j++)

{

QVector[i][j] = rand()-0.5;//gsl_rng_uniform (random) - 0.5;

}

NormalizeVector(QVector[i], Dimension);
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double* tmpVector;

tmpVector = (double*) malloc(Dimension * sizeof(double));

HamiltonianTimesVector(tmpVector, QVector[i], Dimension);

QVector[i] = tmpVector;

double pom;

for(j = 0; j < i; j++)

{

pom = -ScalarProduct(QVector[i], QVector[j], Dimension);

AddLinearCombination(QVector[i], pom, QVector[j], Dimension);

}

norm = VectorNorm(QVector[i], Dimension);

}

NormalizeVector(QVector[i], Dimension);

Index++;

AddQVector(1);

HamiltonianTimesVector(QVector[i], QVector[i + 1], Dimension);

TDupperdiag[Index] = ScalarProduct(QVector[i - 1], QVector[i + 1], Dimension);

TDdiagonal[Index + 1] = ScalarProduct(QVector[i], QVector[i + 1], Dimension);

}

}

//compare function for heap sort

int compare_doubles (const void * a, const void * b)

{

double aa = *((double*)a);

double bb = *((double*)b);

if (aa > bb)

return 1;

else if (aa < bb)

return -1;

else

return 0;

}

//sorts eigenvalues in diagonal matrix from the lowest to the highest

void sortDiagonal()

{

gsl_heapsort (tempTDdiagonal, TDsize, sizeof(double), compare_doubles);

return;

}

//Diagonalizes Tridiagonal matrix
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void Diagonalize(bool vectors)

{

int counter;

for (counter = 0; counter < TDsize; counter++)

{

tempTDdiagonal[counter] = TDdiagonal[counter];

if (counter != Dimension - 1)

tempTDupperdiag[counter] = TDupperdiag[counter];

}

int ReducedDimension = TDsize - 1;

double Cos;

double Sin;

double Theta;

double T, R, P, F, B;

int maxIter = 1000;

for (int i = 0; i < ReducedDimension; i++)

{

int iter = 0;

while (iter < maxIter)

{

// find block matrices so that QL algorithm will be applied

// on submatrix from i to j

int j = i;

bool Flag = false;

while ((j < ReducedDimension) && (Flag == false))

{

double d2 = fabs(tempTDdiagonal[j]) + fabs(tempTDdiagonal[j + 1]);

if ((d2 + fabs(tempTDupperdiag[j])) == d2)

Flag = true;

else

j++;

}

// if i != j, i-th eigenvalue has not been obtained yet,

// apply diagonalization on submatrix

if (j != i)

{

iter++;

// evaluate shift

Theta = (tempTDdiagonal[i + 1] - tempTDdiagonal[i])

/ (2.0 * tempTDupperdiag[i]);

R = sqrt (1.0 + Theta * Theta);

T = tempTDdiagonal[j] - tempTDdiagonal[i];

if (Theta >= 0)

T += tempTDupperdiag[i] / (Theta + R);

else

T += tempTDupperdiag[i] / (Theta - R);

Cos = 1.0;



A.2. C/C++ IMPLEMENTATION OF LANCZOS DIAGONALIZATION ALGORITHM37

Sin = 1.0;

P = 0.0;

// apply shift and conjugation with Jacobi and Givens rotations

for (int k = j - 1; k >= i; k--)

{

F = Sin * tempTDupperdiag[k];

B = Cos * tempTDupperdiag[k];

R = sqrt (F * F + T * T);

tempTDupperdiag[k + 1] = R;

if (R == 0.0)

{

tempTDdiagonal[k + 1] -= P;

tempTDupperdiag[j] = 0.0;

k = i - 1;

}

else

{

Sin = 1.0 / R;

Cos = Sin * T;

Sin *= F;

T = tempTDdiagonal[k + 1] - P;

R = (tempTDdiagonal[k] - T) * Sin + 2.0 * Cos * B;

P = Sin * R;

tempTDdiagonal[k + 1] = T + P;

