
UNIVERSITY OF BELGRADEFACULTY OF PHYSICS

Milo² M. Radonji¢
INFLUENCE OF DISORDER ONCHARGE TRANSPORT IN STRONGLYCORRELATED MATERIALS NEAR THEMETAL-INSULATOR TRANSITION

Do
toral DissertationBelgrade, 2014.



UNIVERZITET U BEOGRADUFIZIQKI FAKULTET

Milox M. Rado�i�
UTICAJ NEURE�ENOSTI NAELEKTRONSKI TRANSPORT U JAKOKORELISANIM MATERIJALIMABLIZU METAL-IZOLATOR PRELAZA

Doktorska diserta
ijaBeograd, 2014.



Thesis advisor, Committee member:Dr. Darko Tanaskovi¢Asso
iate Resear
h ProfessorInstitute of Physi
s BelgradeUniversity of BelgradeCommittee member:Prof. Dr. Zoran Radovi¢ProfessorFa
ulty of Physi
sUniversity of BelgradeCommittee member:Prof. Dr. �or�e Spasojevi¢Asso
iate ProfessorFa
ulty of Physi
sUniversity of BelgradeCommittee member:Dr. Antun BalaºAsso
iate Resear
h ProfessorInstitute of Physi
s BelgradeUniversity of Belgrade



To my family



Zahvalni
aNa pru�enoj 	ubavi, razumeva�u i podrx
i, kao i na svemuxto se ne bi moglo ni pobrojati, zahva	ujem se svojoj porodi
i,o
u Milivoju, maj
i �i	ani, bratu Milanu i sestri Mi	ani.Hvala mentoru dr Darku Tanaskovi�u na odliqnoj sarad�i,voÆe�u i velikoduxnoj pomo�i u toku istra�ivaqkog rada i izradedoktorske teze. Hvala dr Vladimiru Dobrosav	evi�u na izvrsnojsarad�i, podrx
i i gostoprimstvu koje mi je ukazao. Na pri-jatnom i konstruktivnom zajedniqkom radu zahva	ujem se kolegiJakxi Vuqiqevi�u. Posebno se zahva	ujem dr Zoranu Popovi�u idr Nenadu Lazarevi�u na uspexnoj i veoma plodotvornoj sarad�i.Dr Aleksandru Beli�u hvala na ukazanom povere�u i prili
ida budem deo Laboratorije za primenu raqunara u nau
i, kao isvim kolegama na prijatnoj i radnoj atmosferi.Hvala i svim prijate	ima koji su neposredno ili posrednodoprineli ovom postignu�u.Ova diserta
ija je uraÆena u Laboratoriji za primenu raqu-nara u nau
i Instituta za fiziku Univerziteta u Beogradu ifinansirana je u okviru projekata ON141035, ON171017 iIII45018 Ministarstva nauke, odnosnoMinistarstva prosvete,nauke i tehnoloxkog razvoja Republike Srbije.



In�uen
e of disorder on 
harge transport in strongly
orrelated materials near the metal-insulatortransitionAbstra
tThe in�uen
e of disorder on transport properties in strongly 
orrelated materialshas remained un
lear, so far. Strong Coulomb repulsion between the ele
trons inpartially �lled valen
e orbitals 
an lead to the lo
alization of the wave fun
tions -Mott insulating state. How these pro
esses are modi�ed by the presen
e of disorderis a very important question, spe
ially having in mind that many strongly 
orrelated
ompounds are non-stoi
hiometri
 and, therefore, intrinsi
ally disordered.In this thesis we study the disordered half-�lled Hubbard model within the dy-nami
al mean �eld theory (DMFT) and its extensions, this is a unique theoreti
almethod that is reliable and 
ontrollable in a wide temperature, disorder and intera
-tion range. The DMFT assumes the lo
al (momentum independent) self-energy, buttakes fully into the a

ount temporal quantum �u
tuations. In the 
lean 
ase, thistheory is exa
t in the limit of large 
oordination number. Te
hni
ally, the DMFTsolution redu
es to the solution of the Anderson impurity model immersed in theself-
onsistently 
al
ulated 
ondu
tion bath.For the 
ase of weak disorder we used the 
oherent potential approximationfor solving the disordered half-�lled Hubbard model, where the disorder is takeninto a

ount by the simple averaging of the lo
al Green's fun
tions. The ensembleof the impurity models is solved with the site-independent (averaged) 
ondu
tionbath. For the 
onstant intera
tion, the disorder e�e
tively indu
es lo
al doping,broadens the bands and moving the system away from the Mott transition. Theresistivity 
urves have the same non-monotoni
 temperature dependen
e near theMott transition as in the 
lean 
ase. The maximal metalli
 resistivity ex
eeds thequasi-
lassi
al Mott-Io�e-Regel limit by an order of magnitude. Interestingly, theDrude-like peak in the opti
al 
ondu
tivity persists even for temperatures when theresistivity is 
omparable to the Mott-Io�e-Regel limit.We have determined a universal s
aling for the resistivity of various 
orrelatedmetals, whi
h is based on the existen
e of the 
oheren
e temperature T ∗ inverselyproportional to the e�e
tive mass. This s
aling is shown to be valid also on the



metalli
 side of the metal-insulator transition of diluted two-dimensional ele
trongases, Si MOSFETs and GaAs/AlGaAs heterostru
tures. This gives strong eviden
ethat the driving for
e for the unusual transport properties in these systems is strongele
tron-ele
tron s
attering, and not disorder.To explore strongly disordered systems, we have implemented the Statisti
alDMFT, whi
h takes into a

ount spatial �u
tuations in the 
ondu
tion bath. Wehave su

essfully applied, for the �rst time, the Statisti
al DMFT method on the�nite size 
ubi
 latti
e. We determined that the �nite size e�e
ts are negligible al-ready on the latti
e with 6× 6× 6 sites (ex
ept at the lowest temperatures, deep inthe Fermi liquid regime). Then we 
on
entrated on a single realization of disorderon the latti
e of size 6 × 6 × 6 using the Continues Time Quantum Monte Carlo(CTQMC) as the impurity solver, and the analyti
al 
ontinuation by the maximumentropy method in order to obtain lo
al quantities on the real frequen
y axis. We
on�rmed that the disorder is strongly s
reened on the metalli
 side of the MottMIT and that the inelasti
 s
attering is dominant at �nite temperatures. We de-�ned a lo
al resistivity and proposed a resistor network method for 
al
ulating thed
 resistivity. This approa
h is justi�ed by the observation that the inter-site 
or-relations are very weak and the in
oherent s
attering dominant. We identi�ed twotypes of sites: strongly 
orrelated - with the lo
al o

upation 
lose to 1, and weakly
orrelated - away from lo
al half-�lling. Non-monotoni
 temperature dependen
ein the resistivity originates from strong temperature dependent lo
al resistivity onstrongly 
orrelated sites.Keywords: strong 
orrelations, disorder, Mott metal-insulator transition, dynam-i
al mean �eld theoryS
ienti�
 �eld: Physi
sResear
h area: Condensed matter physi
sUDC number: 538.9(043.3)



Uti
aj neureÆenosti na elektronski transport ujako korelisanim materijalima blizumetal-izolator prelazaSa�etakUti
aj neureÆenosti na transportne osobine jako korelisanih materijalaje do sada ostao nerazjax�en. Jako Kulonovo odbija�e meÆu elektronima nadelimiqno popu�enim valentnim orbitalama mo�e dovesti do lokaliza
ijetalasne funk
ije - Motovog izolatorskog sta�a. Kako se Motov metal-izolatorprelaz me�a u prisustvu neureÆenosti je veoma va�no pita�e, posebno imaju�iu vidu da su mnogi jako korelisani materijali nestehiometrijska jedi�e�a paje neureÆenost, odnosno odstupa�e od idealne periodiqnosti, neizbe�no.U ovoj tezi je prouqavan neureÆeni polupopu�eni Habardov model u okvirudinamiqke teorije sred�eg po	a (DMFT) i �enih uopxte�a. DMFT je jedin-stven teorijski metod koji je pouzdan i kontrolisan u xirokom intervalutemperatura, interak
ija i jaqine neureÆenosti. DMFT tretira samo lokalneinterak
ione korela
ije, ali u potpunosti uzima u obzir vremenske (kvantne)fluktua
ije kroz frekventnu zavisnost sopstvene energije Σ(ω). U qistomsluqaju teorija je taqna u limesu velikog koordina
ionog broja. DMFT jed-naqine se svode na rexava�e modela Andersonove neqisto�e uro�enog u samo-usaglaxeno izraqunato po	e provodnih elektrona.U sluqaju slabe neureÆenosti koristili smo aproksima
iju koherentnogpoten
ijala pri rexava�u jednaqina za neureÆen polupopu�en Habardov model.U ovom pristupu neureÆenost se uraqunava jednostavnim usred�ava�em lokalneGrinove funk
ije. Hibridiza
iona funk
ija (dinamiqko sred�e po	e provod-nih elektrona) je pri tome ista za svaki qvor rexetke. Pri konstantnojinterak
iji, neureÆenost efektivno xiri provodnu zonu i sistem uda	avaod Motovog prelaza. Krive otpornosti imaju sliqnu nemonotonu temperaturnuzavisnost u blizini Motovog prelaza kao i u qistom sluqaju. Vrednost za mak-simalnu metalnu otpornost prelazi kvazi-klasiqnu Mot-Jofe-Regel grani
uza red veliqine. Drudeov pik u optiqkoj provodnosti opstaje qak i kada jeotpornost uporediva sa Mot-Jofe-Regel grani
om.Utvrdili smo univerzalno skalira�e krivih otpornosti u funk
iji tem-



perature, za razliqite jako korelisane materijale, usled postoja�a tempera-ture koheren
ije T ∗ obrnuto propor
ionalne efektivnoj masi u blizini Mo-tovog prelaza. Ovo skalira�e va�i i na metalnoj strani metal-izolatorprelaza u razreÆenom dvodimenzionom elektronskom gasu u sili
ijumMOSFET-ima i GaAs heterostrukturama. Ovo sna�no ukazuje da je transort uxirokom intervalu temperatura odreÆen jakim elektron-elektron raseja�em,a ne posledi
om neureÆenosti.Za prouqava�e jako neureÆenog sistema, primenili smo statistiqku DMFT,koja uzima u obzir prostorne fluktua
ije u hibridiza
ionoj funk
iji. Poprvi put smo primenili ovaj metod na nenultoj temperaturi i na konaqnojkubnoj rexetki. Utvrdili smo da su efekti konaqnosti rexetke zanemar	ivive� na rexetki 6 × 6 × 6 (osim na najni�im temperaturama, duboko u re�imuFermijeve teqnosti). Zatim smo se kon
entrisali na jednu realiza
iji neure-Æenosti na rexetki dimenzija 6× 6× 6 koriste�i kvantni Monte Karlo metodza rexava�e Andersonovog modela i analitiqko produ�e�e metodom maksi-malne entropije u 
i	u dobija�a lokalnih veliqina na realnoj frekventnojosi. Utvrdili smo da je neureÆenost sna�no ekranirana na metalnoj straniMotovog metal-izolator prelaza i da je mehanizam neelastiqnog (elektron-elektron) raseja�a dominantan na konaqnim temperaturama. Definisali smolokalnu otpornost i uveli metod mre�e otpornika za izraqunava�e otpora.Ovaj pristup je opravdan obzirom da su korela
ije elektrona na susednimqvorovima rexetke veoma slabe u re�imu jakog neelastiqnog raseja�a. Uoqilismo dve vrste elektrona: jako korelisane sa lokalnom popu�enox�u blizu vred-nosti 1, i slabo korelisane sa popu�enox�u koja znatno odstupa od vrednosti1. Nemonotona temperaturna zavisnost u otpornosti potiqe od temperaturnezavisnosti raseja�a elektrona na jako korelisanim qvorovima rexetke.K	uqne reqi: jake korela
ije, neureÆenost, Motov metal-izolator prelaz, di-namiqka teorija sred�eg po	aNauqna oblast: FizikaOblast istra�iva�a: Fizika kondenzovanog sta�a materijeUDK broj: 538.9(043.3)
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1. Introdu
tionSolid state physi
s is very large and fast growing area of resear
h, driven by 
on-stant appetite of industry for new materials with spe
i�
, desired properties. It isalso a quest to dis
over and understand fundamentally new phases of matter whi
hmay appear due to the spe
i�
 band stru
ture and topology, or ele
tron-ele
tronand ele
tron-phonon intera
tions. Strong ele
tron-ele
tron intera
tions may lead tovarious ordered phases at low temperatures and various types of phase transitionsseparating magneti
, super
ondu
ting, metalli
, or insulating phases. This is thesubje
t of the physi
s of strongly 
orrelated ele
troni
 systems.Strongly 
orrelated materials in
lude various transition metal oxides [1℄, high-temperature super
ondu
tors [2℄, iron-based super
ondu
tors [3, 4℄, organi
 
harge-transfer salts [5, 6℄, rare earth and a
tinide intermetalli
s [7℄ and also many lowdimensional-stru
tures, like the quantum Hall systems [8℄. A

ording to the bandstru
ture theory, the insulating state appears if the valen
e band is 
ompletely �lledwith the ele
trons. There are, however, many insulating materials with partially�lled (typi
ally half-�lled) valen
e band. These insulators are 
alled Mott insulators.Mott systems 
an be tuned between the metalli
 and the insulating state by doping,or 
hanging external parameters like the magneti
 �eld or pressure. The Mott metal-insulator transition (MIT) 
an be tuned by 
hanging the intera
tion at half-�lling(intera
tion-driven Mott MIT), or by doping (doping-driven Mott MIT). In thisthesis we mostly fo
us on the intera
tion-driven MIT.It is a very 
hallenging task to 
onstru
t a su

essful theoreti
al approa
h do dealwith strongly 
orrelated systems. The di�
ulty 
omes from the ne
essity for non-perturbative treatment of the Mott metal-insulator transition. The ele
trons on themetalli
 side of the Mott transition are halfway �between� itinerant and lo
alized.There are very few tenable theories that ta
kle this problem. The most su

essfulone is 
ertainly the Dynami
al mean �eld theory (DMFT) and its extensions.One of the key features of the DMFT is that it represents a nonperturbative1



and well-
ontrolled theory whi
h be
omes exa
t in the limit of in�nite 
oordinationnumbers (or in�nite dimensionality). The DMFT is truly a quantum many-bodymethod whi
h fully takes into a

ount lo
al 
orrelations. The lo
al quantum �u
-tuations are 
ompletely taken into a

ount, while spatial �u
tuations are, in thesimplest implementation, frozen. The DMFT method treats low energy 
oherentand high energy in
oherent ex
itations on the equal footing, whi
h is essential for astudy of the phase diagram in the whole range of parameters.The biggest initial su

ess of the DMFT was a des
ription of the intera
tion-driven Mott transition in the half-�lled Hubbard model [9℄. The DMFT phasediagram is shown in Figure 1, upper panel [10℄. For small intera
tion U the systemis weakly 
orrelated metal. As U in
reases, it be
omes a strongly renormalized

Figure 1.1: DMFT intera
tion-temperature phase diagram of Hubbard model ob-tained (upper panel) [10℄ and pressure-temperature phase diagram of organi
 mate-rial κ-(BEDT-TTF)2Cu[N(CN)2℄Cl (lower panel) [5℄. 2



Fermi liquid. At higher temperatures the system behaves as �bad metal�, wherethe transport is dominated by very strong ele
tron-ele
tron s
attering. For largeintera
tion U the Mott gap opens. Metalli
 and insulating solution are separatedby the 
oexisten
e region where both solutions 
an be stabilized. This region endswith the (Uc, Tc) 
riti
al end-point. The same transport regimes are 
learly seen inthe experiments on 
orrelated organi
 salts [5℄, lower panel in Figure 1.All these materials, in �real life�, 
ontain some imperfe
tions in stru
ture or 
om-position. The interplay between the intera
tion and disorder e�e
ts is parti
ularlysubtle in strongly 
orrelated systems, where often is not 
lear whether the transportproperties are dominated by the intera
tion or by the disorder [11, 12, 13, 14, 15, 16℄.In this thesis we study the disordered Hubbard model within dynami
al mean �eldtheory. We parti
ularly fo
us on the in�uen
e of disorder on the transport propertieson the metalli
 side of the Mott transition.The thesis is organized as follows. Chapters 2 and 3 
ontain an introdu
tionto the dynami
al mean �eld theory and its extension to the models with disor-der. Chapter 4 presents a detailed study of the 
ondu
tivity in weakly disorderedMott systems. Chapter 5 presents eviden
e that the transport in low density two-dimensional ele
tron gases is dominated by the ele
tron-ele
tron s
attering, whilethe disorder plays a sub-dominant role. Chapter 6 fo
uses on the study of tempera-ture dependen
e of the 
ondu
tivity in strongly disordered Mott systems. Chapter7 
ontains the 
on
luding remarks.

