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1

I N T R O D U C T I O N

The Newtonian three-body problem is one of the oldest unsolved problems in physics
and mathematics - it was first addressed in the 17th century by Newton himself, and
latter by Euler, Lagrange, and many other scientists. The first big breakthrough was
the discovery of periodic solutions by Euler and Lagrange in the 18th century, but
there was very little progress during the next 200 years, except in the formal mathe-
matical aspects in the 19th and early 20th century (Bruns, Poincaré, Sundman). Then
in the second half of the 20th century the numerical approach began to develop with
the advent of electronic computers, which resulted in the discovery of various new
periodic three-body orbits.

In recent years, several new families of periodic solutions to the Newtonian three-
body problem have been found at the Institute of Physics in Zemun. I first heard about
that event from the local media, and soon after attended a lecture by Milovan Šuvakov
on that topic at my University. This raised my interest in the three-body problem. In
the spring of 2013 Marija Janković, my fellow student, asked me if I wanted to join
the research on this topic with my present academic advisors, and I gladly accepted.

At that time I was still an undergraduate student, attending the second semester of
the third year. After a few months of getting familiar with the basics, the real work
started in the fall of 2013, when I was assigned to study gravitational waves emitted
by the newly found three-body systems. In the spring of 2014 we had a paper ready
for submission, and it was published later that summer, Ref. [1]. I presented a poster
about our paper at the 2014 ICPS (International Conference of Physics Students) in
Heidelberg. All of this happened before I started the Master’s degree studies at the
Faculty of Physics, University of Belgrade, so it was then only natural that I would
continue working on these topics for the research part of my M.Sc. requirements.

The present thesis, submitted to the Faculty of Physics of University of Belgrade in
partial fulfillment of the requirements for the degree of Master of Science, therefore
contains some results that were obtained earlier.

As already stated above, some of the new orbits, which are the results of a con-
tinued search for periodic three-body orbits conducted over the past two years are
presented in this thesis - 20 new orbits belonging to 18 families. This is not the total
number of newly discovered orbits, however; only a few representative orbits from
each sequence are shown here. Also, a new nomenclature convention for the orbits
has been proposed.

Some properties of the newly discovered orbits were previously predicted, on the
basis of recent empirical observations, but a few orbits presented a surprise. Even
before this increase in the number of periodic orbits a topological method of classify-
ing three-body orbits had been introduced, on purely formal grounds. Thus, a free
group element, or a “word” for short, consisting of a sequence of letters (a,b) and
their inverses (a−1, b−1) = (A,B) is associated with each distinct topology.
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8 introduction

These empirical observations indicate a linear dependence between the orbit’s peri-
ods (rescaled to a common energy) and its “word length” – the number of “letters”,
or generators in the free group element that describes the orbit’s topology. This prop-
erty resembles Kepler’s third law for periodic two-body systems. Several sequences
of orbits have emerged, with slightly different slopes of this linear dependence. This
observation can be used to predict the existence of further yet undiscovered periodic
orbits.

The increase in the number of periodic orbits will certainly help the further study
of their Kepler-like regularities, and of other properties as well, such as their emitted
gravitational wave powers. With more available solutions, patterns in the free group
elements of the orbits in the same sequence are becoming apparent. Some of the new
results indicate that one of the previously defined sequences of orbits should actually
be divided into (at least) three subsequences. All of this represents new contributions
to our mathematical knowledge of the three-body problem.

The new solutions also lead to new astrophysical insights. A system of three mas-
sive bodies orbiting each other must emit gravitational waves. Actually, as shown in
Ref. [1], astronomical triple-star systems can emit waves with greater amplitudes and
thus luminosities than a periodic binary-star system with comparable masses and ve-
locities, and at comparable distances. Despite having been predicted almost a century
ago, gravitational waves have so far not been detected directly. Attempts to directly
detect gravitational waves are ongoing – several gravitational wave observatories have
been operating for more than 10 years, searching for any kind of gravitational radia-
tion signal, albeit still without success.

The interest in studying gravitational radiation from the periodic three-body system
has increased in recent years. The first such studies, about ten years ago (of periodic
three-body orbits known at the time), did not find a significant increase in luminosi-
ties over those of binary systems. However, the luminosities of the periodic three-body
systems discovered in the meantime turned out to be up to 13 orders-of-magnitude
larger. Moreover, all of those new three-body orbits have distinct quadrupole gravita-
tional waveforms.

I have now repeated the same type of calculations with the latest periodic systems,
and the results are presented here. It turns out that the three-body orbits with lumi-
nosities of 10 orders-of-magnitude larger or more, than those of a two-body orbit are
not rare at all: there are several such orbits even in this small sample. The quadrupole
gravitational waveforms and instantaneous power graphs, despite being distinguish-
able in detail, show certain similarities in shape for the orbits that belong to the same
sequence. These similarities could help to assign orbits to appropriate sequences.



2
T H E T H R E E - B O D Y P R O B L E M

How do three massive bodies move in the gravitational field of each other? This
perhaps simple-sounding question has been the subject of extensive research of both
physicists and mathematicians for almost two centuries after the discovery of New-
ton’s gravitational law. A similar problem concerning two bodies is easily solvable;
one can obtain the analytic form of their trajectories for any set of initial conditions.
At the end of 19th century, Bruns finally demonstrated that the three-body problem
does not have any new general integrals of motion in addition to the ten usual ones:
the total energy, the linear and the angular momentum, Ref. [2].

What makes a three-body system so different from a two-body system? A system
is said to be integrable if its number of degrees-of-freedom n equals the number of
its involutive integrals-of-motion. Such systems can be reduced to quadrature (hence
their name), which quadrature, in turn, can often be done in terms of analytic func-
tions. But, integrable systems turn out to be the exception in Nature, rather than
the rule. Unlike a two-body system, which has 6 (2x3) degrees-of-freedom in 3D
space and 10 (1+3+3+3)1 nominal integrals-of-motion; of the 10 only 7 (1+3+2+1)2 are
in involution. The Newtonian two-body problem is therefore (super)integrable. A
three-body system, on the other hand has 9 (3x3) degrees-of-freedom and 7 (1+3+3)
integrals-of-motion.3

As a result of this, the three-body problem cannot be solved in the same sense as the
two-body problem; given arbitrary initial conditions it is not possible to obtain general
closed-form solutions of Newton’s equations governing the motion of the three bodies.
The only exception is the Lagrange-Euler family of periodic orbits, which was found
in the 18th century [4].

However, Bruns’ result does not imply that other periodic orbits do not exist, only
that they cannot be found systematically. In the 20th century, the advent of electronic
computers has enabled another method of obtaining three-body problem periodic
solutions - numerical simulations. Several new families of periodic collisionless three-
body solutions have been discovered in this way. The first one was the Broucke-
Hadjidemetriou-Hénon family in the 1970s, Refs. [5, 6, 7, 8, 9, 10, 11]. In the period
1993-2002 the second one followed, the Moore-Chenciner-Montgomery-Simó figure-
eight family [12, 13]. The number of families was recently (2013) increased from three
to fifteen, Ref. [14]. Each one of these families contains infinitely many different orbits
with different angular momenta. New families of solutions that do not belong to the
previously discovered ones continue to be found [15]. Several new families of orbits
will be presented in this thesis.

1 energy + center-of-mass motion linear momentum + angular momentum + Lagrange-Runge-Lenz vector
2 See footnote 1.
3 M. Tabor, §2.5.b in Ref. [3] states: “... the key to integrating a Hamiltonian system of n degrees of

freedom is to find n independent integrals (constants) of motion.” and “A Hamiltonian system is said to be
completely integrable if there exist n integrals of motion which are in involution.”
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10 the three-body problem

2.1 equations of motion

In order to simplify the problem, we will first impose some restrictions on our system:

1. Only the non-relativistic three-body problem will be considered. The bodies
move in the field of Newtonian gravity.

2. The three bodies are point masses, which means that the sizes of the bodies are
negligible compared to the distances between them.

3. We will consider only planar three-body systems, where all bodies move in a
fixed plane. The only requirement for this is that none of the bodies has a
component of initial velocity perpendicular to the plane defined by their initial
positions.

The position of the i-th body is described by its position vector ri = (xi, yi). Masses
are denoted by mi, and the gravitational constant by G. A planar three-body system
has 6 (3x2) degrees-of-freedom; evolution of the system is therefore described by six
differential equations of motion. The first two are:

ẍ1(t) =
Gm2 (x2(t)− x1(t))[

(x1(t)− x2(t))
2 + (y1(t)− y2(t))

2
]3/2

+
Gm3 (x3(t)− x1(t))[

(x1(t)− x3(t))
2 + (y1(t)− y3(t))

2
]3/2 (1)

ÿ1(t) =
Gm2 (y2(t)− y1(t))[

(x1(t)− x2(t))
2 + (y1(t)− y2(t))

2
]3/2

+
Gm3 (y3(t)− y1(t))[

(x1(t)− x3(t))
2 + (y1(t)− y3(t))

2
]3/2 , (2)

and the other four can be obtained by cyclic permutations 1→ 2→ 3→ 1. These equa-
tions have to be solved numerically. For a more detailed description of the method
that I used, see Ref. [16].

The phase space of this system is 12-dimensional; the trajectory in the phase space
is a 12-vector function of time t:

X(t) = (r1(t), r2(t), r3(t), ṙ1(t), ṙ2(t), ṙ3(t)) , (3)

where ṙi(t) is the velocity of the i-th body. The initial conditions are specified by 12
numbers – components of the vector X0 = X(0).

2.2 the return proximity function

A solution is absolutely periodic if the trajectory in the phase space returns to the
initial point after some finite amount of time – period T: X(T) = X0. We define the
so-called return proximity function as4:

d(X0, T0) = mint<T0‖X(t)− X0‖. (4)

4 ‖X(t)‖ =
√

∑3
i=1 ri(t) + ∑3

i=1 ṙi(t) is the Euclidean norm.
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The return proximity function measures the minimal distance to the initial point X0

reached during the time interval [0, T0]. The condition for absolute periodicity with
period T < T0 is now equivalent to d(X0, T0) = 0.

A solution is said to be relatively periodic if all relative positions and relative ve-
locities of the three bodies return to their initial values after period T. All absolutely
periodic solutions are also relatively periodic, and all relatively periodic solutions are
absolutely periodic in some rotating coordinate system.

Various symmetries of the system can be used to simplify the return proximity
function, and to make it suitable for searching for relatively periodic solutions. Trans-
lational symmetry can be used to set the total momentum to zero; this is done by
changing the coordinate system so that the center-of-mass velocity is set to zero. For
simplicity, the coordinate origin will be fixed at the center-of-mass.

