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Abstract

Strange metals still resist a comprehensive theoretical description. Yet, the AdS/CFT
correspondence (holographic principle) provides a novel, nonperturbative insight into the
properties of these strongly correlated materials by constructing a theory with gravity,
which is dual (equivalent) to the starting field-theoretical (condensed matter) problem.
In this thesis we find the numerical solution to a system of Einstein-Maxwell-dilaton
equations with periodic boundary conditions, which describes strongly correlated matter
at finite temperature and chemical potential on a square lattice. The metric in the
deep interior of the AdS space is hyperscaling-violating, implying an anomalous scaling
of thermodynamic quantities. We then compute the charge density of the system and
inspect the validity of the Luttinger theorem. The theorem is strongly violated, meaning
that the system is a non-Fermi liquid, as expected. We test our numerical method in
detail and show that it provides a robust framework for further work.





Sažetak

Potpun teorijski opis čudnih metala još uvek nije postignut. Ipak, AdS/CFT koresponden-
cija (holografski princip) pruža nov, neperturbativni uvid u osobine ovih jako korelisanih
materijala opisom koji uključuje i gravitaciju, a koji je dualan (ekvivalentan) početnom
problemu u teoriji polja (specijalno, u okviru fizike kondenzovane materije). U ovom ra-
du su nadena numerička rešenja Ajnštajn-Maksvel-dilatonskih jednačina sa periodičnim
graničnim uslovima koja opisuju jako korelisanu materiju na konačnoj temperaturi i ko-
načnom hemijskom potencijalu, na kvadratnoj rešetki. Dobijena metrika u unutrašnjosti
AdS prostora narušava hiperskaliranje, ukazujući na anomalno skaliranje termodinamičkih
veličina. Za dati sistem izračunata je potom gustina naelektrisanja, uz proveru primenlji-
vosti Latindžerove teoreme. Teorema u ovom sistemu ne važi, pa je sistem ne-Fermijeva
tečnost, kao što se i očekuje. Numeričke metode su pritom detaljno testirane, uz zaključak
da korǐsćena numerika predstavlja dobru osnovu za dalji rad.
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Chapter 1

Strange metals and holography:
motivation

Since 1980s physicists have gathered a vast amount of experimental data introducing novel
phases of matter with metallic properties that cannot be comprehended by the means of
conventional theoretical apparatus. Perhaps the most intriguing are the strange metals
(SM). All previously known metallic states were either successfully described by Landau’s
theory of Fermi liquids or else they were known to break some symmetry (i.e. magnetic
materials). Strange metals exhibit a phenomenology which is completely different from
normal metals and yet they do not manifestly break any symmetry. Their behavior has
turned out to resist any adequate theoretical explanation.

The Fermi liquid (FL) theory [1, 2] is built, roughly speaking, on two cornerstones. It
postulates the existence of a Fermi surface (FS) and assumes a description of the system in
terms of stable weakly interacting low-energy elementary excitations with respect to the
Fermi level. These excitations – the quasiparticles – have a dispersion relation similar to
that of a nearly free Fermi gas, with effective parameters (mass, Fermi velocity, etc.) which
contain all the information on the (possibly strong) interactions among the constituent
fermions. Their decay rate scales universally as Γ ∼ ω2, confirming that the excitations
are long-lived (underdamped).

On the other hand, non-Fermi liquids may have neither a sharp Fermi surface nor well
defined quasiparticles. Still, their behavior should not be viewed as contrasting to that
of Fermi liquids, but rather as a set of complementary phenomena. Thus, we define the
FS as a locus of points in momentum space where the spectral weight is non-analytic at
ω = 0, in accordance with FL theory where it is determined by the pole of the propagator
[3]. Experimentally, such a pole manifests as a sharp peak obtained in Angular Resolved
Photoemission Spectroscopy (ARPES) measurements. In the ARPES experiments elec-
trons are knocked out from the sample due to the photoelectric effect and the intensity
of the resulting electron beam is measured under different angles. Since the intensity of
an electron beam I(ω,k) ∝ nF (ω,k)A(ω,k), where nF (ω,k) and A(ω,k) ∝ ImGR(ω,k)
are respectively the Fermi-Dirac distribution and the electron spectral function, the occu-
pancy of the Fermi level is naturally reflected as a non-analyticity of the Green’s function
[3]. In the case of a non-Fermi liquid such peaks may drastically widen, and their width
determines the decay rate and lifetime of the excitations near the FS. In many cases it
can be parametrized as Γ ∼ ω2ν , where ν can take any real or even complex value [2].

Thus, we already anticipate the versatility of states comprised by the term “strange
metal”. Generally, these states show scaling laws, so they may properly be called quan-
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Figure 1.1: Quantum criticality: blue lines separate different ordered phases emerging
upon decrease in temperature for a given parameter g, while gc determines a zero-
temperature second-order quantum phase transition between these phases; it is a QCP.
The QCR then arises at the intersection of the blue lines and spreads between the dashed
lines. Adapted from [5].

tum critical states [4]. The simplest way for a quantum critical behavior to emerge is
the quantum critical point (QCP). It is a point at T = 0 where a second-order quantum
phase transition occurs upon a continuous change of some control parameter. The quan-
tum critical regime (QCR) then arises above the QCP as one increases the temperature
(Figure 1.1).

A famous and well-supported example of a QCP is found in heavy fermion1 systems,
which have a normal (heavy) Fermi liquid phase and a non-Fermi-liquid phase, separated
by a quantum critical point; on top of that, there is usually also an antiferromagnetic (AF)
critical point [6, 7]. Another important manifestation of quantum criticality is linked to
cuprate2 high-Tc superconductors, with the exception that the QCP naturally does not
exist, since the superconducting phase covers the region where the QCP is expected
to be (Figure 1.2). A similar example is offered by pnictide3 high-Tc superconductors
(Figure 1.3) [4].

Nevertheless, a QCP may be reached in cuprates if superconductivity is suppressed
by a strong magnetic field, although it is more likely that one gets a zero-temperature
SM phase [4, 8]. Indeed, one should be aware that quantum critical behavior sometimes
spreads across a finite interval of parameters (at T = 0), so that instead of a point a
quantum critical phase emerges, and the best candidate for a quantum critical phase is
precisely the SM phase of the cuprate superconductors (the transparent region between
the dopings nFSR and nc on Figure 1.2).

In contrast to the great diversity of the ordered (symmetry-broken) phases, the strange
metals are quite robust and share some key common properties. One of their hallmarks
is the resistivity which is linear in temperature T , unlike the quadratic dependence of

1Heavy fermions are quasiparticles that emerge due to the Kondo interaction between strongly corre-
lated f -electrons and the electrons in a conduction band. Their effective mass exceeds the electron mass
up to a hundred times, leading to the attribute “heavy”.

2Cuprates are compounds with alternating layers of conducting copper-oxide and some insulating
doped metal oxide, which serves as electron/hole reservoir.

3Pnictides are binary compounds of the elements in the fifteenth group of the periodic table.
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Figure 1.2: A schematic phase diagram of electron-doped cuprates with two-dimensional
Fermi surfaces for various doping regions. Adapted from [8].

an ordinary metal [9]. Such a scaling usually spreads from a very low4 T up to the very
high temperatures (even to the melting point), violating the Mott-Ioffe-Regel (MIR) limit.
This limit is reached when the mean free path becomes equal to the lattice constant. For
quasiparticle-based transport, it manifests as the saturation of the resistivity. Its viola-
tion clearly indicates that coherent quasiparticles are not the correct degrees of freedom.
Metals that do not saturate at the MIR limit are called “bad metals”. However, unlike the
true bad metals, the strange metals have very low resistivity at low T . As an illustration,
on Figure 1.3 we show the temperature dependence of the resistivity of a pnictide – in
the red region it is linear, indicating a strange metal [4, 9].

The phenomenology considered above plus the absence of a conventional field-theoretical
explanation hint at some deep and universal underlying physics. Certainly, strange metal
phases emerge from strongly correlated materials. A prototype example of a Hamiltonian
which exhibits strongly coupled physics, and yet is quite simple and intuitive to write
down, is the Hubbard model [10]

H = −t
∑
⟨i, j⟩

∑
σ

(
c†iσcjσ + c†jσciσ

)
+
∑
i

(Uni↑ni↓ − µ(ni↑ + ni↓)) . (1.1)

The strong on-site Coulomb interaction between the electrons (U) makes the Hubbard
Hamiltonian resistant to the usual perturbative methods of quantum field theory. Still, a
few approaches may give satisfactory results:

• Exact diagonalization (ED) – this is certainly the most accurate and straightforward
method, which does not involve any additional physical assumptions, but it works
well only for small lattices [11].

4In fact – from the critical temperature where superconductivity kicks in. Extrapolations predict
that the strange-metallic dependence goes all the way down to T = 0, but that is impossible to check
experimentally.
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Figure 1.3: The phase diagram for BaFe2(As1−xPx)2 with doping x and the temperature
exponent of the resistivity α. SDW denotes the spin density waves, the excitations of the
antiferromagnetic phase. Adapted from [4].

• Quantum Monte Carlo (QMC) – a numerical algorithm based on random sampling
of the path integral configurations when computing the partition function and its
functional derivatives (i.e. correlation functions). It does not attempt to find an
exact solution, so for larger systems it works better than exact diagonalization
(although it still does not admit very large lattices). However, QMC suffers from the
fermion sign problem – the terms in the partition function are not positive definite
due to the antisymmetrization of the fermionic wave-function, so the convergence is
very slow and we are limited to relatively high temperatures [11, 12].

• Dynamical mean-field theory (DMFT) – maps the lattice problem to a one-site inter-
action with an “electron bath”, i.e. to the Anderson impurity model. It works at low
temperatures, but its setup involves many assumptions. Also, its efficiency increases
with coordination number, i.e. with the dimensionality of the lattice. Therefore, it
becomes exact when the number of spatial dimensions is infinite [13, 14].

• Dynamical cluster approximation (DCA) – solves a QMC problem on a small lattice
which interacts with an electron bath. It is a variation on DMFT, which also works
well at low temperatures [15].

Unfortunately, none of these methods allows us to obtain the solution in a controlled
manner: we still need an adequate tool for dealing with strongly coupled field theories
in a predictable way. A natural candidate is thus the AdS/CFT correspondence, i.e.
the holographic duality [16, 17, 18]. It is a weak-strong duality developed within string
theory, which can establish the equivalence between a weakly coupled semiclassical theory
with gravity and a strongly coupled conformal field theory, offering thereby the means
for describing strongly correlated systems in terms of general relativity. Although such
field theories resemble the condensed matter systems only in their main features, the
AdS/CFT correspondence undoubtedly helps us to make a step forward in calculating
thermodynamic potentials and correlation functions for strongly correlated materials.

Despite being promising, the application of the AdS/CFT correspondence in condensed
matter physics, often called “AdS/CMT”, is still a young field. Its main success so far
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is the determination of various response functions and the description of some condensed
matter systems in terms of an effective field theory [19, 15]. Yet, what is genuinely novel
are recent attempts at enhancing the holographic models by inclusion of an ionic lattice.
Such attempts are still few and far apart, and almost all pertain to one-dimensional chains.
A two-dimensional lattice is rarely studied, and no one has ever computed either a response
or correlation function in such a background. This is so because the construction of 2D
lattices calls for solving the Einstein-Maxwell-dilaton (EMD) equations with oscillatory
boundary conditions, which poses one of the most difficult static problems in numerical
relativity.

In that regard, we expand the field of AdS/CMT. Indeed, our goal is to construct a
holographic square lattice by the means of varying chemical potential and to probe the
strange-metallic nature of the system from the perspective of the Luttinger theorem. In
order to access the strongly coupled field theory and determine the corresponding electric
charge density, we solve the EMD equations.

Since the AdS/CFT correspondence calls for an interdisciplinary approach and involves
both high- and low-energy physics, we have dedicated a large portion of the thesis to the
explanation of the formalism and its usage: in the next chapter we lay the foundations
for holographic duality, and consequently, in chapter 3, we explain the principles of its
application in condensed matter physics. The rest of the thesis brings the discussion of
our original results. Namely:

1. we have constructed an ionic 2D holographic lattice (chapter 4) and these results
were used in the first study of fermionic spectra in such a background: F. Herček,
V. Gecin and M. Čubrović, Photoemission “experiments” on holographic lattices,
arXiv:2208.05920 [20];

2. in particular, we have found the analytical solution to the EMD equations with
lattice symmetry in the vicinity of an arbitrary-temperature horizon and we have
proved that the lattice corrections to the metric are indeed irrelevant in the near-
horizon region [21, 20] (chapter 4);

3. we have found that this “IR solution” may be extended all the way to the “UV
region” near the AdS boundary (chapter 5);

4. we have determined the gauge and dilaton fields solving the subset of the EMD
equations (chapter 5);

5. we have computed the electric charge density and tested the validity of the Luttinger
theorem [22, 23] (chapter 6).
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Chapter 2

The formalism of AdS/CFT

2.1 Theoretical framework

In this section we are going to examine a few key theoretical concepts underlying the
holographic duality (AdS/CFT correspondence, gauge/gravity duality). These tools are
essential both for the rigorous string-theoretical approach (“top-down”) and for its con-
densed matter applications, which typically consider phenomenological backgrounds, not
those obtained from string theory (“bottom-up”).

