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Chapter 1

Introduction

Bose-Einstein condensation as a concept was established theoretically in 1924, when
Albert Einstein, following the work of Satyendra Nath Bose [1] on the statistics of pho-
tons, predicted a phase transition in a gas of noninteracting bosons (particles with integer
spin) [2]. This phase transition occurs at a certain temperature, and is characterized by
the macroscopic occupation of the system’s ground state. At first it was believed that
this concept is purely theoretical, and that the phenomenon will not be practically re-
alized in the presence of even the smallest interactions. However, after the discovery
of superfluidity in liquid helium in 1938 [3, 4], it was suggested that there is a connec-
tion between those two effects [5], and intensive theoretical research was aimed at the
description of interacting Bose gasses, as well as the relationship between Bose-Einstein
condensation and superfluidity. The first experimental realization of a Bose-Einstein con-
densate (BEC) came 70 years after its prediction, since there was a need for developing
advanced cooling techniques in order to achieve temperatures low enough, such that the
effect occurs. BECs were first obtained in experiments in 1995, using ultracold vapors of
rubidium [6], sodium [7], and soon after in lithium [8].

The theoretical description of Bose condensation is centered around the Gross-Pitaevskii
equation, derived in 1961. This equation describes weakly interacting dilute Bose gas at
low temperatures, and represents the mean-field description of the system [9, 10]. It
relies on the approximation of complex van der Waals forces by the pseudo-potential,
which leads to the description of these interactions by a single parameter, the s-wave
scattering length as. The extension of the description to beyond-mean-field effects was
derived by Lee, Huang and Yang (LHY) in 1957 [11], based on the Bogoliubov description
of elementary excitations [12]. They derived corrections to the chemical potential and
condensate depletion, which exist as a consequence of quantum fluctuations due to the
contact interaction, and do not vanish even at zero temperature.

The first experimental realization of a BEC in dipolar gases was performed in 2005
with chromium atoms [13], which posses a small permanent magnetic dipole moment.
Shortly afterwards, this was also accomplished for magnetic atoms with stronger dipole
moments, such as dysprosium [14, 15] and erbium [16]. This opened up a possibility of
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exploring the effects of the dipole-dipole interaction (DDI) in BECs [17, 18], which is of
significant interest because the DDI is long ranged, in contrast to the short-ranged contact
interaction. Additionally, the DDI strongly depends on the relative position of dipoles,
which determines whether it is attractive or repulsive, while the contact interaction can
only be either one of those, depending on the sign of as. Furthermore, using Feshbach
resonances [19], the strength of the contact interaction can be tuned to arbitrary values,
including the small ones, via the external magnetic field, thus emphasizing the dipolar
effects even more.

A system of confined dipoles is usually metastable, and its stability can be achieved
only if a strong enough repulsive contact interaction is present, to resist the collapse of
the system due to the attractive part of the DDI [20]. Geometry of the system (trap)
plays a significant role here, and therefore experiments often use restricted topologies,
such as quasi-1D (cigar-shaped) or quasi-2D (pancake-shaped). At low temperatures,
the corrections to the system behaviour due to quantum and thermal fluctuations are
usually considered negligible. However, a system that is expected to collapse according to
the mean-field description, in some cases can be stabilized due to quantum fluctuations,
since the LHY term can be effectively repulsive. In order for this to happen, we need
to have competing interactions, one attractive and one repulsive, which cancel out at
the mean-field level, leaving quantum fluctuations to adjudicate the fate of the system.
This is precisely what happens in systems with the strong DDI and repulsive contact
interaction. A stable state created in this way, in which there is a competition between
the interactions at the mean-field level, and whose stability is saved by the LHY repulsive
quantum fluctuation terms, is called a quantum droplet [21, 22]. A quantum droplet is
self-bound state [23], surviving for considerable amount of time even after the bounding
trap potential is switched off. A density of the droplet still has very low values (eight
orders of magnitude lower than that of liquid helium droplets), and meets the diluteness
condition. However, it is at least one order of magnitude higher than the density of a BEC
and can be considered a quantum liquid, since it is practically incompressible [24,25].

The aim of this thesis is to numerically investigate the regime in which a quantum
droplet can be formed in dipolar condensates. Additionally, we investigate the topology
effects by considering the system confined in a ring-shaped potential, that imposes a
geometric constraint on the spatial distribution of the resulting droplets, making the
system effectively one-dimensional with periodic boundary conditions.

In Chapter 2 we describe basic theoretical principles governing the behavior of dilute
weakly-interacting dipolar Bose-Einstein condensates. We give the mean-field description
of the system, as well as corrections due to quantum fluctuations induced by the contact
and dipole-dipole interaction. In Chapter 3 we present the main features of the used
numerical algorithm, based on the split-step Crank-Nicolson method for solving nonlinear
differential equations of the dipolar Gross-Pitaevskii type. We present and discuss our
numerical results of numerical simulations in Chapter 4, while Chapter 5 summarizes our
conclusions.



Chapter 2

Theoretical description of ultracold
Bose gases

In this section we describe the basic theoretical principles governing the behavior of
dipolar Bose-Einstein condensates, as well as explain the methods for deriving dynamical
equations that are later used for numerical simulations. Although Bose-Einstein conden-
sation can theoretically be studied for an ideal gas, in reality there are always some
interactions present between atoms or molecules that make up the system under consid-
eration, and they are actually very important to experimentally achieve the condensation.
Nonlinearities of equations caused by the interactions are what yields a plethora of new
phenomena, such as solitons [26], vortices [27], striped states [28], density oscillations [29],
etc.

The system we study is a dilute bosonic gas consisting of N particles in a box of vol-
ume Ω. The temperature of the system is considered to be very low, so that the BEC can
be produced, and the interactions between atoms are considered to be weak and repulsive.
For such a system, it can be shown that complex van der Waals interactions between
particles can be approximated by an effective contact interaction, up to measurement er-
rors of observable physical properties. For a gas of magnetic or electric dipolar particles,
another type of interaction is present, a dipole-dipole interaction, which can be controlled
by an external magnetic or electric field. In the mean-field approximation, an equation
describing such systems is known as the Gross-Pitaevskii equation [9,10]. However, con-
sidering beyond-mean-field effects, it is well known that quantum fluctuations emerge,
and cause a decrease in the number of particles in the condensate (condensate depletion),
even at zero temperature [11]. Precisely this is the main mechanism that enables stabi-
lization of otherwise unstable dipolar BECs and emergence of quantum droplets, a new
state of matter, that are a key subject of this thesis [24, 25].
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2.1. Contact interaction 4

2.1 Contact interaction
The interactions between atoms are an important factor to experimentally achieve Bose-
Einstein condensation. The temperatures reached by Zeeman slowers and laser cooling
are insufficiently low to produce a BEC (at the experimentally realizable densities), thus
the technique of evaporative cooling is used as the final stage. The process involves
opening up (reducing the height) of the magneto-optical trap that confines the system,
which causes the fastest, and hence the highest-energy atoms to escape from the trap. The
remaining sample is left in a non-equilibrium state. It is the interactions between atoms
that lead to re-equilibration, through scattering and exchange of energy and momentum.
The system eventually reaches an equilibrium state with lower temperature [10].

The important point here is that in dilute gases the range of interatomic forces is
much smaller than the average distance between the particles [30]. Hence, only two-body
interactions give significant contribution, whereas three- and higher-body interactions
can be safely neglected.

To describe two-body scatterings, we consider the wave function for the relative mo-
tion of two particles at large distances, since we are not interested in the events at small
length scales. This wave function can be written in the form

ψ(r) = eikz + f(θ)
eikr

r
, (2.1)

where the first term corresponds to the incoming plane wave along the z direction, and the
second term to the outgoing spherical wave. The function f(θ) is called the scattering
amplitude, and for the central potential considered here, it can be shown to depend
only on the scattering angle θ, which is the angle between the directions of the relative
momentum before and after scattering.

In the limit of very low energies, it can be shown that the scattering amplitude
approaches a constant value, independent of energy E and the scattering angle θ [9],

f(θ)E→0 = −as. (2.2)

The quantity as is called the s-wave scattering length, and can be interpreted as the
minimal distance to which the particles approach each other.