RCM =
m1r1 + m2r2 + m3r3

m1 + m2 + m3
= 0 (5)

ṘCM =
m1ṙ1 + m2ṙ2 + m3ṙ3

m1 + m2 + m3
= 0 (6)

In this way the phase space dimension, and thus the number of variables in the re-
turn proximity function is reduced to eight (by removing two coordinates and two
velocities – four constants of motion).

To this point all the equations were written for the general case of bodies with
arbitrary masses. From now on we will deal only with the systems of three bodies
with equal masses m. The following procedure can be easily modified for different
mass ratios.

2.3 jacobi coordinates and the shape-sphere

The graphical representation of the three-body system can be simplified with the use
of rotational invariance – by changing the coordinates to the Jacobi ones [17]. Jacobi
or relative coordinates are defined by two relative coordinate vectors:

ρ =
1√
2
(r1 − r2), λ =

1√
6
(r1 + r2 − 2r3). (7)

These coordinates can now be used to define a new return proximity function:

d(Y0, T0) = mint<T0‖Y(t)− Y0‖, (8)

where Y is a 8-vector Y(t) =
(
ρ(t), λ(t), ρ̇(t), λ̇(t)

)
and Y0 = Y(0) contains the ini-

tial conditions. The zeros of this reduced return-proximity function correspond to
absolutely periodic solutions.

Three independent scalar variables can be constructed from Jacobi coordinates:
ρ2, λ2 and ρ · λ. The overall size of the orbit is characterized by the hyperradius
R =

√
ρ2 + λ2. These scalar variables are connected to the unit vector with Cartesian

components:

n̂ =

(
2ρ · λ

R2 ,
λ2 − ρ2

R2 ,
2(ρ× λ) · ez

R2

)
. (9)

Therefore, every configuration of three bodies (shape of the triangle formed by them,
independent of size) can be represented by a point on a unit sphere. This sphere is
called the shape-sphere.
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Figure 1: Shape-sphere with marked special configurations. Red: collision points. Yel-
low: equator. Orange: isosceles triangles. Blue: right-angled triangles.

The north and the south pole of the shape-sphere correspond to equilateral triangles
which differ only in the orientation of bodies. In fact, a similar property holds for the
whole northern and southern hemispheres; two triangles of the same shape but with
opposite orientations are represented by two points that are symmetrical relative to
the equatorial plane. The equator corresponds to degenerate triangles, where the
bodies are in collinear configurations – syzygies. Three meridians at angles5 ϕ =

−90◦, 30◦, 150◦ represent isosceles triangles. The intersection points of these meridians
with the equator correspond to two-body collision points. Right-angled triangles are
represented by points located on the three circles that contain exactly two collision
points each. All other points on the shape-sphere represent triangles of general shape.

Every relatively periodic orbit of a three-body system is represented on the shape-
sphere by a closed curve, or a point (Lagrange-Euler solutions). Two orbits with
identical representations on the shape-sphere are considered to be the same solution.
Since the shape-sphere coordinates do not depend on the overall size of the system,
two orbits connected by scaling have identical curves on the shape-sphere. Orbits
after symmetry trasformations are also considered to be the same solution as the
original, although their representations on the shape-sphere can be different. Time-
inversion does not change the trajectory on the shape-sphere, cyclic permutation of
the bodies rotate the shape-space trajectory by 120◦ or 240◦ around the z-axis or reflect
the trajectory across the equatorial plane, and the orbits that are mirror images of each
other in real space correspond to trajectories that are also mirror images on the shape-
sphere with mirror plane being the Euler plane6.

The shape-sphere can be used to further reduce the number of variables in the
return proximity function d to six: two angles that parametrize the sphere and the
hyperradius R, together with their generalized momenta (time derivatives). Energy,

5 Azimuth ϕ is measured in counter-clockwise direction from x = 0. Cartesian coordinates are defined in
eq. (9).

6 One Euler plane is defined by ϕ = −90◦ – it contains both the Euler point and the coordinate origin, and
is perpendicular to the equator. The Euler planes are equivalent to isosceles triangles.
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or size scaling eliminates one of the variables, and thus brings their number down to
five.

It has been demonstrated in Ref. [18] that every zero angular momentum solu-
tion to the Newtonian three-body problem passes through a collinear configuration
(syzygy). This property allows us to choose a collinear initial configuration – a point
on the equator of the shape-sphere. The space of initial conditions is in that case
four-dimensional.

We can now define the relative return proximity function:

d(Z0, T0) = mint<T0‖Z(t)− Z0‖, (10)

where Z is a 6-vector Z(t) = (x, y, z, ẋ, ẏ, ż), Z0 = Z(0) is the initial position vector,
and

x =
2ρ · λ

R
, y =

λ2 − ρ2

R
, z =

2(ρ× λ) · ez

R
. (11)

Zeros of the relative return proximity function correspond to relatively periodic solu-
tions.

2.4 classification of periodic orbits

Periodic orbits can be classified according to the topology of their trajectories in
the real configuration space (“braid group”), or on the so-called shape-sphere (“free
group”), Refs. [14, 15, 16, 19]. The latter method of classification is used in this thesis.

Two-body collision points are singularities of the gravitational potential. A colli-
sionless periodic orbit’s trajectory on the shape sphere cannot pass through any of
those points, nor can it be continuously stretched across them – collision points can
therefore be considered punctures on the shape sphere.

A sphere with three punctures can be stereographically projected onto a plane with
two punctures, by projecting one of the punctures on the sphere to infinity in the
plane. In this way, the problem of classification is reduced to identifying topological
classes of closed curves in a plane with two punctures. The fundamental group of
such a plane is the free group on two elements (a, b). One clockwise turn around the
first puncture is denoted by a, and similarly, one counterclockwise turn around the
second puncture is denoted by b. The order of this group is infinite; its elements are
products of an arbitrary number of a and b and their inverse elements, which will
from now on be denoted by capitalized letters a−1 = A and b−1 = B.

Each free group element (a sequence of a, b, A and B that forms a “word”) is asso-
ciated with one family of orbits. Since there is no preferred initial point of a periodic
orbit, any cyclic permutation of the free group word corresponds to the same fam-
ily. Cyclic permutations are obtained by series of conjugations; a family of orbits is
therefore defined by the whole conjugacy class of a free group element.

A time-inversed orbit corresponds to a solution physically identical to the non-
inversed one. Their free group elements are each other’s inverse elements.

Permutations of the three-bodies also correspond to a physically identical solution.
On the shape sphere, cyclic permutations are represented by rotations through 120◦

and 240◦ around the z-axis. A loop around the first puncture denoted by a after a
cyclic permutation becomes a loop around the second puncture B, or a loop around
the third puncture which is stereographically projected to infinity. A loop around
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infinity is equivalent to a loop around both punctures in the plane, which is denoted
by Ab. Therefore a, B and Ab are equivalent.

An arbitrary number of neutral elements aA or bB can be added to a free group
element; this is sometimes done in order to obtain a more compact form of the word
– the one that contains powers of some simpler words. Because of this property, only
the minimal number of letters in a free group element is well defined.

A review of previously known solutions:

1. Lagrange-Euler orbits – a single point on the shape sphere (neutral element aA)

a) Lagrange’s solutions (bodies remain in the configuration of an equilateral
triangle) – north or south pole.

b) Euler’s solutions (bodies remain in a collinear configuration with one body
exactly in the middle) – Euler’s points (intersections of the equator and the
symmetry meridians).

Hyperangular degrees-of-freedom are frozen, all dynamics is reduced to hyper-
radial motions. The three-body problem is in this case solvable in general closed-
form because of this property.

Figure 2: Lagrange’s solution

Figure 3: Euler’s solution

2. Broucke-Hénon-Hadjidemetriou orbits – a

Trajectories on the shape sphere of these solutions are ovals symmetrical relative
to the equator and the meridian that passes through the collision point.

3. The figure-eight family – (abAB)n

Moore’s and Simó’s figure-eight, and their satellites belong to this family. Moore’s
figure-eight is a choreography – an orbit such that all bodies move on exactly
the same trajectory, only shifted in time by a third of the period. Satellites of the
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Figure 4: One of Broucke’s solutions

order k of an orbit with free group word w are orbits with free group word wk.
See Figure 22 (Moore’s and Simó’s figure-eight are denoted by V.1.A and V.1.B,
respectively).

4. Other – 12 new families, words with 8 letters and longer

See Table 1 (taken from Ref. [14]). Two of the orbits belong to the same topo-
logical class – butterfly I and II. Orbits whose trajectories on the shape sphere
pass trough the Euler’s point twice have two different sets of initial velocities
for collinear initial configurations (yin-yang I and II). They can be scaled and
rotated into each other. Further classification and proposed nomenclature rules
for new orbits will be explained in section 4.1.

2.5 numerical search for periodic orbits

Equations of motion (1) and (2) need to be solved numerically. Many different meth-
ods of numerical integration exist, one of the most famous being the Runge-Kutta
method. This method, with an adaptive time step, going by the name of the Runge-
Kutta-Fehlberg method [20], was chosen for numerical calculations in this thesis, as
implemented by Milovan Šuvakov in his code, Ref. [21]. An adaptive time step was
chosen because some of the collisionless three-body orbits pass close to a two-body
collision point (a singularity of the gravitational potential), where numerical error in-
creases. In order to decrease this error, a shorter time step is needed. However, a
short time step would unnecessarily increase integration time in regions far from the
two-body collision points. This is why the time step needs to change according to the
potential, so that the numerical error per step remains under some preset limit. The
method that I used for numerical search is explained in more detail in Appendix 5.1.

2.6 observed kepler-like regularities among newly found periodic

orbits

Empirical observations indicate that the value of scaling invariant constant7 T|E|3/2

depends on the structure of the word w(a, b, A, B) that characterizes a periodic three-
body orbit with zero-angular-momentum, Ref. [22]:

T(w)|E(w)|3/2 = const(w). (12)

This property can be thought of as a three-body version of Kepler’s third law.

7 Scaling laws: r→ λr, T → λ3/2T, E→ λ−1E.
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Table 1: Initial conditions and periods of three-body orbits from Ref. [14]. ẋ1(0), ẏ1(0)
are the first particle’s initial velocities in the x and y directions, respectively, T
is the period. The other two particles’ initial conditions are specified by these
two parameters, as follows, x1(0) = −x2(0) = −1, x3(0) = 0, y1(0) = y2(0) =
y3(0) = 0, ẋ2(0) = ẋ1(0), ẋ3(0) = −2ẋ1(0), ẏ2(0) = ẏ1(0), ẏ3(0) = −2ẏ1(0).
The Newton’s gravity coupling constant and equal masses are taken as G =

m1,2,3 = 1.