2.1.1 Anti-de Sitter space-time (AdS)

AdSd+2 space-time is a (d+2)-dimensional maximally symmetric solution of the Einstein
equations, with d being the number of space dimensions on its boundary.1 The term
maximally symmetric refers to the fact that such spaces have the maximal number of
Killing vectors (which equals the number of the independent components of the metric).
Consequently, symmetry constrains the form of the Riemann tensor for such a space,
because it cannot depend on derivatives of the metric. Therefore we postulate:

Rµνρσ = C(gµρgνσ − gµσgνρ). (2.1)

Contracting (2.1) twice and using the Biancchi identity, it is easy to show that C is a
constant. Solving the Einstein equations with Λ < 0 we get

R =
2(d+ 2)

d
Λ. (2.2)

This space-time has a negative curvature and corresponds to the Lorentzian generalization
of a hyperboloid. Its isometry group is SO(2, d+ 1).

If we define

Λ = −d(d+ 1)

2L2
, (2.3)

AdSd+2 space-time may be viewed as a (d+ 2)-dimensional hypersurface

−X2
−1 −X2

0 +
d+1∑
i=1

X2
i = −L2, (2.4)

1This convention is going to be more clear in the sections to come.
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embedded in a (d + 3)-dimensional Minkowski space with two time directions. The pos-
itive constant L is called the AdS radius.2 If we transform the coordinates as X−1 =
L cosh ρ cos τ , X0 = L cosh ρ sin τ and Xi = L sinh ρ xi, with ρ ∈ [0, ∞), τ ∈ [0, 2π] and∑d+1

i=1 x
2
i = 1, we find the induced metric on the embedding (2.4):

ds2 = L2
(
dρ2 − cosh2ρ dτ 2 + sinh2ρ dΩ2

d

)
. (2.5)

Extending τ to the whole real axis recovers the universal cover of AdSd+2 in global co-
ordinates. Defining sinh ρ = tanφ, with φ ∈ [0, 2π], it may be shown that AdSd+2 is
topologically equivalent to a cylinder with a d-sphere at each point [15, 24].

On the other hand, the coordinate transformation X0 = Lt/z, Xi = Lxi/z (i =
1, . . . , d) and Xθ(±1)d±1 = (L2 ∓ z2 ± t2 ∓

∑d
i=1 x

2
i )/(2z), with t, xi ∈ R and z ∈ (0, ∞)

being the inverse of the radial coordinate r, gives us a portion of this cylinder, a chart
called Poincaré patch. Its metric is

ds2 =
L2

z2

(
−dt2 + dz2 +

d∑
i=1

dx2
i

)
. (2.6)

We will find the Poincaré patch convenient because in these coordinates the AdS boundary
(z = 0) is a Minkowski space-time [15].

2.1.2 Conformal field theory (CFT)

The isometries of an AdS space-time exhibit conformal invariance near its boundary [24].
Such a symmetry suggests that a link between the physics at the AdS boundary and
conformal field theory might be established. We will explore this connection in section
2.2 in detail, but we first discuss the basic properties of CFTs.

A diffeomorfism ϕ between manifolds (M, g) and (N , g′) is said to be a conformal
map if there exists a smooth map Ω on M, called conformal factor, such that ϕ∗g′ = Ω2 g.
Writing out explicitly the coordinate dependence, we get [25]

g′ρσ(x
′)
∂x′ρ

∂xµ

∂x′σ

∂xν
= Ω2(x)gµν(x). (2.7)

We see that conformal map preserves angles. Substituting an infinitesimal transformation
x′ = x + ζ(x) in (2.7) and considering the Minkowski metric η in d + 1 dimensions, we
easily find the conformal Killing equation:

∂(µζν) =
1

d+ 1
(∂ρζρ)ηµν . (2.8)

Taking derivatives of (2.8), permuting the indices and making linear combinations of the
differential equations derived in such a way, after some analysis we finally conclude that

ζµ = aµ + bµνxν + cµνρxνxρ, (2.9)

where bµν = α ηµν + ωµν , for some α ∈ R and ωµν being antisymmetric, and cµνρ =
2ηµ(ρbν) − ηνρbµ for some vector b [26].

2Loosely speaking, it is the radius of curvature.
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The transformation does not depend on a particular choice of coordinates, so we may
consider every term in (2.9) separately. We immediately recognize that aµ and ωµν are the
parameters of the Poincaré group; on the other hand, α is the parameter of the scaling
transformation x → x′ = eαx, called dilatation, while the vector b determines what is
known as the special conformal transformation: x → x′ = x−x2b

1−2b·x+b2x2 . Thus we get the
conformal group SO(2, d+ 1) as an extension of the Poincaré group [26].

It is expected that relativistic Poincaré-invariant theories are invariant under the
whole conformal group at sufficiently high energies, but it is not the only application
of CFT. Second-order phase transitions are characterized by the divergence of the corre-
lation length, so that the system under consideration becomes scale invariant. In other
words, the renormalization group flow ends at a stable fixed point and we loose the sense
of scale. Therefore, we find that CFTs are equally well suited for condensed matter
physics.3 The same applies to quantum critical points, and experimental results imply
that we should also consider conformally invariant quantum critical phases [15].

2.1.3 The large N limit

Not only that CFTs may be related to AdS space, but their supersymmetric versions also
naturally arise in string theory, describing the systems with a large number of constituents.
Before we close the circle matching such theories with general relativity in AdS space-
times, we introduce an indispensable tool for managing the QFTs with many degrees of
freedom. In our derivations we follow mainly [27].

Let us consider a Yang-Mills theory with N colors. It is a non-Abelian field theory,
meaning that the gauge fields are represented by matrices in the adjoint representation
of the SU(N) group. Its action (without matter) is given by

SYM = − 1

2g2

∫
d4xTrF 2. (2.10)

Let us redefine the coupling constant to be

λ = g2N. (2.11)

This is the ’t Hooft coupling, which is supposed to be fixed for every value of N [28]. The
action then becomes

SYM = −N

2λ

∫
d4xTrF 2. (2.12)

The propagator is

⟨Ai
µ j(x)A

k
ν l(y)⟩ = ∆µν(x− y)

(
δilδ

k
j −

1

N
δijδ

k
l

)
, (2.13)

where ∆µν is the propagator for a single gauge field, and the 1/N term arises because the
SU(N) generators are traceless. In the large N limit the formula (2.13) reduces to

⟨Ai
µ j(x)A

k
ν l(y)⟩ = ∆µν(x− y)δilδ

k
j , (2.14)

3An important difference is that such a scale invariance can be studied independently for time and
space dimensions, when the time and space scalings are related by dynamical critical exponent. We will
examine this in more detail in section 3.2.
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while the symmetry group becomes effectively U(N).
The fact that the gauge fields are matrices is very convenient, because we can track the

charge carried by each index separately. We can thus define new Feynman rules replacing
the usual wavy line with two straight lines representing top and bottom indices. When
such a line is closed, meaning that we have taken the trace, we get an additional factor
of N . Following the standard rules for extracting the propagators and vertices from
the action, we conclude that the propagator scales as λ/N , while the vertices scale as
N/λ. Taking into account the new Feynman rules too, we see that an arbitrary Feynman
diagram D scales as

D ∼ NF+V−EλE−V , (2.15)

where F stands for the number of index loops (faces), E for the number of propagators
(edges) and V for the number of vertices.

Further investigation of diagrams tells us that every diagram can be drawn on some
Riemann surface, so we come up to the conclusion that diagrams can be equivalently
described by the corresponding surface topology. Recalling the definition of the Euler
characteristic χ = F +V −E = 2− 2H, we realize that a diagram scales according to the
number of holes H of the Riemann surface:

D ∼ NχλE−V . (2.16)

The important consequence is that in the large N limit planar diagrams (those that can
be drawn on the sphere) are the leading ones, while all other diagrams are suppressed by a
factor of 1/N . Thus, provided that perturbation theory can be applied, summing only the
planar diagrams simplifies the calculation to a great extent. The same applies for matter
fields in the adjoint representation, except that the fields may need to be renormalized,
so we can get N/λ in front of the action [27, 24, 15, 28].

We will be mainly interested in gauge-invariant operators that cannot be further de-
composed, i.e. single-trace operators O = Tr(Φ1Φ2 . . .). Adding source terms of the form

N

∫
d4xOiJi (2.17)

into the action, we are able to compute connected Green’s functions by taking the func-
tional derivatives of the generating functional Z[{Ji}] with respect to the sources {Ji}:

⟨O1 . . .On⟩c =
1

(iN)n
δn logZ[{Ji}]
δJ1 . . . δJn

∣∣∣∣
Ji=0

. (2.18)

We easily find that the n-point Green’s function scales as N2−n, which means that the
connected part of a disconnected Green’s function is subleading. Therefore

⟨O1 . . .On⟩ ≈ ⟨O1⟩ . . . ⟨On⟩, (2.19)

and we may interpret the large N limit as a semiclassical limit (in the sense that long-
range quantum correlations disappear and the correlation functions factorize). Such a
factorization is an important property of the large N limit since it leads to decoupling
and, consequently, complete suppression of multi-trace operators. That is the reason why
we consider only the single traces [15].
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2.2 AdS/CFT: the correspondence

The AdS/CFT correspondence relates a gravitational theory in the bulk of AdSd+2 space-
time with a (d + 1)-dimensional CFT living on its boundary, with one theory being
weakly and the other strongly coupled. The very idea that the bulk information is some-
how encoded in its boundary gave birth to the synonym “holographic principle”. The
correspondence was proposed by Maldacena in 1997 [16] and fully established by Gubser,
Klebanov, Polyakov and Witten in 1998 [17, 18] as a consequence of the duality between
the open and closed strings in Type IIB string theory. In this section we will first briefly
outline the original idea, motivation and theoretical background of AdS/CFT from string
theory perspective. We will follow mainly the concept of [19]. Then, we will offer an
alternative viewpoint, independent of string theory and based solely on CFT and general
relativity (GR), which informally identifies the extra dimension of AdS with the energy
scale of the renormalization group (RG) flow [15, 19].

String theory describes elementary particles as emergent entities – excitations of tiny
vibrating one-dimensional objects. These are the open and closed strings. The way in
which a string vibrates, its vibration frequency and tension, determine mass, charge and
spin of a particle. Yet, strings are not the only objects string theory deals with. The
ends of a string must satisfy some boundary conditions (for example, a closed string has
periodic boundary conditions). Thus, if one end is fixed, we reveal a manifold defining
the Dirichlet boundary condition. Such a manifold is a classical field configuration arising
from closed strings. Depending on its dimension, we call it Dp brane, which is short for
p-dimensional Dirichlet membrane. Therefore, a D0 brane is a point particle, a D1 brane
is a string, while a D2 brane is a membrane. We will examine the behavior of D3 branes,
three-dimensional generalizations of a membrane.

We consider a stack of N coincident D3 branes living in nine spatial dimensions (in the
framework of IIB string theory). These branes gravitate and their gravitational strength
depends on the string constant gs. We will define

λ = gsN. (2.20)

If λ ≪ 1, gravitational effects are negligible and we get N coincident D3 branes living
in flat space. Such a system has low-energy excitations carried by N2 strings stretched
between all possible pairs of branes. The symmetries under the permutations of starting
and ending branes form the SU(N) group. This symmetry and other general requirements
lead to the conclusion that the open string excitations define an N = 4 super Yang-Mills
(SYM) theory. It is a conformal quantum field theory with the Lagrangian density given
by

L ∝ N

λ
Tr
(
F 2 + (∇Φ)2 + iΨ̄Dµγ

µΨ+ iΨ̄[Φ, Ψ]− [Φ, Φ]2
)
. (2.21)

This Lagrangian indeed has the SU(N) symmetry and all fields4 in (2.21) are in the
adjoint representation. It is easy to recognize λ as the ’t Hooft coupling, with gs = g2YM ,
and to conclude that in the large N limit we get the theory elaborated on in the previous
section. We should also mention here that an open string stretching between two branes
may be viewed as a closed string traveling from one brane to the other, thus revealing the
open-closed string duality.

4Besides N2 − 1 gauge fields, there are six bosonic fields Φ and four fermionic fields Ψ.
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Now, let us consider the opposite limit, λ ≫ 1. In this case the gravity is strong and
the branes collapse upon themselves. As a result we get an object called black brane. Its
name suggests similarity with a black hole; and indeed, it can be described by a planar
black hole solution of the Einstein equations. Accordingly, a black brane has an event
horizon, which is the place of infinite redshift, as measured by an observer at infinity.
Therefore, the low-energy excitations in this case occur in the vicinity of the horizon,
while their carriers are now closed strings.

Expanding the black brane solution in the vicinity of the horizon, we find5 that the
near-horizon geometry looks like AdS5×S5. Its metric is

ds2 =
L2

z2

(
−dt2 + dz2 +

3∑
i=1

dx2
i + z2dΩ2

5

)
. (2.22)

The t and xi coordinates correspond to the brane worldvolume, while the five-sphere
surrounds the brane at the radius 1/z. Neglecting S5, we see that the theory effectively
lives in AdS5 space-time with Minkowski boundary, as we noticed at the end of 2.1.1.

The AdS radius in (2.22) satisfies:

L = λ1/4ls = N1/4lP . (2.23)

In the large N limit L ≫ ls and L ≫ lP , so high energy excitations and quantum gravity
effects governed respectively by ls and lP can be neglected. What remains is the classical
theory of gravity, and the low energy spectrum of the black brane can be described by
general relativity.

