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Influence of disorder on charge transport in strongly
correlated materials near the metal-insulator
transition

Abstract

The influence of disorder on transport properties in strongly correlated materials
has remained unclear, so far. Strong Coulomb repulsion between the electrons in
partially filled valence orbitals can lead to the localization of the wave functions -
Mott insulating state. How these processes are modified by the presence of disorder
is a very important question, specially having in mind that many strongly correlated
compounds are non-stoichiometric and, therefore, intrinsically disordered.

In this thesis we study the disordered half-filled Hubbard model within the dy-
namical mean field theory (DMFT) and its extensions, this is a unique theoretical
method that is reliable and controllable in a wide temperature, disorder and interac-
tion range. The DMFT assumes the local (momentum independent) self-energy, but
takes fully into the account temporal quantum fluctuations. In the clean case, this
theory is exact in the limit of large coordination number. Technically, the DMFT
solution reduces to the solution of the Anderson impurity model immersed in the
self-consistently calculated conduction bath.

For the case of weak disorder we used the coherent potential approximation
for solving the disordered half-filled Hubbard model, where the disorder is taken
into account by the simple averaging of the local Green’s functions. The ensemble
of the impurity models is solved with the site-independent (averaged) conduction
bath. For the constant interaction, the disorder effectively induces local doping,
broadens the bands and moving the system away from the Mott transition. The
resistivity curves have the same non-monotonic temperature dependence near the
Mott transition as in the clean case. The maximal metallic resistivity exceeds the
quasi-classical Mott-Ioffe-Regel limit by an order of magnitude. Interestingly, the
Drude-like peak in the optical conductivity persists even for temperatures when the
resistivity is comparable to the Mott-Ioffe-Regel limit.

We have determined a universal scaling for the resistivity of various correlated
metals, which is based on the existence of the coherence temperature 7% inversely

proportional to the effective mass. This scaling is shown to be valid also on the



metallic side of the metal-insulator transition of diluted two-dimensional electron
gases, St MOSFETs and GaAs/AlGaAs heterostructures. This gives strong evidence
that the driving force for the unusual transport properties in these systems is strong
electron-electron scattering, and not disorder.

To explore strongly disordered systems, we have implemented the Statistical
DMEF'T, which takes into account spatial fluctuations in the conduction bath. We
have successfully applied, for the first time, the Statistical DMFT method on the
finite size cubic lattice. We determined that the finite size effects are negligible al-
ready on the lattice with 6 x 6 x 6 sites (except at the lowest temperatures, deep in
the Fermi liquid regime). Then we concentrated on a single realization of disorder
on the lattice of size 6 x 6 x 6 using the Continues Time Quantum Monte Carlo
(CTQMC) as the impurity solver, and the analytical continuation by the maximum
entropy method in order to obtain local quantities on the real frequency axis. We
confirmed that the disorder is strongly screened on the metallic side of the Mott
MIT and that the inelastic scattering is dominant at finite temperatures. We de-
fined a local resistivity and proposed a resistor network method for calculating the
dc resistivity. This approach is justified by the observation that the inter-site cor-
relations are very weak and the incoherent scattering dominant. We identified two
types of sites: strongly correlated - with the local occupation close to 1, and weakly
correlated - away from local half-filling. Non-monotonic temperature dependence
in the resistivity originates from strong temperature dependent local resistivity on

strongly correlated sites.

Keywords: strong correlations, disorder, Mott metal-insulator transition, dynam-

ical mean field theory
Scientific field: Physics
Research area: Condensed matter physics

UDC number: 538.9(043.3)



YTuiaj seypeheHocTu Ha eJIEKTPOHCKHA TPAHCIOPT Y
jako KopeJMcaHUM MaTepujajuma 6,3y
MeTaJI-M30JIaTOP Impejia3a

Caxerak

Yr1unaj Heypehenoctu Ha TpaHCIOPTHE OCODMHE JaKO KOPEJTHCAHUX MaTepHjaja
je 10 cajia octao Hepasjaimen. Jako Kyjionoso ojnbujame mehy ejiekrponuma Ha
JIEJITUMHUYHO TONYHEHUM BaJIEHTHUM OpOuTaaMa MOZKe JIOBECTH JI0 JIOKAJIU3allije
tanacHe ¢pyHKImje - MoToBOTr n3o/1aTropckor crama. Kako ce MoToB Meras-u30/1aTop
pesa3 Mema y IPUCyCcTBY HeypeheHoCTH je BeoMa BazKHO MHUTAMe, HOCeOHO uMajyhn
y BUJLY Jla Cy MHOTH jaKO KOPeJINCAHU MaTepHUjaan HECTEXNOMETPU]CKA jeubermha 11a
je HeypeheHOCT, OJTHOCHO O/ICTYIIAFhe O U/IeaTHe MePUOJUIHOCTH, HEHn30eKHO.

Y 0BOj Te3W je mpoydaBaH HeypeheHn nosrynomnymenn XadapaoB MOJET Y OKBUDPY
quHamudke teopuje cpeaber nosba (JIM®PT) u mwenux yonmrema. IMDT je jennn-
CTBEH TEOPHMJCKH METOJ, KOjU je IMOy3/JlaH W KOHTPOJUCAH Yy MIHUPOKOM HHTEPBAJY
TeMmIieparypa, narepaknuja u jaanae Heypehenoctun. JIMPT tperupa camo Jioka/iHe
MHTEPAKIIMOHE KOpPeJiallije, ai y IMOTIYHOCTH y3uMa y 063up BpeMeHCKe (KBaHTHE)
dbaykryaruje Kpo3 GpeKBeHTHY 3aBUCHOCT comcTBeHe enepruje L(w). Y dmcrom
caydajy TeopHuja je TadHa y JIUMeCy BeJUKOr KoopawHamuoHor opoja. AMDT jen-
HAYWHE Ce CBOJE Ha pelriaBame Mojiesia AHJIepCOHOBe HednucTohe ypOmeHOr y caMo-
ycarjialleHo U3padyHaTo 10J/be IPOBOHUX eJIeKTPOHA.

Y caydajy ciaabe mHeypeheHOCTH KOPHCTHIM CMO AaIpPOKCHMAIIA]y KOXEPEeHTHOT
HOTEHIUja/Ia IIPY pellaBaiby je/IHaYnHa 3a HeypeheH mo1ynonymeH Xadap/10B MOJIEI.
Y oBoMm npuctyity Heypehenocr ce ypauyHnasa jeJJHOCTABHUM YCPE/IHbaBaheM JIOKAJHE
['punose dyukiuje. Xubpuausanuona GyHKIAja (HHAMIYKO CPe/IEbe M0Jhe MPOBOJI-
HUX eJeKTPOHA) je MpH TOME HCTa 3a CBAKU YBOP pemerke. I1IpH KOHCTAHTHO]
uHTEepaKiuju, HeypeheHocT edeKTUBHO MIUPU ITPOBOJHY 30HY M CUCTEM y/ia/baBa
o/t Morosor npesiaza. Kpuse ornopHocT uMajy CJmdHy HEMOHOTOHY TeMIepaTypHY
3aBUCHOCT y Otm3uHI MOTOBOI Ipesia3a Kao Uy YUCTOM ciy4ajy. BpeaHnoct 3a Mak-
CUMaJIHy MeTaJIHy OTHOPHOCT Iipejia3u KBasu-kjacuuny Mor-Jode-Peres rpanuiy
3a peJi Besimdube. JIpysieoB UK y ONTUYKO) HPOBOJHOCTH OICTaje YaK U Kaja je
oTnopHOCT yrnopeausa ca Mot-Jode-Peren rpanumom.