3



2. Dynami
al mean �eld theory for stronglyintera
ting ele
tronsThe ele
tron wave fun
tions are well understood in two limits: lo
alized and itin-erant (forming extended Blo
h waves due to the large overlap between the ele
tronorbitals and leading to formation of the bands). The ele
trons in strongly 
orre-lated materials do not �t into any of this two 
ases: they 
annot be treated justlike the plane waves, or purely lo
alized parti
les. The 
ompetition between strongCoulomb repulsion and kineti
 energy may lead to the transition between lo
alizedand itinerant behavior, with subtle features in the spe
tral density near the MIT.The simplest model for strongly 
orrelated materials is the Hubbard model.Despite its simple form, it des
ribes various phases of matter depending on theparameter values and latti
e stru
ture. It is rigorously solved only in the two 
ases:in one-dimension [17℄ and in the limit of in�nite 
oordination number (or in�nitedimension) using the dynami
al mean �eld theory (DMFT) [18℄.

4



2.1 HUBBARD MODEL2.1 Hubbard modelSingle orbital Hubbard model is the minimal latti
e model for strongly 
orrelatedele
troni
 systems, proposed by Hubbard in 1963. [19, 20℄. The Hubbard modelHamiltonian 
onsists of the hopping (kineti
 energy) term and the on-site intera
tionterm whi
h originates from the Coulomb repulsion of two ele
trons (with spin upand spin down) on the same orbital,
H = −

∑

ij,σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ − µ
∑

iσ

niσ. (2.1)Indexes i and j run through the latti
e sites, and σ is the spin index. The operators
c†iσ and ciσ 
reate and annihilate the ele
tron with the spin σ at the site i and
niσ = c†iσciσ is the parti
le o

upation number operator. The kineti
 energy termis determined by the hopping parameters tij, where usually it is enough to 
onsiderjust the nearest neighbor hopping. The strength of the Coulomb repulsion is givenby the Hubbard parameter U . A model with the short-range intera
tion U is mostrealisti
 in the 
ase of d or f ele
trons whi
h have relatively small orbital radius,and its further justi�ed by the e�e
t of 
harge s
reening.

Figure 2.1: S
hemati
 representation of the Hubbard model.Despite its simpli
ity, this model exhibits a very ri
h phase diagram. Depending5



2.1 HUBBARD MODELon the parameters, the shape of the latti
e and temperature, various phases of matter
an be stabilized: metalli
, Mott insulating, ferromagneti
 or antiferromagneti
,and even d-wave super
ondu
ting phase. The most striking 
onsequen
e of strongele
troni
 
orrelations is the lo
alization of the ele
troni
 wave fun
tions due to theCoulomb repulsion - Mott insulating state whi
h is the main fo
us of this thesis.The Hubbard model is well explored in one dimension [17℄, where it is exa
tlysolvable and where we have a variety of theoreti
al tools at disposal, ne
essary forsystemati
 study. In two or three dimensions it is often impossible to distinguishwhether the theoreti
al predi
tion re�e
ts the true nature of the Hamiltonian, ratherthan an artifa
t of approximation used for its solution. The origin of these un
er-tainties is in the nonperturbative nature of the problem and in the existen
e ofseveral 
ompeting phases for the ground state solution.An important step forward in the study of the Hubbard model was a developmentof the dynami
 mean �eld theory (DMFT) around twenty years ago [18℄. Thismethod treats only lo
al 
orrelations and thus the self-energy is only frequen
y-dependent, Σ(k, ω) → Σ(ω). Therefore, the DMFT takes fully into a

ount temporal(quantum) �u
tuations, while spatial �u
tuations are negle
ted. It be
omes anexa
t theory in the limit of in�nite 
oordination number or, equivalently, in�nitedimensions. This approa
h allows treatment of the low energy (
oherent) and thehigh energy (in
oherent) ex
itations on the equal footing. This makes DMFT aunique method in a study of strongly 
orrelated ele
troni
 systems.The great su

ess of the DMFT in�uen
ed development of several extensionssuitable for a di�erent types of problems. Cluster DMFT is developed in order toin
lude non-lo
al 
orrelations and to reintrodu
e momentum-dependen
e into to theself-energy [21, 22℄. This has led to important advan
es in understanding the physi
sof the 
uprates [23℄. The multi orbital DMFT turns out to be parti
ularly usefulfor the investigations of transition metal oxides, in
luding the iron based super
on-du
tors [24℄. For the investigation of the hetero-stru
tures and layered materialsthe inhomogeneous DMFT is developed [25℄. Further, the bosoni
 ex
itation of thebath 
an be taken into a

ount using the extended DMFT (EDMFT). The DMFTmethod has been generalize also to the time-dependent [26℄ and bosoni
 Hubbardmodels. The extension to disordered systems has also lead to important physi
alinsights [27, 15℄, and this line of work is the main fo
us of the following 
hapters inthe thesis. 6



2.2 DYNAMICAL MEAN FIELD THEORY2.2 Dynami
al mean �eld theoryDynami
al mean �eld theory method was �rst proposed in the pioneering work byMetzner and Vollhardt in 1989 [28℄, as the solution for the Hubbard model on in�nitedimensional latti
e (d → ∞). They showed that, with proper s
aling of the hoppingparameters, the Hubbard model remains meaningful and nontrivial in d → ∞, andthat the solution of the DMFT equations in this limit be
omes exa
t. The DMFTapproa
h has started to be
ome widely re
ognized after the work og Georges, Kotliarand Rozenberg in 1992 [9℄ when they su

essfully des
ribed the Mott metal-insulatortransition using the DMFT, whi
h is a fully quantum me
hani
al treatment of theMott transition.In this 
hapter we will sket
h a derivation of the DMFT equations and presentthe basi
 physi
al insights from their solution on the example of the single-bandHubbard model.2.2.1 General FormalismDMFT 
an be seen as an extension of Weiss mean �eld theory[18℄. The main idea isto lower the number of degrees of freedom by approximating the full latti
e problemby the on-site e�e
tive problem (Figure. 2.2). In this approa
h the single site isembedded in an e�e
tive medium originating from all other sites. Then the problemredu
es to the famous Andersony impurity problem and the features of the latti
e(dimensionality, hopping parameters) are in
luded through the self-
onsistent 
al-
ulation of the hybridization bath ∆(ω). The impurity problem remains a quantummany-body problem, in 
ontrast to the 
lassi
al mean �eld theories. This approa
hfreezes spatial �u
tuations, but fully takes in a

ount all lo
al, temporal �u
tua-tions (hen
e the name �dynami
al"). By the 
onstru
tion, DMFT is exa
t in thelimit of in�nite latti
e 
oordination number or, equivalently, in the 
ase of in�nitedimensions. It is important to have in mind that even for three dimensional 
ubi
latti
e with the 
oordination number z = 6, DMFT is a very good approximation(ex
ept at very low temperatures), and therefore a very useful method in a study of�nite dimensional strongly 
orrelated materials.The partition fun
tion Z of the Hubbard model 2.1 
an be represented as a
7



2.2 DYNAMICAL MEAN FIELD THEORY

Figure 2.2: Latti
e is repla
ed by a single site problem 
oupled to the external bathde�ned by all other sites.fun
tional integral over the Grassmann variables
Z =

∫ ∏

i

Dc†iσDciσ exp(−S) , (2.2)
S =

∫ β

0

dτ

[
∑

i,σ

c†iσ(τ)(
∂

∂τ
− µ)ciσ(τ) −

∑

ij,σ

tijc
†
iσ(τ)cjσ(τ)+

∑

i

Uni↑(τ)ni↓(τ)

]
, (2.3)where S is the a
tion, ciσ and c†iσ are the Grassmann variables and β is inverseprodu
t of the temperature and the Boltzmann 
onstant, β = 1/kBT . In orderto 
al
ulate partition fun
tion, we have to transform the a
tion into more suitable

8



2.2 DYNAMICAL MEAN FIELD THEORYform. Following the spirit of DMFT, we separate the a
tion into three parts,
S0 =

∫ β

0

dτ

[
∑

σ

c†0σ(τ)(
∂

∂τ
− µ)c0σ(τ) + Un0↑(τ)n0↓(τ)

]
, (2.4)

S(0) =

∫ β

0

dτ

[
∑

i6=0,σ

c†iσ(τ)(
∂

∂τ
− µ)ciσ(τ) −

∑

i6=0,j 6=0,σ

tijc
†
iσ(τ)cjσ(τ) ,

+
∑

i6=0

Uni↑(τ)ni↓(τ)

]
. (2.5)

Sc = −
∫ β

0

dτ

[
∑

i,σ

ti0c
†
iσ(τ)c0σ(τ) + t0ic

†
0σ(τ)ciσ(τ)

]
. (2.6)The �rst term, S0, 
ontains all lo
al degrees of freedom of the 
hosen site, these
ond one, S(0) (
avity term), in
ludes all other degrees of freedom and third term,

Sc, 
ontains the 
oupling between the �rst two. After few steps of simple algebraand integrating out all degrees of freedom, ex
ept these on the one 
hosen site i = 0(impurity), we obtain the e�e
tive a
tion
Seff = S0 +

∞∑

n=1

∑

i1,...,jn,σ

∫
ti10...t0jn

c†0σ(τi1)...c
†
0σ(τin)c0σ(τj1)...c0σ(τjn

)

× G
(0)
i1...jnσ(τi1 ...τin , τj1 ...τjn

) + const. (2.7)Here, the 
onne
ted n-point Green's fun
tion of the bath degrees of freedom isintrodu
ed as
G

(0)
i1...jnσ(τi1 ...τin , τj1...τjn

) = 〈Tτci1σ(τi1)...cinσ(τin)c†j1σ(τj1)...c
†
jnσ(τjn

)〉(0). (2.8)Averaging 〈〉(0) is 
arried over the 
avity a
tion S(0) and Tτ is the imaginary timeordering operator. At this point, the derived e�e
tive a
tion is very 
ompli
ated andnot very useful for appli
ations, but how it evolves in the limit of in�nite dimensions?In order to ensure a proper behavior of the kineti
 and intera
tion energy terms, toremain of the same order of magnitude in d → ∞ limit, one 
an s
ale the hoppingamplitude as tnew = t/
√

2d. The one parti
le Green's [29℄ fun
tion Gij , whi
h o

ursin the Eq. 2.7, is proportional to t|i−j| ∼ 1/d|i−j|/2. The two parti
le Green's fun
tion
Gijkl s
ales as 1/(d|i−j|/2d|i−k|/2d|i−l|/2). If we re
all the e�e
tive a
tion from Eq. 2.7,we 
an establish that the �rst term 
ontaining the one parti
le Green's fun
tion is of9



2.2 DYNAMICAL MEAN FIELD THEORYthe order of 1 (prefa
tor t2 times t2 from Gij and summations over i and j providesa fa
tor d2 whi
h 
an
els the �rst two). To be more pre
ise, Gij is proportional to
t2 when i and j are the nearest neighbors of the site 0. In all other 
ases Green'sfun
tion is even smaller. Similar 
onsideration shows that the next term in thesummation in Eq. 2.7 is of the order of 1/d and all others are even smaller in thelimit of large dimensions.Previous dis
ussion allows us to keep just the �rst (one-parti
le) term of thee�e
tive a
tion (2.7) in the large d limit

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c+
0σ(τ)G−1

0 (τ − τ ′)c0σ(τ ′) + U

∫ β

0

dτn↑(τ)n↓(τ) . (2.9)
G−1

0 (τ − τ ′) is a quantum generalization of the Weiss �eld and it is given by
G−1

0 (τ − τ ′) = −(
∂

∂τ
− µ)δττ ′ −

∑

ij

ti0t0jG
(0)
ij (τ − τ ′) . (2.10)This quantity des
ribes the lo
al e�e
tive dynami
s, or in the other words, quantum�u
tuations between four available atomi
 states: |0〉, | ↑〉, | ↓〉, | ↑↓〉. The maindi�eren
e from the 
lassi
al mean �eld 
ase is that here the dynami
al mean �eld isa fun
tion of time (frequen
y), instead of just a number. This dependen
e is 
ru
ialfor full in
lusion of lo
al quantum �u
tuations, whi
h is the main advantage of theDMFT. G0 plays the role of the nonintera
ting Green's fun
tion in the e�e
tivea
tion Seff , but it should not be 
onfused with the nonintera
ting (U = 0) lo
alGreen's fun
tion of the latti
e.We 
an express the 
avity Green's fun
tion from Eq. 2.10 in terms of the lo
alGreen's fun
tions in the following way [30℄:

G
(0)
ij = Gij −

Gi0G0j

G00
. (2.11)This means that in order to obtain the 
avity Green's fun
tion, we need to subtra
tall 
ontributions of the paths going through the site 0, from the full latti
e Green'sfun
tion. The denominator G00 is present due to the fa
t that all 
losed loopsstarting from the site 0 and ending in 0 are 
ounted twi
e (on
e in Gi0 and again in

G0j).
10



2.2 DYNAMICAL MEAN FIELD THEORYIt is more 
onvenient to present Eq. 2.10 in the energy-momentum spa
e,
G−1

0 (iω) = iω + µ −
∑

ij

ti0t0jG
(0)
ij (iω) . (2.12)Sin
e only the one-parti
le lo
al intera
ting Green's fun
tion survives in the e�e
tivea
tion (2.9), the Dyson equation,

Gk(iω) =
1

iω + µ − εk − Σ(iω)
, (2.13)
orresponds to

G00(iω) =
∑

k

Gk(iω) =
∑

k

1

iω + µ − εk − Σ(iω)

=

∫
dε

D(ε)

∆(iωn) + G(iωn)−1 − ε
, (2.14)where D(ε) is the nonintera
ting latti
e density of states,

D(ε) ≡
∑

k

δ(ε − εk) . (2.15)Here is important to emphasize that self-energy Σ is lo
al (k independent). Further,if we exploit the identity
εk ≡

∑

j

tije
ik(Ri−Rj) , (2.16)and the relation (2.11), we 
an express the Weiss �eld in the following form,

G−1
0 (iω) = iω + µ −

(
∑

k

ε2
k
Gk −

(
∑

k
εkGk)

2

G00

)
. (2.17)After few steps of algebra, we obtain the 
entral equation of the DMFT, 
onne
tingthe Weiss �eld and the latti
e Green's fun
tion

G−1
0 (iω) = Σ(iω) + G−1

00 (iω) . (2.18)To 
omplete the set of equations that makes DMFT self-
onsisten
y loop, we need
11



2.2 DYNAMICAL MEAN FIELD THEORYto 
al
ulate the impurity Green's fun
tion,
G00 = Gimpurity(G−1

0 ) . (2.19)2.2.2 Mapping on the Anderson impurity modelThe lo
al e�e
tive a
tion Eq. 2.9 
orresponds to the a
tion for the Anderson impurityimmersed into the nonintera
ting 
ondu
tion bath G−1
0 (τ−τ ′). This is a famous andvery well studied model in 
ondensed matter physi
s. There are several analityi
aland numeri
al methods for its solution. However, one has to be aware that thismodel is still rather 
ompli
ated to solve. Before brie�y mention the methods forits solution, it is instru
tive to also represent this model in the Hamiltonian form:

HAIM = Hatom + Hbath + Hc , (2.20)where,
Hatom = Unc0

↑ nc0
↓ + (ε0 − µ)(nc0

↑ + nc0
↓ ) ,

Hbath =
∑

i6=0,σ

ε̃ic
†
iσciσ ,

Hc =
∑

i6=0,σ

Vi(c
†
iσc0σ + c†0σciσ) . (2.21)

c†0 and c0 operators 
reate and annihilate a parti
le at the intera
ting site (impurity),while c†i and ci 
reate and annihilate parti
les in the nonintera
ting 
ondu
ting bath.
ε̃i are e�e
tive parameters whi
h, together with Vi, should be 
hosen in su
h a waythat the impurity Green's fun
tion 
oin
ides with the lo
al Green's fun
tion of theHubbard model. The e�e
tive a
tion of this model has the same fun
tional form asderived e�e
tive a
tion 2.9, with the di�eren
e,

G−1
0 (τ − τ ′) = −(

∂

∂τ
− µ)δττ ′ − Gc(τ − τ ′) ,

Gc(τ − τ ′) = −
∑

kσ

|V 2
k
| δττ ′

∂
∂τ

+ ε̃k

. (2.22)We are now in position to 
omplete the DMFT pro
edure. Equations 2.18 and2.14, together with
G00 = Gimpurity(G−1

0 ) , (2.23)12



2.2 DYNAMICAL MEAN FIELD THEORY

Figure 2.3: S
hemati
 representation of the self-
onsistent DMFT loop.form a 
losed set of DMFT equations for solving Hubbard model. The Weiss �eld hasto be determined self-
onsistently in order to introdu
e the on-site intera
tion andthe hopping in the bath. There are many available te
hniques for solving impuritymodel and obtaining impurity Green's fun
tion from a given Weiss �eld.2.2.3 Impurity solversTe
hni
ally the most di�
ult step in the DMFT self-
onsisten
y loop is solving theAnderson impurity model. This model and its various generalizations have been asubje
t of the intense study sin
e the pioneering work of P.W. Anderson in 1961. [31℄.Various analyti
al and numeri
al methods have been developed for its solution. Allof these methods have their advantages but also drawba
ks. Among the analyti
almethods, the most important are the slave boson methods (whi
h introdu
e auxiliaryparti
les - slave bosons) [32℄ and se
ond order perturbation theory in U [9℄. Thenumeri
al renormalization group (NRG) method allows the exa
t solution at T = 0,up to the error from the numeri
al dis
retization. The exa
t diagonalization methodrepla
es the bath with a �nite number (up to 10) orbitals.For the solution of the AIM at �nite temperatures the most useful are the non-
rossing approximation (NCA) [33℄ (or one-
rossing approximation - OCA) [34℄ and13