Following the already established open-closed string duality and the fact that both
of these limits have SO(2, 4) symmetry, Maldacena came to the idea that these two
descriptions could be matched too. He proposed that the system of N D3 branes in IIB
string theory could be described either by IIB supergravity on AdS5×S5 or by N = 4
SYM living on the AdS boundary. On top of that, if N = 4 SYM is weakly coupled,
gravity should be strongly coupled and vice versa. Therefore, as we have noticed in the
previous paragraph, in the large N limit (λ ≫ 1) we get a non-perturbative quantum
field theory equivalent to classical gravity. The AdS/CFT correspondence thus indeed
represents a weak-strong duality.6 It is also a holographic duality, because the CFT living
on the boundary of AdS space-time seems to act as a hologram with respect to the AdS
bulk.

Soon after Maldacena’s discovery other types of this correspondence were also found;
and today, it is often applied independently of the string-theoretical framework. There
are even conjectures that the holographic principle is a fundamental law of nature, inde-
pendent of string theory or more fundamental than strings, but such ideas are still quite
speculative. It is also believed that for Λ > 0 holography applies too, but dS/CFT is still
poorly understood.

Although the duality is often labeled as a conjecture at the level of rigor of mathematics
or mathematical physics, it is strongly supported by physical reasoning and numerous

5Since we start from the full ten-dimensional string theory, the black brane solution also lives in ten
dimensions.

6This is the S-duality. It establishes a link between type I and heterotic-O, as well as type IIA and
heterotic-E string theories. Under this mapping IIB string theory is self-dual, because both the CFT and
the gravity sector belong to the same theory.
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examples, so at the usual level of rigor in physics it is a well-established result. In the
next section we will explain some practical aspects of holographic calculations.

However, before we proceed, we should present another, less formal, but more intuitive
perspective on holography. Let us observe a (d+1)-dimensional CFT on different energy
scales, i.e. the copies of the same theory along the renormalization group flow, from the IR
to the UV limit. Let the energy scale be r. Considered as an additional dimension, it yields
a curved (d+2)-dimensional space-time. If we want to preserve the conformal invariance,
the form variation of its metric should vanish, meaning that the scaling transformation
must be an isometry. That constrains the form of the “CFT+r” metric to be

ds2 = f(r)ηµνdx
µdxν + g(r)dr2, (2.24)

where the Greek indices denote the CFT coordinates. Taking into account that r is an
energy scale, we know that under the transformation xµ → x′µ = λxµ it should scale as
r → r′ = r/λ. The metric then must be

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2. (2.25)

We recognize exactly an AdS space-time – if we define z = 1/r, the previous formula is
identical to (2.6). The correspondence thus relates the RG flow with the dual theory of
gravity, which is sometimes expressed as RG = GR [15].

This point of view is convenient and quite common in practice, but it may not be
completely true. Its validity is still a research topic and calls for a revision.

Recalling that the vacuum state of a boundary CFT corresponds to pure AdS, one
naturally expects that a modification of CFT (i.e. addition of new terms into the action)
induces a modification of the gravity sector (which is considered equivalent to the change
in the RG flow). Therefore, one needs to add new terms into the Einstein-Hilbert action
[15, 24]. The choice of these terms will be discussed in the next section.

2.3 Holographic dictionary

Suppose that the AdS bulk contains a set of fields {ϕi}. The presence of these fields mod-
ifies the metric, but, due to the cosmological constant, the space-time remains asymptoti-
cally AdS. We want to find the generating functional for such a system. Since the data at
the AdS boundary determine the solution in the interior (together with some reasonable
conditions for the deep interior), it makes sense to consider the action as a functional of
boundary values of the bulk fields, which gives [15, 19, 24]

Zbulk[{ϕi(x, z)|z=0 = hi(x)}] =
∫ ∏

i

Dϕi e
iN2Sbulk[{ϕi}], (2.26)

with x = (t, x)T. An important insight, made by Gubser, Klebanov, Polyakov and Witten
in 1998 [17, 18], was that, due to the correspondence, a generating functional defined in
this way equals the generating functional of the boundary theory, with the boundary
values of the bulk fields taking the role of sources in the dual CFT [19], i.e.

Zbulk[{hi(x)}] = ZCFT [{hi(x)}]. (2.27)
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This is the famous GKPW formula, which enables us to do computations. More than
that: this relation suggests that the AdS/CFT correspondence may be valid regardless
of the string theory framework, relaxing its constraints to a few specific dualities. As
a result, we are able to apply the so-called bottom-up approach where the basics of the
correspondence can be understood just from the symmetries and perturbative dynamics of
semiclassical gravity, allowing us to “engineer” the bulk and boundary theories according
to our own needs. It stands in contrast to the top-down approach, when string theory
constrains their content [15].

Still, (2.27) looks a bit complicated. Therefore we pass to the Euclidean coordinates.
If the coupling on the gravity side is weak, meaning that the CFT on the boundary is
strongly coupled, the partition function (2.26) can be approximated by its saddle point
[24, 19]. We obtain〈

eN
∫
dd+1xOi(x)hi(x)

〉
CFT

≈ e−N2Sbulk[{ϕ∗
i (x, z)|z=0=hi(x)}]. (2.28)

Here {ϕ∗
i } are the solutions to the bulk equations of motion.

The factor of N2 in front of the bulk action is singled out for convenience, because
the leading terms of the effective action of the CFT in the large N limit are of the same
order. From now on we drop it out, because it can be absorbed into the action.

Now we are able to compute Green’s functions according to (2.18). We have to find the
bulk action and take functional derivatives with respect to the boundary sources {hi(x)}.
But how does one relate the CFT operators to the operators in the bulk? The answer is
provided by symmetry.

Let us consider a bulk gauge field Aa. It generates local symmetries in the bulk and
couples to some current Ja. If we transform it as Aa

µ → Aa
µ + ∇µχ

a, the corresponding
boundary term of the action transforms to∫

dd+1x
√
−γ(Aa

µJ
µ
a − χa∇µJ

µ
a ). (2.29)

Symmetry obviously requires that ∇µJ
µ
a = 0. Clearly, Ja is a conserved current; and,

according to the Noether’s theorem, it should determine also a conserved charge. We
thus conclude that a local symmetry in the bulk translates to a global symmetry at the
boundary, while the bulk gauge fields source conserved currents of the dual QFT7 [19].

Furthermore, the boundary terms should be invariant under rotations. Taking into
account that the generator of rotations is angular momentum, we see that the dual oper-
ators must have equal spins. Therefore, spin is the second criterion for matching up the
operators. Accordingly, a scalar field in the bulk should be dual to a boundary operator
such as, for example, TrF 2, TrΦ2 or Tr(Ψ̄Ψ); similarly, fermions should be dual to the
single-trace operators containing an odd number of fermion operators Ψ [15, 19].

For the end of this section we note that, because the metric as a gauge field represents
the graviton, these criteria indicate a duality between the metric and momentum-energy
tensor. Consequently, every change in T µν (i.e. in the QFT stress-energy tensor) induces a
change in the bulk geometry. It is equivalent to the modification of the RG flow anticipated
in the previous chapter. Thus, the idea of RG description is in this case justified [15].

7AdS/CFT is therefore considered to be also a global-local duality.

13



2.4 Temperature and charge density

Suppose that we have an electrically charged field theory at finite temperature. How do
we introduce the temperature and electric flux in its AdS dual? Recall that the charge
density on the boundary is dual to a scalar potential in the bulk. The idea is to have
something like a reservoir for these quantities. Recalling Hawking’s discovery that black
holes emit thermal radiation, we realize that temperature can be introduced by placing a
black hole into the interior of the AdS space-time. On the other hand, electric field may
be constructed in two ways. We have to put the electric charge into the gravity sector, and
it can be done either by inclusion of a charged black hole/brane or some charged matter
outside its event horizon. So we get what are usually called fractionalized and cohesive
charge densities, respectively [19, 15]. We will use only the first approach. Accordingly,
we have to examine black hole thermodynamics in more detail.

Following a series of thought experiments, Bardeen, Carter and Hawking eventually
recognized the black hole equivalents of thermodynamic laws [29, 30]. It was in 1973, a
year before Hawking finally proved that black holes are indeed dissipative [31]. For a black
hole with mass M , angular momentum J , charge Q and event horizon area A, spinning
at angular velocity Ω and sourcing electrostatic potential Φ, these laws state that

0. κ = const at horizon;

1. δM = κ
8πG

δA+ Ω δJ + Φ δQ;

2. δA ≥ 0;

3. it is impossible to approach κ = 0 through any physical process.

Consequently, the temperature and entropy are given by

T =
κ

2π
, S =

A

4G
=

A

4lP
. (2.30)

Here κ is the surface gravity. It is the force an observer at infinity should apply in order to
keep a unit mass near the horizon at rest. Although it formally defines the temperature,
we will use the Euclidean gravity approach, due to Hawking and Gibbons, to compute
the temperature in a simpler way [15, 32].

The laws of black hole thermodynamics open many profound questions. Answering
these questions is still a hot research topic, and the ultimate explanation perhaps depends
on advances in quantum gravity [29, 33]. We will not discuss this in any detail, because
these issues are mainly irrelevant for this thesis. We just note that the entropy scales with
surface instead of volume. From the viewpoint of classical thermodynamics, this is very
unusual, but it perfectly matches our idea that the system under consideration lives on
the boundary of space-time: the entropy of the AdS bulk with a black hole appropriately
corresponds to the entropy of a QFT with one dimension less.

We now continue the discussion on temperature. We have just seen its relation to the
event horizon. As we know, the event horizon is a hypersurface of no-return where the
metric components gtt and grr vanish. Besides, it is of particular importance to us since
it defines all of the boundary conditions for bulk fields. Recalling that the boundary is
asymptotically always AdS, we see that the CFT actually depends on the geometry of the
bulk interior (i.e. the type of black hole in the center of the space-time). It is equivalent
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to the notion that a change in temperature is reflected only in the IR physics, leaving
the UV region untouched [19]. So, we are actually going to examine the near-horizon
geometry of an arbitrary black hole.

Consider a generic, diagonal black hole solution in spherical coordinates after Wick
rotation:8

ds2 = gtt(r)dτ
2 +

dr2

grr(r)
+ f(r)dΩ2

d. (2.31)

We first expand the metric (2.31) near the horizon rh and then introduce a new variable

ρ = 2
√
r − rh/

√
(g rr)′ (rh) in order to get

ds2 ≈ ρ2

4
g′tt(rh) (g

rr)′ (rh)dτ
2 + dρ2 + f(rh)dΩ

2
d. (2.32)

Because ρ = 0 for r = rh, the first term in the previous formula vanishes, which is
equivalent to shrinking the τ coordinate to a point. Taking into account that horizon is
not a special point, and therefore cannot be singular, we realize that τ and ρ correspond
to polar coordinates. With redefinition τ = 2φ/

√
g′tt(rh) (g

rr)′ (rh) it is easily seen that

τ has period 4π/
√

g′tt(rh) (g
rr)′ (rh). Now, recalling that Euclidean time is β-periodic

(β = T−1), we finally find the relation defining the temperature:

T =

√
g′tt(rh) (g

rr)′ (rh)

4π
. (2.33)

In this way we have found also the temperature dependence of the boundary QFT.

8Wick rotation may be a bit troublesome, because it erases the track of causality; but we are interested
only in stationary systems in thermodynamic equilibrium, so it should not bother us.
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Chapter 3

A look at AdS/CMT

In this chapter we review an important aspect of holographic duality in condensed matter
physics: the classification of holographic ground states in terms of their scaling properties.
The purpose of this review is twofold. We first want to show how the general formalism
works in practice, preparing the reader for our original setup. On the other hand, we
simultaneously introduce a few simple results relevant for the rest of this work.

3.1 RN metal

3.1.1 The Reissner-Nordström black hole

We analyze the Reissner-Nordström (RN) solution to the Einstein-Maxwell (EM) equa-
tions with a negative cosmological constant in d + 2 dimensions. We want to study a
system at finite temperature and finite density, so we put a charged black hole into the
center of the AdSd+2 space-time. The metric solving the Einstein equations is

ds2 =
r2

L2

(
−f(r)dt2 +

d∑
i=1

dx2
i

)
+

L2

r2
dr2

f(r)
, (3.1)

with f(r) being a redshift function

f(r) = 1 +
Q2

r2d
− M

rd+1
, (3.2)

where Q and M are respectively the charge and mass of the black hole. The event
horizon is determined by f(r) = 0, which gives a quadratic equation. Depending on the
parameters M and Q, it might have

1. no solution, which means that we have a naked singularity;

2. one, extremal, solution r∗;

3. two solutions, r±.