YVTBpAUJIA CMO YHUBEP3AJHO CKAJHPame KPUBUX OTHOPHOCTH Y (DYHKIHJU TeM-



neparype, 3a pa3jinduTe jako KopeJucaHe Marepujalie, ycJjiejl MocTojaba TeMIiepa-
Type KoxepeHniuje T oOpHyTO IpomnopimoHa/ne edpeKTUBHO] Macu y Onusuau Mo-
ToBOT mpenasa. (OBO cKaJdWpame BaykKd W HA METAJHO] CTPAHH MeTaJ-H30JIaTOP
npejasza y pa3peheHoM JIBOJMMEH3UOHOM €JIEKTPOHCKOM Tracy y CHJIUIUjyM
MOCOET-uma u GaAs xerepocrpykrypama. OBO CHazKHO yKa3yje jia je TpaHCcOpT y
ITIPOKOM WHTEPBAIY TeMIepaTypa ofpel)eH jakuM eTeKTPOH-eJTeKTPOH pacejarbeM,
a He nocJieuioM Heypehenocru.

3a npoyuaBame jako Heypehenor cucrema, npumenmiu cMmo craructuaky JIMOT,
KOja y3uMa y o03up mpoctopHe diykryanuje y xubpuansanuonoj dyuknuju. [lo
IPBU IIYT CMO NPUMEHWJIH OBaj MeTOJ Ha HEHYJTOj TeMIepaTypu W Ha KOHATHO]
KyOHO] perteTku. Y TBPJU/IA CMO Ja ¢y e(PeKTH KOHAYHOCTU PelieTKe 3aHeMap/buBI
Beh Ha pemrerku 6 X 6 X 6 (OCHM Ha HAJHUZKUM TeMIIepaTypaMa, JyOOKO y pe:KuMy
DepmujeBe TEIHOCTH). 3aTHM CMO Ce KOHIIEHTPHCATH HA JeJIHY PeaJn3alliju Heype-
benocru na permerku jumensuja 6 X 6 X 6 kopucrehu kBantuu Monre KapJiio mero/n
3a perraBame AHJIEPCOHOBOI MOJE/Ia M aHAJIUTHIKO ITPOJYZKEHE METOJIOM MaKCHU-
MaJiHe eHTPOIHje y MHUJbY JI00Hjarba JOKAJHUX BeJIUYUHA Ha peasHoj (PpeKBEeHTHO]
ocu. YTBPJAWIA CMO Jia je HeypeheHOCT CHAayKHO eKpaHupaHa HA MeTaJIHOj CTpaHu
MoToBOr MeTajs-u30JaTOp Mpeia3a U Jla je MexaHH3aM HeeJacTUYHOr (eJIeKTPOH-
eJIEKTPOH) pacejarba JOMUHAHTAH HA KOHAYHUM TeMieparypama. [ledbunucanim cmo
JIOKQJIHY OTHOPHOCT M YBeJIM METOJ Mpeke OTIOPHUKA 3a M3padyHaBambe OTHOPA.
OBaj mpucTyn je onpabmaH 003MPOM Jia Cy KOpeJallije eJIeKTPOHA Ha CYCeIHUM
YBOPOBUMA peIIeTKe BeOMa ciabe y PeKNMY jaKOT HeeJaCTHIHOT pPacejarba. YOUIIn
CMO JIBe BPCTE eJIEKTPOHA: JaKO KOpeIHcaHe ca JOKAJTHOM IOMyHheHOom Ny OT13y BpeI-
Hoctu 1, u cjiabo Kopejiucane ca IMOIyHeHOoINy Koja 3HATHO OJCTYHa 0J1 BPEJHOCTU
1. Hemonorona TemmeparypHa 3aBHCHOCT Y OTHOPHOCTHU MOTUYE OJT TeMIIepaTypHe

3aBHCHOCTHU pacejarba eJTeKTPOHA Ha JaKO KOPeJTUCAHUM YBOPOBHMA PeIleTKe.

Kipyune peun: jake kopesianuje, neypehenocr, Moros Mera/i-u3oJjiarop upejas, Jiu-

HAMHUYKa TeOpHja Cpember Mo/ba
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1. Introduction

Solid state physics is very large and fast growing area of research, driven by con-
stant appetite of industry for new materials with specific, desired properties. It is
also a quest to discover and understand fundamentally new phases of matter which
may appear due to the specific band structure and topology, or electron-electron
and electron-phonon interactions. Strong electron-electron interactions may lead to
various ordered phases at low temperatures and various types of phase transitions
separating magnetic, superconducting, metallic, or insulating phases. This is the
subject of the physics of strongly correlated electronic systems.

Strongly correlated materials include various transition metal oxides [El], high-
temperature superconductors [H], iron-based superconductors ,H], organic charge-
transfer salts llj, B], rare earth and actinide intermetallics [1] and also many low
dimensional-structures, like the quantum Hall systems [&€]. According to the band
structure theory, the insulating state appears if the valence band is completely filled
with the electrons. There are, however, many insulating materials with partially
filled (typically half-filled) valence band. These insulators are called Mott insulators.
Mott systems can be tuned between the metallic and the insulating state by doping,
or changing external parameters like the magnetic field or pressure. The Mott metal-
insulator transition (MIT) can be tuned by changing the interaction at half-filling
(interaction-driven Mott MIT), or by doping (doping-driven Mott MIT). In this
thesis we mostly focus on the interaction-driven MIT.

It is a very challenging task to construct a successful theoretical approach do deal
with strongly correlated systems. The difficulty comes from the necessity for non-
perturbative treatment of the Mott metal-insulator transition. The electrons on the
metallic side of the Mott transition are halfway “between® itinerant and localized.
There are very few tenable theories that tackle this problem. The most successful
one is certainly the Dynamical mean field theory (DMFT) and its extensions.

One of the key features of the DMFT is that it represents a nonperturbative



and well-controlled theory which becomes exact in the limit of infinite coordination
numbers (or infinite dimensionality). The DMFT is truly a quantum many-body
method which fully takes into account local correlations. The local quantum fluc-
tuations are completely taken into account, while spatial fluctuations are, in the
simplest implementation, frozen. The DMFT method treats low energy coherent
and high energy incoherent excitations on the equal footing, which is essential for a
study of the phase diagram in the whole range of parameters.