T = Cos * R - B;

// apply transformation to vectors

if (vectors)

{

double tmp;

for (int n = 0; n < TDsize; n++)

{

tmp = tempEigenvector[n][k + 1];

tempEigenvector[n][k + 1] *= Cos;

tempEigenvector[n][k + 1] += Sin * tempEigenvector[n][k];

tempEigenvector[n][k] *= Cos;

tempEigenvector[n][k] -= Sin * tmp;

}

}

}

}

tempTDdiagonal[i] -= P;

tempTDupperdiag[i] = T;

tempTDupperdiag[j] = 0.0;

}

else

iter = maxIter;

}

}

if (!vectors)

sortDiagonal();



38 APPENDIX A. PROGRAM CODE

return;

}

//evaluates and prints eigenvecors

void printEigenstates()

{

Eigenvectors = new double* [nbEigenvalues];

tempEigenvector = new double* [TDsize];

for (int i = 0; i < TDsize; i++)

{

tempEigenvector[i] = new double[TDsize];

for (int j = 0; j < TDsize; j++)

tempEigenvector[i][j] = 0;

tempEigenvector[i][i] = 1.0;

}

Diagonalize(true);

int ReducedDim = TDsize - 2;

double tmp;

int MinPos;

double MinValue;

for (int i = 0; i <= ReducedDim; i++)

{

MinPos = TDsize - 1;

MinValue = tempTDdiagonal[MinPos];

for (int j = ReducedDim; j >= i; j--)

if (tempTDdiagonal[j] < MinValue)

{

MinValue = tempTDdiagonal[j];

MinPos = j;

}

tmp = tempTDdiagonal[i];

tempTDdiagonal[i] = MinValue;

tempTDdiagonal[MinPos] = tmp;

for (int ii = 0; ii < TDsize; ii++)

{

tmp = tempEigenvector[ii][i];

tempEigenvector[ii][i] = tempEigenvector[ii][MinPos];

tempEigenvector[ii][MinPos] = tmp;

}

}

double* TmpCoefficents;

TmpCoefficents = new double [TDsize];

for (int i = 0; i < nbEigenvalues; ++i)

{
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for (int j = 0; j < TDsize; ++j)

TmpCoefficents[j] = tempEigenvector[j][i];

Eigenvectors[i] = new double [Dimension];

int ii;

for (ii = 0; ii < Dimension; ii++)

Eigenvectors[i][ii] = QVector[0][ii] * tempEigenvector[0][i];

for (ii = 0; ii < TDsize - 1; ii++)

AddLinearCombination(Eigenvectors[i], TmpCoefficents[ii+1],

QVector[ii+1], Dimension);

}

for (int ii = 0; ii < nbEigenvalues; ii++)

{

NormalizeVector(Eigenvectors[ii], Dimension);

}

for (int j = 0; j < Dimension; j++)

{

printf("%d\t", j);

for (int i = 0; i < nbEigenvalues; i++)

{

printf("%1.18le\t", Eigenvectors[i][j]);

}

printf("\n");

}

}

int main(int argc, char** argv)

{

int i,j;

if (argc!=9)

{

printf("usage: max number of iterations, matrix dimension,

number of eigenvalues, dx, eps, A, kn, useMatrix 1-yes 0-no\n");

return 0;

}

else

{

maxNbIter = (int) atol(argv[1]);

Dimension = (int) atol(argv[2]);

nbEigenvalues = (int) atol(argv[3]);

dx = atof(argv[4]);

eps = atof(argv[5]);

A = atof(argv[6]);

kn = atof(argv[7]);



40 APPENDIX A. PROGRAM CODE

if (argv[8][0] == ’0’) useMatrix = false; else useMatrix = true;

}

InitializeLanczos();

Lanczos(nbEigenvalues + 2);

double Precision = 1.0;

int currNbIter = nbEigenvalues + 2;

prevLowest = 1e30;

while ((Precision > 1e-14) && (currNbIter++ < maxNbIter))