For now, we are interested neither in the naked singularity nor in the inner horizon, if it
exists. For our needs, all physics starts at the outer horizon.
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Yet, we are obliged to say a few words on the extremal solution. It may be shown that
the mass and charge, in order to give a non-negative discriminant, satisfy the inequality
[15]

M ≥ 2d

d− 1

(
d+ 1

d− 1

) d+1
2d

Q
d+1
d . (3.3)

This means that an extremal black hole cannot entirely evaporate through radiation.
There is a limit upon which the black hole “freezes”, conserving its electrostatic energy.
Such a black hole has a single, finite horizon which leads to a nonzero ground state entropy
of the black hole, as well as of the dual field theory. It certainly contradicts the third
law of thermodynamics, but we need not pay much attention to it, because AdS-RN is
pretty much a toy model. Nevertheless, its implications for AdS/CMT were profound on
a conceptual level.1

Now, let us again consider the near-horizon geometry. Expanding the metric near
its extremal horizon2 and transforming the radial coordinate to ζ = L2

2/(r − r∗), with
L2 = L/

√
d(d+ 1), we find

ds2 =
L2
2

ζ2
(−dt2 + dζ2) +

r2∗
L2

d∑
i=1

dx2
i . (3.4)

Obviously, the low-energy physics is governed by the AdS2 × Rd geometry. It is peculiar
because it has an anisotropic scaling symmetry. Namely, the space coordinates do not
scale, meaning that the scale invariance exists only in time. This is recognized as a
quasi-local (temporal) quantum critical state in the boundary QFT. This is an extremely
important result because such a scaling was observed both in experiment and in DMFT
simulations. Although all these examples are very different from the predictions of AdS-
RN regarding the details, they show that holography at least gives correct qualitative
predictions of new physics in strongly correlated materials. Interestingly, the RN strange
metal, as we call this model, does not have any tunable parameters defining a quantum
phase transition. Instead, we are dealing with a quantum critical phase [15, 19].

We conclude this section citing the solution to the Maxwell equations. As we have
explained, Aµ couples to Jµ in the boundary QFT. Since we are interested only in the
charge density, we set A = 0. On the other hand, we know that particle density couples
to chemical potential. Setting the elementary charge to be e = 1, one readily finds that
At = µ at the boundary. Demanding also that At vanishes at the horizon, we get [15, 19]

At = µ

(
1−

(r+
r

)d−1
)
, (3.5)

where we have traded all constant terms for µ.3

3.1.2 Green’s functions I

Before we continue with the examination of the AdS2 × Rd geometry, we digress for a
while in order to sketch a derivation of holographic Green’s functions. For simplicity, we

1Actually, it is easy to show that the horizon can be squeezed to zero if we introduce a dynamical
coupling for electromagnetic field [15]. It is the Einstein-Maxwell-dilaton model, which we elaborate on
in the next section.

2Notice that f ′(r∗) = 0 at T = 0 according to (2.33). It is said that f(r) has a double zero at the
horizon.

3In the case of the extremal horizon: r+ ≡ r∗.
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consider a free scalar field in pure AdSd+2. Its equation of motion reads

1√
−g

∂µ
(√

−ggµν∂νϕ
)
= m2ϕ. (3.6)

We are not interested in its complete solution; instead, we seek only its expansion near
the boundary. Assuming the ansatz ϕ(t,x, z) = (z/zh)

λϕ(t,x), with zh = 1/rh, after
performing the Fourier transformation ϕ(t,x) → ϕ(ω,k) we get a linear combination of
two branches as the general solution [15, 19, 34]:

ϕ(ω,k, z) = A(ω,k)

(
z

zh

)λ−

+ . . .+B(ω,k)

(
z

zh

)λ+

+ . . . , (3.7)

with

λ± =
1

2

(
d+ 1±

√
(d+ 1)2

4
+m2L2

)
. (3.8)

Demanding that λ± ∈ R, we constrain possible values of the mass-squared: m2L2 >
−(d+ 1)2/4.4 This is the celebrated Breitenlohner-Friedmann (BF) bound, which has to
be obeyed to avoid an instability of the AdS boundary [15].

The role of the two branches in (3.7) is determined by their exponents λ±. Roughly
speaking, the on-shell boundary action has the form

Sbdy ∝
∮
z=ϵ

dω ddk

(
2λ−A

2z−
√

(d+1)2

4
+m2L2

+ (d+ 1)AB + . . .

)
, (3.9)

where we have taken into account that the induced metric on the boundary and the
outward pointing unit normal read γµν = (L2/ϵ2)ηµν and n = −(ϵ/L)∂z, respectively.
Since we suppose the limit ϵ → 0, the first term in (3.9) is potentially divergent and needs
to be renormalized. Upon introduction of an appropriate counterterm, we are left with
the first subleading term ∝ AB, so we realize that A and B take the roles of the boundary
source and current, respectively [15, 19].

Writing the leading power of (3.7) a bit differently, we can single out the dimension
of the boundary space-time: λ− ≡ d+ 1−∆,

∆ =
1

2

(
d+ 1 +

√
(d+ 1)2

4
+m2L2

)
. (3.10)

Since the scalar field should remain invariant under the scaling transformation, meaning
that the source scales as A → λ∆−d−1A, it is easy to conclude that ∆ represents the
scaling dimension of the dual operator [19]:

O(x) → λ−∆O(λx). (3.11)

Finally, we observe that, according to linear response theory, we could also have said that
B is a response to the source A. Then the Kubo formula tells us that B ∝ A, and we
reveal the two-point correlation function:

G(ω,k) ∝ B(ω,k)

A(ω,k)
. (3.12)

A specific contour choice for G (yielding e.g. a retarded propagator) is determined by
the near-horizon boundary conditions. In order to obtain the exact relation, one should
analyze the boundary action in detail [15, 34]. Since it is not of interest for us now, we
leave it out.

4AdS space-times allow for the negative mass-squared fields.
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3.1.3 Green’s functions II

The above conclusion can be readily applied to the case of AdS2 as the IR region of the
AdS-RN space-time. The result is thus often called “IR Green’s function” [35, 19]:

G
(IR)
R (ω,k) ∝ ω2νk , (3.13)

with

νk =

√
1

4
+m2L2

2 +
e2L2k2

8πG(d− 1)2µ2
. (3.14)

It is obtained from the boundary solution to the equation (3.6) in one space dimension
and in the ω → 0 limit, with the metric given by (3.4) [19]

ϕIR(k, ζ) ≈ A1ζ
1/2−νk + A2ζ

1/2+νk . (3.15)

Since ζ in (3.15) can be rescaled by ω [35], a generic form of Green’s function (3.12)
clearly yields the relation (3.13).

The exponent νk is dependent on momentum k, but otherwise the propagator is
momentum-independent, which implies a large number of degrees of freedom at low energy
[19]. This property stems from the anisotropic scaling described in 3.1.1.5

A difficulty arises when one wants to compute the full low-energy Green’s function.
Namely, it is impossible to take the limit ω → 0 and simplify the equation of motion
because it involves a term of the form ∼ ω2ζ2ϕ which diverges in the very-near-horizon
limit (ζ → ∞). Hopefully, it can be shown that for ω ≪ µ there exists an overlapping
region on the ωζ scale, where ωζ can be made arbitrarily small at the very horizon (due
to the definition of ζ), so that (3.15) indeed holds at the IR boundary, coinciding at the
same time with the solution in the remainder of the bulk [19, 35].

This “full” bulk solution reduces to the form of (3.7) at the full AdS-RN boundary,
i.e. in the z → 0 limit:

ϕ(ω,k, z) ≈ B1z
d+1−∆ +B2z

∆. (3.16)

Since the scalar field is real, with a linear equation of motion, one can view the coefficients
Bi as linear combinations of Ai (i = 1, 2). The resulting full Green’s function is then

GR(ω,k) =
b21 + b22G

(IR)
R

b11 + b12G
(IR)
R

, (3.17)

where the coefficients bij are, in principle, functions of ω and k. This is the well-known
matching procedure, often used in AdS/CMT [19, 35]. We see that the low-frequency
scaling of the spectra depends exclusively on the IR geometry [19].

A similar analysis applies to the fermions; only the exponents νk and the coefficients bij
differ.6 What is interesting in this case is the possibility to expand the Green’s function
around the Fermi surface (i.e. to expand the coefficients bij around ω = 0). Since it
is determined by the zero of the denominator in (3.17), the necessary condition for its
existence is that b11(0,kF ) vanishes. Then the Green’s function takes a familiar form
[15, 19]:

GR(ω, k⊥) ≈
Z

ω − vFk⊥ − ImΣ(ω, k)
, k⊥ ≡ k − kF . (3.18)

5It corresponds to the limit z → ∞ of the Lifshitz scaling, as we are going to show in the next section.
6A generic fermionic Green’s function is a matrix and so are the coefficients bij . Specifically, in the

case of the AdS-RN Green’s function these quantities are complex numbers.
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The imaginary part of the self-energy scales as ImΣ(ω, k) ∝ ω2νk . Since it determines the
lifetime of excitations, three cases are naturally distinguished [15, 19, 35]:

1. if 2νkF > 1, quasiparticles are well-defined and long-lived, but are not necessarily of
Landau type, with the ω2 scaling;

2. if 2νkF = 1, the self-energy becomes Σ(ω) = Σ̂ω log(ω/µ) (with Σ̂ ∈ C), indicating
the marginal Fermi liquid, sometimes used as a toy model of strange metals [3];

3. 2νkF < 1, which gives a divergent decay-rate, so we loose every trace of quasiparti-
cles, although the Fermi surface remains present.

The RN metal thus succeeds in describing the properties of Fermi surfaces with and
without quasiparticles. Actually, it was the first holographic construction to demonstrate
a rise of non-Fermi liquids in a controlled way. Yet, this model has to be improved in order
to give us more flexibility and versatility when it comes to the realm of its application.

3.2 EMD theory and the scaling atlas

Einstein-Maxwell theory can be enhanced by addition of a scalar field Φ. We consider a
particular theory which turns the gravitational and gauge couplings into the Φ-dependent
functions. Such a field is called dilaton and arises naturally in string theory setups as an
indispensable ingredient of top-down models. Exploring its origin is beyond the scope of
this work. Instead, we take it as a phenomenological generalization of the model, allowing
the coupling constants of gravity and electromagnetism to go dynamical. We follow [15]
and [19] for the most part.

The Lagrangian now reads

L =
R− 2Λ

16πG
− 1

2
(∂Φ)2 − Z(Φ)

4
F 2 − V (Φ). (3.19)

In accordance with the usual practice, we have redefined the metric in order to preserve
the Einstein-Hilbert action with a constant gravitational coupling (this is called Einstein
frame as opposed to string frame).7 The only dynamical coupling left is then Z(Φ) = e−2

eff .
Z and V may have different forms (with a common property that the choice of Φ = 0

must restore the usual EM action); in string theory, these are typically linear combinations
of exponentials, obtained from the requirement for conformal invariance on the worldsheet.
Therefore, these functions depend at least on two free parameters, called respectively α
and δ, resulting in a whole family of EMD theories at our disposal. All of them give rise to
a decoupled IR geometry with a specific scaling, allowing us at the same time to approach
the naked singularity. The most general form of a deep IR metric at zero temperature is
then

ds2 =
( r

R

)−2θ/d
(
−r2zdt2 + r2

∑d
i=1 dx

2
i

L2
+

L2

r2
dr2

)
, (3.20)

where R is a constant of integration.
If θ = 0, this is the Lifshitz metric. It is described by the dynamical critical exponent

z; if different from unity, z indicates a different scaling of time and space coordinates. We

7EMD theories allow for inclusion of more than one scalar field. When there are a set of scalars, this
redefinition cannot be done.
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have already met such a geometry in the previous section: with redefinition λ → λ1/z the
scaling {t,x} → {λzt, λx} of AdS2 can be translated into a Lifshitz scaling with critical
exponent z = ∞.

On the other hand, θ is the hyperscaling-violation exponent. When θ ̸= 0, the metric
(3.20) transforms as ds2 → λ2θ/dds2, so that, although covariant, it is no longer invariant
to rescaling of coordinates, as the line element gets multiplied by λ2θ/d. The meaning of
θ can be understood recalling that the perturbation of induced metric on the boundary
sources the stress-energy tensor of QFT:

Rθ

∫
dd+1x (δ0γ)

t
t ϵ. (3.21)

Since the induced metric is obtained by stripping off the overall factor of r−2θ/d/L2 in front
of the Minkowski part of (3.20), we are eventually left with a dimensionful constant Rθ.
Therefore, under a scaling transformation8 {t,x, r} → {λzt, λx, r/λ} the energy density
operator acquires an anomalous dimension θ. In other words, it transforms as ϵ → λ−∆ϵ,
with

∆ = z+ d− θ ≡ ∆ϵ − θ, (3.22)

where ∆ϵ is the usual scaling exponent, arising when hyperscaling is not violated. The
hyperscaling violation thus lowers the effective dimension of the system as well as the
scaling dimension of the free energy, implying a decrease in the number of degrees of
freedom and thereby the presence of the long-range entanglement.

We should emphasize that θ does not arise in Kadanoff’s classical theory of critical
exponents. It is a strictly quantum phenomenon, which justifies the classification of
strange metals as quantum matter.

Solving EMD equations near the horizon, it is eventually possible to express the above
exponents via the parameters α and δ. One then explicitly sees how the choice of EMD
model determines the IR geometry. Recalling the supposed equivalence between the IR
limit and a strange-metallic behavior, we expect that these parameters determine the
strange metals too. In other words, we hope that defining the two-parameter family
of classical theories of gravity we simultaneously end up with a classification of strange
metals, i.e. with their “scaling atlas”.9

8Note that (δ0γ)
t
t does not transform because of two different types of indices.