The biggest initial success of the DMFT was a description of the interaction-
driven Mott transition in the half-filled Hubbard model [B] The DMFT phase
diagram is shown in Figure 1, upper panel [10]. For small interaction U the system

is weakly correlated metal. As U increases, it becomes a strongly renormalized
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Figure 1.1: DMFT interaction-temperature phase diagram of Hubbard model ob-
tained (upper panel) [‘E] and pressure-temperature phase diagram of organic mate-
rial k-(BEDT-TTF),Cu[N(CN),|CI (lower panel) [d].



Fermi liquid. At higher temperatures the system behaves as "bad metal”, where
the transport is dominated by very strong electron-electron scattering. For large
interaction U the Mott gap opens. Metallic and insulating solution are separated
by the coexistence region where both solutions can be stabilized. This region ends
with the (U, T,) critical end-point. The same transport regimes are clearly seen in
the experiments on correlated organic salts ||, lower panel in Figure 1.

All these materials, in "real life”, contain some imperfections in structure or com-
position. The interplay between the interaction and disorder effects is particularly
subtle in strongly correlated systems, where often is not clear whether the transport
properties are dominated by the interaction or by the disorder [Iﬁl, B, B, EI, E, |.
In this thesis we study the disordered Hubbard model within dynamical mean field
theory. We particularly focus on the influence of disorder on the transport properties
on the metallic side of the Mott transition.

The thesis is organized as follows. Chapters 2 and 3 contain an introduction
to the dynamical mean field theory and its extension to the models with disor-
der. Chapter 4 presents a detailed study of the conductivity in weakly disordered
Mott systems. Chapter 5 presents evidence that the transport in low density two-
dimensional electron gases is dominated by the electron-electron scattering, while
the disorder plays a sub-dominant role. Chapter 6 focuses on the study of tempera-
ture dependence of the conductivity in strongly disordered Mott systems. Chapter

7 contains the concluding remarks.



2. Dynamical mean field theory for strongly
interacting electrons

The electron wave functions are well understood in two limits: localized and itin-
erant (forming extended Bloch waves due to the large overlap between the electron
orbitals and leading to formation of the bands). The electrons in strongly corre-
lated materials do not fit into any of this two cases: they cannot be treated just
like the plane waves, or purely localized particles. The competition between strong
Coulomb repulsion and kinetic energy may lead to the transition between localized
and itinerant behavior, with subtle features in the spectral density near the MIT.
The simplest model for strongly correlated materials is the Hubbard model.
Despite its simple form, it describes various phases of matter depending on the
parameter values and lattice structure. It is rigorously solved only in the two cases:
in one-dimension [B] and in the limit of infinite coordination number (or infinite

dimension) using the dynamical mean field theory (DMFT) [IE]



2.1 HUBBARD MODEL

2.1 Hubbard model

Single orbital Hubbard model is the minimal lattice model for strongly correlated
electronic systems, proposed by Hubbard in 1963. [IE, m] The Hubbard model
Hamiltonian consists of the hopping (kinetic energy) term and the on-site interaction
term which originates from the Coulomb repulsion of two electrons (with spin up

and spin down) on the same orbital,

H=— ZtijCIUCjU + UZniTnil - ,U/ZTLZ'U. (21)

ij,o i

Indexes 7 and j run through the lattice sites, and o is the spin index. The operators
T
i

Nig = c;fgcw is the particle occupation number operator. The kinetic energy term

¢, and c¢;, create and annihilate the electron with the spin o at the site ¢ and
is determined by the hopping parameters ¢;;, where usually it is enough to consider
just the nearest neighbor hopping. The strength of the Coulomb repulsion is given
by the Hubbard parameter U. A model with the short-range interaction U is most
realistic in the case of d or f electrons which have relatively small orbital radius,

and its further justified by the effect of charge screening.

....... - :/ - ) |$ lé? If

(<o)
T

Figure 2.1: Schematic representation of the Hubbard model.

Despite its simplicity, this model exhibits a very rich phase diagram. Depending



2.1 HUBBARD MODEL

on the parameters, the shape of the lattice and temperature, various phases of matter
can be stabilized: metallic, Mott insulating, ferromagnetic or antiferromagnetic,
and even d-wave superconducting phase. The most striking consequence of strong
electronic correlations is the localization of the electronic wave functions due to the
Coulomb repulsion - Mott insulating state which is the main focus of this thesis.

The Hubbard model is well explored in one dimension [17], where it is exactly
solvable and where we have a variety of theoretical tools at disposal, necessary for
systematic study. In two or three dimensions it is often impossible to distinguish
whether the theoretical prediction reflects the true nature of the Hamiltonian, rather
than an artifact of approximation used for its solution. The origin of these uncer-
tainties is in the nonperturbative nature of the problem and in the existence of
several competing phases for the ground state solution.

An important step forward in the study of the Hubbard model was a development
of the dynamic mean field theory (DMFT) around twenty years ago |18]. This
method treats only local correlations and thus the self-energy is only frequency-
dependent, ¥(k,w) — ¥(w). Therefore, the DMFT takes fully into account temporal
(quantum) fluctuations, while spatial fluctuations are neglected. It becomes an
exact theory in the limit of infinite coordination number or, equivalently, infinite
dimensions. This approach allows treatment of the low energy (coherent) and the
high energy (incoherent) excitations on the equal footing. This makes DMFT a
unique method in a study of strongly correlated electronic systems.

The great success of the DMFT influenced development of several extensions
suitable for a different types of problems. Cluster DMFT is developed in order to
include non-local correlations and to reintroduce momentum-dependence into to the
self-energy [IZL B . This has led to important advances in understanding the physics
of the cuprates é] The multi orbital DMFET turns out to be particularly useful
for the investigations of transition metal oxides, including the iron based supercon-
ductors [24]. For the investigation of the hetero-structures and layered materials
the inhomogeneous DMFT is developed [@] Further, the bosonic excitation of the
bath can be taken into account using the extended DMFT (EDMFT). The DMFT
method has been generalize also to the time-dependent |26] and bosonic Hubbard
models. The extension to disordered systems has also lead to important physical
insights [EL E], and this line of work is the main focus of the following chapters in
the thesis.



2.2 DYNAMICAL MEAN FIELD THEORY

2.2 Dynamical mean field theory

Dynamical mean field theory method was first proposed in the pioneering work by
Metzner and Vollhardt in 1989 [IE], as the solution for the Hubbard model on infinite
dimensional lattice (d — oo). They showed that, with proper scaling of the hopping
parameters, the Hubbard model remains meaningful and nontrivial in d — oo, and
that the solution of the DMFT equations in this limit becomes exact. The DMFT
approach has started to become widely recognized after the work og Georges, Kotliar
and Rozenberg in 1992 [H] when they successfully described the Mott metal-insulator
transition using the DMFT, which is a fully quantum mechanical treatment of the
Mott transition.

In this chapter we will sketch a derivation of the DMFT equations and present
the basic physical insights from their solution on the example of the single-band
Hubbard model.