This implies that for a dilute, low-energy gas, it is sufficient to consider only the
s-wave scattering, and all the macroscopic properties of the system depend only on the
scattering length and not on the details of the interatomic potential. In other words, two
interatomic potentials, corresponding to the same scattering length, lead to the same
properties of the condensed gas.

Using the Born approximation, the scattering length for two identical particles is
given by

as =
m

4π~2

∫
V (r)dr, (2.3)

where m is the mass of an atom, ~ is the reduced Planck’s constant, and V (r) is the
interatomic potential, which can be replaced by an effective (pseudo-) potential giving
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the same physical behavior for the same scattering length as. The simplest interaction
between two particles at points r and r′ is the contact interaction, given by

Veff(r, r′) = gδ(r − r′), (2.4)

where g = 4π~2as/m is the contact interaction strength (sometimes also called nonlin-
earity), and δ denotes the Dirac delta function.

For positive values of the scattering length as the interaction is effectively repulsive,
while for negative values of as it is attractive. In an experiment it is possible to change
the value in the range of several orders of magnitude, and even the sign of the scattering
length, by changing the strength of an external magnetic field. This is a consequence of
the appearance of Feshbach resonances, and makes ultracold atomic systems extremely
tunable and versatile [19].

2.2 The Gross-Pitaevskii equation

2.2.1 The field operator

Let us now consider a system of a dilute Bose gas at low temperatures in an external
potential U(r), with the two-body interaction potential V (r − r′). We assume that the
interatomic potential depends only on the relative position of the atoms, which is usually
the case. The Hamiltonian of the system in a coordinate representation can be written
as follows [9]

Ĥ =
∑
i

(
− ~2

2m
∇2
i + U(ri)

)
+

1

2

∑
i 6=j

V (ri − rj). (2.5)

The sums in the above equation go over all particles in the system. In the language of
second quantization, the Hamiltonian takes the following form

Ĥ =

∫
dr

(
~2

2m
∇Ψ̂†(r)∇Ψ̂(r)

)
+

∫
drU(r)Ψ̂†(r)Ψ̂(r)

+
1

2

∫∫
dr dr′Ψ̂†(r)Ψ̂†(r′)V (r − r′)Ψ̂(r′)Ψ̂(r),

(2.6)

where Ψ̂†(r)
(
Ψ̂(r)

)
is the field operator creating (annihilating) a particle at point r,

and the integration goes over the entire space. The field operators satisfy the well-known
bosonic commutation relations[

Ψ̂(r), Ψ̂†(r′)
]

= δ(r − r′),[
Ψ̂†(r), Ψ̂†(r′)

]
=
[
Ψ̂(r), Ψ̂(r′)

]
= 0.

(2.7)

They are used to define the density of the system

n(r) = 〈Ψ̂†(r)Ψ̂(r)〉, (2.8)
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where 〈...〉 denotes the statistical averaging over all degrees of freedom in the system.
The field operators in the Schrödinger picture depend also on time, and their evolution

is governed by the Heisenberg equation

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
. (2.9)

Inserting Eq. (2.6) into Eq. (2.9) and using the commutation relations for the field oper-
ators (2.7), the following equation for the evolution of the field operator is obtained

i~
∂

∂t
Ψ̂(r, t) =

[
− ~2

2m
∆ + U(r, t) +

∫
dr′Ψ̂†(r′, t)V (r − r′)Ψ̂(r′, t)

]
Ψ̂(r, t). (2.10)

As is discussed in the previous section, the actual form of the interatomic potential
is not important for the calculation of relevant properties of a dilute, low-temperature
gas, as long as the potential produces the correct value for the scattering length. We are
therefore allowed to replace the exact interatomic potential with the effective potential
given by Eq. (2.4).

2.2.2 The Bogoliubov approximation

Another important approximation that needs to be carried out is associating the field
operator Ψ̂(r, t) with the classical field (wave-function) Ψ(r, t). For a uniform system
occupying a volume Ω, the field operator can be expressed in a basis of plane waves
according to the formula

Ψ̂(r) =
∑
p

1√
Ω
eip·r/~ âp. (2.11)

The quantity âp is the annihilation operator that destroys a particle in a state with
momentum p. The spectrum of momenta in the above sum is determined by the boundary
conditions. For a truly homogeneous system in infinite space all momenta are present. A
similar equation holds for the creation operators. It can be derived that the operators â†p
and âp also satisfy the bosonic commutation relations similar to those given by Eq. (2.7),[

âp, â
†
p′

]
= δp,p′ ,

[
â†p, â

†
p′

]
=
[
âp, âp′

]
= 0, (2.12)

where δp,p′ is a Kronecker delta function.
At very low temperatures, when the BEC phase is present, the occupation N0 of

a state with p = 0, i.e., the state with the lowest energy, is significantly higher than
for any other state, and corresponds to a macroscopic occupation of the ground state.
Therefore, it is useful to decompose the field operator into a condensate and a thermal
(non-condensed) part,

Ψ̂(r) =
1√
Ω
â0 +

∑
p6=0

1√
Ω
eip·r/~ âp. (2.13)

We now introduce the Bogoliubov approximation, which consists of replacing the opera-
tors â0 and â†0 with the c-number

√
N0. This is motivated by the fact that 〈â†0â0〉 = N0,
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and is equivalent to treating the first part of the field operator in Eq. (2.13) as a classical
field,

Ψ̂(r) = Ψ0(r) + δΨ̂(r). (2.14)

The function Ψ0(r) is called the wave function of the condensate, while the second term
corresponds to quantum fluctuations.

To the lowest order, which is usually called the mean-field theory, at very low tem-
peratures one can simply replace the operator Ψ̂(r) in Eq. (2.10) with a classical field
Ψ(r). By replacing the interatomic potential according to Eq. (2.4) one finally obtains
the equation

i~
∂

∂t
Ψ(r, t) =

(
− ~2

2m
∆ + U(r, t) + g|Ψ(r, t)|2

)
Ψ(r, t). (2.15)

This is the time-dependent Gross-Pitaevskii equation. The wave function Ψ(r) is nor-
malized to the number of particles in a system,∫

dr |Ψ(r)|2 = N. (2.16)

We point out that Eq. (2.15) is essentially a time-dependent Schrödinger equation, with
an additional nonlinear term describing the contact interaction.

2.2.3 The time-independent Gross-Pitaevskii equation

Let us go back briefly to the first quantization description of the system, given by
Eq. (2.5), with the effective interatomic potential (2.4). In a fully condensed state, all
particles are in the same single-particle state φ(r). In the Hartree (mean-field) approxi-
mation, the many-body wave function is given as a symmetrized product of single-particle
wave functions [10]

Ψ(r1, ..., rN) =
∏
i

φ(ri). (2.17)

This wave function does not take into account the correlations among particles.
The energy of a system in the state Ψ is calculated as the expectation value of the

Hamiltonian (2.5) in this state, as follows

E =

∫
dr1...drN Ψ∗ĤΨ =

∫
dr

(
N

~2

2m
|∇φ(r)|2 +NU(r)|φ(r)|2 +

N(N − 1)

2
g|φ(r)|4

)
.