Label ẋ1(0) ẏ1(0) T Free group element
butterfly I 0.30689 0.12551 6.2356 (ab)2(AB)2

butterfly II 0.39295 0.09758 7.0039 (ab)2(AB)2

bumblebee 0.18428 0.58719 63.5345

(b2(ABab)2A2(baBA)2ba)

×(B2(abAB)2a2(BAba)2BA)

moth I 0.46444 0.39606 14.8939 ba(BAB)ab(ABA)

moth II 0.43917 0.45297 28.6703 (abAB)2A(baBA)2B

butterfly III 0.40592 0.23016 13.8658 (ab)2(ABA)(ba)2(BAB)

moth III 0.38344 0.37736 25.8406 (babABA)2a(abaBAB)2b

goggles 0.08330 0.12789 10.4668 (ab)2ABBA(ba)2BAAB

butterfly IV 0.350112 0.07934 79.4759 ((ab)2(AB)2)6A((ba)2(BA)2)6B

dragonfly 0.08058 0.58884 21.2710 (b2(ABabAB))(a2(BAbaBA))

yarn 0.55906 0.34919 55.5018 (babABabaBA)3

yin-yang I 0.51394 0.30474 17.3284 (ab)2(ABA)ba(BAB)

yin-yang I 0.28270 0.32721 10.9626 (ab)2(ABA)ba(BAB)

yin-yang II 0.41682 0.33033 55.7898

(abaBAB)3(abaBAbab)

×(ABAbab)3(AB)2

yin-yang II 0.41734 0.31310 54.2076

(abaBAB)3(abaBAbab)

×(ABAbab)3(AB)2

Moreover, this dependence is roughly linear: T ' n + n̄, where n = na = nb and
n̄ = nA = nB are the numbers of letters a, b and A, B in the orbits’ free group elements
(compare columns T/TM8 and (n + n̄)/2 in Table 2).

Five sequences of orbits8 were separated in Ref. [22]. Orbits within each of these
sequences follow the linear rule more precisely, compare T/Tβ and (n + n̄)/(nβ + n̄β)

in Table 2.
The word that characterizes topology of the “II.B.1 yarn” solution is the third power

of the time reversed word that describes the “I.B.1 moth I” orbit. Moth I and yarn
orbits therefore form in a progenitor-satellite relationship with k = 3. The ratio of
their periods equals three, to less than one par per thousand, as can be seen from
Table 2. This was until now the only available data about satellites of orbits other than
the figure-eight orbit.

2.6.1 Predictions

On the basis of these empirical regularities, Ref. [22] predicted:

1. new “yin-yang” orbits with ratios of periods T/T(II.C.2) = k = 2, 3, 5, . . .;

8 Other than the figure-eight one.
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Table 2: Taken from Ref. [22]. Periods T of three-body orbits rescaled to energy E =

−0.5, their ratios with Moore’s figure-8 period TM8, and with period Tβ of
the first orbit β in the given section of the Table, as functions of the numbers
na, nb, nA, nB, of a’s, b’s, A = a−1’s and B = b−1’s respectively, in the free-group
word description of the orbit. Different sequences of orbits are separated by
horizontal lines.

Label T T
TM8

T
Tβ

n+n̄
nβ+n̄β

(n, n̄)

M8 26.1281 1 1 1 1,1
S8 26.1268 0.999951 0.999951 1 1,1
I.B.1 moth I 68.4636 2.62031 1 1 2,3
II.B.1 yarn 205.469 7.86391 3.00114 3 6,9
I.A.1 butterfly I 56.3776 2.15774 1 1 2,2
I.A.2 butterfly II 56.3746 2.15762 0.999944 1 2,2
I.B.5 goggles 112.129 4.29152 1.9889 2 4,4
I.B.7 dragonfly 104.005 3.98059 1 1 4,4
I.A.3 bumblebee 286.192 10.9534 2.7517 11/4 11,11

II.C.2a yin-yang I 83.7273 3.20449 1 1 3,3
II.C.2b yin-yang I 83.7273 3.20449 1 1 3,3
II.C.3a yin-yang II 334.876 12.8167 3.9996 4 12,12

II.C.3b yin-yang II 334.873 12.8166 3.9996 4 12,12

I.B.1 moth I 68.4636 2.62031 1 1 2,3
I.B.3 butterfly III 98.4354 3.76742 1.43778 7/5 3,4
I.B.2 moth II 121.006 4.63126 1.76745 9/5 4,5
I.B.4 moth III 152.33 5.83013 2.22498 11/5 5,6
I.B.6 butterfly IV 690.627 26.4324 10.0875 49/5 24,25

2. new “butterfly I - goggles” orbits with ratios of periods T/T(I.A.1) equal to 3, 4,
5, . . . ;

3. new “dragonfly - bumblebee” orbits with T/T(I.A.3) = 5/4, 3/2, 7/4, . . .;

4. new “moth I,II,III - butterfly III” orbits with n = 6, 7, . . .. The “butterfly IV” orbit
deviates the most (8%) from this sequence, and may well define a sub-sequence
of its own;

5. new satellites of “moth I”, above and beyond the “yarn” orbit.
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G R AV I TAT I O N A L WAV E S

Similarly to electromagnetic waves, which are emitted by accelerating particles with
nonzero charge, accelerating massive particles emit gravitational waves. This result
appears in both the special and the general theory of relativity. Unlike electromagnetic
waves, where electric and magnetic fields oscillate in space and time, gravitational
waves are actually oscillations in the curvature of space-time itself.

Gravitational radiation was first predicted by Einstein in 1916, soon after he had
developed the theory of general relativity. Despite theoretical proof of their existence,
gravitational waves have not yet been directly detected in an experiment. However,
gravitational radiation has been detected indirectly. The binary system PSR1913+16

(consisting of a pulsar and another neutron star) which was discovered and studied
by Hulse and Taylor loses energy and its period decreases at a rate consistent with the
predictions of general relativity – the computed and observed rates agree to within
the experimental accuracy, which is better than one percent [23]. Gravitational waves
carry away energy and angular momentum, which causes the stars to spiral towards
each other, to accelerate and to decrease their period. Hulse and Taylor were awarded
the Nobel Prize in 1993 “for the discovery of a new type of pulsar, a discovery that
has opened up new possibilities for the study of gravitation”.

Aside from serving as another test of general relativity, direct detection of gravita-
tional waves could bring about a breakthrough in astronomy. Efforts to directly detect
gravitational waves are ongoing at several gravitational wave observatories operating
around the world and they are constantly developing new detection technologies with
better precision. The most advanced one, LIGO (Laser Interferometer Gravitational-
Wave Observatory) was searching for waves emitted from binary coalescence from
2002 to 2010, but failed to detect any credible signal. A new experiment (aLIGO -
Advanced LIGO) was supposed to start in September 2015. Several other detectors
are operating around the world, such as VIRGO, GEO, TAMA and ACIGA. The ESA
(European Space Agency) is planning to set up a gravitational wave observatory in
space (eLISA – Evolved Laser Interferometer Space Antenna) – in 2034.

3.1 propagation of gravitational waves

Derivation of gravitational waves in general relativity is explained in detail in Ap-
pendix 5.2.

A passing gravitational wave alternately stretches and compresses space in direc-
tions perpendicular to the direction of propagation of the wave – gravitational waves
are therefore transverse waves. Gravitational waves have two independent modes of
linear polarization, the so-called “plus” and “cross” modes. Their names come from
the shape of the deformation a ring of test particles experiences under the influence

19
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of the wave, see Figures 5 and 6. The relative deformation is measured by the grav-
itational wave strain, h+(t) and h×(t) for plus and cross mode respectively. The two
linear polarization modes can be rotated into each other by the angle 45◦ around the
z-axis (opposed to electromagnetic waves, where this angle is 90◦).

x

y

h+
t=0

t=T/4
t=T/2

Figure 5: Plus polarization mode

x

y

h×
t=0

t=T/4
t=T/2

Figure 6: Cross polarization mode

The two independent modes of linear polarization are connected to the spin of the
graviton – the hypothetical particle obtained after quantization of the gravitational
field. Since the plus and cross polarization modes are invariant under the rotations of
180◦ around the z-axis, the graviton (in linearized general relativity) is expected to be
a spin-2 particle. It also has to be massless, because gravitational waves propagate at
the speed of light. A particle with the described properties has not been discovered
so far, but it appears in all quantum theories of gravity.

Gravitational waveforms are graphs representing the change of h+ and h× over time.
The shape of waveforms depends on the characteristics of the source’s oscillations and
position relative to the observer/detector.

3.2 generation of gravitational waves

All accelerating massive objects moving in spherically or cylindrically asymmetric
ways are sources of gravitational waves. Possible astronomical sources include: two
(or more) astronomical objects orbiting one another, binary coalescence (final merger
of two compact binaries such as neutron stars or black holes), supernovae, rotating
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stars or planets (astronomical objects are never perfectly spherical), primordial gravi-
tational radiation from the Big-Bang (gravitational analogue to the CMB).

The simplest form of gravitational radiation is quadrupole radiation, which dif-
fers from electromagnetic radiation where dipole is the simplest source. This differ-
ence arises from the fact that there are two types of electromagnetic charge – positive
and negative, and only one type of gravitational charge – mass. In the same way
that the law of charge conservation forbids monopole radiation in electromagnetism,
monopole and dipole gravitational radiation are forbidden by the laws of mass and
momentum conservation.

For a quadrupole gravitational wave, it can be shown (for a derivation of equations
in this section see Refs. [24, 25]) that

hTT
ij =

2G
rc4

d2Qij

dt2 +O
(

1
r2

)
, (13)

where G is the gravitational constant, c the speed of light, r is the distance between
the source and the observer, and

Qij = Iij −
1
3

δij

3

∑
k=1

Ikk (14)

is the reduced quadrupole moment. This expression is known as the quadrupole for-
mula. Quadrupole moment is defined as Iij =

∫
ρxixjdV, where x1, x2, x3 = x, y, z and

ρ(r, t) is the mass density of the source. The reduced quadrupole moment equals zero
in spherically or cylindrically symmetric systems, which explains why such systems
do not emit gravitational radiation.

In this thesis, we are only interested in systems composed of three point-like bodies
with equal masses m. Their mass density can be expressed using the delta-function
ρ = m ∑3

k=1 δ(rk), in which case the quadrupole moment becomes Iij = m ∑3
k=1 xi

kxj
k.

The waveforms of a quadrupolar gravitational wave propagating along the z-axis now
become:

h+ =
2Gm
rc4

3

∑
k=1

(
ẋ2

i + xi ẍi − ẏ2
i − yiÿi

)
(15)

h× =
2Gm
rc4

3

∑
k=1

(ẍiyi + 2ẋiẏi + xiÿi) . (16)

Instantaneous power energy loss of the radiating system per unit of time can be
expressed as:

P = −dE
dt

=
G

5c5

3

∑
i,j=1

Q(3)
ij Q(3)

ij . (17)

Luminosity of the system is defined as instantaneous power averaged over one period〈
P
〉
.