2.2.1 General Formalism

DMFT can be seen as an extension of Weiss mean field theory[@]. The main idea is
to lower the number of degrees of freedom by approximating the full lattice problem
by the on-site effective problem (Figure. Z2). In this approach the single site is
embedded in an effective medium originating from all other sites. Then the problem
reduces to the famous Andersony impurity problem and the features of the lattice
(dimensionality, hopping parameters) are included through the self-consistent cal-
culation of the hybridization bath A(w). The impurity problem remains a quantum
many-body problem, in contrast to the classical mean field theories. This approach
freezes spatial fluctuations, but fully takes in account all local, temporal fluctua-
tions (hence the name “dynamical"). By the construction, DMFT is exact in the
limit of infinite lattice coordination number or, equivalently, in the case of infinite
dimensions. It is important to have in mind that even for three dimensional cubic
lattice with the coordination number z = 6, DMFT is a very good approximation
(except at very low temperatures), and therefore a very useful method in a study of
finite dimensional strongly correlated materials.

The partition function Z of the Hubbard model X1l can be represented as a



2.2 DYNAMICAL MEAN FIELD THEORY
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Figure 2.2: Lattice is replaced by a single site problem coupled to the external bath
defined by all other sites.

functional integral over the Grassmann variables

Zz = /HDCIUDCW exp(—S) , (2.2)
B
s = [ [ b (7)o~ o) — Y el (T)eso(r)+

> Uni(m)ng(r)|,  (2.3)
i
where S is the action, ¢, and ¢/ are the Grassmann variables and f is inverse

product of the temperature and the Boltzmann constant, § = 1/kgT. In order

to calculate partition function, we have to transform the action into more suitable
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form. Following the spirit of DMFT, we separate the action into three parts,

P
So = /0 dr Zc&(ﬂ(% — 11)coo (T) +Un0T(T)nOl(T)] , (2.4)

B 0
_ i !
SO — /0 dr Z io(T) (5= = 1)Cio(T) = | Z tijcio(T)Cio(T)
_7,75070 7'7507‘7#070
+ZUWT(7)W(7)] : (2:5)
i£0

B
Sc:—/ dr
0

The first term, Sy, contains all local degrees of freedom of the chosen site, the

3 el (7)) + tol-cggu)%(ﬂ] | 26

second one, S(*) (cavity term), includes all other degrees of freedom and third term,
S., contains the coupling between the first two. After few steps of simple algebra
and integrating out all degrees of freedom, except these on the one chosen site ¢ = 0

(impurity), we obtain the effective action

Sr=S+Y > / tiy0--tog, Coy (Ti))onCho (73, ) 00 (T5,) oo -Co0r (75, )

n=11i1,....Jn,0

x GO

“mjna(nl e Tips Tjy Ty, ) + const. (2.7)

Here, the connected n-point Green’s function of the bath degrees of freedom is

introduced as

G (T TiyoeTjn) = (TrCiyo (T )oe-Cino (T )b o (T )l (1)@ (2.8)
Averaging ()(©) is carried over the cavity action S and T, is the imaginary time
ordering operator. At this point, the derived effective action is very complicated and
not very useful for applications, but how it evolves in the limit of infinite dimensions?
In order to ensure a proper behavior of the kinetic and interaction energy terms, to
remain of the same order of magnitude in d — oo limit, one can scale the hopping
amplitude as t,e,, =t/ v/2d. The one particle Green’s [@] function G;;, which occurs
in the Eq. 7 is proportional to ¢/ =7l ~ 1/dl"=71/2, The two particle Green’s function
Giju scales as 1/(dl"=91/2qli=kI/2qli=1l/2) "1 we recall the effective action from Eq. B

we can establish that the first term containing the one particle Green’s function is of
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the order of 1 (prefactor t* times ¢* from G;; and summations over i and j provides
a factor d? which cancels the first two). To be more precise, G;; is proportional to
t? when ¢ and j are the nearest neighbors of the site 0. In all other cases Green’s
function is even smaller. Similar consideration shows that the next term in the
summation in Eq. B is of the order of 1/d and all others are even smaller in the
limit of large dimensions.

Previous discussion allows us to keep just the first (one-particle) term of the
effective action (1) in the large d limit

B B B
Sa== [ dr [ 4t G = el + U [ ) (29)

Gy '(t — 7') is a quantum generalization of the Weiss field and it is given by

0

Gl —7) = —(5 — )8y — ZtiotojGE;J) (r—1) . (2.10)
i

This quantity describes the local effective dynamics, or in the other words, quantum
fluctuations between four available atomic states: [0),| T),| 1),| T!). The main
difference from the classical mean field case is that here the dynamical mean field is
a function of time (frequency), instead of just a number. This dependence is crucial
for full inclusion of local quantum fluctuations, which is the main advantage of the
DMFT. Gy plays the role of the noninteracting Green’s function in the effective
action Seg, but it should not be confused with the noninteracting (U = 0) local
Green’s function of the lattice.

We can express the cavity Green’s function from Eq. in terms of the local

Green’s functions in the following way [30)]:

GioGo,

cY—q, —
* ! GOO

(2.11)

This means that in order to obtain the cavity Green’s function, we need to subtract
all contributions of the paths going through the site 0, from the full lattice Green’s
function. The denominator Gy is present due to the fact that all closed loops

starting from the site 0 and ending in 0 are counted twice (once in G,y and again in

Glj)-

10
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It is more convenient to present Eq. LIl in the energy-momentum space,
Gy Hiw) = iw + p — Ztlot(]] G\ )(zw) : (2.12)
ij

Since only the one-particle local interacting Green’s function survives in the effective

action (), the Dyson equation,

1
iw+p— e — D(iw)

Gy (iw) = (2.13)

corresponds to

Gooliw) = Z Cie(iw) = Zk: w4 p— ex — B(iw)

_ - D(e)
a /d Aliwn) + Gliwg) 1 —¢ ' (2.14)

where D(¢e) is the noninteracting lattice density of states,

= 25(5 — €k) - (2.15)

Here is important to emphasize that self-energy ¥ is local (k independent). Further,

if we exploit the identity
Ek = Ztijeik(Ri_Rj) s (216)

and the relation (ZTT]), we can express the Weiss field in the following form,

G ' (iw) = iw + pu — (Z 26 M) . (2.17)

00

After few steps of algebra, we obtain the central equation of the DMFT, connecting
the Weiss field and the lattice Green’s function

Gy Hiw) = S(iw) + Gy (iw) . (2.18)

To complete the set of equations that makes DMFT self-consistency loop, we need

11
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to calculate the impurity Green’s function,

GOO = Gimpurity(go_l) . (219)

2.2.2 Mapping on the Anderson impurity model

The local effective action Eq. EE9lcorresponds to the action for the Anderson impurity
immersed into the noninteracting conduction bath Gy * (7 —7'). This is a famous and
very well studied model in condensed matter physics. There are several analityical
and numerical methods for its solution. However, one has to be aware that this
model is still rather complicated to solve. Before briefly mention the methods for

its solution, it is instructive to also represent this model in the Hamiltonian form:

HAIM = Hatom + Hbath + Hc ) (220)

where,
Hotom = Un?onio + (g0 — w)(nf® +n°) ,
Hyatn = Z Eicl Cio
1#0,0

H. = Z Vi(cl cos + chycio) - (2.21)
1#0,0

c(TJ and ¢y operators create and annihilate a particle at the interacting site (impurity),
while cI. and ¢; create and annihilate particles in the noninteracting conducting bath.
g; are effective parameters which, together with V;, should be chosen in such a way
that the impurity Green’s function coincides with the local Green’s function of the
Hubbard model. The effective action of this model has the same functional form as
derived effective action EE9, with the difference,

Gi'(r ) = —<§—u>6w —Gilr =),
Go(r—7) = —Z\Vk o (2.22)

87’+k

We are now in position to complete the DMFT procedure. Equations .18 and
T4 together with

GOO = Gimpurity(go_l) s (223)

12
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EFFECTIVE LOCAL IMPURITY PROBLEM

Effective bath THE

Goliwn) bt G (iw,)

Local G.F

SELF-CONSISTENCY CONDITION

Figure 2.3: Schematic representation of the self-consistent DMFT loop.

form a closed set of DMFT equations for solving Hubbard model. The Weiss field has
to be determined self-consistently in order to introduce the on-site interaction and
the hopping in the bath. There are many available techniques for solving impurity

model and obtaining impurity Green’s function from a given Weiss field.

2.2.3 Impurity solvers

Technically the most difficult step in the DMF'T self-consistency loop is solving the
Anderson impurity model. This model and its various generalizations have been a
subject of the intense study since the pioneering work of P.W. Anderson in 1961. [Ia]
Various analytical and numerical methods have been developed for its solution. All
of these methods have their advantages but also drawbacks. Among the analytical
methods, the most important are the slave boson methods (which introduce auxiliary
particles - slave bosons) [32| and second order perturbation theory in U [d]. The
numerical renormalization group (NRG) method allows the exact solution at 7" = 0,
up to the error from the numerical discretization. The exact diagonalization method
replaces the bath with a finite number (up to 10) orbitals.

For the solution of the AIM at finite temperatures the most useful are the non-

crossing approximation (NCA) [33| (or one-crossing approximation - OCA) [34] and

13
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quantum Monte Carlo (QMC) methods - Hirsch-Fye [@] and continuous time QMC
(CTQMC) [@] In this thesis we have used NCA (OCA) and CTQMC solver codes
developed by K. Haule , 36|, and the second order in U perturbative solver
(Iterative Perturbative Theory - IPT) written in our group.

The IPT impurity solver is very fast and can be written both on the real and
imaginary (Matsubara) frequency axis. In the context of the DMFT at half-filled
lattice, it became very popular because it properly reproduces the limits of weak
and strong interaction and reproduce all main features of the phase diagram of the
single orbital half-filled Hubbard model.

Another popular impurity solvers, providing results directly on the real frequency
axis are the non-crossing approximation (NCA)[33], the one-crossing approximation
(OCA) [@], or even “symmetrized finite U” NCA (SUNCA) [34]. These solvers are
based on the second order self-consistent perturbation theory in the hybridization
function. The OCA has one more generating Feynman diagram for the self-energy
than the NCA, which improves the solution, especially in the finite U case. One
of the main drawbacks of these methods is failing to reproduce the Fermi-liquid
behavior at lowest temperatures. An advantage is that they give results directly
on the real frequency axis which is necessary for the calculation of the transport
properties. They can also be relatively easily generalized to the multi orbital case
and they are typically less time consuming than the QMC methods.

The most superior impurity solver is the continuous time quantum Monte Carlo
(CTQMC) [@, | which is based on the sampling through the space of the Feynman
diagrams in continuous time. In the strong coupling implementation, the perturba-
tive expansion is done with respect to the hybridization (hopping t), while the local
(atomic) part is treated exactly. It is important to emphasize that this method is,
in principle, exact since the Feynman diagrams are sampled to all orders. The only
error comes from the statistical QMC noise. It is crucially that the method does
not suffer from the minus sigh-problem (at least for a single-orbital case) and that
the method can be relatively easy generalized to the case of multiple orbitals. The
resulting Green’s functions and the self-energies are given on the imaginary axis,
which can be a drawback if one is interested on spectral functions and transport
properties. Then the procedure for the analytical continuation has to be used - the

maximum entropy method for the analytical continuation [@]

14



2.3 MOTT METAL-INSULATOR TRANSITION

2.3 Mott metal-insulator transition

Mott metal-insulator transition (Mott MIT) was detected in numerous compounds
of transition metal oxides, as well as rear earth and actinide intermetallics, where
the valence orbitals form partially filled d or f shells. In these materials, the valence
electrons sharing the same orbital experience strong Coulomb repulsion. The repul-
sion may localize the electrons in the case of half-filled orbital and open the gap (the
Mott gap) at the Fermi level. First theoretical attempts to solve the Hubbard model
were based on Hartree-Fock mean-field theory, which considers interaction between
one electron and the averaged static field of all other electrons in the system, with

[Iif],. These at-

tempts have roughly recovered the insulating phase, but failed to explain numerous

approximate strong limit methods, like the Hubbard I approximation

pronounced features near the transition.
Most of the generic thermodynamic and transport properties near the Mott MIT
can be successfully captured by the DMFT and its generalizations. Quite generally,

there are two ways that the system can approach the Mot insulating state: by

=ImG

L /’\/\ILJ\’{‘

WD

Figure 2.4: Local density of states for half-filled Hubbard model. At small U (upper
panel) the system is weakly correlated metal. As U increases the quasiparticle peak
narrows and, eventually, the Mott gap opens (lower panel).
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2.3 MOTT METAL-INSULATOR TRANSITION

increasing the interaction U - interaction-driven Mott MIT or, for large U, by doping
- doping-driven Mott MIT. We will illustrate main features of the DMFT solution
on the example of the half-filled Hubbard model.

Figure EAlshows the “prototype" of the density of states of the strongly correlated
electrons. For the large value of the interaction U the Mott insulator occurs and the
density of states consists of two Hubbard bands at the distance U. With decreasing
interaction, the quasiparticle peak develops at the Fermi level and we enter into the
metallic regime with strongly renormalized quasiparticle parameters. We have the
famous three peak structure in the density of states. The quasiparticle peak appears
due to the quantum fluctuations which are fully taken into account within the DMFEFT
method. Precisely these strongly renormalized quasiparticles were the missing part
in the puzzle of Mott MIT. When we further decrease the interaction, the Hubbard

bands fully merge and the system becomes conventional, weakly correlated metal.

16



2.4 OPTICAL AND DC CONDUCTIVITY

2.4 Optical and dc conductivity

Transport properties also relatively easily accessible in experiments due to variety
of techniques that can probe them very accurately. They can be calculated from
the correlation (two-particle Green’s) functions. We will concentrate mostly on the
on the optical and dc (direct current) conductivity, especially on direct-current (dc)
conductivity and resistivity. Here, we will briefly sketch the derivation of the formula
for the optical conductivity within the theory of linear response.