(2.18)
It is convenient to introduce the wave function ψ(r) of the condensed state as

ψ(r) =
√
Nφ(r) , (2.19)

in order to satisfy the normalization condition (2.16). The energy of the system can now
be written as

E =

∫
dr

(
~2

2m
|∇ψ(r)|2 + U(r)|ψ(r)|2 +

1

2
g|ψ(r)|4

)
, (2.20)
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where we neglected terms of the order 1/N . A solution for the wave function can be found
by minimizing this energy functional varying ψ(r), with the constraint of preserving the
normalization, set by the Lagrange multiplier µ. By solving the minimization condition
δ (E − µN) = 0, we obtain the following expression

µψ(r) =

(
− ~2

2m
∇2 + U(r) + g|ψ(r)|2

)
ψ(r). (2.21)

This is the time-independent Gross-Pitaevskii equation. The Lagrange multiplier µ cor-
responds to the chemical potential and is the eigenvalue of the single-particle Gross-
Pitaevskii Hamiltonian,

Ĥ = − ~2

2m
∇2 + U(r) + g|ψ(r)|2 . (2.22)

2.3 Dipole-dipole interaction
We now turn to the description of an additional interaction among atoms, the dipole-
dipole interaction (DDI), which is present between atoms or molecules with a non-
vanishing magnetic or electric dipole moment. Here we will focus on magnetic systems,
since they are readily available in experiments, while electric systems are still under de-
velopment. In a system with free magnetic dipole moments, their orientation is random,
yielding a zero net magnetic moment of the system. However, in the presence of an
external magnetic field, the dipole moments will be oriented along the magnetic field,
which corresponds to the lowest potential energy of the system. The forces opposing
this alignment are thermal in origin, and thus very weak at low temperatures. We can
assume that at very low temperatures all magnetic dipoles are oriented along the external
magnetic field, which is chosen to coincide with the z axis. Then the interaction potential
between two particles with the magnetic dipole moment µ is given by

Vdd(r − r′) =
µ0µ

2

4π

1− 3 cos2 θ

|r − r′|3
, (2.23)

where µ0 is the magnetic vacuum permeability, r and r′ are positions of two particles,
and θ is the angle between the relative position of the particles r − r′ and the dipole
orientation (z axis).

In contrast to the contact interaction, which is short-ranged and isotropic, the DDI
is long-ranged and anisotropic. It strongly depends on the relative positions of the
two dipoles, and can be both attractive and repulsive, depending on the angle θ. For
example, two dipoles that are on top of each other (head-to-tail configuration) will have an
attractive interaction, whereas two dipoles next to each other (side-by-side configuration)
will repel. The DDI will cause the system to be stretched along the axis of an external
magnetic field, i.e., along the orientation of the dipoles.

The DDI strength is usually defined by the dipolar length

add =
µ0µ

2m

12π~2
, (2.24)
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which is a convenient measure and can be used to compare the strength of the DDI and
the contact interaction, whose strength is expressed in terms of the s-wave scattering
length.

For a positive scattering length as > 0, the contact interaction is always repulsive and
the system is unconditionally stable. However, in the presence of dipole-dipole interac-
tions, depending on the geometry, the system can collapse if the number of particles is
large enough, or the dipole moment of the particles is sufficiently large [20].

2.4 Beyond-mean-field approximation
The mean-field approximation described in Sec. 2.2.2 that consist of replacing the field
operator by the classical field, does not take into account effects of thermal and quantum
fluctuations described by the second term in Eq. (2.14). Assuming that we are at zero
temperature, the fluctuations term stems from the presence of interactions, which can
expel particles from the ground state into excited states, even at zero temperature. For
now, we are considering a homogeneous gas of bosonic particles (when the external trap
potential is absent), as a starting point to describing trapped systems that are commonly
realized in experiments. Taking into account quantum fluctuations leads to beyond-
mean-field theory.

2.4.1 Fluctuations due to the contact interaction

In order to investigate fluctuations, it is convenient to look at the Hamiltonian in the
momentum basis. For now, let us limit our discussion only to the contact interaction.
The substitution of Eq. (2.11) into Eq. (2.6), while neglecting the external potential,
gives the following expression for the Hamiltonian [9]

Ĥ =
∑
p

p2

2m
â†pâp +

1

2Ω

∑
p1,p2,q

Vqâ
†
p1+qâ

†
p2−qâp1

âp2
. (2.25)

The quantity Vq represents the Fourier transform of the interaction potential V (r), de-
fined as

Vq =

∫
dr e−iq·r/~ V (r). (2.26)

The first term in the Hamiltonian (2.25) corresponds to the kinetic energy of the
system, expressed as a sum over all momenta, where kinetic energy of a particle in a
state with momentum p is multiplied by the number of particles in that state. The
second term describes the contact interaction energy, as a sum of all possible scattering
processes in which two particles with momenta p1 and p2 exchange the momentum q
due to the presence of the two-body interaction Vq.

Since only small momenta are relevant at low temperatures, we are allowed to consider
only the q = 0 value of Vq. The mean-field approximation is equivalent to neglecting
all the terms containing the operators âp and â†p with p 6= 0. However, to take into
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account the fluctuations to lowest order, we need to retain the terms up to second order
in particle operators with p 6= 0. This yields the Hamiltonian

Ĥ =
∑
p

p2

2m
â†pâp +

V0

2Ω
â†0â

†
0â0â0 +

V0

2Ω

∑
p6=0

(
4â†0â

†
pâ0âp + â†0â

†
0âpâ−p + â†pâ

†
−pâ0â0

)
. (2.27)

In the Bogoliubov approximation, we replace operators â0 and â†0 by
√
N0. Since the

number of particles in excited states is very small, N ≈ N0, and we can replace operators
â0 and â†0 in the third term of Eq. (2.27) by

√
N . However, in the second term we have

to be more careful and to work with higher accuracy by using the normalization relation

â†0â0 +
∑
p6=0

â†pâp = N. (2.28)

By neglecting the higher-order terms, we obtain

â†0â
†
0â0â0 = N2 − 2N

∑
p6=0

â†pâp. (2.29)

As for the Fourier transform of the contact interaction, in the lowest-order Born
approximation it simply reduces to V0 = g, where g is the earlier introduced contact
interaction strength. Analogously, we have to employ higher-order perturbation theory
to find the first correction to the effective potential. It can be shown that, after this
correction is calculated, the renormalized contact interaction has the following form

V0 = g

(
1 +

g

Ω

∑
p6=0

m

p2

)
. (2.30)

Substituting Eq. (2.29) and Eq. (2.30) into Eq. (2.27), and neglecting the higher-order
terms, we get the following expression for the Hamiltonian

Ĥ =
∑
p

p2

2m
â†pâp +

gN2

2Ω
+
gn

2

∑
p6=0

(
2â†pâp + â†pâ

†
−p + âpâ−p +

mgn

p2

)
, (2.31)

where n = N/Ω is the density of the gas.
The Hamiltonian (2.31) is not in the diagonal form, since it contains terms â†pâ

†
−p and

âpâ−p. It can be diagonalized by introducing a new set of operators b̂p and b̂†p by a linear
transformation

âp = up b̂p + v∗−p b̂
†
−p,

â†p = u∗p b̂
†
p + v−p b̂−p,

(2.32)

which is known as the Bogoliubov transformation [12]. The new operators b̂p and b̂†p
represent the annihilation and creation operators of quasi-particles to an excited state,
and not of original particles with momentum p, as is the case with âp and â†p.
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The coefficients up and v−p need to be chosen so that the Hamiltonian (2.31) is
properly diagonalized, which translates into two conditions. The first one is that b̂p and
b̂†p satisfy the bosonic commutation relations given by the Eq. (2.12), and the second one
is that the coefficients of the non-diagonal terms b̂†pb̂

†
−p and b̂pb̂−p in the Hamiltonian

(2.31) vanish. After a simple calculation, it can be shown that these two conditions yield
the following result for the coefficients up and v−p:

up, v−p = ±

(
p2/2m+ gn

2ε(p)
± 1

2

)1/2

, (2.33)

where the energy dispersion function ε(p) is defined below in Eq. (2.36).
The Hamiltonian is now given in the diagonal form,

Ĥ = E0 +
∑
p

ε(p) b̂†p b̂p, (2.34)

where E0 is the ground state energy given by the expression

E0 = g
N2

2Ω
+

1

2

∑
p6=0

(
ε(p)− gn− p2

2m
+
mg2n2

p2

)
, (2.35)

and ε(p) is the energy of elementary excitations,

ε(p) =

√
gn

m
p2 +

(
p2

2m

)2

. (2.36)

Equation (2.36) represents the Bogoliubov dispersion law for elementary excitations of
the system. In the low-momentum limit the Bogoliubov dispersion becomes linear, giving
rise to phonon-like excitations, which are responsible for the superfluidity of the system.