Units were set to G = c = m = 1 for all calculations throughout this thesis.

3.3 detection of gravitational waves

If a gravitational wave alternately stretches and compresses the space through which
it is propagating (in the directions perpendicular to the direction of propagation), how
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should we detect its effects? For example, aren’t the detection instruments also dis-
torted together with space they sit in? This does not actually happen, because gravity
is the weakest of all four fundamental interactions – this makes it negligible in com-
parison to the internal (atomic) forces that determine the shape of a solid object. A
passing gravitational wave would change the dimensions of a solid object, but only by
a negligible amount. A gravitational wave can cause free-standing (or free-hanging)
objects such as a pendulum suspended in vacuum to move by a small but detectable
amount. Such small displacements can be measured by optical interferometry with
very high precision. This is the basis on which most contemporary gravitational wave
detectors work. Another detection method relies on measuring the resonant oscilla-
tions of large metal cylinders.

The largest gravitational wave detector is LIGO - each of the two arms of its inter-
ferometer are 4km long [26]. LIGO actually consists of two identical detectors located
on the “opposite” sides of the United States (in Livingston, Louisiana and Richland,
Washington). A gravitational wave would have to be detected by both interferometers
simultaneously in order to exclude external noise ranging from earthquakes and other
seismic activity to even airplanes passing nearby [27].

Figure 7: Detection windows – each gravitational wave observatory is best suited to
detect waves from one type of sources – it can only detect waves whose
frequencies are within a limited range and with amplitudes h above a certain
threshold. Image taken from Ref. [28].

Because of its size, LIGO is able to detect displacements as small as 10−18m [26]. For
comparison, this is around a thousand times smaller then the size of a single proton.
Displacements of that order of magnitude are predicted to be caused by gravitational
waves emitted from, for example, binary coalescence of 10 solar mass black holes
located outside our Galaxy. Binary coalescence is the only source for which there
exists a precise prediction of the signal, see Refs. [29, 30, 31].
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However, the problem with detection of this kind of waves is that the major part
of energy emitted from binary coalescence comes from the final merger of two bod-
ies. This event produces an intense burst of gravitational radiation which should be
detected with current technology, but only if the detector is aiming at the right part
of the sky in the right moment, because such events are never repeated in the same
system. It is similar with supernovae, they are intense one-off events, but occur even
more rarely than binary coalescence. Another problem with intense but rare events
is that they are more likely to happen far away from Earth (their distribution in our
Galaxy is poorly known), and the effects of gravitational waves emitted by them are
greatly diminished before they reach the detectors.

On the other hand, (quasi)-periodic sources such as two-body orbits are not so rare
and emit continual radiation, but they are weak sources of gravitational waves. As can
be seen from the eq. (17), the power carried of by a quadrupolar gravitational wave
is proportional to the square of the third time derivative of the reduced quadrupole
moment, which is sensitive to the closest proximity to a two-body collision reached in
a periodic orbit (close approach to a collision is accompanied by increases in veloci-
ties, accelerations and third derivatives of the relative positions which all increase the
emitted power).

In the case of an isolated two-body system, a close approach to a collision inevitably
leads to the actual collision and the destruction of that system. Getting as close as pos-
sible to a two-body collision but without the collision actually happening is therefore a
desirable property of a radiating system whose gravitational waves are to be detected.
The simplest systems of that kind are the three-body periodic orbits, where the gravi-
tational influence of the third body can prevent a two-body collision even after a close
approach. For this reason we shall study the gravitational waves emitted by known
periodic three-body orbits, with some unexpected results.
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R E S U LT S

In Ref. [14] a numerical search for periodic orbits was first done in the whole negative
energy region - this is how the initial 13 orbits were found. Then in Ref. [15] Šuvakov
“zoomed in” on a smaller window around the figure-eight orbit and found many
satellites of the eight. This inspired us to make similar fine-comb searches around
these 13 solutions. At first we took the window defined by (p1, p2) ∈ [0.3, 0.5] ×
[0.1, 0.5] with the resolution 2000× 4000 (the return proximity function was computed
for each point of the grid with step s = 0.0001). The maximal period was chosen to be
T0 = 100, same as in Ref. [14]. For comparison, the period of the Moore’s figure-eight
orbit is 6.325 in our units1.

The search was later to extended to some other regions where we expected to find
more solutions:

1. [0.2, 0.3]× [0.4, 0.5],

2. [0.5, 0.6]× [0.34, 0.46],

3. [0.38, 0.44]× [0.50, 0.54],

4. some smaller regions adjacent to the first search window and others around
previously known orbits dragonfly (p1, p2) = (0.0806, 0.5888) and bumblebee
(p1, p2) = (0.1843, 0.5872) [14].

Local minima with the return proximity function < 10−2 were chosen as possible
candidates for periodic solutions. There were around 200 such candidates. The gra-
dient descent method with resolution dp = 0.0001 was then performed for those can-
didate solutions, and the orbits with the resulting return proximity function > 10−4

were excluded.2

4.1 new orbits

In order to classify the new periodic orbits, their free group elements (“words”) had
to be determined first. Most of these orbits have long words3 that are practically
impossible to be read directly from the shape sphere trajectory. Because of this, a
computer program had to be used for this task. This code was also developed by
Šuvakov, Ref. [21]. The free group word reading algorithm is described in Ref. [16].

The orbits were then divided into 5 sequences4 that are defined in table 2 in section
2.6. They were first divided according to differences between their numbers n and n̄,

1 G = m = 1
2 Some of the candidates with return proximity functions that are too large are probably connected to

periodic solutions with slightly different initial conditions than (18).
3 The longest word has 110 letters.
4 One of these sequences was latter divided into 3 subsequences.

25
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Figure 8: Negative decadic logarithm of the return proximity function for the region
[0.3, 0.5] × [0.1, 0.5]. Bright spots represent candidates for periodic orbits.
Dark lines probably correspond to trajectories which lead to collision of two
bodies.

and then placed into the sequence where they best fit (according to the slope of their
linear dependece T|E|3/2 ∼ (n + n̄), explained in section 2.6). Only the first few orbits
in each sequence (with shortest words) will be presented.

Because of their large number, a nomenclature system for periodic orbits has to be
invented. New orbits will be named following the pattern S.n.X.α5, where:

1. S is the sequence number (roman numeral)

2. n is the smaller of numbers n and n̄ (if they are different)

3. X∈{A,B,C,. . . } denotes different orbits in case there are more then one with the
same n in the same group

5 Not to be confused with orbit classes from Refs. [14] and [22]; that notation corresponds to geometric
and algebraic symmetries of the orbits.



4.1 new orbits 27

4. α or β denotes two different sets of initial conditions for the same solution if they
exist at all.6

4.1.1 Sequence I – butterfly I (n, n)

Table 3: First few orbits in sequence I – butterfly I. Columns are the same as in Table
2 (except that the second one contains the invariant T|E|3/2 instead of period
T rescaled to energy E = −0.5). Old orbits are relabeled according to the new
naming convention. New orbits are denoted by an asterisk.

Label T|E|3/2T T
TM8

T
Tβ

n+n̄
nβ+n̄β

(n, n̄) Old label

I.2.A 19.9325 2.15774 1 1 2,2 butterfly I
I.2.B 19.9313 2.15762 0.99994 1 2,2 butterfly II
I.5.A 49.6301 5.37257 2.48991 2.5 5,5 *
I.8.A 79.2555 8.57959 3.97619 4 8,8 *
I.12.A 119.241 12.9081 5.98224 6 12,12 *

I.2.A I.2.B I.5.A I.8.A I.12.A

Figure 9: Top row: Real space trajectories of orbits from the butterfly I sequence (Table
3). Bottom row: Shape space trajectories of the same orbits.

These orbits have characteristic free group elements which contain sequences of
letters (ab)2(AB)2 or (ba)2(BA)2 (see Table 4). All the orbits in this sequence have
reflection symmetries around two axes – the equator and the meridian that passes
through the Euler point. Orbits I.2.A, I.2.B, I.5.A and I.8.A also have algebraic ex-
change symmetries of free group elements (a, b)↔ (A, B).

Orbits I.8.A with T
Tβ
≈ 4 and I.12.A with T

Tβ
≈ 6 were predicted in Ref. [22]. Orbit

I.5.A was unexpected because it has an odd number n = 5, and all previously known
orbits from this sequence had even numbers n.

6 This happens only when the orbit passes through the Euler point more than once – each passage can be
taken for the initial configuration. Such orbits can be scaled into one another. Examples are the yin-yang
a and b orbits from Ref. [14].
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Linear fit T|E|3/2 = a
( n+n̄

2

)
+ b for all orbits from Table 3 gives a = 9.924± 0.015

and b = 0.04± 0.11 (see Figure 11).

Figure 10: Goggles orbit. Left: real space. Right: shape-space.

The goggles orbit was also placed into this sequence in Ref. [22]. While it does
fit in numerically, it looks completely different both in real space and on the shape-
sphere (see Figure 10), and its free group element (ab)2ABBA(ba)2BAAB does not contain
(ab)2(AB)2 or (ba)2(BA)2. It was therefore excluded from this sequence.

Table 4: Free group elements of the orbits from Table 3 – sequence I.

Label Free group element
I.2.A [(ab)2(AB)2]

I.2.B [(ab)2(AB)2]

I.5.A
[(ab)2(AB)2]bA[(ab)2(AB)2]B[(ba)2(BA)2]a

= (ab)2(ABAbab)(AB)2(abaBAB)

I.8.A [(ab)2(AB)2]bA
2
[(ab)2(AB)2]B[(ba)2(BA)2]aB[(ba)2(BA)2]a

= (AB)2(abaBAB)2(ab)2(ABAbab)2

I.12.A
[(ab)2(AB)2]b[(ba)2(BA)2]aB[(ba)2(BA)2]A[(ab)2(AB)2]B

×[(ba)2(BA)2]A[(ab)2(AB)2]b[(ba)2(BA)2]a

= [aba(BA)2bab(AB)2]2(ba)2(BA)2[ABA(ba)2BAB(ab)2]2
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Figure 11: Linear fit of function TE3/2( n+n̄
2 ) for butterfly I orbits from Table 3.

4.1.2 Sequence II – dragonfly (n, n)

Table 5: First few orbits in sequence II – dragonfly. Columns are the same as in Table
3.