The optical conductivity o(w) is defined by
jw) =0o(WE(wW), (2.24)

where j is the current and E is the electric field. Our task is to calculate the current
(and therefore the optical conductivity) in terms of the correlation function. First,
we separate the current into the paramagnetic and the diamagnetic part, and after

using the Coulomb gauge for the vector potential, we obtain the following relation

Jo1) = Gp(x 1)) = Al 1) | (2.25)

where x labels three Descartes coordinates and ¢ is the time. The paramagnetic

response to the applied field can be calculated within the theory of linear response:
Gptet) = [ [ drilip e ) (220)
<t

Equivalently in the Fourier space,

i) = = {50 — i)l } ). .27
—iv | m
where ¢ stands for ¢ = (q,w).

In order to complete the derivation of the optical conductivity, we need to cal-
culate current-current correlation function. In this thesis, we will briefly describe
derivation presented in the section IV of Ref. [IE] The correlation function can be
expressed as an infinite sum of two-particle vertex functions. It turns out that this
infinite sum can be greatly simplified by making the following observations: Since

a wave length of the incident light, used in experiments, is much shorter than the

17



2.4 OPTICAL AND DC CONDUCTIVITY

wave length of the electronic wave vector, w/c < kp, we consider the limit q = 0, or
in the other words ¢ = (w,0). This observation, together with the limit of infinite
dimensions (widely exploited within DMFT), allows us to drop all vertex correc-
tions, keeping only the zeroth order vertex function. Calculating the only remaining
vertex function and using the d — oo limit, we obtain the optical conductivity in
the following form,
1 400 400 400 f(V) _ f(,/)
o(iw) = — de dv dv'D(€e)p(e,v)ple, V) —F———~ . 2.28
W)= [ ae| “av | “avp@ptenpte TSI ey
Here, D(e) is the noninteracting density of states, f(v) is the Fermi function, and
p(€, V) represents the one particle spectral density
-1 1

ple,v) = —lImG(e, V)= —

s Tv+pu—e—%(v) (2.29)

This equation is rigorously derived for the hypercubic (infinite dimensional cubic)
lattice and it represents a reasonable approximation for the three-dimensional case,
so we will use it in all calculations in the thesis.

One of the first and best known confirmations of DMFT was the comparison of
calculated optical conductivity with the experimentally obtained, from photoemis-
sion spectrum of vanadium oxide V503. The theoretical calculations qualitatively

recover the main aspects of the experiment [39|.

— DMFT, T =300 K
B hv=700eV
> hv =606V

INTENSITY (arbitrary units)

3 2.5 2 15 1
ENERGY (eV)

Figure 2.5: Photoemission spectrum of metallic vanadium oxide (V503) near the

metal-insulator transition (circles and squares) and optical conductivity calculated
from DMFT (solid curve) [39].
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2.5 Phase diagram of the frustrated Hubbard model

The DMFT phase diagram of half-filled Hubbard model displays metallic and Mott
insulating phase and several crossover regions. Here we concentrate on the paramag-
netic solution (which is relevant for geometrically frustrated lattices, e.g. triangular
lattice).

Bad metal

Temperature

Classical Mott
g insulator

Fermi liquid A

Coexistence .

Interaction

Figure 2.6: DMFT phase diagram of the half-filled Hubbard model.

At the low temperatures and weak interaction there is a Fermi liquid (conven-
tional metallic) phase. When we increase the interaction U, we reach the region of
coexistence of both metallic and insulating phase and for strong interaction we step
into the Mott insulating phase. The coexistence region ends in the (U.,T.) critical

oint. T, ~ 0.03Er which is typically several tens of Kelvin in the experiments

|. At high temperatures, T > T,, we have bad metal phase characterized by ver
strong electron-electron scattering, followed by the "quantum critical” region m, lﬂii
and the insulating region characterized by the well developed gap and the activation

temperature dependence of the resistivity.
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3. Dynamical mean field theory for disor-
dered strongly correlated systems

Every crystal structure has some level of disorder due to the presence of defects,
impurities and or dopants. In the last twenty years, different classes of strongly cor-
related materials have appeared, many of them having a significant level of disorder.
This is particularly the case with the complex materials obtained by doping, i.e. by
replacing an atom of the starting compound with an atom of another element. The
position of doped atoms in the lattice is usually random which introduces disordered
into the system. Progress of the experimental techniques allowed systematic study
of the effects of disorder in various materials of this kind. We will illustrate this in
the next few examples.

A powerful experimental technique which allows local measurements at the nano-
slcale is the scanning tunneling microscopy (STM). Figure Bl represents the results

of such measurements on high-temperature superconductor obtained by doping of

didV (pS)

Figure 3.1: Spatial distribution of the superconducting gap in BisSroCaCusOgys
at T = 30 K (left panel) and spatial distribution of the conductivity in the non-
superconducting phase at 7" = 93 K[Iﬂ]
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the Mott insulating material BisSroCaCuyOg by oxygen. The figure displays a spatial
distribution of the superconducting gap at the temperature below critical tempera-
ture 7T, and spatial distribution of the conductivity at temperature above T.. The

disorder and inhomogeneity in this system is most likely the consequence of doping.

400 -
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=
)
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= ]
— PURE
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100 — 40MGy
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— 160MGy
—— 320MCy
— 4TOMGy
i | | T 63MGy
0 50 100 150 200

T (K)

Figure 3.2: Resistance of the organic Kk — (BEDT —TTF);Cu(SCN); as a function
of temperature [IE] Level of disorder is proportional to the X-ray exposure time.

An appealing opportunity for a systematic study of the disorder effects is by
introduction of structural defects by X-ray irradiation. Indeed, such a method is
accessible in various organic charge-transfer salts. The temperature dependence
of the resistance of the quasi two-dimensional organic material K — (BEDT —
TTF),Cu(SCN), for different irradiation exposure times is shown in Figure B2
The disorder strength is directly correlated with the X-ray exposure time (longer
exposure time leads to more disordered system).

Another group of materials where both the interaction and disorder play an im-
portant role are diluted two-dimensional electron gasses in Si-MOSFETs and ultra-
clean GaAs heterostructures. These systems display very sharp metal-insulator tran-
sition by tuning the concentration of charge carriers, see Figure B3 There is still
controversy regarding the nature or even the driving force for this MIT transition
and we will turn our attention toward this question Chapter 5.

The understanding of physical processes in the regime where both the electron-
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Figure 3.3: Resistivity of two-dimensional electron gas in Si-MOSFET as a function
of temperature for different electron concentrations.

electron correlations and the disorder are strong is one of the most important open
problems in the modern condensed matter physics. Explanation of the physical
properties of strongly correlated disordered materials poses a major challenge, and
also holds a promise for new technological applications.