9One class within such a family should then comprise metals described by AdS2 in IR. It may be shown
that entropy density scales as s ∼ T (d−θ)/z, putting on the upper limit for θ. Keeping ratio η ≡ −θ/z
fixed and positive, with z = ∞, we are able to reproduce an RN metal without the residual ground state
entropy.
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Chapter 4

A holographic lattice in 2D

4.1 The setup

As we have advertised in chapter 1, our aim is to offer a description of a strongly correlated
system with an ionic lattice background in terms of holographic duality. We are interested
in a square lattice in thermodynamic equilibrium. Since it is a static, finite density system
at finite temperature, it is understood that the holographic dual is AdS4 equipped with a
charged black hole. Also, since the lattice is planar, we are going to use planar coordinates
on the Poincaré patch introduced in 2.1.1.

We follow a path similar to the one explained in the previous chapter, with a few
important differences. First, we note that the periodicity of the lattice, i.e. Z4 symmetry,
implies a periodic chemical potential, with a modulation δµ superimposed on its mean
value µ0. Defining the lattice constant to be a = 2π, it equals

µ(x, y) = µ0 + δµ cosx cos y. (4.1)

As we know, the boundary value of a gauge field should be

At(x, y, z)|z=0 = µ(x, y). (4.2)

We have set e = 1. For simplicity, we also define 8πG = L = 1, which gives Λ = −3,
according to (2.3).

Besides, a generic strange metal likely has some generic values for the exponents (θ, z),
in contrast to the AdS2 metal, where the spatial dimensions decouple from time in the
z → ∞ limit and the hyperscaling is not violated (hence θ = 0). Therefore, we expect to
have two freely tunable parameters α and δ, which means that we keep the whole EMD
action. So, in addition to the gauge field A = At dt, we include also a dilaton field Φ.
The bulk action is then

S =

∫
d4x

√
−g

(
R

2
− Λ− 1

2
∂µΦ ∂µΦ− V (Φ)− Z(Φ)

4
F µνFµν

)
+ Sbdy . (4.3)

The last term in (4.3) comprises boundary terms. Its purpose is to cancel out the di-
vergences which arise when one calculates the total action while computing, for example,
Green’s functions (see 3.1.2). These terms do not change the equations of motion and,
since we are not interested in EMD correlators, we will not pay attention to them any
more.
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The potentials Z and V , obtained from the top-down approach, read

Z(Φ) =
Z0

2
(1 + cosh(2αΦ)), V (Φ) = V0(1− cosh(2δΦ)). (4.4)

Note that for Φ = 0 the potential V vanishes, while Z reduces to unity, restoring the
original coupling constant – we notice that Z0 can be absorbed into the definition of A,
so we set Z0 = 1. Finally, varying the action (4.3) leads to the following set of equations:

1. Einstein equations

Gµν + Λgµν −
1

2
∂µΦ ∂νΦ +

Z(Φ)

2
F ρ
µ Fρν −

1

2
gµνLm = 0, (4.5)

with the matter Lagrangian Lm = −1
2
∂µΦ ∂µΦ− V (Φ)− Z(Φ)

4
F µνFµν ;

2. dilaton equation

gµν∇µ∇νΦ− dV (Φ)

dΦ
− 1

4

dZ(Φ)

dΦ
F µνFµν = 0, (4.6)

3. Maxwell equations
∇µ(Z(Φ)F

µν) = 0. (4.7)

This is in principle a system of fifteen nonlinear partial differential equations. Yet, dif-
feomorfism invariance of general relativity allows us to fix four components of the metric.
We choose gtx = gty = gtz = gxy = 0 in order to keep the time decoupled from space
coordinates and to preserve the Z4 symmetry of the lattice. This symmetry then implies
that we must have gxx = gyy and gxz = gyz. Since the electric current density J = 0, we
conclude that the number of equations reduces to six.

We presented the equations in a compact form, because writing them out in full is
very cumbersome and does not give any meaningful insight. Obviously, such a system
cannot be solved analytically. We must perform a numerical integration, although even
then finding the solutions gives rise to significant difficulties. We will discuss the numerics
in the next chapter; but before that we thoroughly inspect the asymptotic behavior of
the system.

4.2 IR geometry

4.2.1 The homogeneous solution

The homogeneous solution to the EMD equations is well known and can be found analyti-
cally for small r. The crucial simplification comes from the assumption that Φ is large near
the extremal horizon (rh = 0). Then the dilaton potentials (4.4) can be approximated by
the exponentials:

Z =
1

4
e2|αΦ|, V = −V0

2
e2|δΦ|, (4.8)

which stays in agreement with top-down results. These quantities are supposed to diverge,
so constant terms in the action, including Λ, may be neglected. We follow the derivation
presented in [36] by Iizuka et al.

23



The metric and electromagnetic field strength tensor are assumed to be respectively
of the form

ds2 = −a2(r)dt2 +
dr2

a2(r)
+ b2(r)(dx2 + dy2), (4.9)

F =
Q

Z(Φ)b2(r)
dt ∧ dr; (4.10)

where Q is a real constant. Plugging these ansätze into the EMD equations gives a simple,
analytically solvable set of equations which fixes the form of a, b and Φ. Near the extremal
horizon these functions are

a(r) = Crγ, b(r) = rβ, Φ(r) = κ log
r

R
, (4.11)

with C and R being real constants. Such a constant is missing in b(r) because the form
of the metric (4.9) allows it to be absorbed in the definition of x and y. On the other
hand, R may actually be neglected near the horizon, because logR is assumed to be a
subleading term. We will therefore omit R in Φ for now. Note that γ > 0 is a necessary
condition for a(r) to be a redshift function.

Using the ansatz (4.11) and equating the powers and the coefficients of the leading
terms in the equations of motion (4.5–4.7) one eventually finds the remaining parameters:1

β =
(α + δ)2

1 + (α + δ)2
, γ = 1− 2δ(α + δ)

1 + (α + δ)2
, κ = − 2(α + δ)

1 + (α + δ)2
; (4.12)

Q2 =
V0(1− 2δ(α + δ))

4 + 8α(α + δ)
, C2 =

V0(1 + (α + δ)2)2

(2 + 4α(α + δ))(1 + (3α− δ)(α + δ))
. (4.13)

A further insight of Iizuka et al. [36] was that a redefinition of the metric components by
introducing a new redshift function:

a2(r) → C2r2γ
(
1−

(rh
r

)2β+2γ−1
)

(4.14)

also satisfies the equations, so that one may extend the analysis to a finite horizon, as
long as it is not too large.2 Consequently, it is possible to determine the temperature of
the black hole using (2.33):

T =
C2(2β + 2γ − 1)

4π
r2γ−1
h . (4.15)

The metric (4.9) easily reveals the scaling of the entropy density: s ∼ r2β, and the previous
formula transcribes it into the T -dependence. Demanding that the specific heat of the
boundary theory is positive, we come to the constraint 2γ − 1 > 0. Taking into account
that C2, Q2 and γ are also positive, we end up with constraints on α and δ. Their domain
is given in Table 4.1 and Figure 4.1.

Finally, for every value of rh the Maxwell equation has the solution

At(r) =
4Q(1 + (α + δ)2)

1− (3α− δ)(α + δ)
r

1−(3α−δ)(α+δ)

1+(α+δ)2 . (4.16)

1Our relations differ slightly from those in [36] because we have chosen different normalization of the
kinetic terms in Lm.

2That is, the approximation (4.8) must still hold.
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δ ≤ −1/2 α > δ +
√
4δ2 − 1

−1/2 < δ < 0 α > (1− 2δ2)/(2δ)

δ = 0 α ∈ (−∞, ∞)

0 < δ ≤ 1/2 α < (1− 2δ2)/(2δ)

δ > 1/2 α < δ −
√
4δ2 − 1

Table 4.1: The domain of the EMD parameters (δ, α).

Figure 4.1: The domain of the EMD parameters (δ, α).

4.2.2 Lattice corrections

We have dedicated a great deal of time to investigate the homogeneous solution. It is
because we expect that the anisotropy which stems from the Z4 symmetry only slightly
perturbs the geometry near the horizon [21, 37], provided δµ/µ0 ≤ 1.3,4 Therefore we use
the previous solution as the leading term in a perturbative expansion

ds2 = −a2(r)Stt(x, y, r)dt
2 +

Srr(x, y, r)

a2(r)
dr2+

+ b2(r)Sxx(x, y, r)(dx
2 + dy2) + 2(r − rh)

2λSxr(x, y, r)(dx+ dy)dr (4.17)

3We suppose that greater amplitudes lead to more significant deviation from the homogeneous solution.
We still have no idea what happens for δµ/µ0 > 1.

4We thank A. Donos for discussions on this matter during the workshop “Strange metals: from the
Hubbard model to AdS/CFT”, which was held in May 2022 at the Institute of Physics Belgrade, Serbia.
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with series corrections

Sµν(x, y, r) = δµν +
∞∑
n=1

(r − rh)
n
(
A(n)

µν +B(n)
µν sinx sin y+

+ C(n)
µν sinx cos y +D(n)

µν cosx cos y + E(n)
µν cosx sin y

)
. (4.18)

Of course, Sxx = Syy and Sxr = Syr because of the lattice symmetry. The same reasoning
applies to At(x, y, r) and Φ(x, y, r).

Plugging in such expansions into the EMD equations with the approximate potentials
(4.8), under the assumption that (4.12) holds, we determine the remaining exponents
demanding the leading terms to have equal powers. Then we group terms of the same
order obtaining a system of equations with unknown coefficients from the expansions
(4.18). We have found that up to the second order all corrections are zero, meaning that
the asymptotic IR solution to our equations is well approximated by the homogeneous one.
Therefore, we are not going to include any of the IR corrections in further calculations.

This conclusion actually fits into the known result that explicitly (non-spontaneously)
generated lattices are always irrelevant in deep IR at low temperatures [21]. The question
in that regard, before we declare finding a homogeneous solution, is which T is sufficiently
small and how much is “deep IR” really deep. Indeed, assuming δµ/µ0 ≤ 1, we intuitively
expect the influence of the lattice on the IR physics to be weak; also, rh (and therefore
T ) has to be small if (4.8) is expected to hold. Thus, we convince ourselves that our
approximation fulfills the above conditions and is therefore justified.

4.2.3 Modification of the solution at finite horizons

We will now examine what happens if we move significantly away from the extremal
horizon. Obviously, (4.8) ceases to hold and we must restore the full form of the potentials
(4.4). We assume that the IR geometry remains mainly the same, with the ansatz (4.11)
and finite-temperature correction (4.14). Yet, this time we do not neglect R.

The Maxwell equation is again satisfied by (4.10), but the dilaton equation at the
lowest order in (r − rh) expansion now reads

4(α + δ)r
4α(α+δ)

1+(α+δ)2

h + 8δ(1 + 2α(α + δ))r
4(α+δ)2

1+(α+δ)2

h sinh
4δ(α + δ) log rh

R

1 + (α + δ)2
−

− α(2δ(α + δ)− 1) sec2
2α(α + δ) log rh

R

1 + (α + δ)2
tanh

2α(α + δ) log rh
R

1 + (α + δ)2
= 0. (4.19)

A rough numerical analysis shows that the third term in (4.19) may be neglected, leading
to an expression that can be easily solved analytically in R. The result is

R = rh exp

1 + (α + δ)2

4δ(α + δ)
sinh−1 (α + δ) r

− 4δ(α+δ)

1+(α+δ)2

h

2δ(1 + 2α(α + δ))

 . (4.20)

Of course, one may find R numerically either; the results do not differ too much. What is
particularly interesting, and very important, is that the relation (4.20) implies a vanishing
dilaton in the limit of extremal horizon, since R ≈ rh when rh is small. However, it does
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not contradict the result of subsection 4.2.1 because the initial neglecting of the term
logR in (4.11) may be reinterpreted as its absorption into V0 and Q.

Now, since F depends on Z, see (4.10), we have to re-integrate Ftr in order to find the
modified solution for At(r). Surprisingly, the solution can be found analytically; it reads

At(r) = − Qr1−2β

ακ(1− 2β + 2ακ)
×

×
(
(1− 2β + 2ακ) 2F1

(
1− 2β

2ακ
, 1, 1 +

1− 2β

2ακ
,−
( r

R

)2ακ)
−

−
( r

R

)2ακ
(1− 2β) 2F1

(
1− 2β + 2ακ

2ακ
, 1,

1− 2β + 4ακ

2ακ
,−
( r

R

)2ακ)
+

+ (1− 2β + 2ακ) tanh
(
ακ log

r

R

))
, (4.21)

with β and κ given by (4.12). Here 2F1 stands for hypergeometric function.5

Finally, when we put the ansätze into the Einstein equations, we find that the tt and
rr components vanish in the r → rh limit, while the xx component cannot be exactly
satisfied. Nevertheless, numerical analysis shows that this deviation is small. We thus
conclude that the homogeneous solution to the EMD equations can be maintained as the
lowest-order approximation for an arbitrary rh, though with minor modifications with
respect to the low-temperature limit.