2.2 DYNAMICAL MEAN FIELD THEORYquantum Monte Carlo (QMC) methods - Hirs
h-Fye [35℄ and 
ontinuous time QMC(CTQMC) [36℄. In this thesis we have used NCA (OCA) and CTQMC solver 
odesdeveloped by K. Haule [34, 36℄, and the se
ond order in U perturbative solver(Iterative Perturbative Theory - IPT) written in our group.The IPT impurity solver is very fast and 
an be written both on the real andimaginary (Matsubara) frequen
y axis. In the 
ontext of the DMFT at half-�lledlatti
e, it be
ame very popular be
ause it properly reprodu
es the limits of weakand strong intera
tion and reprodu
e all main features of the phase diagram of thesingle orbital half-�lled Hubbard model.Another popular impurity solvers, providing results dire
tly on the real frequen
yaxis are the non-
rossing approximation (NCA)[33℄, the one-
rossing approximation(OCA) [34℄, or even �symmetrized �nite U� NCA (SUNCA) [34℄. These solvers arebased on the se
ond order self-
onsistent perturbation theory in the hybridizationfun
tion. The OCA has one more generating Feynman diagram for the self-energythan the NCA, whi
h improves the solution, espe
ially in the �nite U 
ase. Oneof the main drawba
ks of these methods is failing to reprodu
e the Fermi-liquidbehavior at lowest temperatures. An advantage is that they give results dire
tlyon the real frequen
y axis whi
h is ne
essary for the 
al
ulation of the transportproperties. They 
an also be relatively easily generalized to the multi orbital 
aseand they are typi
ally less time 
onsuming than the QMC methods.The most superior impurity solver is the 
ontinuous time quantum Monte Carlo(CTQMC) [36, 37℄ whi
h is based on the sampling through the spa
e of the Feynmandiagrams in 
ontinuous time. In the strong 
oupling implementation, the perturba-tive expansion is done with respe
t to the hybridization (hopping t), while the lo
al(atomi
) part is treated exa
tly. It is important to emphasize that this method is,in prin
iple, exa
t sin
e the Feynman diagrams are sampled to all orders. The onlyerror 
omes from the statisti
al QMC noise. It is 
ru
ially that the method doesnot su�er from the minus sigh-problem (at least for a single-orbital 
ase) and thatthe method 
an be relatively easy generalized to the 
ase of multiple orbitals. Theresulting Green's fun
tions and the self-energies are given on the imaginary axis,whi
h 
an be a drawba
k if one is interested on spe
tral fun
tions and transportproperties. Then the pro
edure for the analyti
al 
ontinuation has to be used - themaximum entropy method for the analyti
al 
ontinuation [38℄.
14



2.3 MOTT METAL-INSULATOR TRANSITION2.3 Mott metal-insulator transitionMott metal-insulator transition (Mott MIT) was dete
ted in numerous 
ompoundsof transition metal oxides, as well as rear earth and a
tinide intermetalli
s, wherethe valen
e orbitals form partially �lled d or f shells. In these materials, the valen
eele
trons sharing the same orbital experien
e strong Coulomb repulsion. The repul-sion may lo
alize the ele
trons in the 
ase of half-�lled orbital and open the gap (theMott gap) at the Fermi level. First theoreti
al attempts to solve the Hubbard modelwere based on Hartree-Fo
k mean-�eld theory, whi
h 
onsiders intera
tion betweenone ele
tron and the averaged stati
 �eld of all other ele
trons in the system, withapproximate strong limit methods, like the Hubbard I approximation [30℄. These at-tempts have roughly re
overed the insulating phase, but failed to explain numerouspronoun
ed features near the transition.Most of the generi
 thermodynami
 and transport properties near the Mott MIT
an be su

essfully 
aptured by the DMFT and its generalizations. Quite generally,there are two ways that the system 
an approa
h the Mot insulating state: by

Figure 2.4: Lo
al density of states for half-�lled Hubbard model. At small U (upperpanel) the system is weakly 
orrelated metal. As U in
reases the quasiparti
le peaknarrows and, eventually, the Mott gap opens (lower panel).
15



2.3 MOTT METAL-INSULATOR TRANSITIONin
reasing the intera
tion U - intera
tion-driven Mott MIT or, for large U , by doping- doping-driven Mott MIT. We will illustrate main features of the DMFT solutionon the example of the half-�lled Hubbard model.Figure 2.4 shows the �prototype" of the density of states of the strongly 
orrelatedele
trons. For the large value of the intera
tion U the Mott insulator o

urs and thedensity of states 
onsists of two Hubbard bands at the distan
e U . With de
reasingintera
tion, the quasiparti
le peak develops at the Fermi level and we enter into themetalli
 regime with strongly renormalized quasiparti
le parameters. We have thefamous three peak stru
ture in the density of states. The quasiparti
le peak appearsdue to the quantum �u
tuations whi
h are fully taken into a

ount within the DMFTmethod. Pre
isely these strongly renormalized quasiparti
les were the missing partin the puzzle of Mott MIT. When we further de
rease the intera
tion, the Hubbardbands fully merge and the system be
omes 
onventional, weakly 
orrelated metal.

16



2.4 OPTICAL AND DC CONDUCTIVITY2.4 Opti
al and d
 
ondu
tivityTransport properties also relatively easily a

essible in experiments due to varietyof te
hniques that 
an probe them very a

urately. They 
an be 
al
ulated fromthe 
orrelation (two-parti
le Green's) fun
tions. We will 
on
entrate mostly on theon the opti
al and d
 (dire
t 
urrent) 
ondu
tivity, espe
ially on dire
t-
urrent (d
)
ondu
tivity and resistivity. Here, we will brie�y sket
h the derivation of the formulafor the opti
al 
ondu
tivity within the theory of linear response.The opti
al 
ondu
tivity σ(ω) is de�ned by
j(ω) = σ(ω)E(ω) , (2.24)where j is the 
urrent and E is the ele
tri
 �eld. Our task is to 
al
ulate the 
urrent(and therefore the opti
al 
ondu
tivity) in terms of the 
orrelation fun
tion. First,we separate the 
urrent into the paramagneti
 and the diamagneti
 part, and afterusing the Coulomb gauge for the ve
tor potential, we obtain the following relation

j(x, t) = 〈jP (x, t)〉 − ne2

m
A(x, t) , (2.25)where x labels three Des
artes 
oordinates and t is the time. The paramagneti
response to the applied �eld 
an be 
al
ulated within the theory of linear response:

〈jα
P (x, t)〉 =

∫
d3x′

∫

t′<t

dt′i〈[jα
P (x, t), jβ

P (x′, t′)]〉Aβ(x′, t′) . (2.26)Equivalently in the Fourier spa
e,
j(q) =

1

−iν

{
ne2

m
δαβ − i〈[jα(q), jβ(−q)]〉

}
E(q) , (2.27)where q stands for q = (q, ω).In order to 
omplete the derivation of the opti
al 
ondu
tivity, we need to 
al-
ulate 
urrent-
urrent 
orrelation fun
tion. In this thesis, we will brie�y des
ribederivation presented in the se
tion IV of Ref. [18℄. The 
orrelation fun
tion 
an beexpressed as an in�nite sum of two-parti
le vertex fun
tions. It turns out that thisin�nite sum 
an be greatly simpli�ed by making the following observations: Sin
ea wave length of the in
ident light, used in experiments, is mu
h shorter than the17



2.4 OPTICAL AND DC CONDUCTIVITYwave length of the ele
troni
 wave ve
tor, ω/c ≪ kF , we 
onsider the limit q = 0, orin the other words q = (ω, 0). This observation, together with the limit of in�nitedimensions (widely exploited within DMFT), allows us to drop all vertex 
orre
-tions, keeping only the zeroth order vertex fun
tion. Cal
ulating the only remainingvertex fun
tion and using the d → ∞ limit, we obtain the opti
al 
ondu
tivity inthe following form,
σ(iω) =

1

ω

∫ +∞

−∞

dǫ

∫ +∞

−∞

dν

∫ +∞

−∞

dν′D(ǫ)ρ(ǫ, ν)ρ(ǫ, ν ′)
f(ν) − f(ν ′)

ν − ν ′ + iω
. (2.28)Here, D(ǫ) is the nonintera
ting density of states, f(ν) is the Fermi fun
tion, and

ρ(ǫ, ν) represents the one parti
le spe
tral density
ρ(ǫ, ν) = −1

π
ImG(ǫ, ν) =

−1

π

1

ν + µ − ε − Σ(ν)
. (2.29)This equation is rigorously derived for the hyper
ubi
 (in�nite dimensional 
ubi
)latti
e and it represents a reasonable approximation for the three-dimensional 
ase,so we will use it in all 
al
ulations in the thesis.One of the �rst and best known 
on�rmations of DMFT was the 
omparison of
al
ulated opti
al 
ondu
tivity with the experimentally obtained, from photoemis-sion spe
trum of vanadium oxide V2O3. The theoreti
al 
al
ulations qualitativelyre
over the main aspe
ts of the experiment [39℄.

Figure 2.5: Photoemission spe
trum of metalli
 vanadium oxide (V2O3) near themetal-insulator transition (
ir
les and squares) and opti
al 
ondu
tivity 
al
ulatedfrom DMFT (solid 
urve) [39℄.
18



2.5 PHASE DIAGRAM OF THE FRUSTRATED HUBBARD MODEL2.5 Phase diagram of the frustrated Hubbard modelThe DMFT phase diagram of half-�lled Hubbard model displays metalli
 and Mottinsulating phase and several 
rossover regions. Here we 
on
entrate on the paramag-neti
 solution (whi
h is relevant for geometri
ally frustrated latti
es, e.g. triangularlatti
e).

Figure 2.6: DMFT phase diagram of the half-�lled Hubbard model.At the low temperatures and weak intera
tion there is a Fermi liquid (
onven-tional metalli
) phase. When we in
rease the intera
tion U , we rea
h the region of
oexisten
e of both metalli
 and insulating phase and for strong intera
tion we stepinto the Mott insulating phase. The 
oexisten
e region ends in the (Uc, Tc) 
riti
alpoint. Tc ≈ 0.03EF whi
h is typi
ally several tens of Kelvin in the experiments[6℄. At high temperatures, T > Tc, we have bad metal phase 
hara
terized by verystrong ele
tron-ele
tron s
attering, followed by the �quantum 
riti
al� region [40, 10℄and the insulating region 
hara
terized by the well developed gap and the a
tivationtemperature dependen
e of the resistivity.
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3. Dynami
al mean �eld theory for disor-dered strongly 
orrelated systemsEvery 
rystal stru
ture has some level of disorder due to the presen
e of defe
ts,impurities and or dopants. In the last twenty years, di�erent 
lasses of strongly 
or-related materials have appeared, many of them having a signi�
ant level of disorder.This is parti
ularly the 
ase with the 
omplex materials obtained by doping, i.e. byrepla
ing an atom of the starting 
ompound with an atom of another element. Theposition of doped atoms in the latti
e is usually random whi
h introdu
es disorderedinto the system. Progress of the experimental te
hniques allowed systemati
 studyof the e�e
ts of disorder in various materials of this kind. We will illustrate this inthe next few examples.A powerful experimental te
hnique whi
h allows lo
al measurements at the nano-sl
ale is the s
anning tunneling mi
ros
opy (STM). Figure 3.1 represents the resultsof su
h measurements on high-temperature super
ondu
tor obtained by doping of

Figure 3.1: Spatial distribution of the super
ondu
ting gap in Bi2Sr2CaCu2O8+δat T = 30 K (left panel) and spatial distribution of the 
ondu
tivity in the non-super
ondu
ting phase at T = 93 K.[41℄
20



the Mott insulatingmaterial Bi2Sr2CaCu2O8 by oxygen. The �gure displays a spatialdistribution of the super
ondu
ting gap at the temperature below 
riti
al tempera-ture Tc and spatial distribution of the 
ondu
tivity at temperature above Tc. Thedisorder and inhomogeneity in this system is most likely the 
onsequen
e of doping.

Figure 3.2: Resistan
e of the organi
 κ− (BEDT −TTF )2Cu(SCN)2 as a fun
tionof temperature [42℄. Level of disorder is proportional to the X-ray exposure time.An appealing opportunity for a systemati
 study of the disorder e�e
ts is byintrodu
tion of stru
tural defe
ts by X-ray irradiation. Indeed, su
h a method isa

essible in various organi
 
harge-transfer salts. The temperature dependen
eof the resistan
e of the quasi two-dimensional organi
 material κ − (BEDT −
TTF )2Cu(SCN)2 for di�erent irradiation exposure times is shown in Figure 3.2.The disorder strength is dire
tly 
orrelated with the X-ray exposure time (longerexposure time leads to more disordered system).Another group of materials where both the intera
tion and disorder play an im-portant role are diluted two-dimensional ele
tron gasses in Si-MOSFETs and ultra-
lean GaAs heterostru
tures. These systems display very sharp metal-insulator tran-sition by tuning the 
on
entration of 
harge 
arriers, see Figure 3.3. There is still
ontroversy regarding the nature or even the driving for
e for this MIT transitionand we will turn our attention toward this question Chapter 5.The understanding of physi
al pro
esses in the regime where both the ele
tron-21



Figure 3.3: Resistivity of two-dimensional ele
tron gas in Si-MOSFET as a fun
tionof temperature for di�erent ele
tron 
on
entrations.ele
tron 
orrelations and the disorder are strong is one of the most important openproblems in the modern 
ondensed matter physi
s. Explanation of the physi
alproperties of strongly 
orrelated disordered materials poses a major 
hallenge, andalso holds a promise for new te
hnologi
al appli
ations.There are few theoreti
al attempts to provide insight into the transport andthermodynami
 properties of strongly disordered 
orrelated systems [43℄. In thisthesis, we will follow the approa
h of the dynami
al mean �eld theory, generalizedin order to treat disordered systems. Most of the theoreti
al works on this subje
thave been restri
ted, so far, to binary disorder distribution [44℄, or low temperatureswhere the DMFT has been extended in order to in
orporate the Anderson lo
aliza-tion e�e
ts [27, 45, 46℄. The generalized DMFT equations were usually solved withthe approximate slave boson approa
h whi
h is restri
ted to zero temperature, and
an only indire
tly address the �nite temperature properties. The �nite tempera-ture transport properties in disordered systems, typi
ally dominated by in
oherentpro
esses, is the main fo
us of the thesis.In this 
hapter, we brie�y review several generalizations of the DMFT method.22



The �rst method of treating the disorder te
hni
ally redu
es to simple averagingof Green's fun
tions over an ensemble of impurities in the DMFT self-
onsisten
yloop. This is the simplest approa
h whi
h in the non-intera
ting limit redu
es tothe 
oherent potential approximation (CPA). The Anderson lo
alization e�e
ts 
anbe in
luded through the approximate Typi
al medium theory. The spatial �u
tu-ations in disordered �nite dimensional systems are fully taken into a

ount withinthe Statisti
al DMFT (StatDMFT), where the only approximations remains theassumption of the lo
ality of the self-energy.
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3.1 DISORDERED HUBBARD MODEL (DHM)3.1 Disordered Hubbard model (DHM)For the purpose of theoreti
al investigation of the disorder e�e
ts in strongly 
orre-lated materials, we 
onsider the half-�lled single-orbital Hubbard model with site-diagonal disorder and nearest neighbor hopping, given by the Hamiltonian
H = −

∑

ij,σ

ti,jc
†
iσcjσ + U

∑

i

ni↑ni↓ +
∑

iσ

viniσ − µ
∑

iσ

niσ. (3.1)Here ti,j is the hopping amplitude, U the intera
tion strength, c†iσ is the 
reationoperator, and niσ = c†iσciσ the o

upation number operator on site i for spin σ. Theglobal o

upation number is enfor
ed by the 
hemi
al potential µ. In this thesis wewill 
on
entrate on half-�lled systems sin
e we are primarily fo
uses on a study ofintera
tion-driven Mott transition. The disorder is modeled by random energies vitaken from uniform distribution in the interval (−W/2, W/2). Most of the featuresof the disordered Hubbard model are expe
ted to be insensitive to the parti
ularform of the disorder distribution. Physi
ally, the site disorder (random potential)
an be due to the impurity atoms or dopants having di�erent having di�erent orbitalenergy levels.Following the DMFT pro
edure, it is possible to redu
e the disordered Hubbardmodel to the Anderson impurity model in a self-
onsistently determined 
ondu
tionbath. Unlike to the 
lean 
ase, in the presen
e of disorder, we need to 
onsideran ensemble of impurities. There are several ways to set up the self-
onsisten
yequations for the 
al
ulation of the site-dependent 
ondu
tion bath.
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3.2 COHERENT POTENTIAL APPROXIMATION FOR THE CORRELATED ELECTRONS3.2 Coherent potential approximation for the 
or-related ele
tronsIn the 
oherent potential approximation (CPA) of the DMFT model, we 
hoose Nvalues for site-disorder from the given distribution and solve a set of N Andersonimpurity problems (one for ea
h on-site energy). The 
ondu
tion (hybridization)bath is obtained in the pro
ess of averaging over the disorder and it remains thesame for ea
h site within the CPA approa
h. In the non-intera
tion limit, themethod redu
es to the well studied CPA equations for non-intera
ting disorderedele
trons, whi
h is formally exa
t in the limit of large 
oordination number [47℄.The 
entral quantity is the lo
al Green's fun
tion,
Giσ(τ − τ ′) = −〈Tciσ(τ)c†iσ(τ ′)〉Si

eff

, (3.2)whi
h is a site-dependent quantity in the presen
e of disorder. The lo
al e�e
tivea
tion is given by
Si

eff = − 1

β

∑

iωn,σ

c†iσ(iωn)[iωn + µ − vi − ∆(iωn)]ciσ(iωn)