There are few theoretical attempts to provide insight into the transport and
thermodynamic properties of strongly disordered correlated systems [43]. In this
thesis, we will follow the approach of the dynamical mean field theory, generalized
in order to treat disordered systems. Most of the theoretical works on this subject
have been restricted, so far, to binary disorder distribution [Iﬂ], or low temperatures
where the DMFT has been extended in order to incorporate the Anderson localiza-
tion effects [EL @, E] The generalized DMFT equations were usually solved with
the approximate slave boson approach which is restricted to zero temperature, and
can only indirectly address the finite temperature properties. The finite tempera-
ture transport properties in disordered systems, typically dominated by incoherent
processes, is the main focus of the thesis.

In this chapter, we briefly review several generalizations of the DMFT method.
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The first method of treating the disorder technically reduces to simple averaging
of Green’s functions over an ensemble of impurities in the DMFT self-consistency
loop. This is the simplest approach which in the non-interacting limit reduces to
the coherent potential approximation (CPA). The Anderson localization effects can
be included through the approximate Typical medium theory. The spatial fluctu-
ations in disordered finite dimensional systems are fully taken into account within
the Statistical DMFT (StatDMFT), where the only approximations remains the

assumption of the locality of the self-energy.
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3.1 DISORDERED HUBBARD MODEL (DHM)

3.1 Disordered Hubbard model (DHM)

For the purpose of theoretical investigation of the disorder effects in strongly corre-
lated materials, we consider the half-filled single-orbital Hubbard model with site-

diagonal disorder and nearest neighbor hopping, given by the Hamiltonian

H=-— Zti7jCIUng -+ UZniTnil + vaw — Mznig. (31)

1j,0

Here t; ; is the hopping amplitude, U the interaction strength, cZT(7 is the creation
operator, and n;, = C;'[gci(r the occupation number operator on site ¢ for spin . The
global occupation number is enforced by the chemical potential p. In this thesis we
will concentrate on half-filled systems since we are primarily focuses on a study of
interaction-driven Mott transition. The disorder is modeled by random energies v;
taken from uniform distribution in the interval (—W/2, W /2). Most of the features
of the disordered Hubbard model are expected to be insensitive to the particular
form of the disorder distribution. Physically, the site disorder (random potential)
can be due to the impurity atoms or dopants having different having different orbital
energy levels.

Following the DMF'T procedure, it is possible to reduce the disordered Hubbard
model to the Anderson impurity model in a self-consistently determined conduction
bath. Unlike to the clean case, in the presence of disorder, we need to consider
an ensemble of impurities. There are several ways to set up the self-consistency

equations for the calculation of the site-dependent conduction bath.
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3.2 COHERENT POTENTIAL APPROXIMATION FOR THE CORRELATED ELECTRONS

3.2 Coherent potential approximation for the cor-
related electrons

In the coherent potential approximation (CPA) of the DMFT model, we choose N
values for site-disorder from the given distribution and solve a set of N Anderson
impurity problems (one for each on-site energy). The conduction (hybridization)
bath is obtained in the process of averaging over the disorder and it remains the
same for each site within the CPA approach. In the non-interaction limit, the
method reduces to the well studied CPA equations for non-interacting disordered
electrons, which is formally exact in the limit of large coordination number |41].

The central quantity is the local Green’s function,
Gig(r—7') = _<Tcia(7—)c;‘ra(7—,)>5iﬁ> (3.2)

which is a site-dependent quantity in the presence of disorder. The local effective

action is given by

, 1
= —— Z cja(iwn)[iwn + 1 — v — Aliwy,)]cio (iwn,)

W, ,O

+%UZ (i), (ion). (3.3)

Wn,

where A is the conduction bath whose self-consistent value will be obtained in the
iterative procedure. The quantity that we average over the disorder is the local

Green’s function,

(i) = / dvP(0)G (itwn, v). (3.4)

Though we consider a continuous distribution of disorder P(v), in practice it is
sufficient to take a finite number of random energies, and the integral is replaced

with a sum. In the case of uniform disorder
Glawiwy) = ~ Z Gi(iwy). (3.5)

The averaged Green’s function G, and the conduction bath A determine the
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3.2 COHERENT POTENTIAL APPROXIMATION FOR THE CORRELATED ELECTRONS

self-energy through the relation
G H(wy) = iwy + p— Aliwy,) — X(iwy), (3.6)

analogous to Eq. BXI8 The self-consistency condition follows from the assumption
that the lattice self-energy coincides with the impurity self-energy. Then the disorder
averaged local Green’s function has to be equal to the local component of the lattice

Green’s function,

G iwn) = / de- Die) . (3.7)

iwn, + p— e — X(iwy)
Here D(e) is the density of states in the absence of disorder and interaction. Equa-
tion BB determines new conduction bath which completes the self-consistency loop.
The scheme of the CPA method is presented on the Figure B4l

This approach can be safely applied in the regime of weak or moderate disorder.
However, it does not take into account spatial fluctuations of the conduction bath

and Anderson localization in the limit of very strong disorder.

A

Figure 3.4: Schematic representation of the CPA algorithm.

3.2.1 Optical and dc conductivity within CPA

Taking into account the construction of the disorder treatment approach presented

in section B2, we expect that optical conductivity assumes form analogous to that for
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3.2 COHERENT POTENTIAL APPROXIMATION FOR THE CORRELATED ELECTRONS

the clean Hubbard model 22281 Since we are interested in the correlation functions
on the real axis, we can perform an analytic continuation of Eq. to the real

axis,

f(v) — (v +w) '

- (3.8)

“+oo “+oo
Re o(w +i0") = had/ / dvD(€)p(e, v)p(e, v + w)

In this case the one particle spectral density depends of the self-energy obtained

within CPA procedure,

1

, 3.9
v+pu—e—Xopa(v) (3:9)

—1 —1
ple,v) = —ImG(e,v) = —
7r 7r
where Yopy is calculated from averaged Green’s function (B).

The dc conductivity is defined as the conductivity at zero frequency and the dc

resistivity is just inverse of that,

+o00 +00 —df
o, =Re o(w= ha . / de / dvD(e)p? (e, v) dy(”), (3.10)
1
pu = — (3.11)
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3.3 TYPICAL MEDIUM THEORY

3.3 Typical medium theory

The interplay between Mott and Anderson localization has been studied on the
disordered Hubbard model within an effective typical medium theory (TMT) [@] A
crucial step in the self-consistent calculation of the conduction bath, is geometrical
averaging of the local density of states, in contrast to arithmetic averaging used in
CPA. In this case, the effective DOS is calculated from,

Prn(@) = exp { / deP(e) In p(w, g)] , (3.12)

and the Green’s function is obtained from the Hilbert transform,

Gyp(w) = / dw’%((:/). (3.13)

This typical (geometrically averaged) DOS is the central quantity in the TMT.
The criterion for the Anderson localization (disorder-driven MIT) is that the typical
DOS goes to zero. While the average DOS at the Fermi level is finite both in a metal
and Anderson insulator, typical DOS is finite (non-zero) in a metal, but vanishes in
the Anderson insulator.