4.2.4 Critical exponents

Having examined the near boundary geometry, we are finally able to determine the critical
exponents introduced in Section 3.2. In order to do that, it is necessary to relate the metric
(4.9) with the form given by (3.20). We thus rewrite (3.20) in a new notation, with d = 2:

ds2 =

(
ζ

ζ0

)−θ (
−ζ2zdt2 + ζ2(dx2 + dy2) +

dζ2

ζ2

)
. (4.22)

Equating the terms of the two metrics corresponding to grr and gζζ one readily finds the
relation between r and ζ:

r =

(
− 4

√
V0 δ(α + δ)

θ
√

(2 + 4α(α + δ))(1 + (3α− δ)(α + δ))

(
ζ

ζ0

)− θ
2

) 1+(α+δ)2

2δ(α+δ)

. (4.23)

Substituting the above expression into (4.9), we get a system of equations for θ and z and
the constant ζ0. Here we list the solutions:

θ =
4

1− α/δ
, (4.24)

5It is the solution to the Euler’s hypergeometric equation with singular points 0, 1 and ∞, defined as

2F1(ã, b̃; c̃; z) =

∞∑
n=0

(ã)n(b̃)n
(c̃)n

zn

n!

for z ∈ C and |z| < 1, with (q̃)n being rising Pochhammer symbols (rising factorials).
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z =
1 + (α− 3δ)(α + δ)

α2 − δ2
, (4.25)

ζ0 =

( √
V0(α

2 − δ2)√
(2 + 4α(α + δ))(1 + (3α− δ)(α + δ))

)α+δ
2δ

. (4.26)

Although we often define ζ0 = 1, it is interesting to see explicitly how this quantity
participates in coordinate transformations (aside from its role in counting the anomalous
dimension of energy density).

However, in the context of a real experiment we expect to find θ and z from the
measurement. Therefore, our task would actually be to determine α and δ, using the
above-listed relations; and the obtained pair would then serve as an input data for nu-
merical predictions. While the relations (4.24) and (4.25) generally cannot be inverted
analytically, it is easy to perform a numerical fit to find (α, δ) from (θ, z).

4.3 UV asymptotics

In the preceding chapters we have learnt that the boundary value of the gauge field must
be equal to the chemical potential, while the bulk geometry should be asymptotically AdS
(which means that the metric must be analytic at infinity). Also, we have investigated
the boundary behavior of a scalar field in pure AdS in subsection 3.1.2. Now we just
generalize the results. For convenience, throughout this section we use the z coordinate
instead of r; then the boundary lies, as we already know, at z = 0.

Under the assumption that the dilaton acquires a finite value near the boundary, we
expand the potentials Z and V in Taylor series in order to slightly simplify the equations.
We thus solve the simplified dilaton equation (4.6) in pure AdS4 background, assuming
it to be a good enough approximation. A generic solution should be sought again in the
form of power series, meaning that the ansatz reads Φ(z) = (z/zh)

λ. In line with (3.7), it
gives two branches:

Φ(z) = ϕ1

(
z

zh

)3−∆

+ . . .+ ϕ2

(
z

zh

)∆

+ . . . , (4.27)

with

∆ =
3

2

(
1 +

√
1− 16

9
V0δ2

)
. (4.28)

Taking into account the BF bound, we reveal a new constraint: V0 < 9/(16δ2). A
comparison with (3.8) then allows us to recognize the effective mass of the dilaton: m2

eff =
−4V0δ

2. Since 3 − ∆ > 0, Φ(z) decreases towards the boundary (except for ∆ = 3). It
means that we have obtained a consistent solution, proving the expansion of Z and V
justified. We thus proceed with the inspection of the boundary limit of the metric.

We adopt similar ansätze as in subsection 4.2.2. The idea is to add subleading terms
to the pure AdS4 metric, so that it takes the form6

ds2 =
1

z2
(
− Stt(x, y, z)dt

2 + Sxx(x, y, z)(dx
2 + dy2)+

+ 2Sxz(x, y, z)(dx+ dy)dz + Szz(x, y, z)dz
2
)
, (4.29)

6Recall that we have set L = 1.
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where Sµν(x, y, z) = δµν to the leading order. Similarly, we restore the excluded terms of
(4.27)7 and modify the gauge field:8

At(x, y, z) = µ(x, y)− ρbulk(x, y) z + . . . . (4.30)

Applying the same procedure as for the IR limit we have come to the conclusion that
the equations of motion are satisfied again to first subleading order. We thus neglect the
boundary corrections too.

7We take into account only the leading branch.
8It can be shown that the leading correction to At is the bulk charge density.
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Chapter 5

The numerical solution

5.1 Numerical setup

The results obtained in the previous chapter give the insight into many important prop-
erties of the system, but are not particularly suited for numerical computations. Several
tricks can help to gain a better control of the numerical integration. One is to introduce a
new set of coordinates in order to compactify the space-time. A good choice is to replace
r by a coordinate z̃ such that z̃ = 0 at the horizon and z̃ = 1 at the boundary.1 This is
realized by the transformation

rh
r

= 1− z̃2. (5.1)

Next, it is convenient to rewrite the metric in a different form. The idea is to exploit the
symmetry and to extract the factors that may diverge at some point, such as the redshift
function and the pure AdS metric components (which are present at the boundary, where
they also diverge). The remaining factors are then the unknown functions to be found.
We denote them by qµν . Thus, the ansatz for the metric reads

ds2 =
r2h

(1− z̃2)2

(
− f(z̃)qtt(x, y, z̃)dt

2 + qxx(x, y, z̃)(dx
2 + dy2)+

+ 2qxz̃(x, y, z̃)(dx+ dy)dz̃ +
4z̃2

r2hf(z̃)
qz̃z̃(x, y, z̃)dz̃

2
)
, (5.2)

with

f(z̃) = 1− (1− z̃2)
1+(3α−δ)(α+δ)

1+(α+δ)2 . (5.3)

Similarly, since the dilaton has a branch cut at the boundary, we rewrite it in the following
form:

Φ(x, y, z̃) = (1− z̃2)3−∆ϕ(x, y, z̃). (5.4)

The unknown function ϕ(x, y, z̃) is actually a correction to the leading boundary solution
(4.27), with ϕ1 ≡ 1. Since At(x, y, z̃) has no singular or branch-cut terms to be factored
out, we end up with six unknown functions: At, ϕ, qtt, qxx, qz̃z̃ and qxz̃.

The boundary conditions (BCs) follow naturally: at the AdS boundary all of qµν ,
along with ϕ, obviously have to be unity, while At = µ, so all the BCs at z̃ = 1 are of
Dirichlet type. The periodicity of the lattice leads to periodic BCs for x and y. On the

1Note that this coordinate differs from z used in the previous chapters, which ranges from 0 at the
boundary to ∞ in the deep interior of the space-time.
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horizon, though, we must demand regularity, which means that all the components of the
metric should have a vanishing first derivative. Consequently, the metric should satisfy
Neumann BC at z̃ = 0 (with periodicity in x and y), while the gauge field and dilaton
are expected to obey Dirichlet conditions again. It is because the strange metals do not
break any symmetry, and no-hair theorem holds in the case of the extremal horizon [38],
implying limrh→0At(x, y, rh) = limrh→0Φ(x, y, rh) = 0. Since the matter fields have to
change smoothly with increase in temperature, Dirichlet boundary conditions apply to
the finite horizons too.

Finally, let us notice that the Einstein equations are not elliptic. If one uses an iterative
method for solving the equations, as we do, this turns out to be potentially an obstacle,
since the algorithm may not converge. In order to enforce the ellipticity and secure the
convergence, one employs the DeTurck trick. It consists in identifying a reference metric
ḡµν with the same BCs as the metric one wants to find and constructing the one-form

ξµ = Γν
µν − Γ̄ν

µν , (5.5)

where Γ̄ρ
µν are the Christoffel symbols obtained from ḡµν . The Einstein equations are then

modified by a redefinition of the Ricci tensor:

Rµν → Rµν +∇(µξν). (5.6)

The DeTurck term ∇(µξν) enhances the convergence of the algorithm and eventually dis-
appears when the solution is found [39].

5.2 Approximate solutions

Solving the full set of EMD equations is a demanding task. It calls for both time and
hardware resources, in addition to necessary programming skills. Since it is not indis-
pensable for the physical goal of this thesis, we do not pursue it here. Instead, we choose
to solve the Maxwell and dilaton equations with an approximate metric solution as a
background. The matter fields are thus treated in the probe limit. Such a solution is
obviously not numerically exact, but is sufficient for our purposes. The solution to the
full set of equations may be found in a somewhat different numerical setup in [20].

Since the above-considered boundary conditions must be satisfied also by the asymp-
totic solutions found in the previous chapter, a natural choice for an approximate solution
is to sew them together. Were we to solve the full set of equations, such solutions would
be the initial guesses, i.e. the first step of the iterative solution we are going to elabo-
rate on in the next section. Since we are concerned only with the matter fields, this is
true solely for At and ϕ. Nevertheless, we use the terms “approximate solutions” and
“ansätze” interchangeably. Clearly, these functions are redefined by extracting the ap-
propriate factors, as in (5.2) and (5.4). The subtlety is only that some factors need not
be extracted from the asymptotic solution if they tend to unity for corresponding z̃. For
example, the prefactor of (5.4) equals unity at the horizon, so it does not matter whether
it is extracted or not.

Still, one has to be careful when sewing the solutions together. The asymptotics on
both ends must be preserved and at the same time the resulting ansatz must be reasonably
smooth everywhere. In that regard, we have defined the following function:

sm,n(z̃) = (1− z̃m)n, (5.7)
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for m,n ∈ N and m ≤ n. It has the following properties:

1. limz̃→0(sm,n(z̃)u(z̃))
(l) = u(l)(0)

2. limz̃→1 ((1− sm,n(z̃))u(z̃))
(l) = u(l)(1)

3. limz̃→1(sm,n(z̃)u(z̃))
(l) = 0

for an arbitrary smooth function u(z̃) and l < m. Obviously, we may use sm,n(z̃) to con-
tinuously switch off the IR solution towards the boundary, while simultaneously switching
the UV solution on, and vice versa. Still, the transition might be insufficiently smooth,
giving unnatural peaks and bumps, especially inconvenient for the numerics; and here the
exponent n comes into play. By changing n it is possible to fine-tune the approximate
solution and transform it into a desired shape adjusting its smoothness at will. The only
constraint is that we must take m ≥ 3 if we are to preserve the first and second derivatives
at the boundaries. The specific choices we have used for our system are listed bellow.

qtt(x, y, z̃) = −s3,6(z̃)
(1− z̃2)2

r2hf(z̃)
g
(IR)
tt (z̃) + 1− s3,3(z̃) (5.8)

qxx(x, y, z̃) = s3,3(z̃)
(1− z̃2)2

r2h
g(IR)
xx (z̃) + 1− s3,3(z̃) (5.9)

qz̃z̃(x, y, z̃) = s3,3(z̃)
(1− z̃2)2f(z̃)

4z̃2
g(IR)
rr (z̃) + 1− s3,6(z̃) (5.10)

qxz̃(x, y, z̃) =
(1− z̃2)2

r2h
z̃3s3,3(z̃) (5.11)

At(x, y, z̃) = s3,3(z̃)A
(IR)
t (z̃) + z̃2µ(x, y)(1− s3,3(z̃)) (5.12)

ϕ(x, y, z̃) = s3,6(z̃)Φ
(IR)(z̃) + 1− s3,3(z̃) (5.13)

By g
(IR)
µν (z̃) we have denoted the components of the near-horizon metric (4.9) after the

coordinate transformation (5.1), while A
(IR)
t (z̃) and Φ(IR)(z̃) are obtained in a similar

manner from (4.21) and (4.11), respectively. The UV part of At(x, y, z̃) is adapted from
the solution of the EM equations (3.5).

As a natural quality test of the approximate solutions, we have evaluated the EMD
equations on the functions (5.8–5.13). We have found that the equations hold almost
identically, with the exception of a central region around the point z̃ ≈ 0.6, where the
equations are strongly nonzero, resulting in a variety of peaks (two representative examples
are given in Figure 5.1). Since the deviation from zero is rarely very large, we conclude
that our guesses are of good enough quality, though.

Still, what is a bit peculiar is the sharpness of the peaks. We certainly expect that
the equations are not satisfied in the region where the asymptotic solutions overlap, but
we expect a wider and less steep deviation. Instead, we find that the IR solution is a very
good approximation in almost one half of the domain. We have repeated this analysis
for different ansätze (including the IR and UV solutions separately) and found the same
behavior every time. It looks like the true solution is of domain-wall type, with a sharp
transition from the large IR throat to the near-AdS UV region. Since this occurrence is
not manifested in our results, we do not discuss it any more; instead, we turn us to the
technical core of our research.
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Figure 5.1: The tt and xx components of the Einstein equations along z̃, evaluated on
the solutions (5.8–5.13) for µ0 = 1, δµ = 1, T = 0.5, V0 = 0.5, α = −1.5 and δ = 1
(G̃µν ≡ Gµν + Λgµν − 1

2
Tµν). Since the profiles of the evaluated equations mostly do not

depend on x and y, we have chosen the slice x = y = 0. Similar plots are obtained for
the other equations.

5.3 Numerical methods

Current wisdom is that nonlinear systems of elliptic PDEs, such as our EMD equations,
are best solved by the Newton-Raphson method, leading it to become the standard in
applied holography [39, 40]. It could be used for solving either the whole system of
equations or some subset thereof, or just a single equation. Here we give a brief description
of the procedure, along with the consequent elaboration on differentiation methods. We
follow mainly [40] and focus on a single equation since the generalization to the system
is straightforward.