+
1

β
U
∑

iωn

n↑(iωn)n↓(iωn), (3.3)where ∆ is the 
ondu
tion bath whose self-
onsistent value will be obtained in theiterative pro
edure. The quantity that we average over the disorder is the lo
alGreen's fun
tion,
Gav(iωn) =

∫
dvP (v)G(iωn, v). (3.4)Though we 
onsider a 
ontinuous distribution of disorder P (v), in pra
ti
e it issu�
ient to take a �nite number of random energies, and the integral is repla
edwith a sum. In the 
ase of uniform disorder

Gav(iωn) =
1

N

N∑

i=1

Gi(iωn). (3.5)The averaged Green's fun
tion Gav and the 
ondu
tion bath ∆ determine the
25



3.2 COHERENT POTENTIAL APPROXIMATION FOR THE CORRELATED ELECTRONSself-energy through the relation
G−1

av (iωn) = iωn + µ − ∆(iωn) − Σ(iωn), (3.6)analogous to Eq. 2.18. The self-
onsisten
y 
ondition follows from the assumptionthat the latti
e self-energy 
oin
ides with the impurity self-energy. Then the disorderaveraged lo
al Green's fun
tion has to be equal to the lo
al 
omponent of the latti
eGreen's fun
tion,
Gav(iωn) =

∫
dε

D(ε)

iωn + µ − ε − Σ(iωn)
. (3.7)Here D(ε) is the density of states in the absen
e of disorder and intera
tion. Equa-tion 3.6 determines new 
ondu
tion bath whi
h 
ompletes the self-
onsisten
y loop.The s
heme of the CPA method is presented on the Figure 3.4.This approa
h 
an be safely applied in the regime of weak or moderate disorder.However, it does not take into a

ount spatial �u
tuations of the 
ondu
tion bathand Anderson lo
alization in the limit of very strong disorder.
Self-consistency

relation

G1

Δ

G2

G3

ε ,U4 ε ,U3 ε ,U2 ε ,U1

Averaging

......AIM

ε ,UN

AIM AIM AIM AIM

G4

GNFigure 3.4: S
hemati
 representation of the CPA algorithm.
3.2.1 Opti
al and d
 
ondu
tivity within CPATaking into a

ount the 
onstru
tion of the disorder treatment approa
h presentedin se
tion 3.2, we expe
t that opti
al 
ondu
tivity assumes form analogous to that for26



3.2 COHERENT POTENTIAL APPROXIMATION FOR THE CORRELATED ELECTRONSthe 
lean Hubbard model 2.28. Sin
e we are interested in the 
orrelation fun
tionson the real axis, we 
an perform an analyti
 
ontinuation of Eq. 2.28 to the realaxis,
Re σ(ω + i0+) =

πe2

~ad

∫ +∞

−∞

dǫ

∫ +∞

−∞

dνD(ǫ)ρ(ǫ, ν)ρ(ǫ, ν + ω)
f(ν) − f(ν + ω)

ω
. (3.8)In this 
ase the one parti
le spe
tral density depends of the self-energy obtainedwithin CPA pro
edure,

ρ(ǫ, ν) =
−1

π
ImG(ǫ, ν) =

−1

π

1

ν + µ − ε − ΣCPA(ν)
, (3.9)where ΣCPA is 
al
ulated from averaged Green's fun
tion (3.6).The d
 
ondu
tivity is de�ned as the 
ondu
tivity at zero frequen
y and the d
resistivity is just inverse of that,

σ
dc

= Re σ(ω = 0) =
πe2

~ad

∫ +∞

−∞

dε

∫ +∞

−∞

dνD(ǫ)ρ2(ε, ν)
−df(ν)

dν
, (3.10)

ρ
dc

=
1

σ
dc

. (3.11)
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3.3 TYPICAL MEDIUM THEORY3.3 Typi
al medium theoryThe interplay between Mott and Anderson lo
alization has been studied on thedisordered Hubbard model within an e�e
tive typi
al medium theory (TMT) [45℄. A
ru
ial step in the self-
onsistent 
al
ulation of the 
ondu
tion bath, is geometri
alaveraging of the lo
al density of states, in 
ontrast to arithmeti
 averaging used inCPA. In this 
ase, the e�e
tive DOS is 
al
ulated from,
ρtyp(ω) = exp

[∫
dεP (ε) lnρ(ω, ε)

]
, (3.12)and the Green's fun
tion is obtained from the Hilbert transform,

Gtyp(ω) =

∞∫

−∞

dω′ρtyp(ω
′)

ω − ω′
. (3.13)This typi
al (geometri
ally averaged) DOS is the 
entral quantity in the TMT.The 
riterion for the Anderson lo
alization (disorder-driven MIT) is that the typi
alDOS goes to zero. While the average DOS at the Fermi level is �nite both in a metaland Anderson insulator, typi
al DOS is �nite (non-zero) in a metal, but vanishes inthe Anderson insulator.The zero temperature phase diagram for disoredred half-�lled Hubbard modelis obtained using the numeri
al renormalization group (NGR) impurity solver 3.5.Correlated disordered metal is 
hara
terized by nonzero typi
al DOS at the Fermilevel ρtyp(0). The boundary between this phase and the Anderson insulator is formedby the quantum 
riti
al line Wc(U) at whi
h the system goes through a se
ond orderphase transition. The ρtyp(0) is being redu
ed by disorder (for �xed intera
tion) andgoes to zero pre
isely at Wc. On the other hand, the in
rease of the intera
tion for�xed �nite W, restores the value of ρtyp(0), therefore improves the metalli
ity. Sys-tem experien
e the Mott metal-insulator transition for weak to moderate disorder,together with the 
oexisten
e region. This transition qualitatively 
orresponds tothe one in the 
lean 
ase. Starting from the 
lean Mott insulator, for U & Uc, thein
rease of disorder restores the metalli
 phase. The 
ontinuous transition betweenMott and Anderson insulator has been dete
ted for large values of intera
tion anddisorder.Despite the fa
t that this study is performed within e�e
tive theory it represents28



3.3 TYPICAL MEDIUM THEORY

Figure 3.5: Phase diagram of the disordered Hubbard model at zero temperaturewithin e�e
tive typi
al medium theory. Disorder strength and intera
tion are givenin units of 2/3 EF .a good starting ground for all other investigations in this dire
tion. One of theimportant questions is how this pi
ture evolves with the temperature and are there,and if there are, what are the artifa
ts of the used approximation.

29



3.4 STATISTICAL DYNAMICAL MEAN FIELD THEORY3.4 Statisti
al dynami
al mean �eld theoryWe have argued in previous se
tion that the simple approa
h like CPA 
an not giveproper des
ription of the strong disorder limit. Also many features of TMT solutionsare questionable in this regime. In order to have a method 
apable to des
ribe e�e
tsof disorder in a wide range of parameters, it is ne
essary to properly in
lude spatial�u
tuations. That 
an be a

omplished by extending the ideas of dynami
al mean�eld theory. A brief derivation of su
h extension of DMFT will be presented here.We start from disordered Hubbard model Hamiltonian (3.1) with �xed realizationof disorder. If we follow a standard DMFT pro
edure and we 
on
entrate on aparti
ular site of the latti
e and integrate out all other sites, we obtain the lo
ale�e
tive a
tion for arbitrary site. The e�e
tive a
tion has exa
tly the same formwe have already seen in 
hapter 2 and the same 
on
lusions and the pro
edures
an be applied here. This will allow us to redu
e solving of Hubbard model to theproblem of solving an ensemble of Anderson impurity (AI) models. In this 
ase ourhybridization (bath) fun
tion will be di�erent for ea
h site in 
ontrast to the 
lean
ase
∆i(ωn) =

z∑

j,k=1

t2ijG
(i)
jk (ωn). (3.14)Here, z is the 
oordination number and sums over j and k run over nearest neighborsof the site i. G

(i)
jk (ωn) are the 
avity Green's fun
tions, or the latti
e Green's fun
tionswith site i removed,

G
(i)
jk (ωn) =< c†j(ωn)ck(ωn) >(i) . (3.15)Using the analogy with the derivation of the DMFT equations for the 
lean 
ase,presented in the 
hapter 2, Eq. 2.11, the general result (regardless of the disorder)for the 
avity Green's fun
tion 
an be obtained,

G
(i)
jk = Gjk −

GjiGik

Gii
. (3.16)The regular latti
e Green's fun
tion from the previous equation is 
al
ulated from,

Glatt(ωg) = [Î(ωg + µ) − ε̂ − Σ̂(ωg) − Ĥclean]−1, (3.17)where, ε̂ and Σ̂ are diagonal matri
es su
h that the elements of ε̂ are just on-siteenergies of ea
h site, ε̂ii = εi, and self-energy 
ontains the lo
al self-energies Σj(ωg)30



3.4 STATISTICAL DYNAMICAL MEAN FIELD THEORY(solutions of ea
h AIM),
〈i|Σ̂(ωg)|j〉 = Σj(ωg)δij . (3.18)

ˆHclean is the tight-binding Hamiltonian of the 
lean system (εi = 0).The 
avity Green's fun
tion 
an be obtained in the same way as in the 
leanHubbard model. Therefore, we 
an 
on
lude that this pro
edure is exa
t in thelimit of in�nite 
oordination number in the presen
e of intera
tion, or for arbitrary
oordination number for nonintera
ting parti
les. In the 
ase of in�nite 
oordinationnumber, the bath fun
tion redu
es to the simple average over sites, whi
h leads todestru
tion of spatial 
orrelations, whi
h is essentially the CPA treatment of disorderdes
ribed in previous se
tion.In order to allow for Anderson lo
alization, we need to 
onsider a �nite latti
esystem. In this 
ase hybridization fun
tion 
an be seen as a fun
tional of the latti
eGreen's fun
tions for �xed distribution of disorder. The �nite number of sites allowus to keep tra
k of hybridization fun
tions on ea
h site, whi
h 
an �u
tuate signif-i
antly from site to site, depending on the disorder strength. Pre
isely this featureis 
ru
ial for 
apturing the Anderson lo
alization e�e
ts.Again, we 
an establish dire
t 
orrelation between our model and ensemble ofAnderson impurity models, sin
e the e�e
tive a
tion has the same fun
tional form.The solution of ea
h AI model uniquely de�nes the 
orresponding lo
al self-energy
Σi,

Σi(ωn) = ı̇ωn + µ − εi − ∆i(ωn) − (Gloc
ii (ωn))−1, (3.19)where the lo
al Green's fun
tion Gloc

ii is 
al
ulated in respe
t to the lo
al e�e
tivea
tion,
〈i|Ĝ(ωg)|i〉 = Gloc

ii (ωn) = 〈c†i (ωn)ci(ωn)〉loc. (3.20)Moreover, the full latti
e self-energy assumes the lo
al form,In the last step, we are de�ning intera
ting latti
e Green's fun
tion using non-intera
ting ("bare") Green's fun
tion for the same realization of disorder εi.
Gij = G0

ij [εi → εi + Σi(ωn)] (3.21)Here we assumed that the self-energies des
ribing the intera
tion renormalizationhave a stri
tly lo
al 
hara
ter.Now we have all ne
essary ingredients to write the iterative pro
edure of statis-ti
al DMFT: 31



3.4 STATISTICAL DYNAMICAL MEAN FIELD THEORY1. make an initial guess for ea
h hybridization fun
tion ∆i,2. solve the 
orresponding Anderson impurity model on every site of the latti
e,3. use the resulting self-energies Σi to 
al
ulate full Green's fun
tions from Eq. 3.21,4. 
al
ulate the new values of ∆i(ωn) from Eq. 3.19,5. repeat the steps 2. to 4. until all ∆i 
onverge.To get the impression about the 
al
ulations involved in the statisti
al DMFT,we will brie�y 
omment important features of the algorithm. Again, like in CPA
ase, the most demanding step is solving AI models (AIM) for every site in the latti
ein every iteration. The statisti
al DMFT results we will present later are obtainedmainly using the CTQMC solver, but the part 
on
erning study of �nite size e�e
ts(where we performed SDMFT 
al
ulation in absen
e of disorder) is obtained usingthe IPT solver, whi
h is 
onsiderably faster. Its usage was ne
essary for studyinglarge three dimensional latti
es in reasonable time. Sin
e the solution of the impurityproblem for ea
h site is the most demanding step, SDMFT 
ode is parallelized oversites. The s
hemati
 des
ription of the SDMFT is presented on the following �gure.
Δ ( )i ω

G ( )i ω Δ ( )j ω

G ( )j ω

εi

εj

Figure 3.6: S
hemati
 representation of the statisti
al DMFT algorithm.
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4. In�uen
e of disorder on in
oherent trans-port near the Mott transitionMost of the theoreti
al work on the in�uen
e of disorder on physi
al propertiesnear the Mott transition have been so far restri
ted to binary disorder distribution[44℄ or low temperatures, where the DMFT has been extended in order to in
or-porate the Anderson lo
alization e�e
ts [27, 45, 46℄. Di�erent transport regimesin strongly 
orrelated materials are, however, identi�ed 
overing broad temperaturerange. These transport regimes are parti
ularly 
lear in di�erent 
ompounds of κ-family organi
 
harge-transfer salts, see Figure 1.1. These materials have half-�lled
ondu
tion band with the e�e
tive Coulomb repulsion 
omparable to the bandwidth[48℄. The proximity to the Mott metal-insulator transition 
an be tuned by applyingthe pressure.On the metalli
 side of the Mott transition, the Fermi liquid transport at lowtemperatures is followed by an in
oherent transport at higher temperatures domi-nated by the large s
attering rate, and with resistivities an order of magnitude largerthan the Mott-Io�e-Regel (MIR) limit [49, 50, 51, 52℄, whi
h is the maximal resistiv-ity that 
an be rea
hed in a metal a

ording to the Boltzmann semi
lassi
al theory.The resistivity of the MIR limit 
orresponds to the s
attering length of one latti
espa
ing. From the theoreti
al point of view, the violation of the MIR 
ondition andthe appearan
e of the maximum in the resistivity temperature dependen
e is noteasy to explain. However, at least for κ-organi
s, a signi�
ant progress has beenre
ently a
hieved when the transport properties were su

essfully des
ribed even onthe quantitative level within the dynami
al mean �eld theory (DMFT) [6, 5, 53℄.Very re
ently, the e�e
ts of disorder on the opti
al and d
 
ondu
tivity of the or-gani
 
harge-transfer salts have been systemati
ally explored by introdu
ing defe
tsby X-ray irradiation [42, 54, 55℄. The 
ondu
tivity has proven to be very sensitive onthe duration of the irradiation, and di�erent physi
al me
hanisms were advo
atedto explain su
h a behavior [42, 54, 55℄. Sin
e the disorder is gradually generated33



by X-ray irradiation, the simplest approa
h of disorder averaging on the level of
oherent-potential approximation (CPA), that we apply in this 
hapter, should besu�
ient to explain the main modi�
ations in the opti
al and d
 
ondu
tivity 
ausedby the disorder [11℄. Motivated by the experiments on κ-organi
s, we 
al
ulate theresistivity in a wide temperature range for several levels of disorder. In this Chap-ter we present the results for the temperature dependen
e of the density of states,opti
al 
ondu
tivity and d
 resistivity near the Mott transition for the pure and dis-ordered system. Our results are 
ompared with the experiments on X-ray irradiated
κ-organi
s. The high temperature results are obtained with OCA impurity solverand CTQMC is used for the lowest temperatures.
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4.1 DENSITY OF STATES AND OPTICAL CONDUCTIVITY4.1 Density of states and opti
al 
ondu
tivityThe phase diagram of fully frustrated half-�lled Hubbard model in DMFT approxi-mation is well known, see Figure 2.6. Here we fo
use on the 
rossover region fromthe Fermi liquid, a
ross the in
oherent metal to the high temperature insulating-likephase, for the values of intera
tion equal and slightly lower than Uc and for severallevels of disorder. We 
onsider the disoreder half-�lled Hubbard model (see se
tion3.1)
H = −

∑

ij,σ

ti,jc
†
iσcjσ + U

∑

i

ni↑ni↓ +
∑

iσ

viniσ − µ
∑

iσ

niσ. (4.1)where the disorder is modeled by random energies vi taken from uniform distributionin the interval (−W/2, W/2). Sin
e the latti
e stru
ture enters the DMFT equationsonly through the density of states, the transport properties does not depend mu
hon the details of the band stru
ture, and we will 
onsider the hyper
ubi
 latti
ewhi
h has the density of states in the form of a Gaussian
D(ε) =