The ground state energy can be calculated by replacing the sum with an integral in
momentum space in Eq. (2.35), which yields the following expression

E0 = gnN

(
1 +

32

3

√
na3

s

π

)
. (2.37)

This result is called the Lee-Huang-Yang (LHY) expansion [11]. The first term represents
the ground state energy of a system in the mean-field approximation, while the second
term corresponds to corrections due to fluctuations. The chemical potential can be easily
calculated using the relation µ = ∂E0/∂N , yielding

µ = gn

(
1 +

32

3

√
na3

s

π

)
. (2.38)



2.4. Beyond-mean-field approximation 12

Another set of important quantities are particle occupation numbers np. Using the
introduced Bogoliubov transformations (2.32), one easily find

np = 〈â†pâp〉 = |v−p|2 + |up|2〈b̂†pb̂p〉+ |v−p|2〈b̂†−pb̂−p〉. (2.39)

We immediately notice that even at zero temperature, when the occupation of excited
states is zero, 〈b̂†pb̂p〉 = 0, there are still particles with non-zero momentum present in
the system, the effect known as quantum fluctuations.

The density of the condensate at zero temperature can be calculated as

n0 = n− 1

(2π~)3

∫
np dp = n

(
1− 8

3

√
na3

s

π

)
. (2.40)

The phenomenon that not all particles are in the condensed state at zero temperature
is called the condensate depletion. We note that all the correction terms are described
by the square root of the gas parameter

√
na3

s, which is guaranteed to be very small
compared to 1 if the diluteness condition holds.

2.4.2 Fluctuations due to the dipole-dipole interaction

In previous section we described the effects of quantum fluctuations that emerge from
the presence of contact interactions. An analogous calculation can be performed for the
DDI. The calculation is quite complicated due to its anisotropic nature, so we show only
the final results here. For more details, see Ref. [31,32].

Taking into account both types of interactions, the corrections for the condensate
density and the chemical potential are given by

∆n =
8

3
n

√
na3

s

π
Q3(εdd), (2.41)

∆µ =
32

3
gn

√
na3

s

π
Q5(εdd), (2.42)

where the parameter εdd = add/as is the relative interaction strength of the DDI with
respect to the contact interaction. The functions Ql(x) represent the integrals

Ql(x) =

∫ 1

0

du (1− x+ 3xu2)l/2. (2.43)

The functions Q3(x) and Q5(x) are monotonically increasing when εdd increases from 0
to 1, and for εdd = 0, the usual results, (2.38) and (2.40), are recovered.

Finally, by putting together all of the above elements, we are able to construct an
effective Gross-Pitaevskii equation, that includes the contact and the DDI, as well as
corrections due to quantum fluctuations:

i~
∂Ψ(r, t)

∂t
=

[
− ~2

2m
∆ +U(r) + gn(r, t) +

∫
dr′ V (r−r′)n(r′, t) + ∆µ

]
Ψ(r, t). (2.44)



2.5. Quantum droplets 13

Here n(r, t) is the total density of particles,

n(r, t) = n0(r, t) +4n, (2.45)

where n0(r, t) = |Ψ(r, t)|2 is the condensate density, and the condensate depletion 4n
is given by Eq. (2.41). The condition of preserving the total number of particles is now
given through the normalization of the total density,∫

dr n(r, t) = N. (2.46)

Note that we have also included the trap potential in Eq. (2.44), assuming that the local
density approximation is valid. We use the above system of equations throughout this
thesis.

2.5 Quantum droplets
The presence of quantum fluctuations in an ultracold dipolar Bose system is equivalent
to having an effective additional interaction, that turns out to be repulsive for a positive
scattering length, the case we consider. This is due to the fact that the corresponding
shift of the chemical potential 4µ, which is added to the Hamiltonian, is always positive,
while the contribution of the condensate depletion to the DDI term, which can give
negative terms, is practically negligible.

In the mean-field approach, the stability of the dipolar Bose system can be achieved
if the repulsive contact interaction dominates over the attractive DDI. Alternatively, if
the strength of the DDI or the number of particles is large enough, the system may
collapse [20]. The effective repulsive interaction due to quantum fluctuations may be
able to prevent the collapse of the system for some range of parameter values, when
the residual mean-field attractive interaction is small enough. The quantum fluctuations
term may become significant for high densities, since it depends on the density as n3/2, in
comparison with the contact and the dipole-dipole interaction, for which this dependence
is linear. As a consequence, the collapse of the system may be avoided on account of an
increase in quantum fluctuations, which results in expelling particles from the condensate.

This is the process of quantum stabilization, which yields a stable system consisting
of self-bound clusters of atoms, known as quantum droplets. Redistribution of particles
into a number of individual droplets, instead of remaining in a global condensate, serves
as a mechanism of preventing the energy to go to large negative values, i.e., it practically
makes it bounded from below. The density of such droplets is at least one order of
magnitude higher than the density of a BEC, and therefore they can be thought of as
a quantum liquid, which motivated the term droplets. However, it is important to note
that the density of the droplets is still several orders of magnitude smaller than for the
fluids from everyday life, making the diluteness condition still satisfied.

Quantum droplets can be formed as a result of the interplay between the long-range
DDI and the short-range contact interaction described above, by preparing a system in a
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stable BEC phase, and then reducing the strength of the contact interaction by a sudden
quench [22]. But this is not a unique experimental protocol for realizing the droplets.
Another scenario for creating quantum droplets relies on tilting of the orientation of the
dipoles (by tilting the external magnetic field) [33]. The droplets may be created even
when there is only a short-range contact interaction in the system, but this requires at
least a two-component BEC [34]. Here it is necessary for the two components to attract
each other and in this way provide a source of instability, which is then balanced by the
repulsive intra-component interactions and quantum fluctuations.



Chapter 3

Numerical methods

The effective Gross-Pitaevskii (GP) equation is a nonlinear differential equation. As
opposed to linear differential equations, which can generally always be solved, nonlinear
equations are difficult to deal with. If there is no specific analytic method for solv-
ing a particular type of nonlinear equations, one has to apply one of various numerical
approximative methods.

In this thesis we numerically solve the effective GP equation presented in previous
chapter. The numerical method that is used is split-step semi-implicit Crank-Nicolson
method. We have used programs that are developed earlier for solving the mean-field
dipolar GP equation, and described in detail in Ref. [35–37]. These programs are written
in C programming language, and are paralelized using OpenMP and MPI, since the
simulations for three-dimensional (3D) systems are computationally very demanding. We
have modified the programs to take into account quantum fluctuations and condensate
depletion, as detailed in Sec. 2.4. Here we briefly describe the main steps of the algorithm
used.

3.1 Rescaling of the effective GP equation
The system of equations that we work with is given by Eq. (2.41) - (2.46). The system
is confined to a ring-shaped potential given by

U(r) =
1

2
m
[
ω2
ρ (ρ−R)2 + ω2

zz
2
]
, (3.1)

where ρ =
√
x2 + y2 is the radial distance, R is the radius of the ring (i.e., radial distance

at which the potential is minimal), and ωρ and ωz are the corresponding trap frequencies.
This potential is essentially a modified harmonic potential. The external magnetic field,
which is responsible for the orientation of the dipole momenta, is assumed to be oriented
along the z axis, so the system possesses cylindrical symmetry.

Before proceeding with numerical calculations, we need to convert Eq. 2.44 into a
dimensionless form. This can be done by choosing a reference quantity for each variable.

15
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First, we choose a reference frequency ωref and express the trap frequencies as

ωρ = ηωref , ωz = λωref , (3.2)

where η and λ are dimensionless quantities that now define the trap and are used in the
programs. It is convenient to choose one of the trap frequencies as the reference one,
and usually the largest one is selected. For a reference time we choose 2/ωref , so that the
time is written as t = 2t̃/ωref , where t̃ is a dimensionless quantity. The factor 2 is taken
for convenience, to eliminate the coefficient 1/2 in front of some terms in Eq. (2.44). A
reference length is chosen as a harmonic oscillator length for a reference frequency and
reads ` =

√
~/(mωref), and the coordinates are expressed as x = x̃`, y = ỹ`, z = z̃`,

ρ = ρ̃`, where quantities with the tilde sign are dimensionless. The same rescaling is for
all lengths that are used in equations, such as as and add.