Consider a second-order nonlinear PDE

F [f ′′(x, y, z), f ′(x, y, z), f(x, y, z), z] = 0 (5.14)

with an approximate solution

f1(x, y, z) = f(x, y, z) + h(x, y, z), ∥h∥ ≪ 1. (5.15)

The idea is to find a better approximation f2 and to repeat this procedure until for some
n0 ∈ N the variation h vanishes. We expect that for every n < n0 the evaluation of F
on fn does not differ significantly from zero, so we expand F in the vicinity of the exact
solution in order to obtain a linear equation in h:

F [fn] =
2∑

i,j,k=0

δF [fn]

δf (i, j, k)
h(i, j, k)(x, y, z) +O(h2), (5.16)

where

f (i, j, k)(x, y, z) ≡ ∂i+j+kf

∂xi∂yj∂zk
, h(i, j, k)(x, y, z) ≡ ∂i+j+kh

∂xi∂yj∂zk
. (5.17)

Finding h, we are able to determine fn+1 = fn−h, and so on. The convergence is reached
when ∥h∥ < ϵ and ∥F [fn0 ]∥ < ϵ simultaneously, for some appropriately chosen norm and
accuracy ϵ ∈ R.
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Finding h in each iteration rests on discretizing the domain, transforming it into a
m× n× p grid:

D ⊂ R3 → D̃ = {x1, x2, . . . , xm} × {y1, y2, . . . , yn} × {z1, z2, . . . , zp}, (5.18)

in order to replace fn by an mnp-component vector2

f⃗n =
(
fn(x1, y1, z1), . . . , fn(x1, y1, zp), fn(x1, y2, z1), . . . , fn(xm, yn, zp)

)T
. (5.19)

Then all derivatives and all variations of the functional F become matrices and we end up
solving a linear system of algebraic equations. Namely, δF [fn]/δf

(i, j, k) are evaluated at
every point of D̃ in order to give the diagonal elements of the corresponding mnp×mnp
matrices; we denote them by C(i, j, k)(f⃗n). Similarly, the evaluation of F [fn] on D̃ gives

the “right-hand-side” vector F⃗ (f⃗n), so that the linearization (5.16) reads

2∑
i,j,k=0

C(i, j, k)(f⃗n)D(i, j, k)h⃗ ≡ D h⃗ = F⃗ (f⃗n). (5.20)

Here, the mnp × mnp matrices D(i, j, k) are, naturally, Kronecker products of the corre-
sponding ordinary, “one-dimensional” differentiation matrices.3 Inversion of (5.20) then
leads to

h⃗ = D−1F⃗ (f⃗n), (5.21)

allowing us to compute f⃗n+1, i.e. a better numerical approximation to the unknown func-
tion f .

Yet, this is actually an incomplete algorithm. In order to solve a differential equation
we need to supplement it by boundary conditions; so the same applies to the matrices.
Therefore, we have to delete the rows of D corresponding to the boundary points and
replace them with appropriate boundary conditions [40, 41]. We do the same with F⃗ (f⃗n),
with the notion that for h all BCs must be mapped to zero according to (5.15), since
every approximation fn has to obey the same BCs as f .

The accuracy of the above procedure depends on a couple of factors. First, we must
choose a very good initial guess as an input for the first iteration, or the algorithm may
not converge.4 Second, the differential operator D may be near-singular and its inversion
therefore may be difficult. This is especially the case if D is sparse, which leads us to
the third observation. Namely, the solution to a great extent depends on the choice of
differentiation method.

In order to avoid these caveats and additionally speed up the procedure, we have
seized for the pseudospectral collocation method. Its essence lies in expanding a function
in a series in whatever basis is convenient. For example, a 2π-periodic function f may be
represented as a Fourier series:

f(x) =
∑
k

cke
ikx. (5.22)

2We use a different notation for numerical vectors. Unlike the Euclidean (geometric) vectors, denoted
by bold letters, we represent them by letters accented by a right arrow.

3These matrices have dimensions m×m, n× n and p× p.
4The approximate solution for the initial guess must satisfy the same boundary conditions as the exact

one and must resemble it as much as possible. On the other hand, it must not have any large gradients.
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Its derivative at the i-th point of a homogeneous5 m-point grid is then

f ′(xi) =
∑
k

ikcke
ikxi . (5.23)

Expressing ck via the inverse Fourier transform, one readily finds

f ′(xi) = ∆x
∑
k

∑
j

ikeik(xi−xj)f(xj), ∆x =
2π

m− 1
, (5.24)

which means that the derivatives can be computed in a numerically exact way. Such a
derivative operator can be represented as a matrix depending solely on the grid points xj.

On the other hand, a non-periodic function G(z), defined for z ∈ [−1, 1], can be
expanded as

G(z) =
∑
k

akTk(z), (5.25)

with Tk being the Chebyshev polynomials. Upon setting z = cos x, with x ∈ [0, 2π] and
xi equally spaced (i.e. upon the identification of the points zi with points on a circle),
the Chebyshev polynomials can be represented as Tk = cos(kx), leading (5.25) to become
a cosine Fourier series expansion of some symmetric function g(x). Differentiation of G
then gives

G′(z) =
g′(x)√
1− z2

, (5.26)

and we realize that the problem reduces to the previous case. One just needs to evaluate
the function on the points defined above, known as the Chebyshev grid. The advantage
of the pseudospectral method is thus in its speed (since it is based on a Fast Fourier
Transform – FFT), and in the fact that the matrices obtained in such a way are dense,
which decreases the possibility that they turn out singular.

5.4 The equation solver

We have performed all computations in Wolfram Mathematica, making use of the pack-
age diffgeo.m [42]. Additionally, FFT is implemented as a built-in function, and likewise
the pseudospectral differentiation operators as an option to the NDSolve command. Rep-
resenting these derivatives in matrix form is then straightforward.

Yet, an issue arises with the inversion of the differentiation matrix D. We may simply
solve the system of algebraic equations, using the command LinearSolve, or find the
inverse of D and act on the right-hand-side of the equation. Since D may be ill-defined,
or even singular (although it did not occur), seemingly the best option for inversion is the
command PseudoInverse.

The pseudoinverse of a matrix A, A+, is a generalization of the inverse which solves
the system of equations approximately, finding the “best fit” by the method of least
squares. It satisfies AA+A = A and A+AA+ = A+, with AA+ not necessarily being the
identity matrix. The corresponding command in Mathematica thus deals extremely well
with all possible matrix constructions, but has a significant drawback since it “oversees”
the boundary conditions, leading to nonzero values at the places where one would expect

5A homogeneous grid has all points equally spaced.
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the components to vanish. As a consequence, one gets the solutions satisfying wrong
boundary conditions.

On the other hand, the inverse obtained by LinearSolve obeys BCs very well, but is
prone to delivering significant errors if the coefficients in equations span a set of values
that differ by a few orders of magnitude. Since the system we have chosen to solve gives
relatively well-defined matrices (for a reasonable choice of parameters), we have used this
command nevertheless.6

However, the code is still very sensitive to the input data. It means that we are still not
able to find solutions for the full range of parameters, in addition to the already mentioned
necessity of good ansätze. But this is to be expected for a system of multidimensional
nonlinear equations. Some parameter regimes we exclude from the beginning: we do not
expect to find solutions at very high or very low temperatures, or with strongly varying
chemical potential.

5.5 The scalar and gauge field solutions

In this section we present the solutions for At and Φ. We recall that the free parameters
are µ0, δµ, V0, α, δ and T . We immediately set T = 0.5 since we are obliged to work
at relatively low temperatures, according to the conclusions of subsection 4.2.2. Still,
we do not take T too low for two reasons: first, we want to allow rh to be arbitrarily
large; second, in this way we avoid some possible numerical instabilities. Further, we set
V0 = 0.5 too, in order to satisfy the BF bound.

Now we have to choose α and δ. Our aim is to inspect different scaling geometries
offered by the scaling atlas, and thereby different pairs (α, δ). Yet, practice shows that the
choice ∆ = 3, leading to a non-vanishing dilaton at the boundary, enhances the stability
of numerical integration to a great extent. Given V0 = 0.5, such a conformal dimension is
obviously obtained for δ = ±1, so we choose to fix δ = 1 and vary only α. It is sufficient to
work in the domain of negative α (α < −0.732 for δ = 1 according to Table 4.1), because
the choice of δ = −1 (α > 0.732), gives similar results – one only has to adjust the sign
of the constant Q (see subsection 4.2.1) in order to maintain a positive gauge field.

Constraining the values of α and δ in such a narrow domain seems to contradict the
purpose of this thesis, i.e. inspecting the parameter space for strange-metallic or Hubbard-
like behavior, but is actually quite justified. Namely, it may be shown that the treatment
of fermions in the probe limit in the homogeneous case gives the spectra which depend
exclusively on the combination of the IR scaling exponents: β+γ [20, 36]. In the presence
of the lattice the situation is more complicated and the sum β + γ is not the sole factor
that determines the scaling of the spectral function, but it is still the most important one
[20]. Since the spectra can be compared to experimental data, it suffices to vary only one
of the EMD parameters in order to vary the sum β + γ.

Finally, we set µ0 = 1 and vary δµ measured in units of µ0, since we are for now
interested only in the ratio δµ/µ0, not in δµ per se. We examine weak lattices, with
δµ = 0.5 and δµ = 1, and also a moderately strong lattice, with δµ = 1.5. For each of
these values we take α = −1.5 and α = −2, obtaining two pairs of critical exponents:
(θ, z) = (1.6, 2.6) and (θ, z) = (4/3, 2). The results are given in Figures 5.2–5.5. As a

6We have done many tests inspecting the efficiency of these commands. We had also taken into account
the command Inverse, but we did not give much attention to it since the PseudoInverse equals the
Inverse when a matrix is regular.

36



Figure 5.2: Numerically computed electrostatic (top) and dilaton (bottom) field along an
x-z̃ slice at y = 3.59 (left) and along an x-y slice at z̃ = 0.22 (right) for δµ = 1.0 and
α = −2.0, with µ0 = 1, δ = 1, V0 = 0.5 and T = 0.5.

curiosity, we have also solved the system for µ0 = 1, δµ = 2 and α = −1.5, proving that
our holographic setup may be applicable even in the presence of a strong lattice.

Actually, we have found a whole family of solutions for µ0 ∈ {0.5, 0.6, 0.7, . . . , 1.5}
and α ∈ {−2.3,−1.7,−1.5}, maintaining the ratio δµ/µ0 = 1, in order to obtain the
corresponding electric charge densities and examine how they depend on µ0 and whether
they change upon variation in α; but we postpone this discussion for the next chapter. In
this section we are concerned solely with those properties of the solutions which depend
on the relative strength of the lattice.

Figures 5.2–5.5 show that the strength of modulation determines the oscillatory be-
havior of At near the boundary, which is always damped towards the horizon, just as we
expect. Yet, the overall profile of the field depends on α, i.e. on the IR solution. Accord-
ingly, the value of At at the horizon can be either smaller or larger than its mean value at
the boundary (µ0), leading to totally different slopes along the z̃-axis. This is important
because the charge density, discussed in the next chapter, depends on ∂z̃At.

On the other hand, Φ generally maintains the same profile with respect to z̃, regardless
of α.7 Since we have fixed its value at z̃ = 1, the influence of the lattice first increases
towards the horizon, and then, very near the horizon, suddenly becomes negligible.8 Such

7Notice that for ∆ = 3 we get Φ(x, y, z̃) = ϕ(x, y, z̃).
8The higher-frequency oscillations in the IR region, visible in x-z̃ plots, are most likely a subsidiary
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Figure 5.3: Numerically computed electrostatic (top) and dilaton (bottom) field along an
x-z̃ slice at y = 3.59 (left) and along an x-y slice at z̃ = 0.22 (right) for δµ = 1.0 and
α = −1.5, with µ0 = 1, δ = 1, V0 = 0.5 and T = 0.5.

a propagation of the oscillatory behavior is actually in contrast with the observation
of section 5.2 that the IR solutions satisfy the equations up to the half of the domain.
Obviously, for the exact solutions to be revealed the sewing of the asymptotic solutions
has to be highly nontrivial, although a comparison with [20] shows that our solutions
exhibit good enough qualitative behavior, meaning that the functions qµν were indeed
well chosen.

Yet, an interesting property of the dilaton solutions lies in the fact that the impact of
the chemical potential on the bulk geometry actually depends on α. As we change α, Φ
“oscillates” as a function of x and y, manifesting an effectively-dynamical behavior (since
it resembles time-dependent fields). An inspection of the figures, and the other plots not
shown here, shows that for α = −2 the dilaton varies in space – roughly speaking – in
phase with the electrostatic field, while the increment ∆α = 0.5 yields an approximate
phase shift ∆x = ∆y = π for α = −1.5. We thus infer that Φ exhibits a kind of α-
periodicity, although such a conclusion needs to be confirmed by a more involved analysis.
However, the very fact that the overall profile of Φ actually depends on α implies that
the IR geometry implicitly propagates all the way to the boundary, being thus even more
dominant than we initially suggested in section 5.2.

effect which has emerged due to the discretization of the domain D̃ and, as such, may be ignored.
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Figure 5.4: Numerically computed electrostatic (top) and dilaton (bottom) field along an
x-z̃ slice at y = 3.59 (left) and along an x-y slice at z̃ = 0.22 (right) for δµ = 1.5 and
α = −2.0, with µ0 = 1, δ = 1, V0 = 0.5 and T = 0.5.