Label TE3/2 T
TM8

T
Tβ

n+n̄
nβ+n̄β

(n, n̄) Old label

II.4.A 36.7714 3.98059 1 1 4,4 dragonfly
II.6.A 55.2035 5.97591 1.50126 1.5 6,6 *
II.8.A 73.654 7.97321 2.00302 2 8,8 *
II.11.A 101.184 10.9534 2.75170 2.75 11,11 bumblebee

These orbits have characteristic free group elements with A2 and B2 followed by
alternating sequences of letters ab and AB (see Table 6). Orbits II.4.A, II.6.A and II.11.A
have reflection symmetries around two axes – the equator and the meridian that passes
through the Euler point. Orbit II.8.A has central reflection symmetry around the Euler
point. They also have algebraic exchange symmertries of free group elements; II.4.A
and II.6.A (a, A)↔ (b, B), and II.11.A (a, b)↔ (A, B).

Orbits II.6.A with T
Tβ
≈ 3

2 and II.8.A with T
Tβ
≈ 2 were predicted in Ref.[22].

Linear fit T|E|3/2 = a
( n+n̄

2

)
+ b for all orbits from Table 5 gives a = 9.20± 0.01 and

b = −0.02± 0.07 (see Figure 13). This is the smallest slope value of all the sequences.
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II.4.A II.6.A II.8.A II.11.A

Figure 12: Top row: Real space trajectories of orbits from the dragonfly sequence (Ta-
ble 5). Bottom row: Shape-space trajectories of the same orbits. Note how
the shape-sphere trajectories of orbits II.4.A and II.6.A are rotated by 7π/6,
in order to show the trajectory around the third two-body collision point.

Table 6: Free group elements for the orbits from Table 5 – sequence II.

Label Free group element
II.4.A a2(BAbaBA)b2(ABabAB) = Ba(BAba)2Ab(ABab)2

II.6.A A2(baBAbaBAba)B2(abABabABab) = bA(baBA)3aB(abAB)3

II.8.A A2(baBAbaBAbaBAbaBAba)B2(abABabABab) = bA(baBA)5aB(abAB)3

II.11.A
[A2(baBAbaBAba)B2(abABabAB)][a2(BAbaBAbaBA)b2(ABabABab)]

= [bA(baBA)2aB(abAB)2][aB(baBA)3bA(abAB)3]
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4.1.3 Sequence III – yin-yang (n, n)

Table 7: First few orbits in sequence III – yin-yang. Columns are the same as in Table
3.

Label TE3/2 T
TM8

T
Tβ

n+n̄
nβ+n̄β

(n, n̄) Old label

III.3.A 29.6021 3.20450 1 1 3,3 yin-yang Ia
III.9.A 88.8065 9.61351 3.000 007 3 9,9 *
III.12.A 118.396 12.8166 3.999 581 4 12,12 yin-yang IIa
III.15.A 147.998 16.0211 4.999 578 5 15,15 *

These orbits have characteristic free group elements that contain powers of abaBAB
and babABA (see Table 8). Orbit III.9.A is a satellite of orbit I.3.A with k = 3. Its value
of T|E|3/2 is three times the value for the progenitor orbit, to the precision of 7 · 10−6.
This is a new satellite-progenitor pair of orbits, the first after the moth I - yarn pair
and the figure-eight satellites.

All the orbits from this sequence have central reflection symmetry around the Euler
point. They have no algebraic exchange symmetries of free group elements.

Orbits III.9.A with T
Tβ
≈ 3 and III.15.A with T

Tβ
≈ 5 were predicted in Ref. [22].

Linear fit T|E|3/2 = a
( n+n̄

2

)
+ b for all orbits from Table 7 gives a = 9.8662± 0.0004

and b = 0.005± 0.004 (see Figure 15).

Table 8: Free group elements for the orbits from Table 7 – sequence III.

Label Free group element
III.3.A (abaBAB)a(babABA)A

III.9.A [(abaBAB)a(babABA)A]3

III.12.A (abaBAB)4b(babABA)4B

III.15.A (abaBAB)5b(babABA)5B
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III.3.A III.9.A III.12.A III.15.A

Figure 14: Top row: Real space trajectories of α orbits from the yin-yang sequence
(Table 7). Middle row: Real space trajectories of β orbits. Bottom row:
Shape-space trajectories of the same orbits.
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Figure 15: Linear fit of function TE3/2( n+n̄
2 ) for yin-yang orbits from Table 7.
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4.1.4 Sequence IVa – moth I (n, n + 1)

Table 9: First few orbits in sequence IVa - moth I.

Label TE3/2 T
TM8

T
Tβ

n+n̄
nβ+n̄β

(n, n̄) Old label

IVa.2.A 24.2056 2.62031 1 1 2,3 moth I
IVa.4.A 42.7821 4.63126 1.76745 1.8 4,5 moth II
IVa.6.A 61.2901 6.63479 2.53206 2.6 6,7 *
IVa.8.A 79.7794 8.63630 3.29591 3.4 8,9 *
IVa.8.B 79.7794 8.63630 3.29591 3.4 8,9 *
IVa.8.C 79.7794 8.63630 3.29591 3.4 8,9 *

IVa.4.A IVa.6.A IVa.8.A IVa.8.B IVa.8.C

Figure 16: Top row: Real space trajectories of orbits from the moth I sequence (Table
9). Bottom row: Shape space trajectories of the same orbits.

This sequence and the following two (IVb and IVc) were a part of a larger sequence
of orbits (“moth I, II, III - butterfly III”) in Ref. [22]. Here they are divided into three
parts, based on the slope of their T|E|3/2 ( n+n̄

2

)
linear dependence, the appearance of

their trajectories in real and shape-space, and the patterns in the words that define
their topology.

These orbits have characteristic free group elements that contain powers of abAB

and baBA (see Table 10). Orbits IVa.2.A, IVa.6.A and IVa.8.B have reflection symme-
tries around two axes – the equator and the meridian that passes through the Euler
point. Orbits IVa.8.A and IVa.8.C have central reflection symmetry around the Euler
point, and are mirror images of each other on the shape sphere. They have the same
topology as the orbit IVa.8.B. All orbits have algebraic exchange symmetries of free
group elements (a, A)↔ (b, B).

Linear fit T|E|3/2 = a
( n+n̄

2

)
+ b for all orbits from Table 9 gives a = 9.259± 0.005

and b = 1.09± 0.03 (see Figure 17). Note the nonvanishing intercept b.
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Table 10: Free group elements for the orbits from Table 9 – sequence IVa. Columns are
the same as in Table 3.

Label Free group element
IVa.2.A (abAB)A(baBA)B

IVa.4.A (abAB)2A(baBA)2B

IVa.6.A (abAB)3A(baBA)3B

IVa.8.A (abAB)4A(baBA)4B

IVa.8.B (abAB)4A(baBA)4B

IVa.8.C (abAB)4A(baBA)4B
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Figure 17: Linear fit of function TE3/2( n+n̄
2 ) for moth I orbits from Table 9.

4.1.5 Sequence IVb – butterfly III (n, n + 1)

These orbits have characteristic free group elements which contain sequences of letters
(ab)2(AB)2 or (ba)2(BA)2 (see Table 12), same as the sequence I orbits. They are in fact
very similar to the sequence I (butterfly I) orbits; the only difference is that in this case
n̄ = n + 1 instead of n̄ = n.

All the orbits in this sequence have reflection symmetries around two axes – the
equator and the meridian that passes through the Euler point. These orbits also have
algebraic exchange symmetries of free group elements (a, b)↔ (A, B).

Linear fit T|E|3/2 = a
( n+n̄

2

)
+ b for all orbits from Table 11 gives a = 9.9695± 0.0008

and b = −0.091± 0.013 (see Figure 19).
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Table 11: Representative orbits from the sequence IVb – butterfly III. In this case sev-
eral orbits with n ranging from 3 to 24 are presented instead of just the first
few, because the previously known orbit – butterfly IV is one of the last ones.

Label TE3/2 T
TM8

T
Tβ

n+n̄
nβ+n̄β

(n, n̄) Old label

IVb.3.A 34.8022 3.7674 1 1 3,4 butterfly III
IVb.11.A 114.567 12.4021 3.29195 3.28571 11,12 *
IVb.15.A 154.433 16.7177 4.43745 4.42857 15,16 *
IVb.19.A 194.299 21.0333 5.58295 5.57143 19,20 *
IVb.24.A 244.172 26.4322 7.01599 7 24,25 butterfly IV

IVb.3.A IVb.11.A IVb.15.A IVb.19.A IVb.24.A

Figure 18: Top row: Real space trajectories of orbits from the butterfly III sequence
(Table 11). Bottom row: Shape space trajectories of the same orbits.

Table 12: Free group elements for the orbits in Table 11 - sequence IVb.

Label Free group element
IVb.3.A [(ab)2(AB)2]B[(ba)2(BA)2]A

IVb.11.A [(ab)2(AB)2]3a[(ba)2(BA)2]3b

IVb.15.A [(ab)2(AB)2]4b[(ba)2(BA)2]4a

IVb.19.A [(ab)2(AB)2]5b[(ba)2(BA)2]5a

IVb.24.A [(ab)2(AB)2]6A[(ba)2(BA)2]6B
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4.1.6 Sequence IVc – moth III (n, n + 1)

Table 13: First few orbits in sequence IVc – moth III.

Label TE3/2 T
TM8

T
Tβ

n+n̄
nβ+n̄β

(n, n̄) Old label

IVc.5.A 53.8569 5.83013 1 1 5,6 moth III
IVc.12.A.α 122.532 13.2644 2.27514 2.27273 12,13 *
IVc.12.A.β 122.532 13.2644 2.27514 2.27273 12,13 *
IVc.17.A 172.311 18.6531 3.19942 3.18182 17,18 *
IVc.19.A 191.207 20.6986 3.55028 3.54545 19,20 *

IVc.5.A IVc.12.A.α IVc.12.A.β IVc.17.A IVc.19.A

Figure 20: Top row: Real space trajectories of orbits from the moth III sequence (Table
13). Bottom row: Shape space trajectories of the same orbits.

These orbits have characteristic free group elements which contain the powers of
letter sequences abaBAB and babABA (see Table 14), same as the yin-yang orbits.

Orbits IVc.5.A, IVc.17.A and IVc.19.A have reflection symmetries around two axes –
the equator and the meridian that passes through the Euler point. Orbit IVc.12.A has
central reflection symmetry around the Euler point. Orbits IV.5.A and IVc.17.A also
have algebraic exchange symmetries of free group elements (a, A)↔ (b, B).