The many-body wave function in the mean-field approach satisfies the normalization
condition ∫

dr |Ψ(r, t)|2 = N. (3.3)

In addition to expressing it in a dimensionless form, we further rescale the wave function
so that the above integral is equal to 1, which is achieved by

Ψ(r, t) =
Ψ̃(r̃, t̃)

√
N

`3/2
. (3.4)

Using the above rescaling of relevant physical quantities, we can make the whole
system of effective equations dimensionless. The rescaling of the particle density and the
shift of the chemical potential are given by

ñ
(
r̃, t̃
)

=
∣∣Ψ̃ (r̃, t̃) ∣∣2 +

8

3

√
N

π

(
as
`

)3

Q3(εdd)
∣∣Ψ̃ (r̃, t̃) ∣∣3, (3.5)

∆µ̃
(
r̃, t̃
)

=
32

3
g̃

√
N

π

(
as
`

)3

Q5(εdd)
∣∣Ψ̃ (r̃, t̃) ∣∣3. (3.6)

Using these transformations the effective GP equation is cast into the dimensionless form
as follows

i
∂Ψ̃
(
r̃, t̃
)

∂t̃
=

[
−∆̃+Ũ (r̃)+g̃ñ

(
r̃, t̃
)
+g̃dd

∫
dr̃′ Ṽdd (r̃ − r̃′) ñ

(
r̃, t̃
)
+∆µ̃

(
r̃, t̃
) ]

Ψ̃
(
r̃, t̃
)
,

(3.7)
where the potentials are given by

Ũ (r̃) = η2 (ρ̃−R/`)2 + λ2z̃2, Ṽdd (r̃ − r̃′) =
1− 3 cos2 θ

|r̃ − r̃′|3
; (3.8)

and the strengths of the contact and dipole-dipole interactions as

g̃ = 8πNas/`, g̃dd = 6Nadd/`. (3.9)
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The normalization condition in a dimensionless form is∫
dr̃ ñ(r̃, t̃) = 1. (3.10)

3.2 Split-step Crank-Nicolson method
We now briefly describe the numerical method used to solve the system of equations
(3.5) - (3.10). For more details and the description of implementation, see Ref. [35].

The method is described on an example of a one-dimensional (1D) equation, consid-
ering that generalization to the 3D case is straightforward. The equation that we solve
has the following form

i
∂Ψ(x, t)

∂t
= ĤΨ(x, t), (3.11)

where Ĥ stands here for the 1D-equivalent of the Hamiltonian given in Eq. (3.7).
This Hamiltonian can be separated into two parts, Ĥ = Ĥ1 + Ĥ2, where the first one

contains all the terms without spatial derivatives (i.e., the trap and interaction terms),
and Ĥ2 = −∆. The propagation of the wave function is then split in two parts (hence
the split-step part of the method name), corresponding to Ĥ1 and Ĥ2 separately,

i
∂Ψ(x, t)

∂t
= H1Ψ(x, t), (3.12)

i
∂Ψ(x, t)

∂t
= H2Ψ(x, t). (3.13)

This approximation is equivalent to neglecting the noncommutativity of the operators
Ĥ1 and Ĥ2, since the propagation of the wave function actually happens with respect
to Ĥ1 + Ĥ2. We note that the propagation algorithm can be improved to higher orders
using the Campbell-Baker-Hausdorff formula, if necessary. However, using the sufficiently
small time step for propagation, the corresponding error can be made arbitrarily small,
so we rely on the above decomposition.

As usual, the time evolution is divided into Nt time steps of length 4t. Starting from
some initial value of the wave function at time t0, we first propagate it with respect to
H1 to obtain the intermediate value at t0 +4t. This intermediate solution is then used
as an initial value for the propagation with respect to H2 to obtain the final solution at
t0 + 4t. This procedure is then repeated Nt − 1 times, until the time propagation is
finished.

The propagation of the wave function is realized on some finite spatial interval
[−L, L), which has a length 2L and represents the simulation box. The wave func-
tion outside of the box is considered to be sufficiently small, so that it can be set to zero
at the simulation box borders. The spatial coordinate is also discretized into a grid of
Nx points, xk = −L+ kh, where h is the space step (grid spacing) equal to 2L/Nx, and
k goes from 0 to Nx − 1. The wave function at grid point xk and at time tn = n4t is
written, for brevity, as Ψ(xk, tn) = Ψn

k .
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To obtain the intermediate solution of the wave function, which we symbolically
denote as Ψ

n+1/2
k , we propagate Ψn

k with respect to Ĥ1. Since this part of the Hamiltonian
does not contain any spatial derivatives, the solution can be calculated exactly,

Ψ
n+1/2
k = e−i4tH1k Ψn

k , (3.14)

where H1k denotes the value of the Hamiltonian Ĥ1 at xk.
The propagation of the wave function with respect to H2 is performed using the

semi-implicit Crank-Nicolson (CN) scheme, which discretizes Eq. (3.13) as follows

i
Ψn+1
k −Ψ

n+1/2
k

4t
= H2

Ψn+1
k + Ψ

n+1/2
k

2
. (3.15)

The time derivative is approximated as a difference between the wave function value at
the end of the propagation and its current value, divided by the step size. On the right-
hand side, the operator Ĥ2 acts on a wave function written in a semi-implicit form, i.e.,
a linear combination of its current value and value at the end of propagation. It would
be much simpler to use an explicit algorithm, where we have just the current value of the
wave function on the right-hand side, but the semi-implicit scheme is absolutely stable,
which makes it the preferred choice.

Numerically, the second derivative of a function f(x) is approximated by taking the
Taylor expansion of f(x+h) and f(x−h) to the order of h2 (where h is a small quantity),
and summing up these two expressions. This gives the following three-point formula for
the second derivative

d2f(x)

dx2
=
f(x− h)− 2f(x) + f(x+ h)

h2
+O(h2). (3.16)

Using this relation, Eq. (3.15) can be written as

i
Ψn+1
k −Ψ

n+1/2
k

4t
=
−Ψn+1

k−1 + 2Ψn+1
k −Ψn+1

k+1 −Ψ
n+1/2
k−1 + 2Ψ

n+1/2
k −Ψ

n+1/2
k+1

2h2
. (3.17)

In this equation, the intermediate values of the wave function Ψn+1/2 are known at all
points in space, and the values of the wave function Ψn+1 at time tn+1 are to be calculated.
By grouping all the coefficients in front of the unknown terms, Eq. (3.17) can be expressed
in the following form

A−Ψn+1
k−1 + A0Ψn+1

k + A+Ψn+1
k+1 = Bk, (3.18)

where the coefficients are

A0 = 1 + i
4t
h2
,

A− = A+ = − i 4t
2h2
≡ A±,

Bk = Ψ
n+1/2
k + i

4t
2h2

(
Ψ
n+1/2
k−1 − 2Ψ

n+1/2
k + Ψ

n+1/2
k+1

)
.

(3.19)
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The coefficients A± and A0 are independent on the space and time coordinate, while
the coefficient Bk contains all information about the calculated intermediate value of the
wave function, and is dependent on the grid point and time (implicitly, through wave
function values).

We assume that the solution for the wave function can be expressed in a recursive
form

Ψn+1
k+1 = αkΨ

n+1
k + βk. (3.20)

By inserting this relation into Eq. (3.18), we obtain the equation

(A0 + A±αk) Ψn+1
k + A±Ψn+1

k−1 = Bk − A±βk. (3.21)

This is the same relation between Ψn+1
k and Ψn+1

k−1 as 3.20, so we deduce that the values
of the coefficients αk and βk are given by

αk = − A±
A0 + A±αk+1

,

βk =
Bk+1 − A±βk+1

A0 + A±αk+1

.

(3.22)

This is a recursive relation for coefficients; αk and βk depend on the values αk+1 and
βk+1, thus we need to set the boundary conditions in order to be able to calculate them.
Since the value of the wave function at the simulation box border is set to zero, the
coefficients αNx−2 and βNx−2 must be also equal to zero. In this way, going recursively
backwards on the grid, the values of these coefficients can be obtained at all grid points.
Having calculated that, and using the fact that the value of the wave function at the
other boundary Ψn+1

0 is also zero, by going recursively forward on the grid, we calculate
the values of the wave function at all grid points, using Eq. (3.20).