√
2

π
e−2ε2

, (4.2)where the energy is given in units of the half-bandwidth.The 
entral quantity that we 
al
ulate is the opti
al 
ondu
tivity. The details ofthese 
al
ulations are presented in the 
hapter 3. Here we express the 
ondu
tivityin units of the Mott-Io�e-Regel limit for minimal metalli
 
ondu
tivity. The MIRlimit, σ
MIR

, is the 
ondu
tivity whi
h is rea
hed when the ele
tron mean free pathbe
omes 
omparable to the latti
e spa
ing, l ∼ a. A

ording to the semi
lassi
alarguments, the ele
trons 
an s
atter at most on every atom and the 
ondu
tivity ina metal 
annot be smaller than σ
MIR

. For half-�lled hyper
ubi
 latti
e (whi
h hasGaussian density of states), the MIR 
ondition l = a is equivalent to E
F
τ = 1, where

E
F
is the bare Fermi energy, i.e. half-bandwidth of the nonintera
ting ele
trons,and τ−1 is the s
attering rate. Here ~ is set to 1. Therefore, the MIR limit is set bya 
ondition

τ−1
MIR

= −2ImΣ(0+) = 1, (4.3)where Σ is the self-energy measured in units of EF .The density of states and opti
al 
ondu
tivity for a 
lean system and in a presen
eof moderate disorder, W = 1, are shown in Figure 4.1. The disorder e�e
tively35



4.1 DENSITY OF STATES AND OPTICAL CONDUCTIVITY
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Figure 4.1: Density of states and opti
al 
ondu
tivity as a fun
tion of frequen
yin the 
lean 
ase for U = 0.94 Uc|W=0 (upper panel) and disordered 
ase, U =
0.94 Uc|W=1 (lower panel). Di�erent 
olors 
orrespond to the four distin
tive trans-port regimes (see the text). The insets show the temperature dependen
e of d
resistivity. T , ω and W are given in units of bare EF .in
reases the bandwidth and the 
riti
al intera
tion Uc. In our 
ase, we �nd that
Uc|W=0 = 2.2 and Uc|W=1 = 2.45. The in
rease of Uc due to disorder is in agreementwith earlier estimates obtained by iterated perturbation theory [56℄. The 
riti
altemperature Tc weakly depends on the disorder strength, Tc|W=1 ≈ Tc|W=0 = 0.04,where kB is set to 1. On Figure 4.1 we 
ompare the data at the same relative value
U/Uc = 0.94, and for several 
hara
teristi
 temperatures. We see that the disorderdoes not lead to qualitative di�eren
es and if the intera
tion is the same when s
aledwith Uc, the density of states and the opti
al 
ondu
tivity are even quantitativelyvery similar.We 
an identify several regimes of the ele
tron transport [11℄. At low temperature(green dotted lines and 
rosses in the insets) the s
attering rate, τ−1 = −2ImΣ(0+),36



4.1 DENSITY OF STATES AND OPTICAL CONDUCTIVITY
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(b)Figure 4.2: (a) S
attering rate (full line) and d
 resistivity (dashed) as a fun
tion oftemperature. (b) Quasiparti
le weight as a fun
tion of temperature. The data arefor the 
lean system at U = 0.95 Uc.is small and the transport is dominated by long-lived 
oherently propagating quasi-parti
les. The blue dash-dotted lines (blue 
ir
les in the insets) 
orrespond to thetemperature when the resistivity is already larger then the MIR limit, the s
atteringrate τ−1 is larger than EF , and the Fermi liquid pi
ture of well-de�ned quasiparti
les
eases to be valid. However, a Drude-like peak in the opti
al 
ondu
tivity, as wellas a peak in the density of states, are still present. Our results show that this is the
ase also in the presen
e of moderate disorder. The resistivity maximum (red fullline and square) is rea
hed when the peak at the Fermi level is fully suppressed andwhen a dip at the Fermi level appears both in the density of states and in the opti
al
ondu
tivity. The resistivity maximum is more than an order of magnitude largerthan ρ
MIR

= σ−1
MIR

. At even higher temperatures (violet dashed line and triangle)low frequen
y opti
al 
ondu
tivity in
reases due to the thermal ex
itations.Figure 4.2 helps us to further distinguish the me
hanism leading to the largeresistivity and its strong temperature dependen
e. We see that the s
attering rategives the main 
ontribution to the resistivity temperature dependen
e and 
ausesthe violation of the MIR limit, Figure 4.2(a), while the quasiparti
le (Drude) weight
Z = (1 + |∂ReΣ(ω)/∂ω|ω=0)

−1 is almost temperature independent, Figure 4.2(b).The dotted part of the line is an extrapolation of the OCA results to zero tempera-ture. We have also 
he
ked that Z depends very weakly on the temperature usingmore reliable CTQMC impurity solver. Therefore, we 
an 
on
lude that the drivingme
hanism for large resistivity is the large s
attering rate and not the redu
tion37



4.1 DENSITY OF STATES AND OPTICAL CONDUCTIVITYof the spe
tral weight near the Fermi level. This feature, already seen in the ex-periments on VO2 [57℄ and 
harge-transfer salts [53℄, seem to be 
ommon for thesystems with half-�lled 
ondu
tion band near the Mott transition. This should be
ontrasted with the doped Mott insulators where the main reason for the violationof the MIR 
ondition is a de
imation of the Drude peak in the opti
al 
ondu
tivityby the time MIR limit is rea
hed, whi
h 
an be interpreted as a redu
tion of thenumber of 
harge 
arriers [49, 52℄.
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Figure 4.3: Temperature dependen
e of d
 resistivity for di�erent intera
tion U inthe 
lean 
ase, W = 0 (a) and disordered 
ase, W = 1 (b). U is given in units of
Uc(W ).The results for temperature dependen
e of d
 resistivity, ρ

dc
= σ−1(ω → 0), forseveral values of intera
tion U are shown in Figure 4.3. The resistivity is given inunits ρ

MIR
. For 
larity it is shown on a logarithmi
 s
ale. The resistivity in the
lean and disordered 
ase are even quantitatively very similar when the intera
tionis s
aled with Uc(W ). 38



4.2 INCREASE OF METALLICITY BY DISORDER4.2 In
rease of metalli
ity by disorderVery re
ent experiments [42, 54, 55℄ on the 
harge-transfer organi
 salts provide arather unique opportunity to study the e�e
ts of disorder on transport propertieswithout 
hanging external parameters or 
hemi
al 
omposition. The level of defe
ts(disorder) dire
tly depends on the time of exposure to the X-rays. The opti
al andd
 
ondu
tivity are proven to be very sensitive on irradiation time showing an in-
rease in the 
ondu
tivity with the time of irradiation. The experiments measuredboth interlayer and in-plane resistivity with similar 
on
lusions. Di�erent physi-
al me
hanisms were proposed to explain the in
rease of 
ondu
tivity. Analytis etal. [42℄ proposed a defe
t-assisted interlayer 
ondu
tion 
hannel for the redu
tionof resistivity, and Sasaki et al. [54, 55℄ proposed that the irradiation leads to thee�e
tive doping of 
arriers into the half-�lled Mott insulator.The DMFT has su

essfully des
ribed the transport properties of organi
 saltseven on the quantitative level [5, 53℄. In order to make a 
omparison with the ex-periments with irradiation indu
ed defe
ts, we solve the DMFT equations for �xedintera
tion U and vary the level of disorder W [11℄. The results for d
 resistivity areshown in Figure 4.4(a). The data for T < 0.01 are obtained using CTQMC impuritysolver. The presen
e of even a weak disorder signi�
antly de
reases the resistivityby e�e
tively moving the system away from the Mott insulator, as explained in theprevious se
tion. Our data are very similar to the measurements on 
harge-transfersalt κ-(BEDT-TTF)2Cu(SCN)2 from Ref. [42℄, whi
h are shown in Figure 4.4(b).We note that these data are for interlayer resistivity while our DMFT 
al
ulation
orresponds to in-plane transport. However, the interlayer transport is due to in
o-herent tunneling whi
h is proportional to in-plane 
ondu
tivity [58℄. Therefore thetemperature dependen
e of out-of-plane resistivity should follow the temperaturedependen
e of in-plane resistivity. Indeed, the in-plane opti
al 
ondu
tivity mea-surements on the Mott insulator κ-(BEDT-TTF)2Cu[N(CN)2℄Cl, also show that theMott system be
omes more metalli
 in a presen
e of disorder. These measurementsshow the transfer of the spe
tral weight to low frequen
y region as the irradiationtime in
reases, followed by the 
ollapse of the Mott gap [54, 55℄.We emphasize that our model, as opposed to the physi
al me
hanism proposedin Ref. [55℄, does not assume an introdu
tion of new 
harge 
arriers sin
e the totalnumber of 
arriers per site remains equal to one. The lo
al o

upation number,however, depends on the random site potential, and we 
an say that the system is39



4.2 INCREASE OF METALLICITY BY DISORDER
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Figure 4.4: (a) Temperature dependen
e of d
 resistivity for �xed U = 2.2 = Uc|W=0,and various levels of disorder. (b) Experiments on κ-(BEDT-TTF)2Cu(SCN)2, takenfrom Ref. [42℄.e�e
tively lo
ally doped [59℄. The o

upation number, for a given spin orientation,as a fun
tion of random site potential is shown in Figure 4.5. It is interesting tonote that the lo
al o

upation number, n(vi), deviates mu
h less from its averagevalue than it would be the 
ase in the absen
e of intera
tion. This is a 
onsequen
eof very strong disorder s
reening of site-diagonal disorder on the metalli
 side ofthe Mott transition [60℄. Therefore, the resistivity 
urves on Figure 4.4(a) 
ross40



4.2 INCREASE OF METALLICITY BY DISORDER
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Figure 4.5: Lo
al o

upation number per spin as a fun
tion of site disorder vi for
T = 0.01, U = 2.1, and W = 1.at very low temperatures and our 
urrent model 
annot explain the interse
tion of
urves in Figure 4.4(b) whi
h happens at mu
h higher temperature. The dramati
redu
tion of the elasti
 s
attering is also demonstrated in Ref. [61℄, whi
h showsthat the inelasti
 s
attering dominates in the in
oherent regime. We stress that wedo not assume Matthiessen's rule. This is a salient feature of DMFT, whi
h 
anoperate in a regime where 
onventional approa
hes to the ele
tron transport fail.
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4.3 CONCLUSIONS4.3 Con
lusionsIn summary, we have examined the in�uen
e of random potential on the opti
aland d
 
ondu
tivity for half-�lled Hubbard model in a vi
inity of the Mott transi-tion. Our results show, in agreement with the experiments on κ-organi
s, that thedisorder 
an make the system e�e
tively more metalli
 [11℄. The disorder in
reasesthe bandwidth whi
h in
reases Uc and weakens the 
orrelation e�e
ts, moves thesystem away from the Mott transition and leads to a de
rease in the s
attering rateand resistivity. We emphasize that the randomness in our model does not 
hangeglobal doping, as the system remains on average half-�lled, but the number of 
harge
arriers lo
ally deviates from the average value. Therefore, global 
arrier doping ofa Mott insulator due to irradiation defe
ts, proposed in Ref. [55℄, is not ne
essaryto make the system more metalli
. We also �nd that the maximal possible value ofmetalli
 resistivity remains more than an order of magnitude larger than the MIRlimit even in a presen
e of moderate disorder. As in the 
lean 
ase, the violation ofthe MIR limit is driven by a large s
attering rate due to the ele
tron-ele
tron s
at-tering, and Drude-like peak in the opti
al 
ondu
tivity persists even at temperatureswhen the resistivity is well beyond the MIR limit.
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5. S
attering me
hanism in diluted 2D ele
-tron gases: intera
tion vs. disorderThe physi
al nature of s
attering pro
esses whi
h 
ontrol transport represents oneof the most fundamental properties for any material. At the lowest temperaturesthe thermal ex
itation are few, and elasti
 impurity s
attering dominates. Raisingthe temperature introdu
es two basi
 pathways to modify transport. First, elas-ti
 s
attering 
an a
quire a temperature dependen
e either through the modi�eds
reening of the impurity potential, or through dephasing pro
esses [62, 63℄. Thisgeneral me
hanism en
apsulates the physi
al 
ontent of all �quantum 
orre
tions�� both in the di�usive and the ballisti
 regime � predi
ted within the Fermi liquidframework. Indeed, 
areful and pre
ise experiments have 
on�rmed the validity ofthis physi
al pi
ture for many good metals with weak disorder [62℄. Physi
ally, itrelies on the existen
e of long-lived quasiparti
les within a degenerate ele
tron gas.The se
ond route 
omes into play in instan
es where 
orrelation e�e
ts due toele
tron-ele
tron intera
tions are signi�
ant. Here, the Fermi liquid regime featur-ing degenerate quasiparti
les is often restri
ted to a very limited temperature range
T ≪ T ∗ ≪ TF , well below the �
oheren
e temperature� T ∗, whi
h itself is mu
hsmaller then the Fermi temperature TF . In su
h materials, whi
h in
lude rare-earthintermetalli
s [64, 65℄, many transition metal oxides [57℄, and several 
lasses of or-gani
 Mott systems [5, 66, 53℄, a broad intermediate temperature regime emerges
T ∼ T ∗ ≪ TF where inelasti
 ele
tron-ele
tron s
attering dominates all transportproperties. Su
h s
attering dire
tly re�e
ts the thermal destru
tion of Landau quasi-parti
les � a situation des
ribing the demise of a 
oherent Fermi liquid. In thesematerials, in the relevant temperature range, the ele
tron-phonon s
attering is mu
hweaker than the ele
tron-ele
tron one.When a material is tuned to the vi
inity of any metal-insulator transition, bothdisorder and ele
tron-ele
tron intera
tions are of a priori importan
e. But whi
h ofthese two s
attering me
hanisms � elasti
 or inelasti
 � dominates the experimen-43



tally relevant temperature range? Answering this question should provide important
lues as to whi
h of the lo
alization me
hanisms dominate in any given material.Unfortunately, experimental systems permitting su�
iently pre
ise tuning of 
on-trol parameters are generally rather few. An attra
tive 
lass of systems where adramati
 metal to insulator 
rossover is observed in a narrow parameter range isprovided by 2D ele
tron gases (2DEG), su
h as sili
on MOSFETs or GaAs/AlGaAsheterostru
tures [67, 68, 69℄. One of the most striking features observed in thesesystems is the pronoun
ed resistivity drop on the metalli
 side of the transition.While 
onventional, relatively weak temperature dependen
e is found at high densi-ties (n ≫ nc), very strong temperature dependen
e is found near the 
riti
al density
nc, roughly in the same density range nc . n . 2nc where other strong 
orrelationphenomena were observed, e.g. large m∗ enhan
ement [70℄. Here, pronoun
ed resis-tivity maxima are observed at T ∼ Tmax(n), followed by a dramati
 resistivity dropat lower temperatures, whose physi
al origin remains a subje
t of mu
h 
ontroversyand debate [67, 68, 69℄.In this Chapter we argue that the ele
tron-ele
tron s
attering dominates thetransport in a broad 
on
entration and temperature range on the metalli
 side of themetal-insulator transition [12℄ in Si MOSFETS and GaAs/AlGaAs heterostru
tures.This 
on
lusion is rea
hed by: (i) A detailed s
aling analysis of the metalli
 resis-tivity 
urves; (ii) Establishing a similarity in the transport properties of the 2DEGand well-studied strongly 
orrelated materials near the intera
tion-driven MIT; (iii)Making a 
omparison of the resistivity 
urves in 2DEG with those in a simple modelof the Mott MIT. Our 
on
lusions favor the intera
tion-driven (Wigner-Mott) s
e-nario [71, 72, 73, 74, 75℄ of the MIT in 2DEG and give a guidan
e for the developmentof a mi
ros
opi
al theory of in
oherent transport in diluted 2DEG.
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5.1 METAL-INSULATOR TRANSITION IN TWO DIMENSIONS5.1 Metal-insulator transition in two dimensionsThe interest for the physi
s of the strongly-
orrelated, disordered systems has beenrenewed sin
e the beginning of 1990's, due to many unexpe
ted and puzzling trans-port properties of high mobility sili
on metal-oxide semi
ondu
tor �eld-e�e
t tran-sistors (MOSFETs). Despite the extensive experimental and theoreti
al studies,many of the transport properties of these materials remained un
lear.In early 1980's there was a wide spread belief that there should be no metal-li
 phase in (in�nite) two dimensional disordered systems in zero magneti
 �eld.In the 
ase of nonintera
ting 
harge 
arriers su
h result was obtained within thes
aling theory of lo
alization [76℄. This theory predi
ted that as the temperatureapproa
hes zero, the resistivity be
omes in�nite. The growth of resistivity is shownto be logarithmi
 in the 
ase of �weak lo
alization� and exponential for �strongly lo-
alized� 
harge 
arriers. Subsequent studies have shown that the lo
alization e�e
tsin
rease even further in the presen
e of weak intera
tion [77℄. In the opposite limitof the strongly intera
ting parti
les the Wigner 
rystallization o

urs [78℄. Even asmall amount of disorder, in this 
ase, leads to the pinning of the Wigner 
rystalthat makes system insulating. Therefore, the two-dimensional ele
tron systems wereexpe
ted to be insulating in both limits: weak (or absent) and very strong inter-parti
le intera
tion. That question was 
onsidered as resolved until the experimentson highly diluted 2D ele
tron gases were performed.Re
ent availability of high mobility MOSFET samples enabled the systemati
resear
h of 2D systems in the range of very low ele
tron densities, typi
ally below
1011 
m−2 [79℄. An important result of these studies is the strong temperature de-penden
e of the resistivity well below Fermi temperature. In addition, the existen
eof the 
riti
al density nc is obtained for whi
h the resistivity is almost temperatureindependent and it is of the order of the quantum unit of resistan
e, h/e2 ≈ 25.6 kΩ.Above nc the resistivity de
reases with the temperature down to the lowest a

essibletemperatures of ∼ 4 mK. All this strongly suggests that there is a metal-insulatortransition at T = 0.The �rst experiments indi
ating the existen
e of MIT in 2D ele
tron systems wereperformed on highly diluted sili
on MOSFETs [80, 81℄. Signi�
ant property of thesematerials was an order of magnitude larger mobility than in previous investigations,rea
hing more than 4 × 104 
m2/Vs at T = 4.2 K. At these very low ele
tron
on
entrations the ele
tron-ele
tron intera
tion Ee−e be
omes dominant and mu
h45