Linear fit T|E|3/2 = a
( n+n̄

2

)
+ b for all orbits from Table 13 gives a = 9.84± 0.04 and

b = −0.3± 0.5 (see Figure 13). The value of slope a agrees with the value for sequence
III - yin-yang, within the stated absolute errors. This suggest that these two sequences
may belong to one larger sequence, despite their different values of n and n̄.
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Table 14: Free group elements for the orbits from Table 13 – sequence IVc.

Label Free group element
IVc.5.A [(babABA)2a(abaBAB)2b]

IVc.12.A.α [(babABA)3A(abaBAB)3B][(babABA)2a(abaBAB)B]

IVc.12.A.β [(babABA)3a(abaBAB)3b][(babABA)A(abaBAB)2b]

IVc.17.A [(babABA)6A(abaBAB)6B]

IVc.19.A
[(babABA)2a(abaBAB)2b][(babABA)3a(abaBAB)2b]

×[(babABA)2A(abaBAB)3b]
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Figure 21: Linear fit of function TE3/2( n+n̄
2 ) for moth III orbits from Table 13.

4.1.7 Sequence V – figure-eight (n, n)

All the oribits in the figure-eight family have free group words (abAB)k, where k = n.
Orbits V.1.A and V.1.B have reflection symmetries around two axes – the equator and
the meridian that passes through the Euler point. Orbits V.4.A, V.15.A and V.20.A
have central reflection symmetry around the Euler point. They also have algebraic
exchange symmetries of free group elements (a, b)↔ (A, B).

Linear fit T|E|3/2 = a
( n+n̄

2

)
+ b for all orbits from Table 15 gives a = 9.2312± 0.0015

and b = 0.003± 0.017 (see Figure 23).
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Table 15: First few orbits in sequence V – figure-eight. In this case TM8 = Tβ, so there
is one less column in this table.

Label TE3/2 T
Tβ

n+n̄
nβ+n̄β

(n, n̄) Old label

V.1.A 9.23768 1 1 1,1 M8

V.1.B 9.23721 0.99995 1 1,1 S8

V.4.A 36.9090 3.99548 4 4,4 *
V.15.A 138.503 14.9933 15 15,15 *
V.20.A 184.606 19.9840 20 20,20 *

V.1.A V.1.B V.4.A V.15.A V.20.A

Figure 22: Top row: Real space trajectories of orbits from the figure-eight sequence
(Table 15). Bottom row: Shape space trajectories of the same orbits.
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4.2 waveforms and luminosities of the new three-body orbits

Gravitational waves from periodic three-body systems have already been studied in
Refs. [32, 33, 34]. They have calculated the quadrupole radiation waveforms and lumi-
nosities for periodic orbits belonging to three families known at the time (Lagrange-
Euler, figure-eight, Broucke-Hadjidemetriou-Hénon). However, the calculated lumi-
nosities were of the same order of magnitude as those from a comparable periodic
two-body system.

This thesis is a continuation of work presented in Ref. [1]. Here we calculated
the waveforms and luminosities for 13+11 recently discovered orbits (13 solutions
belonging to 12 new families [14], and 11 new ”satellite” orbits in the figure-eight
family [21]). All the orbits were scaled to energy E = −0.5, in order to make a
meaningful comparison between them. Units were set to G = m = c = 1. Orbits
with two reflection symmetry axes were rotated in such a way that x and y coordinate
axes coincide with symmetry axes. Orbits with a single point rotation symmetry are
rotated so that the x and y axes are collinear with the eigenvectors of the moment-of-
inertia tensor. In this way, a more symmetric shape of waveforms was obtained. These
rotation angles are given in Tables 16-22.

Mean luminosities for these orbits range over 13 orders of magnitute, with maximal
1.23 · 1013 for butterfly IV orbit (for comparison, Moore’s figure-eight orbit has a mean
luminosity of 1.35). Moreover, it turns out that orbits with large luminosities (over
1010) are not a rarity, see figure 24. All of the orbits have distinguishable waveforms,
whose number of peaks is proportional to the number of close approaches to a two-
body collision point.

The quadrupole waveforms and instantaneous power graphs are symmetric under
the reflection about time axis mid-point T/2 during one period T. This is a consen-
quence of the chosen initial conditions – all the orbits have vanishing angular momen-
tum and pass through the Euler’s point.

The same calculations are now repeated for new orbits from the previous section
(4.1).
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Figure 24: Luminosity averaged over one period (y-axis) as a function of n+n̄
2 (x-axis).

Note the logarithmic scale for luminosity. Orbits with luminosities of the
order-of-magnitude > 1010 are not a rarity. Black crosses: figure-eight. Blue
triangles: moth I. Blue squares: yin-yang (n,n). Orange circles: dragonfly.
Yellow triangles: moth III. Red pluses: butterfly I. Green stars: butterfly III.
Pink circles: yin-yang (n,n+1).

4.2.1 Sequence I – butterfly I (n, n)

Orbits from the butterfly I sequence have luminosities that range from 105 to over 108,
as can be seen in Table 16. Orbits I.2.A and I.2.B belong to the same topological class,
but the latter has over 10 times larger luminosity because of its closer approach to a
two-body collision point, see their shape-space trajectories in Figure 9.
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Table 16: Initial conditions and periods of the orbits from sequence I – butterfly I.
ẋ1(0), ẏ1(0) are the first particle’s initial velocities in the x and y directions,
respectively, T is the period of the (rescaled) orbit to normalized energy
E = −1/2, Θ is the rotation angle (in radians) and 〈P〉 is the mean luminosity
(power) of the waves emitted during one period. The other two particles’
initial conditions are specified by these two parameters, as follows: x1(0) =
−x2(0) = −λ, x3(0) = 0, y1(0) = y2(0) = y3(0) = 0, ẋ2(0) = ẋ1(0), ẋ3(0) =
−2ẋ1(0), ẏ2(0) = ẏ1(0), ẏ3(0) = −2ẏ1(0). The Newtonian coupling constant
G is taken as G = 1 and the masses are equal m1,2,3 = 1.

Name ẋ1(0) ẏ1(0) λ T Θ(rad) 〈P〉
I.2.A 0.147 307 0.060 243 4.340 39 56.378 0.034 78 1.4×105

I.2.B 0.196 076 0.048 690 4.016 39 56.375 0.066 21 5.5×106

I.5.A 0.217 464 0.137 870 3.577 07 140.375 0.186 82 1.2×106

I.8.A 0.220 304 0.151 493 3.499 19 224.168 0.158 98 5.8×106

I.12.A 0.213 846 0.127 658 3.643 89 337.265 0.179 84 3.5×108
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Figure 25: Left: Gravitational radiation quadrupolar waveforms h+,× × r for orbits
from the butterfly I sequence (Table 16), where r is the radial distance from
source to observer. Dotted blue curves denote the + modes, and red solid
curves × modes. Right: Instantaneous power of quadrupolar gravitational
radiation as a function of elapsed time. Note the logarithmic scale for power.
From top to bottom: I.2.A, I.2.B, I.5.A, I.8.A, I.12.A.
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4.2.2 Sequence II – dragonfly (n, n)

Orbits from this sequence have luminiosities that range from 104 to over 106, see Table
17. Intrestingly, II.4.A, the orbit with the least n, has the largest luminosity. It would
be expected that the luminosity is roughly proportional to n, because the orbits with
larger n can approach the collision points more times in one period. Orbits with larger
n indeed have more peaks in instantaneous emitted power, but closer approaches to
the two-body collision points produce higher peaks (see Figure 26), which then result
in greater overall luminosity. “Closeness to a collision point” can be seen from the
orbits’ trajectories on the shape-sphere, Figure 12.

Table 17: Orbits from sequence II – dragonfly. Columns are the same as in Table 16.

Name ẋ1(0) ẏ1(0) λ T Θ(rad) 〈P〉
II.4.A 0.047 479 0.346 935 2.880 67 104.005 -0.406 199 1.2×106

II.6.A 0.111 649 0.346 938 2.782 43 156.139 -0.820 428 1.4×104

II.8.A 0.082 172 0.308 060 3.105 75 208.325 1.273 42 2.3×104

II.11.A 0.111 581 0.355 545 2.727 51 286.192 -1.090 4 1.0×105
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Figure 26: Same as in Figure 25 for orbits from the dragonfly sequence (Table 17).
From top to bottom: II.4.A, II.6.A, II.8.A, II.11.A.

4.2.3 Sequence III – yin-yang (n, n)

Gravitational waveforms and instantaneous emitted power graphs are here shown
only for one orbit from each pair. This is because the only difference between their
graphs is that they are shifted in time for T/2, since these are the same orbits with dif-
ferent initial conditions. Obviously, they have exactly the same values of luminosities.

Same as with previous sequences of orbits, the orbit with the closest approach to
the collision point, III.12.A (see Figure 14), has the largest luminosity 〈P〉 ∼ 1010.
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Table 18: Orbits from sequence III – yin-yang. Columns are the same as in Table 16.

Name ẋ1(0) ẏ1(0) λ T Θ(rad) 〈P〉
III.3.A.α 0.304 003 0.180 257 2.858 02 83.727 0.659 242 1.3×105

III.3.A.β 0.143 554 0.166 156 3.878 10 83.727 -0.020 338 1.3×105

III.9.A.α 0.300 431 0.169 455 2.917 42 251.183 0.439 467 2.4×107

III.9.A.β 0.140 203 0.168 360 3.881 95 251.183 0.0513 222 2.4×107

III.12.A.α 0.229 355 0.181 764 3.302 84 334.877 0.472 891 7.2×1010

III.12.A.β 0.227 451 0.170 639 3.366 76 334.872 0.254 995 7.2×1010

III.15.A.α 0.228 839 0.187 327 3.279 22 418.601 0.649 370 5.0×108

III.15.A.β 0.226 509 0.164 556 3.400 64 418.601 0.091 698 5.0×108
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Figure 27: Same as in Figure 25 for orbits from the yin-yang sequence (Table 18). From
top to bottom: III.3.A.α, III.9.A.α, III.12.A.α, III.15.A.α.

4.2.4 Sequence IVa – moth I (n, n + 1)

The luminosities of orbits from the moth I sequence range from 102 to over 106. Orbits
IVa.8.A and IVa.8.C have exactly the same values of luminosities, which is natural
since they are mirror images of each other. Orbit IVa.8.B is in the same topological
class as the previous two, but it has an order-of-magnitute smaller luminosity.

All the instantaneous power graphs have two large peaks in each half-period – these
peaks correspond to the closest approaches to the two-body collision points that can
be seen on their shape-space trajectories, Figure 16. These peaks are of the same height
for orbits with reflectional symmetry (IVa.2.A, IVa.4.A, IVa.6.A and IVa.8.B).
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Table 19: Orbits from sequence IVa – moth I. Columns are the same as in Table 16.