To summarize, to calculate the wave function at time step n+1, we first propagate the
wave function at time step n with respect to Ĥ1 to obtain the intermediate solution, which
comes down to multiplying the wave function at each grid point by a factor determined
by the trap potential value and interaction terms. This intermediate solution of the wave
function is then used to calculate the coefficients αk and βk by backward sweep of the
spatial grid, and those coefficients are subsequently used in a forward sweep of the spatial
grid to determine the wave function at time step n+ 1. This procedure is then repeated
until the end of the time propagation.

3.2.1 Generalization to the dipolar GP equation in 3D

Generalization to the 3D case is straightforward, since the derivatives along different
axes commute with each other, and can be performed in a split-step fashion, as we have
already seen. The space is now discretized along each direction, making the 3D space
grid of size Nx×Ny×Nz. The complete propagation from tn to tn+1 is now performed in
four substeps, with respect to four parts of the Hamiltonian given below (for simplicity,
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from now on we omit the tilde signs):

Ĥ1 = η2(ρ−R)2 + λ2z2 + gn(r, t) + gdd

∫
dr′ Vdd(r − r′)n(r′, t) + ∆µ(r, t),

Ĥ2 = − ∂2

∂x2
, Ĥ3 = − ∂2

∂y2
, Ĥ4 = − ∂2

∂z2
.

(3.23)

As in 1D, the propagation is first performed with respect to Ĥ1, and then with respect
to Ĥ2, Ĥ3 and Ĥ4, in arbitrary order.

When it comes to the first, non-derivative part of the Hamiltonian, we note several
important points. First, while describing the CN method in the previous section, we
did not mention that Ĥ1 depends on the wave function itself. Since we cannot solve
the equation in an exact, self-consistent way, we have to solve it iteratively. The wave
function at time step n is used to calculate the Hamiltonian Ĥ1, which is then used to
produce the intermediate values of the wave function.

The second point is that calculation of the dipole-dipole term is quite time consuming,
since it involves the integration over the entire space that needs to be performed at each
time step. This can be partially mitigated using the Fourier transformation, which can be
performed much faster by a library call to the appropriate FFTW function [38]. Namely,
the DDI term is a convolution of two functions, and can be calculated as inverse Fourier
transform of the product of their Fourier transforms,∫

dr′ Vdd(r − r′)n(r′, t) = F−1

[
F
[
Vdd

]
· F
[
n
]]
. (3.24)

The Fourier transform of the dipole-dipole potential does not depend on time, and can
be calculated exactly:

F
[
Vdd

]
(k) =

4π

3

(
3 cos2 θ − 1

)
, (3.25)

where cos θ = kz/|k|.

3.3 Calculation of the ground state
The method described in the previous section enables the computation of system’s dy-
namics starting from some known initial state. However, the same method can be used
to calculate the ground state of the system, if applied in imaginary time, t→ −it, which
corresponds to Wick rotation. The method is therefore called the imaginary-time prop-
agation. We stress that this method is purely mathematical and does not correspond to
physical time propagation. In other words, it simply projects the given initial state to
the ground state of the system. Since propagation in imaginary time does not preserve
the norm of the wave function (the evolution operator is not unitary), note that it has
to be renormalized in each time step.
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The reasoning behind this method is as follows. The arbitrary state Ψ(r) can be
represented as a linear combination of the eigenstates, which are solutions to the eigen-
problem Ĥφk(r) = Ekφk(r),

Ψ(r) =
∑
k

ck φk(r). (3.26)

The coefficients ck are determined by projections of the wave function Ψ onto the eigenspaces
spanned by the states φk. Let us denote by φ0 the ground state of the system, i.e., the
lowest energy state. The imaginary-time evolution of Ψ, that is, a solution to the time-
dependent Schrödinger equation

− ∂Ψ(r, t)

∂t
= ĤΨ(r, t) (3.27)

is given as follows
Ψ(r, t) =

∑
k

ck φk(r) e−Ekt/~. (3.28)

We can extract the "phase" factor e−E0t/~ of the lowest energy state in front of the sum,
to obtain the following expression

Ψ(r, t) = e−E0t/~

(
c0φ0 +

∑
k>0

ckφk(r) e−(Ek−E0)t/~

)
. (3.29)

The quantity Ek − E0 is always greater than zero for k > 0 since E0 corresponds to the
lowest energy state. In imaginary-time propagation all terms for k > 0 exponentially
decay due to exponential factors e−(Ek−E0)t/~ in the above sum, and will go to zero in
the long-time limit. Therefore, after a sufficiently long propagation time, only the term
proportional to φ0 will remain. Since the norm of the wave function is not preserved, and
it needs to be normalized to unity after each time step, this will eliminate the coefficient
in front of φ0 (which is normalized), thus yielding only the ground state in the long-time
limit. In practice, the propagation is performed until a convergence is achieved, which
can be monitored by calculating the energy of the system, or relevant expectation values.

In this way, the ground state of the system, i.e., the solution of the time-independent
GP equation (2.21), can be obtained using the same numerical method as for calculation
of the system’s dynamics, just by switching to imaginary time and renormalizing the wave
function in each time step. This comes down to replacing the factor i4t in equations
(3.14) and (3.19) with 4t. Usually, the initial state for the imaginary-time propagation
is taken to be a Gaussian with parameters corresponding to the trap frequencies (i.e. the
solution in the case of a non-interacting gas). The resulting ground state, or its small
perturbation, is taken as an initial state for the real-time propagation of the system, in
order to observe its low-temperature characteristics.

3.4 Calculation of relevant physical quantities
In order to study properties of the system and their dynamics, we need to calculate
relevant physical quantities using the wave function at a given time t. The most useful
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quantities are the condensate density, chemical potential, and expectation value of the
system size.

The condensate density is calculated simply by taking the modulus squared of the
wave function,

n(r, t) = |Ψ(r, t)|2 . (3.30)

Since it is difficult to visualize the three-dimensional density, the relevant two- and one-
dimensional projections can be defined by integrating n(r, t) over some coordinates, for
instance

n2D(x, y, t) =

∫
R
dz |Ψ(r, t)|2 , n1D(z, t) =

∫
R2

dx dy |Ψ(r, t)|2 . (3.31)

All densities and density projections calculated in this way are dimensionless, and can
be converted to physical units by multiplying with the appropriate unit (l−3 in 3D, l−2

in 2D, and l−1 in 1D).
The chemical potential can be defined only for stationary states, where it represents

the eigenvalue of the Hamiltonian in the ground state. It is calculated as µ = µ0 + ∆µ,
where µ0 is the chemical potential of the case when quantum fluctuations are not taken
into account, and ∆µ represents the contribution due to this effect. The value of ∆µ is
easily calculated if the density of the wave function is known, according to Eq. (3.6). To
calculate µ0, we need to start from the dimensionless time-independent Gross-Pitaevskii
equation,

µ0Ψ(r) =

[
−∆ + U(r) + g |Ψ(r)|2 + gdd

∫
dr′ Vdd(r − r′) |Ψ(r)|2

]
Ψ(r). (3.32)

We multiply this equation by Ψ∗(r) from the left-hand side, and integrate over the entire
space to obtain the value for µ0. The total chemical potential is then given by the
following equation

µ =

∫
dr

[
|∇Ψ(r)|2 + (γ2x2 + ν2y2 + λ2z2) |Ψ(r)|2 + g |Ψ(r)|4

+ gdd

∫
dr′ Vdd(r − r′) |Ψ(r′)|2 |Ψ(r)|2

]
+

32

3
g

√
Nas
π

Q5(εdd) |Ψ(r)|3 . (3.33)

The dimensionless quantity µ can be expressed in physical units by multiplying with ~ωref .
Even though the chemical potential is defined and physically relevant only for stationary
states, we generalize the above definition and calculate it during the time propagation
when it represents just the expectation value of the Hamiltonian, i.e., the energy of
the system. For example, the convergence of the chemical potential in imaginary-time
propagation is used as a criterion for the convergence of the wave function to the ground
state. Similarly, in real-time propagation we expect the chemical potential to remain
constant if the initial state is stationary for the system. On the other hand, sudden
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change of the chemical potential may indicate, for example, the transition of the system
to a different, metastable state.