{

Lanczos(1);

Diagonalize(false);

Precision = fabs((prevLowest - tempTDdiagonal[nbEigenvalues-1])

/ prevLowest);

prevLowest = tempTDdiagonal[nbEigenvalues-1];

}

if (currNbIter >= maxNbIter)

{

printf("too many Lanczos iterations\n");

exit(0);

}

printf("Eigenvalues:\n");

double eig;

for (i = 0; i < nbEigenvalues; ++i)

{

eig = -log(-dx*(tempTDdiagonal[i]))/eps;

printf("%d\t%1.14le\n", i, eig);

}

printf("\n");

printf("Eigenvectors:\n");

printEigenstates();

for (i=QVsize-1; i>=0; i--)

free(QVector[i]);

free(QVector);

free(TDdiagonal);

free(TDupperdiag);

free(tempTDdiagonal);

free(tempTDupperdiag);

return 0;

}
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A.3 C/C++ Implementation of the Effective Action

Function of Order p = 6

An example of effective action function for one-dimensional anharmonic oscillator V =
1

2
Ax2 + kn

24
x4 of order p = 6 is given in this section. Function parameters are: coordinate

value, discretization step ∆, A = 1 − r2, anharmonicity kn and evolution time ǫ.

double S_eff_1d_p6(double x, double dx, double A, double kn, double eps){

dx2 = dx*dx;

dx4 = dx2*dx2;

dx6 = dx2*dx4;

dx8 = dx4*dx4;

x2 = x*x;

x4 = x2*x2;

x6 = x3*x3;

x7 = x4*x3;

x8 = x4*x4;

eps2 = eps*eps;

eps3 = eps*eps2;

eps4 = eps2*eps2;

eps5 = eps3*eps2;

kn2 = kn*kn;

kn3 = kn*kn2;

A2 = A*A;

return (0.5*dx2)/eps + eps*(0.000520833333333333333*dx4*kn +

0.00208333333333333333*dx2*eps*kn - 2.41126543209876543e-7*dx6*eps2*kn2 -

2.89351851851851852e-6*dx4*eps3*kn2 + 0.5*A*x2 + 0.0416666666666666667*kn*x4 +

eps*(0.0833333333333333333*A + 0.0416666666666666667*kn*x2) +

0.0416666666666666667*dx2*(A + 0.5*kn*x2) +

0.25*dx2*eps3*(-0.000793650793650793651*A*kn - 0.00138888888888888889*kn2*x2) +

0.0625*dx4*eps2*(-0.000396825396825396825*A*kn - 0.000694444444444444444*kn2*x2)

+ 0.25*dx2*eps2*(-0.00277777777777777778*A2 - 0.0111111111111111111*A*kn*x2 -

0.00208333333333333333*kn2*x4) + eps3*(-0.00277777777777777778*A2 -

0.0111111111111111111*A*kn*x2 - 0.00208333333333333333*kn2*x4) +

eps2*(0.00416666666666666667*kn - 0.0416666666666666667*A2*x2 -

0.0138888888888888889*A*kn*x4 - 0.00115740740740740741*kn2*x6) + 0.25*dx2*eps4*

(0.0000661375661375661376*A3 - 0.0000644841269841269841*kn2 +

0.0015873015873015873*A2*kn*x2 + 0.00094246031746031746*A*kn2*x4 +

0.000115740740740740741*kn3*x6) + eps5*(0.0001763668430335097*A3 -

0.0000388558201058201058*kn2 + 0.00214947089947089947*A2*kn*x2 +

0.00124007936507936508*A*kn2*x4 + 0.000154320987654320988*kn3*x6) +

eps4*(-0.000595238095238095238*A*kn + 0.00416666666666666667*A3*x2 -

0.000868055555555555556*kn2*x2 + 0.00347222222222222222*A2*kn*x4 +

0.000810185185185185185*A*kn2*x6 + 0.0000578703703703703704*kn3*x8));

}
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