Name ẋ1(0) ẏ1(0) λ T Θ(rad) 〈P〉
IVa.2.A 0.279 332 0.238 203 2.764 56 68.464 0.899 49 5.2×102

IVa.4.A 0.271 747 0.280 288 2.611 72 121.006 1.138 78 1.9×103

IVa.6.A 0.281 803 0.289 097 2.527 88 389.211 1.257 33 2.4×106

IVa.8.A 0.249 451 0.304 409 2.591 55 225.650 -1.557 74 3.7×104

IVa.8.B 0.245 798 0.305 159 2.602 50 225.650 -1.474 43 5.8×103

IVa.8.C 0.253 073 0.307 580 2.561 60 225.650 1.559 48 3.7×104
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Figure 28: Same as in Figure 25 for orbits from the moth I sequence (Table 19). From
top to bottom: IVa.2.A, IVa.4.A, IVa.6.A, IVa.8.A, IVa.8.B, IVa.8.C.
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4.2.5 Sequence IVb – butterfly III (n, n + 1)

Table 20: Orbits from sequence IVb – butterfly III. Columns are the same as in Table
16.

Name ẋ1(0) ẏ1(0) λ T Θ(rad) 〈P〉
IVb.3.A 0.211 210 0.119 761 3.693 54 98.435 0.170 326 3.5×105

IVb.11.A 0.199 886 0.078 032 3.917 70 324.043 0.107 860 5.8×109

IVb.15.A 0.199 062 0.071 624 3.941 56 436.804 0.098 823 6.2×1010

IVb.19.A 0.197 960 0.067 703 3.959 99 549.561 0.092 685 3.5×1011

IVb.24.A 0.170 296 0.038 591 4.226 76 690.632 0.038 484 1.2×1013

Orbits from this sequence have the largest values of luminosities. Orbit IVb.24.A
(previous name butterfly IV) has the maximum of all the orbits presented in this thesis.
This is a consequence of their close approaches to the two-body collision points (as can
be seen from their shape-space trajectories, Figure 18), and the large number of these
approaches per one period. Each peak on the instantaneous power graph corresponds
to one such close approach.

Instantaneous power graphs of these orbits resemble in shape the graphs of orbits
from the butterfly I sequence.
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Figure 29: Same as in Figure 25 for orbits from the butterfly III sequence (Table 20).
From top to bottom: IVb.3.A, IVb.11.A, IVb.15.A, IVb.19.A, IVb.24.A.
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4.2.6 Sequence IVc – moth III (n, n + 1)

Orbits from the moth III sequence have luminosities that range from 105 to over 1010,
see Table 21. The pair of orbits IVc.12.A has the maximal value of luminosity. Instan-
taneous power graphs of these orbits resemble in shape the graphs of orbits from the
yin-yang sequence.

Table 21: Orbits from sequence IVc – moth III. Columns are the same as in Table 16.

Name ẋ1(0) ẏ1(0) λ T Θ(rad) 〈P〉
IVc.5.A 0.212 259 0.208 893 3.263 41 152.330 0.503 046 7.5×105

IVc.12.A.α 0.270 360 0.208 326 2.942 97 346.573 0.892 039 4.9×1010

IVc.12.A.β 0.245 584 0.213 792 3.056 00 346.573 0.611 963 4.9×1010

IVc.17.A 0.229 301 0.191 071 3.258 34 487.369 0.805 592 5.5×107

IVc.19.A 0.225 288 0.204 264 3.215 70 540.815 0.569 695 5.8×108
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Figure 30: Same as in Figure 25 for orbits from the moth III sequence (Table 21). From
top to bottom: IVc.5.A, IVc.12.A.α, IVc.12.A.β, IVc.17.A, IVc.19.A.

4.2.7 Sequence V – figure-eight (n, n)

Orbits from the figure-eight family have the lowest values of emitted power averaged
over one period, see Figure 24. This is because they do not closely approach the
two-body colision points (see their trajectories in shape-space, Figure 22).
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Table 22: Orbits from sequence V – figure-eight. Columns are the same as in Table 16.

Name ẋ1(0) ẏ1(0) λ T Θ(rad) 〈P〉
V.1.A 0.216 343 0.332 029 2.574 29 26.128 0.245 57 1.4×100

V.1.B 0.211 139 0.333 568 2.583 87 26.127 0.277 32 1.4×100

V.4.A 0.403 776 0.327 021 1.908 49 104.394 -0.749 31 6.9×100

V.15.A 0.105 763 0.297 295 3.130 05 391.744 0.390 14 3.9×100

V.20.A 0.088 799 0.296 133 3.177 67 522.144 0.432 73 5.3×100
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Figure 31: Same as in Figure 25 for orbits from the figure-eight sequence (Table 22).
From top to bottom: V.1.A, V.1.B, V.4.A, V.15.A, V.20.A.

4.3 conclusions

Periodic three-body orbits belonging to the same sequence of orbits have characteris-
tic sequences of letters in their free group elements. Given the free group element it
is in some cases possible to predict which of these sequences the orbit belongs to by
recognizing these patterns. Orbits in the same sequence also have similarly looking
trajectories, both in real space and the shape-space. Their waveforms and instanta-
neous power graphs also have similar appearances.

Several of the newly discovered orbits were explicitly predicted, and many more
follow the trends described in Ref. [22]. Their (Kepler’s third law) invariants T|E|3/2

have linear dependence on the values of (n + n̄)/2, as was stated in the same refer-
ence. Several new orbits have an odd number of letters n, where previously only even
numbers had been observed.

The new results suggest, however, that some of the sequences defined in Ref. [22]
should be divided into subsequences, for example: the “moth I, II, III - butterfly III”
sequence into at least three subsequences – starting from moth I, butterfly III and moth
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III). Also, there are some indications that the goggles orbit should be excluded from
the “butterfly I” sequence, as it has a completely different shape-space trajectory and
its free group element does not fit into the overall pattern of that sequence. Perhaps it
forms a sequence of its own with orbits that are yet to be discovered?

The luminosity of three-body periodic systems depends on the proximity of the
closest approach to a two-body collision point, as can be seen by comparing their
shape-sphere trajectories. The number of gravitational radiation bursts is also propor-
tional to the number of these close aproaches.

All of the orbits have distinct gravitational waveforms. This means that if such
gravitational wave signals were to be detected someday, it would be possible to tell
from what kind of astronomical three-body system they originate.

Both waveforms and instantaneous emitted power graphs have reflectional symme-
try about the midpoint T/2. In the case of orbits whose trajectories have two symmetry
axes these graphs also have reflectional symmetry about T/4 within one half-period.

Some of these orbits have luminosities up to 13 orders-of-magnitude higher than
comparable two-body systems; this suggests that they may lead to detectable gravi-
tational radiation signals. Whether or not the gravitational waves from this kind of
sources will be observable by contemporary or some future gravitational wave ob-
servatories depends on the absolute values of the masses, velocities and the average
distances between the three celestial bodies involved. It also depends on the distri-
bution of such sources in our Galaxy, which is currently unknown. The existence of
such systems is connected to their stability, which has not been properly explored, as
yet. Clearly, a number of theoretical tasks remain to be done before one can discuss
realistic astrophysical scenarios in this regard. But, those are topics for someone else’s
theses.





5

A P P E N D I C E S

5.1 numerical methods

Unfortunately, the Runge-Kutta-Fehlberg method has one drawback – the energy of
the system is not kept constant during the integration. Some other methods of in-
tegration, symplectic algorithms for example, do not exhibit energy drift, but such
algorithms use fixed time step, so we would have to choose between low precision
and long integration times. Energy drift in our computations varies widely from one
solution to another and its order of magnitude ranges from < 10−10 to < 10−5.

5.1.1 Initial conditions

The masses of the three-bodies are chosen to be equal.1 In our units, the gravitational
constant G and the mass of each body m are set to 1. Results for different values of G
and m can be obtained by scaling. Angular momentum L is set to zero.2 The initial
configuration of bodies is chosen to be:

x1(0) = −1, x2(0) = 0, x3(0) = 1, (18)

y1(0) = y2(0) = y3(0) = 0,

ẋ1(0) = ẋ3(0) = p1, ẋ2(0) = −2p1,

ẏ1(0) = ẏ3(0) = p2, ẏ2(0) = −2p2.

In this way, we are left with two-dimensional space of initial conditions parametrized
by initial velocities p1 and p2.

5.1.2 Search space

First we have to choose if we want to search for absolutely or relatively periodic or-
bits, in which subset of initial conditions space we want to look for them, the maximal
value of period T0, and numerical precision ε - maximal numeric error per one integra-
tion step. For absolutely periodic ones we use return-proximity function eq. (4), and
for relatively periodic function eq. (10). The relatively periodic function will also find
absolutely periodic solutions, since every absolutely periodic solution is also a rela-
tively periodic one. Orbits with vanishing angular momentum can be only absolutely
periodic.

1 This method of numerical search that follows can easily be modified for systems with different mass
ratios.

2 Further solutions belonging to the same family can be obtained by varying the value of L and mass ratios
m1
m2

and m1
m3

.
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Figure 32: Initial configuration. v1 = v3 = − 1
2 v2

5.1.3 Search method

After we choose a ”hunting ground” - an interval in the space of initial conditions
[pmin,1, pmax,1]× [pmin,2, pmax,2], we create a grid of points with step s. For every grid
point with initial conditions X0 we compute the value of the return-proximity func-
tion in the following way: distance from the initial condition is calculated by linear
interpolation

d =

{
‖X0 − Xi − a (Xi+1 − Xi) ‖, a ∈ (0, 1)

‖X0 − Xi‖, a /∈ (0, 1)
(19)

where

a =
(Xi+1 − Xi) · (X0 − Xi)

‖Xi+1 − Xi‖2 ,

(see Figure 5.1.3) after every integration step from Xi to Xi+1. The value of d will at
first increase, when it starts to decrease it is checked whether it is minimal, and the
minimal value of d and corresponding time T are stored – the resulting values are the
return proximity function and corresponding period. Integration will stop after time
reaches the maximal value of period T0.

Figure 33: Linear interpolation. See eq. (19) for definitions of d and a.
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5.1.4 Plot of return proximity function

Now we can plot the values of return proximity function for the whole hunting ground
region. Local minima of this function are possible candidates for periodic solutions if
they are less than some preset tolerance. Their initial velocities are calculated to the
precision of step s. The next step is to apply the gradient descent method in order to
increase this precision and to check if this is really a periodic solution.

Figure 34: Example of a − log(d) graph in the region [0.40, 0.42]× [0.22, 0.24]. Three
canditate solutions are visible. The middle one is the previously known
butterfly III orbit.