As a measure of the condensate size it is common to use the root-mean-square (RMS)
value of the coordinates (since mean value is zero for even potentials):

xrms =
√
〈x2〉, 〈x2〉 =

∫
dr x2 |Ψ(r, t)|2 , (3.34)

and similarly for y and z. The size of the whole system is taken as a quadratic mean of
the coordinate RMS values,

rrms =
√
〈x2〉+ 〈y2〉+ 〈z2〉. (3.35)

All calculated RMS values of the coordinates are dimensionless, and are expressed in
physical units by multiplying with l.

The above physical quantities are the output of numerical simulations and can be
directly compared to experimental results. They are not routinely calculated in each time
step, since that would be too computationally demanding. Instead, they are calculated
periodically, after a given number of time steps.



Chapter 4

Results

Here we present results of a numerical study of the emergence and properties of
quantum droplets in ring-shaped Bose-Einstein condensates of 164Dy atoms [14, 15]. We
consider the contact interaction quench scenario, as discussed in Sec. 2.5. The system
is initially in its ground state, with parameters tuned such that the Bose-Einstein con-
densate phase is obtained. The dynamics of the system is initiated by a sudden quench
of the s-wave scattering length, which may lead to instability and eventual emergence of
droplets, depending on the quench size. However, the shape of the trap potential intro-
duces here additional, geometric restrictions on the behavior of the system, equivalent
to periodic boundary conditions along the ring. This configuration is not yet studied in
the literature to the best of our knowledge, and we expect interesting features to appear
due to system’s topology.

4.1 System parameters
In this section we briefly give physical and numerical parameters used for calculation in
this thesis. We consider the system made up of dysprosium 164Dy atoms confined in a ring
potential (3.1). This atomic species has a rather large magnetic dipole moment of about
10 µB, where µB stands for the Bohr magneton. As a consequence, the system exhibits
significant dipolar effects and its properties strongly depend on the trap geometry and
the orientation of the dipoles, which are assumed to be along z direction. The number
of atoms in the condensate was varied from 10,000 to 150,000. The mass of 164Dy is
m ≈ 164u, where u is the atomic mass unit. According to Eq. (2.24), the strength of the
DDI is add = 132 a0, where a0 is Bohr radius. The strength of the contact interaction is
taken to be a(0)

s = 132 a0 before the quench, and after the quench it was decreased to a
value in the range from as = 47 a0 to 78 a0.

The trap potential is defined by the frequencies ωρ and ωz, which are taken to be
equal to 2π × 600 Hz, and the ring radius is R = 10µm, consistent with [39]. Reference
frequency used to obtain dimensionless form of all quantities is ωref = ωρ = ωz, such that
the trap aspect ratios are η = λ = 1.

24
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The unit of length is ` =
√

~/(mωref) = 0.3205µm, and the unit of time is τ =
2/ωref = 0.5305 ms. The simulation box consists of Nx = Ny = 512 and Nz = 128 grid
points along the corresponding axes, each spaced by hx = hy = hz = 0.15 `.

In the imaginary-time propagation used to calculate the ground state, we use Niter =
3, 000 iterations with the time step 4t = 0.002 τ , since the wave function has shown
to converge well during the time Niter4t. The real-time propagation is performed for
Niter = 50, 000 iterations with the time step 4t = 0.001 τ , which corresponds to the
physical time of t = 26.5 ms. The density distribution and other relevant quantities are
typically saved every 200 iterations.

4.2 Ground state
The ground state of the system is calculated using the imaginary-time propagation tech-
nique described in Sec. 3.3. The initial state is selected in the form of a Gaussian ring,

Ψ0 ∝ e−
1
2 [η2(ρ−R)2+λ2z2] . (4.1)

Figure 4.1 shows the dependence of the chemical potential and the root-mean-square
(rms) coordinates during the imaginary-time propagation, for three different values of the
total atom number. As we see, the convergence is reached very quickly, which reflects

Figure 4.1: Imaginary-time dependence of relevant physical quantities: (a) chemical potential
in units of ~ωref , (b) size of the system defined by Eq. (3.35), and the rms of coordinates (c) x
and (d) z in units of `. The total atom number is Na = 10, 000 (blue), Na = 50, 000 (green),
and Na = 100, 000 (red).
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the fact that the initial wave function is a reasonably good approximation of the exact
solution. However, the propagation is executed for a total of Niter = 3, 000 iterations
to obtain high numerical precision of the ground state wave function, necessary for the
real-time evolution of the system after the quench of the contact interaction. The rms of
coordinate y is not plotted, since the system is cylindrically symmetric.

As expected, we see from Fig. 4.1(a) that increase in the number of atoms yields
increase in the chemical potential of the ground state. We also see from Figs. 4.1(c)
and 4.1(d) that the system size in z direction zrms is significantly smaller than the cor-
responding sizes xrms = yrms. The size of the whole system rrms converges to a value
that is in a range from 31.25 to 31.36, which corresponds to the ring radius expressed in
dimensionless units, R = 31.20. The quantity zrms is in fact associated with the width
of the ring, while xrms is associated with its radius. Since the width of the ring is much
smaller than its radius, it is effectively a 1D problem with periodic boundary conditions.
As a consequence, the choice of parameters for such a system must be carefully made, so
that the spatial grid is large enough to enclose the whole ring, but at the same time, to
have the spacing small enough so as to properly capture the dynamics on the ring with
sufficiently high accuracy. A shape of a typical ground state is shown in Fig. 4.3(a).

4.3 Droplet formation
As discussed in Sec. 2.5, quantum droplets can be formed starting from a ground state
in a BEC phase, by performing a sudden quench of the contact interaction strength.
We model this experimental protocol and numerically simulate real-time evolution of
the system. Note that the system is not in the ground state after the quench, and
therefore we cannot use the imaginary-time propagation to calculate the corresponding
states obtained in current experiments. However, if experiments become able to realize
ground states of dropletized systems, the numerically direct way to obtain them would
be to use imaginary-time propagation.

We now study the behavior of quantum droplets for different values of the contact
interaction strength as, different numbers of atoms Na, while the DDI strength is kept at

Figure 4.2: Time dependence of the condensate fraction after the contact interaction quench
as = 132 a0 −→ 45 a0, for Na = 10, 000 atoms.
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fixed value add = 132a0.
Figure 4.2 shows the fraction of particles in the condensate as a function of time

after the quench as = 132a0 −→ 45a0, for Na = 10, 000 particles. We observe that the
condensate depletion ∆N = 1 − N0/N is less than one percent at the beginning of the
propagation, but at some point it starts to increase and after the emergence of droplets
has a value of of 2-3 %. That this increase in the condensate depletion corresponds
to the process of droplet creation can be confirmed by examining the density of the
system. Figure 4.3 shows a two-dimensional density distribution n2D in the xy plane at
characteristic times. We start from a condensate in a BEC phase, in its ground state
shown in Fig. 4.3(a), to which a quench in the contact interaction strength is applied.
After approximately t = 8ms clustering of particles occurs at some points along the
ring, which is demonstrated in Fig. 4.3(b). This time corresponds to the beginning of

Figure 4.3: Density distribution plots at different times after the contact interaction quench
for Na = 10, 000 atoms. (a) The system is initially in a BEC phase in its ground state, when
the contact interaction quench as = 132 a0 −→ 45 a0 is applied. (b) The beginning of particle
rearrangement. (c) Droplets start to form and exchange atoms between each other. (d) The
system is in a stable dropletized state.
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a decrease in the condensate fraction, as can be seen from Fig 4.2. After some further
evolution time distinct droplets are formed, as seen in Fig. 4.3(c). Except for a small
particle exchange between droplets, they are stable until the end of propagation, shown
in Fig 4.3(d). The same happens to the number of particles in the condensate, which
converges to a certain value, around which it oscillates after the droplets are fully formed.

4.4 Critical strength of the contact interaction
We now determine a critical (maximal) value of the contact interaction strength after the
quench ac

s, such that the droplets do not form if as is quenched to a higher value than ac
s.