5.1 METAL-INSULATOR TRANSITION IN TWO DIMENSIONSlarger than the Fermi energy. Estimates of these energies for Si MOSFETs at ns =

1011 
m−2 yield
Ee−e ∼

e2

ǫ
(πns)

1/2 ≈ 10meV, (5.1)while
EF =

π~
2ns

2m∗
≈ 0.58meV, (5.2)where e is the ele
tron 
harge, ǫ is the diele
tri
 
onstant, EF is the Fermi energy,and m∗ is the e�e
tive ele
tron mass. Typi
al values of dimensionless parameter

rs ≡ Ee-e/EF in these samples is above 10. In the very dilute 2D ele
tron systemsthe formation of the Wigner 
rystal is expe
ted, and a

ording to the numeri
alsimulation [78℄ this should o

ur at rs ≈ 37 ± 5, and at even higher density in thepresen
e of disorder [82℄. Hen
e, these 2D systems 
an be 
onsidered as strongly
orrelated ele
tron liquids at rs ∼ 10.These �ndings were supported by subsequent experiments in diluted 2D ele
tronsystems like sili
on MOSFETs with di�erent geometry and oxide thi
knesses [83℄and other 2D systems (p-GaAs, n-GaAs, p-SiGe, et
.). Typi
al experimental re-sults [80, 81℄ of the resistivity dependen
e on the ele
tron density and temperatureare presented in Figure 3.3. Aforementioned 
riti
al ele
tron density nc is 
learlydistinguished together with the metalli
 family of the 
urves having ns > nc andinsulating 
urves with negative slope for ns < nc. The most striking property is
hange in resistivity by several orders of magnitude, 
aused by 
hange of the 
on-
entration of only a few per
ent. The temperature dependen
e of the resistivitybe
omes weak above T ∗ ≈ 2 K. At higher densities, of the order of those used in theexperiments in the 1980s, a weak insulating temperature dependen
e is observed,reminis
ent of Anderson lo
alization.
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5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA5.2 S
aling analysis of the resistivity maximaThe experimental data reveal well de�ned trends in the density dependen
e of theresistivity maxima, suggesting a s
aling analysis. While many di�erent s
enarios forthe metal-insulator transition predi
t some form of s
aling, its pre
ise features mayprovide 
lues to what me
hanism dominates the transport.

Figure 5.1: Resistivity as a fun
tion of temperature from the experiments on SiMOSFET by Pudalov et al. [84℄.All the 
urves displaying a resistivity maximum have an almost identi
al shapeFigure 5.1, strongly suggesting that unique physi
al pro
esses are responsible for astrong temperature dependen
e of the resistivity [12℄ in a large range of 
on
entra-tions. The resistivity maxima are typi
ally observed at temperatures 
omparableto the Fermi temperature, where a physi
al pi
ture of long-lived quasiparti
les is47



5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMAno more valid. Complementary experiments [70, 68℄ on the same material have re-vealed that large e�e
tive mass m∗ enhan
ements are observed in the same densityrange. This behavior is a 
lear signature of strong 
orrelation e�e
ts whi
h, in allknown examples, produ
e very strong inelasti
 ele
tron-ele
tron s
attering in theappropriate temperature range. The ele
tron-phonon s
attering is negligibly smallfor T < TF . 10 K [85℄. Sin
e a strongly 
orrelated system is typi
ally 
hara
terizedby a single 
hara
teristi
 energy s
ale T ∗ ∼ (m/m∗) TF , we expe
t the s
aling fun
-tion f(x) to assume a universal form, while the s
aling parameters Tmax ≡ T ∗ and
ρmax to assume a simple, power-law dependen
e on the e�e
tive mass m∗. Guidedby these observations, in this Se
tion we introdu
e a s
aling ansatz and perform as
aling analysis of the resistivity 
urves in Si MOSFETs and GaAs heterostru
tures.5.2.1 Phenomenologi
al s
aling hypothesisIn a

ordan
e to what is typi
ally found in other examples of strongly 
orrelatedmetals with weak to moderate disorder [5℄, we expe
t the resistivity to assumean additive form, ρ(T ) = ρo + δρ(T ). Here, ρo is the residual resistivity due toimpurity s
attering, and the temperature-dependent 
ontribution δρ(T ) is expe
tedto be dominated by inelasti
 ele
tron-ele
tron s
attering. Based on these general
onsiderations, we propose that the temperature-dependent term assumes a s
alingform

δρ(T ) = δρmaxf(T/Tmax), (5.3)where δρmax = ρmax − ρo.To test this phenomenologi
al s
aling hypothesis, we perform a 
orrespondinganalysis of experimental data in several systems displaying 2D-MIT [12℄. We startwith the Si MOSFET data [84℄ analyzed in Ref. [86℄. We 
on
entrate on metalli

urves below the separatrix C. In the range of 
on
entrations 0.83 < n < 1.10,the resistivity 
urves have a 
lear maximum, and ni
ely 
ollapse with the proposeds
aling ansatz, Figure 5.2(a). In fa
t, we 
an use the s
aling ansatz to 
ollapsealso the data for 1.21 < n < 1.75, where Tmax and ρmax are determined from theleast square �t to the s
aling 
urve. Clearly all eight resistivity 
urves belong tothe same family (have the same fun
tional form), and thus must be explained by asingle dominant transport me
hanism. This 
on
lusion is even more 
onvin
ing if weapply the same analysis to several di�erent materials, in
luding ultra high mobilityGaAs sample, Figure 5.2(b). While the di�usive physi
s 
annot possible apply in48
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Figure 5.2: S
aled resistivity as a fun
tion of s
aled temperature for di�erent ele
tron(hole) 
on
entrations, for Si MOSFET (a) and GaAs heterostru
tures (b). Theexperimental data are taken from Ref. [86℄ (MOSFETs), Ref. [87℄ (p-GaAs/AlGaAs,blue symbols), Ref. [88℄ (n-GaAs/AlGaAs, green symbols), and Ref. [89℄ (p-GaAs,orange symbols). The solid line is the s
aling fun
tion obtained for a simple modelof the MIT (see se
tion 5.4).su
h a broad parameter range, we see that the s
aling form we propose proves tobe an extremely robust feature of all available 2D-MIT systems. This result is verysigni�
ant, be
ause disorder e�e
ts must be signi�
antly weaker in these ultra-
leanmaterials, while the intera
tion e�e
ts are expe
ted to be even stronger.
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5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA
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ed density. The dataare taken from Refs. [86, 87, 88℄.5.2.2 Criti
al behavior of the Wigner-Mott s
alingHaving demonstrated data 
ollapse, we are now in a position to examine the 
riti
albehavior of the relevant 
rossover s
ale. We thus examine the behavior of Tmax and
ρmax as a fun
tion of redu
ed 
on
entration (n − nc)/nc and e�e
tive mass m∗ (asdetermined by 
omplementary experiments).For di�erent realizations of 2DEG, Tmax shows approximately power law de-penden
e on the redu
ed 
on
entration, Figure 5.3(a), and even the exponents aresimilar. Tmax in our physi
al pi
ture has a 
lear physi
al interpretation as a 
oher-50
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Figure 5.4: (a) Maximum resistivity δρmax = ρmax − ρo as a fun
tion of Tmax. (b)
Tmax as a fun
tion of inverse e�e
tive mass m∗. mb is the band mass in Si MOSFETs.The data are taken from Refs. [86℄, [90℄.en
e temperature - the temperature when the inelasti
 ele
tron-ele
tron s
atteringtime be
omes 
omparable to ~/EF , leading to in
oherent transport. The resistivitymaximum, however, shows less universal form. It varies a lot in di�erent physi
alsystems. This does not 
ome as a surprise sin
e the resistivity shows nonuniversalfeatures also in three dimensional strongly 
orrelated materials near the Mott tran-sition. We dis
uss in detail the analogy with the Mott systems in se
tions. 5.3 and5.4.In a Si MOSFET the resistivity maximum δρmax = ρmax − ρo shows power lawdependen
e on Tmax in a fairly broad 
on
entration range, Figure 5.4(a). We furtheranalyze the 
riti
al behavior for Si MOSFET using the data for the e�e
tive massas determined by Shashkin et al. [70℄ from magnetoresistan
e measurements in aparallel magneti
 �eld. We �nd that Tmax is inversely proportional to the e�e
tivemass m∗. This behavior is typi
al to all systems near the Mott MIT, where the51



5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA
oheren
e temperature is inversely proportional to the e�e
tive mass, as a landmarkof strong 
orrelations.5.2.3 Breakdown of the di�usion mode s
alingWe have su

essfully 
ollapsed resistivity 
urves in a broad temperature and 
on-
entration range and for several physi
al realizations of 2DEG. The physi
al pi
turebehind the proposed s
aling is that the 2D MIT is an intera
tion-driven (Wigner-Mott) MIT [71, 72, 73, 74, 75℄, and that the dominant temperature dependen
e inthe resistivity originates from strong ele
tron-ele
tron s
attering. Another proposed
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Figure 5.5: Resistivity as a fun
tion of temperature s
aled as in Ref. [86℄. Red solidline is the 
al
ulated s
aling 
urve.s
enario envisions disorder as the prin
ipal driving for
e for lo
alization [86, 91℄,while the intera
tions are most important above the 
riti
al density and at low tem-peratures, where they suppress the tenden
y to lo
alization. An appropriate theory,based on Fermi liquid framework [86℄, has predi
ted that a resistivity maximumshould be observed on the metalli
 side, with the resistivity assuming the s
alingform
ρ(T )/ρmax = f [ρmax ln(T/Tmax)]. (5.4)Here f(x) is a universal s
aling fun
tion predi
ted by theory. The authors pointout, though, that this predi
tion is expe
ted to be valid only within the di�usiveregime, where the thermal energy kBT is smaller then the elasti
 s
attering rate52



5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA
~/τ . A

ording to this pi
ture, a di�erent (ballisti
) me
hanism for transport isexpe
ted outside the di�usive regime, presumably leading to a di�erent temperaturedependen
e, so the proposed s
aling no longer holds. This analysis was applied to theexperimental data of Ref. [84℄, but was a

ordingly restri
ted to only three densities
losest to the transition. Indeed, if the s
aling formula is applied in a broaderrange of 
on
entrations, the resistivity 
urves 
learly do not 
ollapse [Figure 5.5.While the Fermi liquid renormalization group 
al
ulations are very important inorder to answer a fundamental question of ne
essary 
onditions for a true MIT atzero temperature, our analysis emphasizes that the understanding of various diluted2DEG in a broad range of parameters requires the physi
s beyond the 
onventionalFermi liquid framework.
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5.3 SCALING IN 3D MATERIALS5.3 S
aling in 3D materials
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Figure 5.6: S
aled resistivity 
urves for UBe13 (upper panel) and κ-(ET)2Cu2(CN)3(lower panel), for di�erent external pressure. The data are taken from Refs. [65, 66℄.Strong temperature dependen
e of resistivity is well known feature of manystrongly 
orrelated materials. A pronoun
ed resistivity maximum is observed inheavy fermions [64, 65℄, and 
harge transfer organi
 salts [5, 66, 53℄, where the 
or-relation strength is tuned by applying an external pressure. The essential me
hanismof transport in these materials relies on strong inelasti
 ele
tron-ele
tron s
attering,and the Fermi liquid behavior is restri
ted to the lowest temperatures. As the tem-perature in
reases, the ele
tron mean free path be
omes 
omparable, or smaller than54



5.3 SCALING IN 3D MATERIALSthe latti
e spa
ing, and the transport be
omes in
oherent. The ele
tron-phonons
attering is here mu
h weaker than the ele
tron-ele
tron one. The temperature ofresistivity maximum 
an be taken as a de�nition of the 
oheren
e temperature T ∗[12℄. It is inversely proportional to the e�e
tive mass, and mu
h smaller than thebare Fermi temperature, T ∗ ∼ (mb/m
∗) TF . The same s
aling ansatz as given byEq. 5.3 was used to 
ollapse the resistivity 
urves for CeCu6 already in an earlypaper by Thompson and Fisk [64℄.Here we illustrate the similarity in transport properties of these systems and2DEG by s
aling the resistivity data for heavy fermion UBe13 from Ref. [65℄, Fig-ure 5.6 (upper panel), and for a 
harge-transfer 
ondu
tor κ-(ET)2Cu2(CN)3 Fig-ure 5.6 (lower panel). The 
ollapse of the resistivity 
urves is ex
ellent for UBe13, andwell-de�ned trends are seen in κ−(ET)2Cu2(CN)3. Remarkable similarity in resistiv-ity 
urves in so diverse physi
al systems like Si MOSFETs, GaAS heterostru
tures,heavy fermions and 
harge-transfer organi
 
ondu
tors, is in our view, a manifesta-tion of the same physi
al pro
esses in the vi
inity of the intera
tion-driven MIT.
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5.4 SCALING IN THE MICROSCOPIC MODEL OF THE INTERACTION DRIVEN MIT5.4 S
aling in the mi
ros
opi
 model of the intera
-tion driven MITHaving phenomenologi
ally established pre
ise and well de�ned s
aling behavior ofthe experimental 
urves on the metalli
 side of the 2D MIT for temperatures near
T ∗, we now address its mi
ros
opi
 origin. More pre
isely, we would like to under-stand just how robust this result is. Does it depend on subtle details des
ribing theinterplay of disorder and intera
tions of 2DEG materials, as suggested in Ref. [92℄,or is it a generi
 feature of strong 
orrelation near intera
tion-driven MIT. To answerthis important question we deliberately fo
us on the simplest mi
ros
opi
 model forintera
tion-driven MIT: The 
lean single-band Hubbard model at half-�lling. A

u-rate and quantitatively pre
ise results 
an be obtained for temperature-dependenttransport for this model within the DMFT approximation [18℄. While the DMFTreprodu
es Fermi liquid behavior at the lowest temperatures, it is parti
ularly usefulin the studies of �high temperature� in
oherent transport. Results of su
h 
al
ula-tion, obtained by the Continuous Time Quantum Monte Carlo (CTQMC) impuritysolver [37, 36℄ followed by the analyti
al 
ontinuation by the Maximum EntropyMethod[38℄, 
an be analyzed using pre
isely the same s
aling pro
edure we pro-posed for experimental data. We 
on
entrate on the metalli
 phase of the Hubbardmodel with the intera
tion parameter U smaller than the value at the 
riti
al end-point Uc. The resistivity 
urves in Figure 5.7(a) have qualitatively the same formas in 2DEG. The resistivity sharply in
reases with temperature, rea
hes a maxi-mum and than de
reases. The temperature of resistivity maximum de
reases as thesystem approa
hes the MIT.Most remarkably, pre
isely the same s
aling form as in 2DEG is found to des
ribeall resistivity 
urves 
lose to the Mott transition [12℄ Figure 5.7(b). In addition, we�nd that the s
aling parameters Tmax and ρmax again display a power law depen-den
e on the e�e
tive mass, Figure 5.8, and even the exponents are similar. Finally,we 
ontrast the DMFT s
aling fun
tion with that obtained from 2DEG experiments.We �nd surprisingly a

urate agreement between the DMFT predi
tion for the s
al-ing fun
tion f(x) and experimental data on all available materials Figure 5.2. Weemphasize, however, that our s
aling hypothesis is valid only in the metalli
 phasefor U < Uc and for temperatures 
omparable to T ∗ ∼ 1/m∗. It should be 
ontrastedwith the s
aling near the 
riti
al end-point (Uc, Tc) [93, 94℄, or the proposed quantum
riti
al s
aling in the high-temperature regime above the 
riti
al end-point [40℄. 56



5.4 SCALING IN THE MICROSCOPIC MODEL OF THE INTERACTION DRIVEN MIT
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Figure 5.7: (a) Resistivity as a fun
tion of temperature for several intera
tionstrengths in the half-�lled Hubbard model solved within the DMFT. The resistivityis normalized to the Mott limit value, whi
h 
orresponds to the s
attering length ofone latti
e spa
ing. (b) S
aled resistivity 
urves.We should point out that for this model, the proposed resistivity s
aling is notvalid at the lowest temperatures T ≪ Tmax, deep within the Fermi liquid region:A

ording to the Kadowaki-Woods relation, here ρ ≈ AT 2 where A ∼ 1/m∗2 ∼
1/T 2

max, and the s
aling is violated if the resistivity is s
aled by ρmax. For T &

0.3Tmax the 
ollapse of the resistivity 
urves is ex
ellent, see the Figure 5.7(b), andwe de�ne the DMFT s
aling 
urve for this temperature range. This is also thereason of the deviations in the s
aling in Figure 5.6(b) for κ-organi
s, the materials57