This method is not guaranteed to lead to every periodic orbit in the given range of
initial conditions and period; it is possible that some solutions will be missed if the
resolution is too low. Such orbits can be found with increased resolution.
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5.1.5 Gradient descent method

The gradient descent method works as follows: a 5x5 grid with the initial grid reso-
lution dp is created around the candidate point and the return proximity function is
calculated for each grid point; the candidate point is then moved to the grid point
with minimal return proximity function, and the procedure is repeated with the grid
resolution dp/2. This procedure ends after the predetermined number of steps Ns,
and the results are initial velocities with greater precision and a new return proximity
function value which is always less than the starting one.

After the gradient descent method is applied, the new return proximity function is
compared to some limit value, and all solutions with return proximity functions less
than that value are considered to be periodic orbits of a three-body system. This limit
value depends on the numerical precision of the integration method.

5.2 derivation of gravitational waves in general relativity

This derivation closely follows Ref. [35].
In general relativity, the metric tensor gµν describes the curvature of space-time.

Linearized theory is a weak field approximation of general relativity. In this case,
the space-time is asymptotically flat – therefore we can divide the metric tensor into
Minkowskian part ηµν = diag(−1, 1, 1, 1) and a small perturbation:

gµν = ηµν + hµν. (20)

The name of this approximation stems from the fact that higher order terms of hµν are
neglected – only the linear term is kept in expressions, unless it vanishes.

The linearized theory of general relativity can be thought of as a theory described by
a symmetric, second-rank tensor field hµν that propagates in a Minkowski space-time.
We can obtain the equations of motion by replacing eq. (20) into Einstein’s equation
in vacuum. After some straightforward computation we get:

Gµν = Rµν − gµνR = 0 (21)

=
1
2

(
∂σ∂νhσ

µ + ∂σ∂µhσ
ν − ∂µ∂νh−�hµν − ηµν∂ρ∂σhρσ + ηµν�h

)
,

where � = −∂2
t + ∂2

x + ∂2
y + ∂2

z is the d’Alembertian in flat space and h = ηµνhµν = hµ
µ

is the trace of the perturbation.
Equation (20) can be written in a different coordinate system in such a manner that

the ηµν part is still a Minkowski metric tensor and the perturbation hµν is still small.
It can be demonstrated (see Carroll ch.7.1, Ref. [35]) that the perturbations change
according to the equation:

h(ε)µν = hµν + ε(∂µξν + ∂νξµ), (22)

where ε is a small parameter and ξmu is a vector field that generates a family of
diffeomorphisms on the background space-time, in order for h(ε) to represent the
same physical situation as h. This equation is a gauge transformation in linearized
theory. Alternatively, the parameter ε can be set to 1 and the vector field ξµ can be
considered small. We can now choose a gauge and solve the Einstein equation. Just as
in the case of electromagnetic waves, some gravitational wave gauges yield a clearer
view of the underlying physics.
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The perturbation tensor components can be divided according to their transforma-
tion properties under spatial rotations. The 00 component transforms as a scalar, the
0i components as a spatial three-vector wi, and the ij components as a symmetric,
second-rank spatial tensor. This spatial tensor can be further divided into a trace and
a traceless part:

hij = 2sij +
1
3

hδij sij =
1
2
(hij −

1
3

hδij), (23)

where h = δijhij is the trace of hij. The traceless part sij is called the strain, and it
turns out that it contains the only two propagating degrees-of-freedom in Einstein’s
equation - this is the part that describes the gravitational waves.

Out of many possible gauges, the transverse-traceless gauge is the most useful for
dealing with gravitational waves. Transverse gauge fixes the strain and the three-
vector perturbation to be transverse: ∂isij = 0 and ∂iwi = 0. This can be done by
choosing the appropriate values of ξµ; ξ i for sij and ξ0 for wi. In this gauge, Einstein’s
equation in vacuum becomes �sij = 0 – the wave equation. We use the vacuum form
of the equation because we are now interested only in propagation of the waves; there-
fore we can solve the equation in a region far away from the source of gravitational
waves.

If we wish to work with hij instead of sij, we can change to the transverse-traceless
gauge, where all the other degrees-of-freedom except sij are set to zero. In this gauge,
Einstein’s equations in vacuum amount to:

�hTT
ij = 0. (24)

The new perturbation tensor

hTT
µν =


0 0 0 0
0
0 2sij
0

 (25)

is a purely spatial, transverse and traceless symmetric two-index tensor:

hTT
0µ = 0 ∂µhTT

µν = 0 ηµνhTT
µν = 0. (26)

Now we can proceed to solve the equation (24). The general solution for the (free
wave) D’Alembert equation is a plane wave: hTT

ij = Re
(
Cijeikµxµ)

, where Cij is a con-
stant symmetric traceless and purely spatial two-index tensor:

C0µ = 0 ηµνCµν = 0. (27)

The wave vector kµ is a constant null four-vector orthogonal to Cµν (follows from eqs.
(24) and (26)):

kµkµ = 0 kµCµ = 0. (28)

The zeroth component of the wave four-vector is the frequency ω. We can choose a
spatial coordinate system in such a way that the wave three-vector k is traveling in
the ez direction - then it has the form kµ = (ω, 0, 0, ω). It follows from eqs. (27) and
(28) that the only nonvanishing components of the Cµν tensor are C11, C22 = −C11 and
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C12 = C21. The wave is completely characterized by these three numbers: ω, C11, and
C12.

To see the effect of a passing gravitational wave on test particles we may use the
geodesic deviation equation:

D2

dτ2 Sµ = Rµ
νρσUνUρSσ, (29)

where τ is proper time, Sµ separation four-vector, Uµ four-velocity and Rµ
νρσ the Rie-

mann curvature tensor. This equation describes the relative motion of nearby particles.
If the test particles are moving slowly, we can approximate the velocity four-vector

with Uµ = (1, 0, 0, 0), since all corrections are of higher order in hTT
µν . In this case we

also have τ = x0 = t. After some calculations eq. (29) becomes

∂2

dt2 Sµ =
1
2

Sσ ∂2

dt2 hTTµ
σ. (30)

This means that a gravitational wave affects test particles only in directions perpen-
dicular to the direction of propagation. We can denote the two numbers which char-
acterize the wave with: h+ = C11 and h× = C12. Their meaning will soon become
apparent.

We shall now analyze the effects of h+ and h× separately, by solving the equation
(30) in two cases:

1. h× = 0:

∂2

dt2 S1 =
1
2

S1 ∂2

dt2

(
h+eikσxσ

)
(31)

∂2

dt2 S2 = −1
2

S2 ∂2

dt2

(
h+eikσxσ

)
(32)

The solutions of this system of equations are:

S1 =

(
1 +

1
2

h+eikσxσ

)
S1(0) (33)

S2 =

(
1− 1

2
h+eikσxσ

)
S2(0). (34)

This is the so-called “plus” polarization mode of a gravitational wave. Its name
comes from the shape of the deformation a ring of test particles experiences
under the influence of the wave, see Figure 5. Relative deformation is measured
by the dimensionless strain h+.

2. h+ = 0:

∂2

dt2 S1 =
1
2

S2 ∂2

dt2

(
h×eikσxσ

)
(35)

∂2

dt2 S2 =
1
2

S1 ∂2

dt2

(
h×eikσxσ

)
(36)

The solutions of this system of equations are:

S1 = S1(0) +
1
2

h+eikσxσ
S2(0) (37)

S2 = S2(0) +
1
2

h+eikσxσ
S1(0). (38)

This is the ”cross” mode of a gravitational wave. Again, its name comes from the
shape of the deformation a ring of test particles experiences under the influence
of the wave, see Figure 6, and h× measures the relative deformation.
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5.3 table of initial conditions

Table 23: Initial velocities, periods and return proximity functions for all orbits in this
thesis. Sequences of orbits are divided by horizontal lines.

Label ẋ1(0) ẏ1(0) T r.p.f.

I.2.A 0.306 893 0.125 507 6.236 7.07·10−7

I.2.B 0.392 955 0.097 579 7.004 1.61·10−6

I.5.A 0.411 293 0.260 755 20.749 3.43·10−7

I.8.A 0.412 103 0.283 384 34.248 3.97·10−7

I.12.A 0.408 211 0.243 685 48.487 2.98·10−7

II.4.A 0.080 584 0.588 836 21.271 5.39·10−7

II.6.A 0.186 238 0.578 714 33.641 1.88·10−6

II.8.A 0.144 812 0.542 898 38.062 1.72·10−6

II.11.A 0.184 279 0.587 188 63.535 1.64·10−6

III.3.A.α 0.513 938 0.304 736 17.328 1.75·10−6

III.3.A.β 0.282 699 0.327 209 10.963 3.56·10−6

III.9.A.α 0.513 150 0.289 437 50.408 1.14·10−6

III.9.A.β 0.276 237 0.331 714 32.841 3.70·10−7

III.12.A.α 0.416 822 0.330 333 55.790 1.32·10−6

III.12.A.β 0.417 343 0.313 100 54.208 1.49·10−6

III.15.A.α 0.414 396 0.339 223 70.493 5.46·10−7

III.15.A.β 0.417 701 0.303 455 66.752 2.11·10−6

IVa.2.A 0.464 445 0.396 060 14.894 9.92·10−7

IVa.4.A 0.439 166 0.452 968 28.670 6.22·10−7

IVa.6.A 0.429 090 0.475 313 42.830 9.75·10−8

IVa.8.A 0.401 574 0.490 047 54.087 5.62·10−7

IVa.8.B 0.396 528 0.492 290 53.746 1.95·10−5

IVa.8.C 0.405 043 0.492 281 55.039 1.34·10−6

IVb.3.A 0.405 916 0.230 163 13.866 1.02·10−7

IVb.11.A 0.395 637 0.154 450 41.789 2.17·10−7

IVb.15.A 0.395 205 0.142 197 55.820 5.80·10−5

IVb.19.A 0.393 934 0.134 728 69.740 9.63·10−7

IVb.24.A 0.350 112 0.079 339 79.476 7.97·10−6

IVc.5.A 0.383 444 0.377 364 25.840 4.38·10−7

IVc.12.A.α 0.463 804 0.357 385 68.645 5.46·10−5

IVc.12.A.β 0.429 325 0.373 739 64.874 2.67·10−6

IVc.17.A 0.413 909 0.344 900 82.863 4.50·10−4

IVc.19.A 0.403 994 0.366 295 93.786 3.82·10−6

V.1.A 0.347 113 0.532 727 6.325 8.58·10−7

V.1.B 0.339 393 0.536 191 6.290 2.73·10−6

V.4.A 0.557 809 0.451 774 39.594 1.00·10−6

V.15.A 0.187 116 0.525 972 70.742 1.20·10−6

V.20.A 0.158 293 0.527 887 92.178 7.84·10−6
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