For a fixed number of atoms Na, this is done by varying the value of as with the step of
a0, and examining the density plots to observe when the droplets start to emerge. The
propagation is done for 50,000 iterations, which corresponds to 26.3 ms. The number of
atoms is varied from 10,000 to 150,000 in order to measure the dependence of ac

s on Na.
For low atom numbers, the transition to a dropletized state is quite clear, as we have

Figure 4.4: Density distribution plots at different propagation times in real-time system’s dy-
namics for Na = 80, 000 particles, and a quench in the contact interaction as = 132 a0 −→ 77 a0.
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Figure 4.5: Density distribution plots at different propagation times in real-time system’s dy-
namics for Na = 50, 000 particles, and a quench in the contact interaction as = 132 a0 −→ 76 a0.
The system oscillates between states presented in the left and in the right panel.

seen in Fig. 4.3. After formation, the droplets remain stable during propagation, and
their number does not change. However, for higher numbers of atoms, and for values
of as close to the phase transition, it is not always clear by just looking at the density
plots weather the transition has happened or not. Figure 4.4 shows one such case, for
Na = 80, 000 and as quenched from a

(0)
s to as = 77 a0. A number of droplets is indeed

formed after about 9 ms, but the whole system is clearly not dropletized. During the
time evolution the droplets form and disappear, their number is changing, and there is a
substantial exchange of atoms between the droplets.

If a quench is performed to a somewhat higher value of as, the system may end up in
a state representing a transition between the dropletized and the BEC state. An example
of this is given in Fig. 4.5. Regions of high density arise (left) and disappear (right), and
the system oscillates between these two states, but it never produces isolated droplets. If
the quench is made to even higher value of as, the system remains in the BEC phase, and
no qualitative changes are observed during the dynamics. Of course, the quench excites
all kinds of collective modes, which can be quantitatively observed.

In order to characterize the emergence of droplets, we consider the condensate density
along the ring and assume that if one droplet is formed (i.e., if there is an ’opening’ of
the wave function on the ring, a region where the density vanishes), the system will
eventually reach a fully dropletized state, after a sufficiently long evolution time. Since
our computational resources are limited, we adopt the following numerical criterion, based
on the analyzed data from extensive simulations we performed. First, from the full 3D
wave function we extract a 1D array with the values of the condensate density along the
ring potential minimum:

n2D(R, t) ≡ n2D(x, y; t), where x2 + y2 = R2. (4.2)

Periodically during the time evolution we calculate a ratio of the maximal and minimal
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Figure 4.6: Time dependence of the ratio θ for Na = 80, 000 particles, and a contact interaction
quench from as = 132 a0 to 77 a0 (blue), and 78 a0 (green). The dashed red line represents the
critical value θc = 40.

value of the density in the density array:

θ(t) =
max {n2D(R, t)}
min {n2D(R, t)}

. (4.3)

If this ratio is sufficiently high, we consider that the system reached a droplet-like state.
The appropriate limit value for the quantity θ is determined by visually comparing the

Figure 4.7: Phase diagram for the formation of quantum droplets: critical value of ac
s, to which

the system needs to be quenched in order to produce the droplets, as a function of the total
number of atoms. The blue line that connects the numerically obtained points represents a
transition line between the BEC phase and the droplet phase.
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density plots with the corresponding ratio values, and in our analysis it is taken to be
θc = 40. An example of the time dependence of θ for two close values of as is given in
Fig. 4.6. For as = 77 a0, which corresponds to the density profiles shown in Fig. 4.4, we
see that θ > θc at around t = 16.6 ms, and the droplets are expected to emerge. In order
to have a fully dropletized state, θ(t) needs to exceed θc frequently, or all the time.

Finally, in Fig. 4.7 we present the phase diagram in the plane (Na, a
c
s) and denote

regions corresponding to a BEC or a droplet state after the quench. The critical scattering
length ac

s rapidly decreases with the decrease of the number of atoms, but saturates to
a value of around ac

s = 77 a0 for large Na. Note that we have not explored the region of
small values of as, where the system may collapse instead of being dropletized. Therefore,
Fig. 4.7 only indicated the upper bound for the droplet phase.

4.5 The number of droplets
Now that we have the phase diagram of the system and characterized its phases, we
study in more detail the droplet phase, namely, how the number of droplets depends on
the contact interaction strength for a fixed value of the atom number, and vice versa.

When a value of the contact interaction strength is fixed, we expect that, as we
add more atoms, new droplets would emerge one by one. However, we observed that a

Figure 4.8: Density distribution plot in real-time system’s dynamics for Na = 20, 000 particles,
and a quench in the contact interaction as = 132 a0 −→ 47 a0. Arrows indicate the positions of
eight fainter droplets, symmetrically distributed with respect to the shown axes.
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Figure 4.9: The number of droplets observed in the system’s dynamics versus the total number
of atoms, for a quench in the contact interaction as = 132 a0 −→ 55 a0.

number of droplets always changes in steps of 8. Moreover, we observe the corresponding
symmetry in the density distribution, as can be seen in Fig. 4.8. Eight fainter droplets,
denoted by arrows in the figure, are distributed symmetrically with respect to horizontal,
vertical, and diagonal axes. We stress that there is no such discrete symmetry in the
system, hence we conclude that it must be a byproduct of our numerical algorithm. To
demonstrate this, we disrupt the artificial symmetry imposed by the Cartesian space
grid in xy plane by changing the spacing in x and y direction to slightly different values:
hx = 0.145, hy = 0.155. After introducing this spatial grid modification, previously
observed discrete symmetry is reduced and there are only two or four fainter droplets.
Further, by introducing a small noise to the ground state, which is always present in
experiments, the artificial discrete symmetry is completely removed.

Figure 4.9 shows the dependence of the number of droplets K as a function of the
particle number, for a fixed value of as = 55. We selected this value of as in order to be
able to span a wide range of particle numbers, since it has to be smaller than the critical
value, as determined from Fig. 4.7. We see that K increases with Na, but the signal is
not that clear and determining the obtained number of droplets is not easy in some cases.
Therefore, there is an error associated with estimating the value of K of around 2, which
has to be taken into account when interpreting the results from Fig. 4.9. Note that large
numbers of atoms lead to increasingly large droplet numbers, which for N ≥ 90, 000 start
to be placed not at the ring potential minimum line, but slightly off, in order to minimize
the energy of the system. This further complicates the estimation of the droplet number,
and therefore we do not show the results for N ≥ 120, 000 in Fig. 4.9.

Figure 4.10 shows the complementary dependence of the number of droplets as a
function of the contact interaction strength, for a fixed value of the atom number Na =
60, 000. Again, this number is chosen such that it allows a wide range of values of as in
the droplet phase in Fig. 4.7. We see that the droplet number decreases with increasing
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Figure 4.10: The number of droplets observed in the system’s dynamics versus the contact
interaction strength after the quench from a

(0)
s = 132 a0, for Na = 60, 000 particles.

as, but that it saturates for small values of as to around Na = 76. For values of as higher
than 72 a0, the number of droplets cannot be clearly determined, since the system is then
close to a transition to the BEC phase.
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Conclusions

In this thesis we studied the properties of dipolar Bose-Einstein condensates confined
to a ring-shaped trap potential, in particular the emergence of quantum droplets due
to a sudden quench of the contact interaction strength. Although such a system may
exhibit a collapse at the mean-field level, if quantum fluctuations are taken into account
the system may be stabilized. Furthermore, a new form of matter emerges, quantum
droplets, as observed in recent experiments. We have provided a theoretical framework
for the description of this phenomenon and numerically investigated the corresponding
phase diagram. The obtained phase diagram determines the fate of the system as a
function of the contact interaction quench size and the total number of atoms. We also
determine the dependence of the number of droplets created after the quench as a function
of the number of atoms and the quench size.

In the future we plan to study the transition between the BEC and the droplet
phase, where a new, supersolid state may appear. While still superfluid, this state is also
characterized by a spatial periodicity, i.e., a modulation of the density, and represents a
set of quantum droplets that are closely connected such that the common wave function
phase is preserved.
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