Figure 5.5: Numerically computed electrostatic (top) and dilaton (bottom) field along an
x-z̃ slice at y = 3.59 (left) and along an x-y slice at z̃ = 0.22 (right) for δµ = 1.5 and
α = −1.5, with µ0 = 1, δ = 1, V0 = 0.5 and T = 0.5.
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Chapter 6

Charge density and the Luttinger
theorem

6.1 Holographic determination of the electric charge

density

The preceding chapters were dedicated to a detailed analysis of the EMD equations and
their solutions; eventually, we have found the solutions for the matter fields in an ap-
proximate hyperscaling-violating background. Now we are going to focus on the charge
density and the Luttinger theorem as a concrete and simple indicator of the nature of the
system.

In a quantum field theory the charge density is the expectation value of the charge
density operator. It couples to the time component of the gauge field, so:

ρ =
1

i

δZCFT [Āt]

δĀt

∣∣∣
Āt=0

, (6.1)

where Āt is the electromagnetic scalar potential on the CFT side. Of course, we cannot
take the functional derivative directly in field theory, since we do not know ZCFT or Āt,
but we can use the GKPW formula, introduced in section 2.3. Switching to Euclidean
time in order to simplify the generating functional of the bulk theory, we get

ρ = −δSbulk

δAt

∣∣∣
z̃=1

. (6.2)

Another way to comprehend these relations is to recall that a generating functional in
Euclidean coordinates represents the partition function. Since we work at finite density,
the action will be equivalent to the grand canonical potential: Sbulk = β Ω[T, µ], with β =
T−1 being equal to the integral over τ . Taking into account the classical thermodynamics,
where the electric charge reads

ρ = −e
δΩ

δµ
, (6.3)

and that the external electrostatic field is At = µ/e, we reveal (6.2) again. We have
restored the elementary charge e for the sake of easier dimensional analysis.
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We now turn to the problem of our interest and vary the Euclidean EMD action (4.3)
with respect to At:

δSbulk = −
∫

dτ

∫
ddx

∫
dz̃

√
gZ(Φ)F µν∇µδAν =

= −
∫

dτ

∫
ddx

∫
dz̃

√
g∇µ(Z(Φ)F

µtδAt) =

= −
∫

dτ

∫
ddx

√
γZ(Φ)nµF

µtδAt

∣∣
z̃=1

. (6.4)

After integrating by parts, we have used the Maxwell equation (4.7) in the second line and
the Stokes theorem in the third line, where γ and n are the determinant of the induced
metric on the boundary and an outward pointing unit normal, respectively. The kinetic
term of the electromagnetic field has the same sign as in the original action. This is
because the zeroth component of the gauge field picks up a factor of i when Wick-rotated.
Recalling the relation (6.2) and restoring the Lorentzian signature, we find1

ρ = −
√
−γZ(Φ)nz̃F

z̃t
∣∣
z̃=1

. (6.5)

This relation holds quite generally: the differences stem only from the choice of Z, which
in absence of a dilaton is just the usual coupling 1/e2. But Z aside, the right-hand-side of
(6.5) is proportional to the electric field at the boundary, so we recognize a holographic
version of Gauss-Ostrogradsky law.2

Once we have obtained numerical solutions for the matter fields, it is easy to com-
pute the charge density. One has to use the already defined pseudospectral derivatives
and evaluate (6.5) at every point of the numerical grid, along with insertion of the corre-
sponding values for At and Φ.3 Fixing z̃ = 1 and selecting the remaining (x, y) subgrid,
one obtains the desired result. An interpolation function is then easily constructed by
the use of Mathematica and all quantities are readily found with analytical ρ(x, y) at
disposal.

A famous result which then relates the charge density to the Fermi surface in the
case of Fermi liquids is the Luttinger theorem. The Luttinger theorem states that the
d-dimensional volume enclosed by the Fermi surface is proportional to the electric charge
density (averaged over the volume) to all orders in perturbation theory4 [23, 22, 43]:

2eV
(d)
F

(2π)d
= ρ. (6.6)

Crucially, the above expression knows nothing of the coupling strength or interactions
in general – the density depends solely on the integral determined by the Fermi surface
position. The Fermi surface is defined here as the locus of singularities of the logarithm of
the Green’s function: logGR(0, kF ) = ∞. We can thus check if the holographic strange
metal obeys the theorem by studying the dependence of ρ, if any, on the scaling exponents
(as the proxy for the coupling strength), the lattice strength δµ/µ0 and µ0 itself. If the
theorem holds we also obtain an estimate of the Fermi volume.

1Although we have used the z̃ coordinate because we continue with numerical calculations in the next
section, the conclusions are valid for any choice of radial coordinate.

2Obviously, the electric flux must be constant through the bulk. This is the property of fractionalized
geometry. Were we to include charged matter into the bulk, an additional flux would emerge, leading
eventually to a modification of the Luttinger theorem [23].

3It is understood that we work in the approximate background.
4We have accounted for a double degeneracy due to the electron spin.
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6.2 Numerical results

We now present and discuss the results obtained by the means of the holographic Gauss-
Ostrogradsky law. We start from the ansatz (5.2) and find the induced metric on the
boundary:

ds2bdy =
r2h

(1− z̃2)2
(
−qtt(x, y, z̃)dt

2 + qxx(x, y, z̃)
(
dx2 + dy2

))
, (6.7)

and the outward pointing unit normal (as a one-form):

n =
1

1− z̃2

√
4z̃2qz̃z̃(x, y, z̃)

f(z̃)
− 2r2hq

2
xz̃(x, y, z̃)

qxx(x, y, z̃)
dz̃. (6.8)

Then we find the formula for the charge density using (6.5):

ρ(x, y) = Z(Φ(x, y, z̃))

√
z̃2qz̃z̃(x, y, z̃)

r2hqtt(x, y, z̃)
− f(z̃)q2xz̃(x, y, z̃)

2qtt(x, y, z̃)qxx(x, y, z̃)
×

×

(
Q

(
13 + 4δ − δ2

5 + 4δ + δ2
;x, y, z̃

)
∂xAt(x, y, z̃)+

+Q

(
28 + 6δ − δ2

10 + 6δ + δ2
;x, y, z̃

)
∂yAt(x, y, z̃)−

− qxx(x, y, z̃)

qxz̃(x, y, z̃)
Q

(
49 + 8δ − δ2

17 + 8δ + δ2
;x, y, z̃

)
∂z̃At(x, y, z̃)

)∣∣∣∣∣
z̃=1

,

Q(λ;x, y, z̃) ≡
((

1− (1− z̃2)λ
) qxz̃(x, y, z̃)
qxx(x, y, z̃)

+
2z̃2qz̃z̃(x, y, z̃)

r2hqxz̃(x, y, z̃)

)−1

. (6.9)

In order to get numerical values for ρ ≡ ⟨ρ(x, y)⟩ as described in the previous section, we
employ again the ansätze (5.8–5.11) for the functions qµν . The results are given in Tables
6.1 and 6.2 and Figures 6.1–6.3. The actual numerical values are not important for our
story; we give them in the tables just for completeness.

δµ\α -2.3 -2.1 -1.9 -1.7 -1.5
0.5 4.88 3.50 2.29 0.87 -2.33
1.0 5.14 3.66 2.38 0.90 -2.41
1.5 5.61 3.97 2.55 0.95 -2.55

Table 6.1: The charge density ρ for three values of the lattice amplitude δµ (in units of
the average chemical potential µ0) and different values of the EMD parameter α, with
µ0 = 1, δ = 1, V0 = 0.5 and T = 0.5.

Figure 6.1 shows the dependence of the charge density on α for the three ratios δµ/µ0

examined in the previous chapter. If our system were a Fermi liquid, its charge density
would know nothing about the IR scaling. It would be constant because of the unbro-
ken U(1) symmetry, which leads to the corresponding Ward-Takahashi identity implying
charge conservation. Obviously, this is not the case – whatever the strength of the modu-
lation δµ is, ρ decreases with α. Since the critical exponents increase monotonically with
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α\µ0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
-2.3 1.96 2.53 3.12 3.75 4.42 5.14 5.93 6.78 7.71 8.70 9.61
-1.7 -0.56 -0.27 0.01 0.30 0.60 0.90 1.21 1.53 1.87 2.24 2.62
-1.5 -3.95 -3.62 -3.30 -2.99 -2.69 -2.41 -2.12 -1.85 -1.57 -1.30 -1.03

Table 6.2: The charge density ρ for three values of the EMD parameter α and different
values of the average chemical potential µ0, with fixed relative lattice strength δµ/µ0 = 1,
and δ = 1, V0 = 0.5, T = 0.5.

α for fixed δ, ρ decreases with θ and z too. We thus recognize a true non-Fermi-liquid
behavior. Had we found the charge density to be α-independent, the next step would
be to solve the Dirac equation for the probe fermion and to determine its spectrum; the
Green’s function would give us the position of the Fermi surface, and we would be able
to compute the Fermi volume and check the prediction of the Luttinger theorem. Since
we have found a non-Fermi liquid instead, the relation (6.6) certainly does not hold and
there is no need to check it further by determining kF from the spectrum. Nevertheless,
the fermionic spectra are thoroughly studied in [20] both for their own sake and for com-
parison with the QMC simulations of the Hubbard model. The spectra from [20] confirm
the existence of various non-Fermi-liquid phases, with asymmetric quasiparticle peaks or
with no quasiparticle peaks at all.

The fact that the three curves in Figure 6.1 almost coincide implies relative insensitiv-
ity of the system to the amplitude of the lattice, meaning that in this respect weak and
strong lattices do not differ much. Interestingly, it seems that for α > −1.7 the charge
densities “exchange the roles” regarding their magnitudes, maintaining the order with
respect to their absolute value.
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Figure 6.1: The charge density as a function of the EMD parameter α for three values of
the relative lattice strength δµ/µ0, with µ0 = 1, δ = 1, V0 = 0.5 and T = 0.5. The charge
density is strongly dependent on α, hence the Luttinger theorem is not satisfied.

Another interesting insight into the properties of our strange metal is offered by the µ0-
dependence of ρ, given in Figure 6.2 for three values of α. As expected, the charge density
increases with doping, exhibiting even a transition between an overdoped and underdoped
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Figure 6.2: The charge density as a function of the average chemical potential µ0 for three
values of α and fixed ratio δµ/µ0 = 1, with δ = 1, V0 = 0.5 and T = 0.5.

material in the case of α = −1.7. The increase is approximately linear (except to some
extent for α = −2.3) and we recognize a typical metallic behavior (usually observed in
strange metals too), at least for the domain of the EMD parameters we have examined.
What we expect but do not see is the saturation of charge density for some chemical
potential (“Mott Plateau”), which is normally seen in the Hubbard model [10]. Of course,
it might simply happen for the values of µ0 or α that we have not checked explicitly. One
might still find the saturation upon the extension of the domain for µ0.

Finally, we plot the spatial distribution of the charge density in Figure 6.3. The distri-
bution is periodic as it has to be, but what is somewhat striking is its strong delocalization,
which implies that we indeed deal with a metallic phase (although apparently strange)
rather than a Mott-like system with (almost) localized or quenched charges.
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Figure 6.3: 3D plots (top) and density plots (bottom) of the charge density ρ(x, y) for
α = −1.5 (left) and α = −2.0 (right), with µ0 = 1, δµ = 1.5, δ = 1, V0 = 0.5 and T = 0.5.
The top and bottom row show exactly the same data. The charge density is strongly
delocalized and distributed all over the unit cell.
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Chapter 7

Discussion and conclusions

The results of this thesis confirm our overall success in constructing the holographic dual
of a strongly coupled field theory. However, we have comprehended only a small portion
of the phenomenology pertaining to the square lattice. It may be said that we have
actually inspected a “necessary condition” for existence of a non-Fermi liquid, manifested
as the α-dependence of the charge density. A natural “sufficient condition” would then
be offered by the fermionic Green’s functions. The analysis of the fermionic spectra in
[20] in general confirms the conclusions of this thesis, but by no means gives a definitive
characterization of the holographic strange metal. We are still at the beginning of the
conquest of this topic. Importantly, all the insights gained through the examination of
both the “sufficient” and “necessary” conditions rest on phenomenology. It is certainly
very rich, but we would like the AdS/CFT correspondence to give us also some novel
theoretical knowledge regarding the underlying physics of strange metals. Conversely, we
hope that every step forward in AdS/CMT, with the holographic 2D lattice not being the
least, might eventually lead to a better understanding of both the correspondence itself
(especially in the bottom-up approach) and the fundamental laws of nature explained
thereof.

We are, of course, far from comprehending these issues. We have mentioned them only
in order to illustrate the place of our work in the contexts of holography and condensed
matter, and to mark the ultimate goal we are striving for. The next step we are going
to make in our research is still tightly related to the results presented in this thesis. In
the first place, we would like to solve the whole system of the EMD equations and check
whether the above conclusions still hold. Besides, we would like to examine a wider
domain of parameters, and thus to get a more complete insight into the behavior of the
charge density. On the other hand, we are particularly interested in properties of the
dilaton, because of its peculiar response to the chemical potential; also, we are interested
in the physical meaning of its dual (scalar) operator.
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