5.4 SCALING IN THE MICROSCOPIC MODEL OF THE INTERACTION DRIVEN MIT
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Figure 5.8: (a) Maximum resistivity as a fun
tion of the 
orresponding temperaturefrom the DMFT solution of the Hubbard model. (b) Tmax as a fun
tion of the inversee�e
tive mass.whose properties are des
ribed remarkably well within the Hubbard model [5, 53℄.In the Anderson latti
e model, on the other hand, the resistivity maximum doesnot 
hange mu
h near the MIT and it saturates approximately to the value whi
h
orresponds to the s
attering length of one latti
e spa
ing (Mott limit). In this 
aseour s
aling ansatz is valid in the whole temperature range up T = 0 [95℄, and the
ollapse of the resistivity 
urves seen in the experiments is ex
ellent Figure 5.6(a).Mi
ros
opi
 theory of the 2DEG should also in
lude nonlo
al 
orrelations whi
hare negle
ted in a simple DMFT approa
h. A more realisti
 extended Hubbardmodel displays a two-stage Wigner-Mott lo
alization [74, 75℄. The metal-insulatortransition in this model is found in the region with already developed nonlo
al
harge 
orrelations. In the immediate 
riti
al regime, the 
riti
al behavior 
an berepresented by an e�e
tive Hubbard model, partially justifying the su

ess of thepresent modeling. The existen
e of a 
oheren
e s
ale T ∗ whi
h vanishes at the58



5.4 SCALING IN THE MICROSCOPIC MODEL OF THE INTERACTION DRIVEN MITonset of 
harge order is also found in the 2D extended Hubbard model solved by�nite-T Lan
zos diagonalization [96℄. This result is relevant for quarter-�lled layeredorgani
 materials, whi
h further supports the importan
e and generality of the ideaspresented here.
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5.5 SCALING IN THE MODEL WITH DISORDER5.5 S
aling in the model with disorderWe have already tested our phenomenologi
al s
aling on various strongly 
orrelatedsystems dominated by the strong ele
tron-ele
tron s
attering. The phenomenologi-
al s
aling we have proposed is obviously the 
ommon feature of strongly 
orrelatedsystems. If this is true it should hold for systems with weak or moderate disor-der. We have tested our s
aling pro
edure on the resistivity results in the presen
eof disorder. We have 
on
entrate on the regime of strong disorder W = 2.5, butthe physi
al pi
ture is qualitatively the same as for weak or moderate disorder (seese
tion 6.1). The same s
aling hypothesis holds in this 
ase. The main e�e
t of
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Figure 5.9: S
aled resistivity 
urves for several intera
tion strengths in the presen
eof disorder (dots), DMFT disordered s
aling 
urve (bla
k), s
aling 
urve of experi-ments on disordered GaAs heterostru
tures [97℄ (green), DMFT s
aling 
urve in the
lean 
ase (red).disorder is the broadening of the s
aling 
urve. Even more, our CPA-DMFT s
aling
urve surprisingly well 
oin
ides with the s
aling 
urve obtained from experimentson disordered GaAs heterostru
tures [97℄.
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5.6 CONCLUSION AND DISCUSSION5.6 Con
lusion and dis
ussionIn this Chapter we argued that the emergen
e of resistivity maxima upon thermaldestru
tion of heavy Fermi liquids should be regarded as a generi
 phenomenon instrongly 
orrelated systems [12℄. We demonstrated that the resulting family of re-sistivity 
urves typi
ally obeys a simple phenomenology displaying s
aling behavior.Our detailed model 
al
ulations show that all the qualitative and even quantita-tive features of this s
aling phenomenology are obtained from a mi
ros
opi
 modelof heavy ele
trons 
lose to the Mott metal-insulator transition. We should stress,however, that the proposed s
aling behavior obtains - both in our theory and inexperiments - only within the metalli
 regime not too 
lose to the transition andthe temperature regime around the resistivity maxima. In 
ontrast, earlier exper-iments fo
used on the immediate vi
inity of the metal-insulator transition, wheredi�erent �quantum 
riti
al� s
aling was found [81, 67, 83, 98℄. Remarkably, pre
iselysu
h behavior is also found in very re
ent studies of quantum 
riti
al transport nearintera
tion-driven transitions [40℄, but this was identi�ed in a di�erent parameterregime than the one studied in the present 
hapter.Our results provide 
ompelling eviden
e that several puzzling aspe
ts of trans-port in low density two-dimensional ele
tron gases in zero magneti
 �elds 
an beunderstood and explained within the Wigner-Mott s
enario of strong 
orrelation [71,72, 73, 74, 75℄. This physi
al pi
ture views the strong 
orrelation e�e
ts in the lowdensity 2DEG as the primary driving for
e behind the transition, and additional dis-order e�e
ts as less signi�
ant, se
ondary pro
esses. In the Wigner-Mott pi
ture theinsulator essentially 
onsists of intera
tion-lo
alized magneti
 moments. Remark-ably, magneto-
apa
itan
e measurements of Prus et al. [90℄ show that the behavior
hara
teristi
 of lo
alized magneti
 moments, χ(T )/n ≈ gµ2
B/T , is seen near the
riti
al density, while only weak Pauli-like temperature dependen
e was observed athigher density. Very re
ent experiments on Si MOSFETs �nd that the thermopowerdiverges near the MIT [99℄. The authors argue that divergen
e of the thermopoweris not related to the degree of disorder and re�e
ts the divergen
e of the e�e
tivemass at a disorder-independent density, behavior that is typi
al in the vi
inity of anintera
tion-indu
ed phase transition. Additional hints supporting this physi
al pi
-ture of 2D MIT are provided by existing �rst prin
iple Quantum (di�usion) MonteCarlo results for the low density 2DEG of Ceperley [100℄ and others [82, 101, 92℄.These 
al
ulations �nd that the 
orrelated metalli
 state has an �almost 
rystalline�61



5.6 CONCLUSION AND DISCUSSIONstru
ture, thus having very strong short range 
harge-order (i.e, as seen, for example,in the density 
orrelation fun
tion).Within the physi
al pi
ture that we propose, the inelasti
 ele
tron-ele
tron s
at-tering takes 
entral stage [12, 61, 102℄, in 
ontrast to disorder-dominated s
enarios,where the intera
tion e�e
ts mainly introdu
e temperature dependen
e of elasti
ele
tron-impurity s
attering [63℄. The two physi
al pi
tures des
ribe two 
ompletelydi�erent s
attering pro
esses, whi
h are expe
ted to be of relevan
e in 
omplemen-tary but in essentially non-overlapping parameter regimes. Indeed, inelasti
 s
atter-ing dominates only outside the 
oherent Fermi-liquid regime, whi
h in good metalshappens only at fairly high temperatures. In strongly 
orrelated regimes that we
onsider, the situation is di�erent. Here the Fermi liquid 
oheren
e is found only atvery low temperatures T < T ∗ ≪ TF , behavior whi
h is generally observed in allsystem with appre
iable e�e
tive mass enhan
ement. The results presented in this
hapter provide pre
ise and detailed 
hara
terization of this in
oherent regime, re-vealing remarkable 
oin
iden
e of trends observed in the experiment to those foundfrom the Wigner-Mott pi
ture of the intera
tion-driven metal-insulator transition.Our s
aling ansatz is proposed based on the physi
al arguments and the experimen-tal data. While 
onsistent with simple model 
al
ulations for strongly 
orrelatedele
troni
 systems, our work does not dire
tly address spe
i�
 mi
ros
opi
 me
h-anism responsible 
urrent dissipation, a pro
ess that in 2DEG systems should befa
ilitated by impurities and imperfe
tions [102℄. Still, it provides very strong moti-vation to develop a more realisti
 mi
ros
opi
 theory of in
oherent transport in thestrongly 
orrelated regime of diluted 2DEG. This important task remains a 
hallengefor future work.
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6. Resistivity in strongly disordered systemsnear the Mott transitionThe understanding of the physi
al pro
esses in the regime where both the ele
tron-ele
tron 
orrelations and the disorder are strong is one of the most important openproblems in the modern 
ondensed matter physi
s. For the 
ase of nonintera
tingele
trons, strong enough disorder lo
alizes the wave fun
tions even in three dimen-sions and the system be
omes Anderson insulator. In the 
lean strongly intera
tingsystems the ele
trons lo
alize forming lo
al moments through the intera
tion- ordoping-driven Mott metal-insulator transition. How these pro
esses, Anderson andMott lo
alization, in�uen
e ea
h other is a very di�
ult physi
al question. It is alsoa very important question, spe
ially having in mind that many strongly 
orrelated
ompounds are non-stoi
hiometri
 and, therefore, intrinsi
ally disordered systems.In this 
hapter we study the disordered half-�lled Hubbard model within thestatisti
al DMFT whi
h is a unique theoreti
al method that is reliable and 
ontrol-lable in a wide temperature, disorder and intera
tion range. As a referen
e valuefor disorder strength, we fo
us here mostly on W = 2.5 in units of the half band-width D = 6t = 1 for the nonintera
ting 
ubi
 latti
e (site disorder εi is uniformlydistributed in the interval (−W/2, W/2)). This level of disorder 
orrespond to the
riti
al value for the Anderson lo
alization in 3 dimensions for U = 0. The inter-a
tion, however, s
reens the disorder and the system is metalli
 for W = 2.5 atsmall U . At large U the system fa
es the Mott metal-insulator transition modi�edby the disorder. Transport properties on the metalli
 side of su
h a metal-insulatortransition are the main fo
us of this Chapter.
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6.1 COHERENT POTENTIAL APPROXIMATION IN STRONG DISORDER LIMIT6.1 Coherent potential approximation in strong dis-order limitThe CPA approximation displays same trends in strong disorder 
ase (W = 2.5),as for weak disorder, with an important di�eren
e that the 
oexisten
e region ofmetalli
 and insulating solutions is mu
h narrower. The resistivity maximum existsvery near the metal-insulator transition, and greatly ex
eeds the Mott-Io�e-Regellimit ρ
MIR

(Figure 6.1). ρ
MIR

is again used as the unite of resistivity. For su�
ientlystrong intera
tion (larger than Uc = 3.16) the system be
omes Mott insulator. Theregion of intera
tions where the resistivity 
urves display maxima narrows with in-
reasing of disorder. Similar as in the 
ase of weak disorder, the bandwidth in
reasesdue to the disorder. The density of states, obtained using the maximum entropy an-alyti
 
ontinuation from the imaginary axis is shown in Figure 6.2. The renormalizedenergy level of ea
h site remains in the band.
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Figure 6.1: Temperature dependen
e of the resistivity for several intera
tions nearthe Mott transition for W = 2.5.
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6.2 DMFT ON THE FINITE CUBIC LATTICE
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Figure 6.2: Density of states for W = 2.5, U = 2.9 and few temperatures.6.2 DMFT on the �nite 
ubi
 latti
eStudy of the 
orrelated ele
trons in strong disorder regime, requires a method 
apa-ble to des
ribe spatial �u
tuations in the 
ondu
tion bath, whi
h in the limit of verystrong disorder may lead even to the lo
alization of the ele
tron wave fun
tions. Forthis purpose we use statisti
al DMFT (StatDMFT) whi
h 
onsiders �nite dimen-sional latti
e. The self-energy is still lo
al (momentum-independent) quantity, butnow varies from site to site.6.2.1 Finite size e�e
ts in three dimensionsTo explore the �nite size e�e
ts, we are solving the statisti
al DMFT equationsfor several sizes of the 
ubi
 latti
e in the absen
e of disorder and with periodi
boundary 
onditions. In this way we obtain the Green's fun
tions and the self-energies on every site of the latti
e whi
h are all here equal (due to the absen
e ofdisorder). The obtained results for the latti
e of the su�
ient size should 
oin
idewith the DMFT solution of the in�nite 
ubi
 latti
e. Therefore, for a 
omparison,we 
onsider also the DMFT solution using the nonintera
ting density of states of thethree-dimensional 
ubi
 latti
e. This is the only part of the StatDMFT study wherewe used the real axis IPT impurity solver. In the remaining part of the Chapter,65



6.2 DMFT ON THE FINITE CUBIC LATTICEthe impurity problem in StatDMFT equations are solved using the CTQMC.Figure 6.3 (6.4) displays the imaginary part of the Green's fun
tion (self-energy)for the 10 × 10 × 10 
ubi
 latti
e 
ompared with the same quantity for the in�nite
ubi
 latti
e at low temperature T = 0.02 (Fermi liquid regime). The �nite size
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Figure 6.3: Imaginary part of Green's fun
tion for 
lean system (W = 0) 
al
ulatedwithin statisti
al DMFT on the 
ubi
 latti
e of the size 10× 10× 10 (red line), andwithin DMFT for in�nite 
ubi
 latti
e (green line). Plots on the right display thequasi-parti
le peak, for better view.
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Figure 6.4: Imaginary part of self-energy for the 
lean system (W = 0) 
al
ulatedwith the statisti
al DMFT on the 
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 latti
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ubi
 latti
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ts are 
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e size, whi
hleads to the poles in the Green's fun
tion at T = 0. The �nite size e�e
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6.2 DMFT ON THE FINITE CUBIC LATTICEthe self-energy are present as small os
illations, around the solution for the in�nitesystem.If we in
rease the temperature, the �nite size e�e
ts de
rease and be
ome neg-ligible for the latti
es of the size 6 × 6 × 6 and larger [16℄. This is due to theele
tron-ele
tron s
attering, whi
h in
reases the imaginary part of the self-energyand broadens the peaks in the density of states, Figures 6.5 and 6.6. The tem-
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6.2 DMFT ON THE FINITE CUBIC LATTICEbad metalli
 regime. The StatDMFT is a unique theoreti
al method for the studyof disordered strongly 
orrelated systems in a broad temperature range, in
ludingthe in
oherent regime, whi
h is the main interest of this work.In 
on
lusion, we have established that the �nite size e�e
ts are negligible at�nite temperature, in the range of strong in
oherent s
attering. Con
erning the�nite size e�e
ts when disorder is in
luded, they are expe
ted to be even weaker.Intersite 
orrelations due to disorder are explored in se
tion 6.4.2.
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6.3 STATISTICAL DMFT: ELASTIC VS. INELASTIC SCATTERING6.3 Statisti
al DMFT: elasti
 vs. inelasti
 s
atter-ingThere are two types of s
attering in disordered intera
ting ele
troni
 systems: Elasti
(impurity) s
attering and inelasti
 (ele
tron-ele
tron) s
attering [16℄. The inelasti
s
attering exists only at �nite temperatures. Establishing the dominant s
atteringme
hanism is 
ru
ial for the understanding of the transport properties. Quite gen-erally, the in
oherent s
attering is more important near the Mott transition, ex
eptat the lowest temperatures (in the Fermi liquid regime).The s
attering rate in the CPA for W = 2.5 and U = 2.9 is shown in Figure 6.7.This s
attering rate takes into the a

ount both the elasti
 and the inelasti
 
ompo-nent. The importan
e of the elasti
 s
attering 
an be estimated in the following way.In the non-intera
ting 
ase (U = 0) the s
attering rate τ−1
0 = −2ImΣ(0) in
reasesquadrati
ally with the disorder strength W [60℄ for small W and roughly linearlyfor large W (Figure 6.8). For W = 2.5 this gives τ−1

0 = 1.47. However, the inter-a
tion strongly renormalizes (s
reens) random potential [60℄, and the renormalizedsite disorder 
an be de�ned as
ε̃i = εi + Re[Σi(0)] − µ. (6.1)For U = 2.9 the renormalized s
attering rate is only τ̃−1

0 = 0.07, whi
h is mu
hsmaller than the total s
attering in the CPA. Therefore, the role of the elasti
s
attering 
an be negle
ted in the remaining part of this 
hapter.
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6.4 INTER-SITE CORRELATIONS
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6.4 Inter-site 
orrelationsExa
t treatment of spatial �u
tuations within the StatDMFT opens possibility ofdeveloping inter-site 
orrelations. These 
orrelations 
an lead to the 
lustering ofthe sites with the strong (weak) resistivity, formation of 
lusters with �nite magne-tization or, at low temperatures to the lo
alization of the ele
tron wave fun
tions(Anderson lo
alization). Here we explore the inter-site 
orrelations in the lo
al re-sistivity.6.4.1 Lo
al resistivityWithin the statisti
al DMFT, there is no well established pro
edure for 
al
ulatingthe resistivity. The most rigorous approa
h implies the usage of the Meir-Wingreenformula in the zero bias regime and the usage of the formalism of non-equilibriumGreen's fun
tions. However, the proper appli
ation of this approa
h requires a

essto the non-equilibrium impurity solver, whi
h development is 
ompli
ated task andstory for itself. To the best of our knowledge, the Meir-Wingreen formula for theintera
ting system at �nite temperature 
annot be redu
ed to the mu
h simplerLandauer-like formula (whi
h uses only the equilibrium quantities), so we need adi�erent approa
h to 
al
ulate the resistivity of the latti
e.Here we will use an e�e
tive approa
h to 
al
ulate the latti
e resistivity [16℄. Inorder to do that, we 
on
entrate on the lo
al resistivity that we 
al
ulate from thestandard Kubo formula in the DMFT form, using the Eq. (2.28). Figure 6.9 presentsthe lo
al resistivity distribution in the latti
e for the parameters W = 2.5, U = 3.12,70



6.4 INTER-SITE CORRELATIONS
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Figure 6.9: Lo
al resistivity of the latti
e for one realization of disorder and parame-ters W = 2.5, U = 3.12, T = 0.04 (upper panel) and W = 2.5, U = 2.90, T = 0.007(lower panel).
T = 0.04 (upper panel) and W = 2.5, U = 2.90, T = 0.007 (lower panel). We 
ansee that there is no distinguished 
lustering of the sites with strong or weak lo
alresistivity. This 
an be determined more rigorously from the 
orrelation fun
tion.
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6.4 INTER-SITE CORRELATIONS6.4.2 Correlation fun
tionStatisti
al dynami
al mean �eld theory, by 
onstru
tion, fully in
ludes the spatial�u
tuations and allows the inter-site 
orrelations. In order to study these 
orrela-tions, we de�ne the lo
al resistivity 
orrelation fun
tion in the following way
χρ(rij) = 〈(ρi − ρav)(ρj − ρav)〉, (6.2)where ρi is the resistivity at the site i, rij is the distan
e between sites i and j and

ρav is the average lo
al resistivity of the latti
e. The 
orrelation fun
tion assumesthe exponential form
χρ(rij) = c exp(−rij/ξ), (6.3)where ξ plays a role of the 
orrelation length and the inequality ξ . 1 holds inwide range of parameters that we explored. This result proves that the inter-site
orrelations are negligible [16℄.
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6.5 RESISTIVITY OF THE LATTICE6.5 Resistivity of the latti
eThere is no exa
t formula for 
al
ulating the latti
e resistivity within the Statisti
alDMFT. Here we use an e�e
tive approa
h to this problem. We 
onsider the latti
eas a resistor network 
onstru
ted from lo
al resistivities that we have de�ned in theprevios Se
tion. On every link between neighboring sites i and j we pla
e a resistorwith the value of average resistan
e of the linked sites
rij =

ρi + ρj

2
. (6.4)Here the prefa
tor whi
h in
ludes the length of the link and its 
ross se
tion is takento be equal to 1. This 
onstru
tion is already used in a slightly di�erent 
onetxt[? ℄. We de�ne the resistivity of the latti
e, up to the prefa
tor, as the equivalentresistan
e between the two groups of sites, where the in
oming and outgoing leads areatta
hed. The prefa
tor is determined to ensure the proper limit of the resistivityin the 
ase where all the resistors have the same resistan
e. It 
orresponds tothe equivalent resistan
e of the latti
e in the 
ase when all the resistors have theresistan
e equal to 1.Following the Kir
hho� rules, the equivalent resistan
e 
an be 
al
ulated fromthe matrix de�ned by

Aij =






∑
k 6=i Cik, i = j

−Cij , i 6= j
, (6.5)where Cij is the 
ondu
tan
e matrix Cij = 1/rij. The equivalent resistan
e betweentwo sites i and j is equal to the ratio between two minors of the determinant detA,

Rij =
detA(ij)

detA(j)
, (6.6)where we obtain A(i) by removing i-th row and 
olumn, and A(ij) by removing i-th and j-th rows and 
olumns. In order to 
al
ulate the resistivity of the latti
e,we take for the 
onta
ts the short-
ir
uited sites, where the in
oming and outgoingleads are atta
hed. This 
orresponds to the way that resistivity is measured in mostof experiments.
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6.5 RESISTIVITY OF THE LATTICE6.5.1 Weak disorderThe CPA approximation gives a good understanding of the pro
esses in the regimeof weak disorder, when we expe
t that the CPA and the StatDMFT 
oin
ide. Theagreement 
an be understood in the following way: For weak disorder, the spatial�u
tuations in the lo
al 
ondu
tion bath ∆i(ω) are rather small, and it is approxi-mately equal to ∆CPA(ω) in the CPA approximation. Therefore, the main disordere�e
t originates from the e�e
tive lo
al doping whi
h is (in the 
ase of weak disorder)well 
aptured by the CPA. Roughly speaking, the lo
al doping 
auses a shift of theHubbard bands in the lo
al density of states (LDOS), while the quasiparti
le peakremains at the Fermi level. Another 
onsequen
e of doping is the de
rease of theinelasti
 s
attering rate due to 
hanges in the lo
al o

upation number (ele
tron-ele
tron s
attering is the strongest at half-�lling and goes to zero for uno

upiedand doubly o

upied sites).Con
erning weakly doped sites, we should keep in mind that the system is inthe vi
inity of the Mott transition, thus the inelasti
 s
attering rate is signi�
antlyenhan
ed on these sites and the quasiparti
le peak (if exists) is very narrow. This
auses larger lo
al resistivity than for strongly doped (weakly 
orrelated) sites. Onehas to keep in mind that we 
on
entrate on the temperature region T & T
F L
, wheretransport is dominated by the ele
tron-ele
tron s
attering.6.5.2 Strong disorderIn
rease of the disorder leads to the qualitative di�eren
e between the CPA andstatisti
al DMFT. The reason for su
h behavior is in the spatial �u
tuations in

∆i(ω) whi
h be
ome mu
h more pronoun
ed in this 
ase. The �u
tuations in thelo
al bath are larger due to the wider on-site energy distribution. This leads tothe deviation of the lo
al resistivity (obtained within StatDMFT) from the CPA
urves, Figure 6.11. Very 
lose to the Mott transition, Figure 6.11 (lower panel),these �u
tuations 
an even swit
h some site from being metalli
 to insulating, or inother words, to open a gap in the lo
al density of states at the Fermi level. Thisin�uen
es the abrupt 
hanges in the lo
al resistivity.The temperature dependen
e of the resistivity of the latti
e 
al
ulated using theresistor network method is shown in Figure 6.12. We have 
hosen two maximallydistant plains of 36 sites ea
h as the spots where we atta
h the leads [16℄. Be
ause74



6.5 RESISTIVITY OF THE LATTICE
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riti
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 boundary 
onditions that distan
e is three latti
e spa
ing. We have
he
ked that the result is not sensitive to the parti
ular positioning of the leads. Theresistivity maxima are few times lower than in the CPA (for the same parameters)and arises at higher temperatures. Also the maxima are wider and the metalli
 phase75



6.5 RESISTIVITY OF THE LATTICEpersists for stronger intera
tions as 
ompared to the CPA. It remains to be pre
iselydetermined what is the 
riti
al intera
tion Uc for the metal-insulator transition. Alsoit appears that the latti
e resistivity saturates to a larger value at T = 0 very nearthe Mott transition than in the CPA 
ase.
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Figure 6.12: Temperature dependen
e of the resistivity for W = 2.5, for severalintera
tion strengths.
6.5.3 Strongly and weakly 
orrelated sitesIt is interesting to explore the lo
al resistivity ρi and the lo
al o

upation number nias a fun
tion of the on-site energy εi. Figure 6.13 displays ρi vs. εi and ni vs. εi for
U = 2.90 (upper panel) and U = 3.15 (lower panel). The 
urve n(εi) is a smoothedspline through a
tual data (whi
h do not �u
tuate mu
h). This plot suggests thatwe 
an distinguish two groups of sites: Strongly 
orrelated (s
), 
lose to half-�lling,and weakly 
orrelated (w
). The lo
al quasiparti
le weight

Zi =
1

1 − ∂
∂ω

ImΣi(iω)

∣∣∣∣∣
ω→0

(6.7)is mu
h smaller at the weakly 
orrelated sites, Figure 6.14. 76



6.5 RESISTIVITY OF THE LATTICEWe also noti
e that the range of the on-site energies, where the bath spatial �u
-tuations are dominant, is expanding with in
rease of temperature until it be
omes
omparable to the Kondo temperature [16℄ and this is the most 
learly seen very
lose to the transition (Figure 6.13, lower panel). The lo
al resistivity 
al
ulatedwithin StatDMFT deviates from the CPA for the largest lo
al doping at Kondo tem-perature. This is the same temperature where the resistivity 
urves (Figure 6.12)rea
h their maximuma. Further in
rease of the temperature opens pseudo gap inLDOS on every site and smears the spatial �u
tuations in the bath. The on-siteenergy region of dominant spatial �u
tuations is then narrowing and �nally theStatDMFT data approa
hes to the CPA.Figure 6.16 illustrates the temperature dependen
e of the lo
al resistivity forthese two groups of sites. We have geometri
ally averaged the resistivity of s
 andw
 sites, and 
ompared with the geometri
al average of all sites and with the latti
eresistivity 
al
ulated using the resistor network approa
h. Striking feature is that theresistivity of weakly 
orrelated sites is almost temperature independent, ex
ept atthe lowest temperatures, where the disorder s
reening due to the intera
tion is strong[60℄, while the strongly 
orrelated sites display very strong temperature dependen
e.The typi
al average of the lo
al resistivity in
luding all sites qualitatively followsthe 
al
ulated latti
e resistivity.
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6.5 RESISTIVITY OF THE LATTICE
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6.5 RESISTIVITY OF THE LATTICE
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6.6 SUMMARY AND OPEN QUESTIONS6.6 Summary and open questionsWe have su

essfully applied for the �rst time the Statisti
al DMFT method on the�nite size 
ubi
 latti
e. We used the real axis IPT impurity solver to determine theimportan
e of the �nite size e�e
ts, by 
on
entrating on the 
lean latti
e of the sizeup to 10× 10× 10. We determined that the �nite size e�e
ts are negligible alreadyon the latti
e 6× 6× 6 (ex
ept at the lowest temperatures, deep in the Fermi liquidregime).Then we 
on
entrated on a single realization of disorder on the latti
e 6× 6× 6using the CTQMC as the impurity solver, and the analyti
al 
ontinuation by themaximum entropy method in order to obtain lo
al quantities on the real frequen
yaxis. We 
on�rmed that the disorder is strongly s
reened on the metalli
 side of theMott MIT and that the inelasti
 s
attering is dominant at temperatures T > TFL.We de�ned a lo
al resistivity and proposed a resistor network method for 
al
ulatingthe d
 resistivity. This approa
h is justi�ed by the observation that the inter-site
orrelations are very weak and that the in
oherent s
attering is dominant. Weidenti�ed two types of sites: strongly 
orrelated with the lo
al o

upation 
lose to1, and weakly 
orrelated away from lo
al half-�lling. Non-monotoni
 temperaturedependen
e in the resistivity originates from strong temperature dependen
e of thelo
al resistivity on strongly 
orrelated sites.It remains to explore the 
riti
al region very near the MIT transition more 
losely.There are indi
ations that some sites Mott lo
alize in this regime, while the systemis still overall metalli
. Also, it is important to investigate the solution of themodel in the presen
e of even stronger disorder, where one might expe
t a two-�uidbehavior where a fra
tion of sites be
omes Anderson lo
alized. The solution of themodel in two dimensions, where the spatial �u
tuations are stronger, may revealnew interesting features as well.
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7. Con
lusionIn this thesis we have examined the in�uen
e of disorder on the strongly 
orrelatedsystems in a wide range of parameters, in the vi
inity of the Mott transition. Thedisorder is modeled by the random potential (uniform distribution of the on-siteenergies) introdu
ed into half-�lled Hubbard model. The solutions are obtainedwithin dynami
al mean �eld theory and its extensions.In the weakly disordered 
ase we used the 
oherent potential approximation,whi
h assumes the averaging of the lo
al Green's fun
tions over the on-site energydistribution. Our fo
us was to understand the 
onsequen
es of the presen
e of in-homogeneities onto the opti
al 
ondu
tivity and the d
 resistivity. The main e�e
ts
aptured within the CPA are the in
reasing of metalli
ity of the system with dis-order while the intera
tion is kept 
onstant. The disorder in
reases the bandwidth,whi
h leads to the in
rease of the 
riti
al intera
tion Uc, where the Mott transi-tion o

urs. For �xed intera
tion U this e�e
tively weakens the ele
tron-ele
tron
orrelations and 
auses the de
rease of the s
attering rate, and d
 resistivity. Thesame e�e
t of restoring metalli
ity with disorder was observed in the experimentson organi
 
harge-transfer salts. Disorder in this experiments was tuned by the X-ray irradiation. We emphasize that the randomness in our model does not 
hangethe global doping, as the system remains on average half-�lled. However, lo
allyhalf-�lling is not preserved. This provides another view to the explanation of theobservations seen in these experiments. We also �nd that the maximal possiblevalue of the resistivity greatly ex
eeds (more than an order of magnitude) the quasi-
lassi
al Mott-Io�e-Regel limit for maximal metalli
 resistivity even in the presen
eof moderate disorder. As in the 
lean 
ase, the violation of the MIR limit is drivenby a large s
attering rate due to the ele
tron-ele
tron s
attering. Interestingly, theDrude-like peak in the opti
al 
ondu
tivity persists even at temperatures when theresistivity is well beyond the MIR limit.The same trends in the resistivity 
urves are present in a totally di�erent group82



of materials - diluted two dimensional ele
tron gases in Si MOSFETs and GaAsheterostru
tures. The Coulomb intera
tion in these materials 
an easily be tunedby 
hanging 
on
entration of 
arriers. There were a number of theoreti
al proposalsthat suggested the de
isive in�uen
e of disorder to the transport properties of thesematerials. However, all these theoreti
al attempts failed to des
ribe observed e�e
tsin a wide range of 
on
entrations, while their appli
ation in the high temperatureregime is questionable. We have proposed a phenomenologi
al s
aling of the metalli

urves based on the insight obtained from the study of various strongly 
orrelatedsystems. By testing the s
aling ansatz on several 
lasses of strongly 
orrelated ma-terials and the half-�lled Hubbard model (in disordered and 
lean 
ase), we haveestablished that the emergen
e of resistivity maxima upon thermal destru
tion ofheavy Fermi liquids should be regarded as a generi
 phenomenon in strongly 
or-related systems. From the fa
t that the same s
aling works very well for di�erenttwo-dimensional ele
tron gases in a wide range of 
on
entrations (pra
ti
ally for allmetalli
 
urves near the transition), we 
on
lude that the strong ele
tron 
orrelationsin the in
oherent regime are the primary driving for
e behind the metal-insulatortransition and that additional disorder e�e
ts are less signi�
ant. Moreover, wehave do
umented that pra
ti
ally all main signatures of the strongly 
orrelated sys-tems are present in these experiments, and that the 
riti
al behavior of the 
rossover(
oheren
e) s
ale T ∗ in both two dimensional diluted ele
tron gases and strongly 
or-related systems (experimental and theoreti
al) is basi
ally the same. Despite thathave we not in
luded all mi
ros
opi
 aspe
ts of the 2DEG, our analysis presents
ompelling eviden
es that the strong inelasti
 ele
tron-ele
tron s
attering and notdisorder is the driving for
e behind the unusual transport properties, advo
ating aWigner-Mott s
enario for the metal-insulator transition in these systems.In order to investigate the systems in strong disorder regime, the spatial �u
-tuations must be treated properly. For this purpose, we employ the statisti
al dy-nami
al mean �eld theory to solve the disordered half-�lled Hubbard model for the�rst time at �nite temperatures. This method treats the spatial �u
tuations on the�nite dimensional latti
e while keeping only the lo
al part of 
orrelations. The CPAand StatDMFT approa
hes approximately 
oin
ide in the regime of weak disorder.The elasti
 (impurity) s
attering is strongly s
reened near the Mott transition andthe inelasti
 (ele
tron-ele
tron) s
attering is dominant in the regime of our interest(T & TFL). We have also do
umented that the �nite size e�e
ts, are negligible inthis 
ase. The inter-site 
orrelations in the system are weak due to the relatively83



large 
oordination number (z = 6) in three dimensional 
ubi
 latti
e. Spatial �u
-tuations in the lo
al bath greatly in�uen
e ele
tron properties in the very vi
inityof the Mott transition in the strong disorder regime. The lo
al resistivity analysisshowed that two groups of sites emerge. One group 
onsists of strongly 
orrelatedsites whi
h are 
lose to half-�lling and with the strong temperature dependen
e ofthe lo
al resistivity, and the other group of weakly 
orrelated sites whi
h are shiftedfrom half-�lling and display weak temperature dependen
e of the resistivity. Finally,sin
e there is no established exa
t way of 
al
ulating the latti
e resistivity withinthe StatDMFT, we proposed an e�e
tive approa
h. We 
onstru
ted the resistornetwork from the lo
al resistivities and 
al
ulated the equivalent resistan
e betweenthe sites where the leads are atta
hed. The maxima in the resistivity 
al
ulatedin this way are few times lower than in the CPA and the peak in the resistivityvs. temperature 
urve is not as pronoun
ed as in the 
lean 
ase, or in the CPAapproximation. There are signatures of two �uid behavior near the Mott transition,where a fra
tion of the sites are lo
alized, while the system is overall still metalli
.This remains to be more 
arefully explored in the future work and parti
ularly forthe 
ase of even stronger disorder. Also, an important dire
tion for future work is toexplore the two dimensional systems where the spatial �u
tuations 
an have moredramati
 
onsequen
es.
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