The zero temperature phase diagram for disoredred half-filled Hubbard model
is obtained using the numerical renormalization group (NGR) impurity solver B0l
Correlated disordered metal is characterized by nonzero typical DOS at the Fermi
level py,(0). The boundary between this phase and the Anderson insulator is formed
by the quantum critical line W,.(U) at which the system goes through a second order
phase transition. The p,,(0) is being reduced by disorder (for fixed interaction) and
goes to zero precisely at W,.. On the other hand, the increase of the interaction for
fixed finite W, restores the value of py,,(0), therefore improves the metallicity. Sys-
tem experience the Mott metal-insulator transition for weak to moderate disorder,
together with the coexistence region. This transition qualitatively corresponds to
the one in the clean case. Starting from the clean Mott insulator, for U 2 U., the
increase of disorder restores the metallic phase. The continuous transition between
Mott and Anderson insulator has been detected for large values of interaction and
disorder.

Despite the fact that this study is performed within effective theory it represents
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Figure 3.5: Phase diagram of the disordered Hubbard model at zero temperature
within effective typical medium theory. Disorder strength and interaction are given
in units of 2/3 Ep.

a good starting ground for all other investigations in this direction. One of the
important questions is how this picture evolves with the temperature and are there,

and if there are, what are the artifacts of the used approximation.
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3.4 Statistical dynamical mean field theory

We have argued in previous section that the simple approach like CPA can not give
proper description of the strong disorder limit. Also many features of TMT solutions
are questionable in this regime. In order to have a method capable to describe effects
of disorder in a wide range of parameters, it is necessary to properly include spatial
fluctuations. That can be accomplished by extending the ideas of dynamical mean
field theory. A brief derivation of such extension of DMFT will be presented here.
We start from disordered Hubbard model Hamiltonian (BJ) with fixed realization
of disorder. If we follow a standard DMFT procedure and we concentrate on a
particular site of the lattice and integrate out all other sites, we obtain the local
effective action for arbitrary site. The effective action has exactly the same form
we have already seen in chapter Pl and the same conclusions and the procedures
can be applied here. This will allow us to reduce solving of Hubbard model to the
problem of solving an ensemble of Anderson impurity (AI) models. In this case our
hybridization (bath) function will be different for each site in contrast to the clean
case .
Ailwn) = Y G (wn). (3.14)
j k=1
Here, z is the coordination number and sums over j and k run over nearest neighbors
of the site 1. ngk) (wy) are the cavity Green’s functions, or the lattice Green’s functions

with site ¢ removed,
G (wn) =< cHwn)ex(wn) >@. (3.15)

Using the analogy with the derivation of the DMFT equations for the clean case,
presented in the chapter B, Eq. EXIT] the general result (regardless of the disorder)

for the cavity Green’s function can be obtained,

GG

) (3.16)
The regular lattice Green’s function from the previous equation is calculated from,
Gl (w,) = [f(wg +p)—é— fl(wg) — f]de‘m]_l, (3.17)

where, ¢ and 3 are diagonal matrices such that the elements of £ are just on-site

energies of each site, &;; = ¢;, and self-energy contains the local self-energies ¥;(wy)
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3.4 STATISTICAL DYNAMICAL MEAN FIELD THEORY

(solutions of each AIM),
(i]X(wg)17) = j(wg)ij- (3.18)

Helean i the tight-binding Hamiltonian of the clean system (g; = 0).

The cavity Green’s function can be obtained in the same way as in the clean
Hubbard model. Therefore, we can conclude that this procedure is exact in the
limit of infinite coordination number in the presence of interaction, or for arbitrary
coordination number for noninteracting particles. In the case of infinite coordination
number, the bath function reduces to the simple average over sites, which leads to
destruction of spatial correlations, which is essentially the CPA treatment of disorder
described in previous section.

In order to allow for Anderson localization, we need to consider a finite lattice
system. In this case hybridization function can be seen as a functional of the lattice
Green’s functions for fixed distribution of disorder. The finite number of sites allow
us to keep track of hybridization functions on each site, which can fluctuate signif-
icantly from site to site, depending on the disorder strength. Precisely this feature
is crucial for capturing the Anderson localization effects.

Again, we can establish direct correlation between our model and ensemble of
Anderson impurity models, since the effective action has the same functional form.
The solution of each AI model uniquely defines the corresponding local self-energy
i,

Yi(wWn) = iwn + 1 — g5 — Ag(wy) — (GL%(wy)) 7Y, (3.19)

where the local Green’s function G¢ is calculated in respect to the local effective

action,

<Z|é(wg)‘z> = Gé(z‘m(wn) = <C;‘r(wn)ci(wn)>l00' (3.20)

Moreover, the full lattice self-energy assumes the local form,
In the last step, we are defining interacting lattice Green’s function using non-

interacting ("bare") Green’s function for the same realization of disorder ¢;.
Gij = Gjlei — i + Zi(wn)] (3.21)

Here we assumed that the self-energies describing the interaction renormalization
have a strictly local character.

Now we have all necessary ingredients to write the iterative procedure of statis-
tical DMFT:
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3.4 STATISTICAL DYNAMICAL MEAN FIELD THEORY

1. make an initial guess for each hybridization function A;,
2. solve the corresponding Anderson impurity model on every site of the lattice,
3. use the resulting self-energies ¥; to calculate full Green’s functions from Eq. B2ZT],

4. calculate the new values of A;(w,,) from Eq. BT9

ot

. repeat the steps 2. to 4. until all A; converge.

To get the impression about the calculations involved in the statistical DMFT,
we will briefly comment important features of the algorithm. Again, like in CPA
case, the most demanding step is solving Al models (AIM) for every site in the lattice
in every iteration. The statistical DMFT results we will present later are obtained
mainly using the CTQMC solver, but the part concerning study of finite size effects
(where we performed SDMFT calculation in absence of disorder) is obtained using
the IPT solver, which is considerably faster. Its usage was necessary for studying
large three dimensional lattices in reasonable time. Since the solution of the impurity
problem for each site is the most demanding step, SDMFT code is parallelized over

sites. The schematic description of the SDMFT is presented on the following figure.

© 06 0 0 O

Figure 3.6: Schematic representation of the statistical DMFT algorithm.
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4. Influence of disorder on incoherent trans-
port near the Mott transition

Most of the theoretical work on the influence of disorder on physical properties
near the Mott transition have been so far restricted to binary disorder distribution

| or low temperatures, where the DMFT has been extended in order to incor-
porate the Anderson localization effects [Iﬂ, , ] Different transport regimes
in strongly correlated materials are, however, identified covering broad temperature
range. These transport regimes are particularly clear in different compounds of x-
family organic charge-transfer salts, see Figure [Tl These materials have half-filled
conduction band with the effective Coulomb repulsion comparable to the bandwidth

|. The proximity to the Mott metal-insulator transition can be tuned by applying
the pressure.

On the metallic side of the Mott transition, the Fermi liquid transport at low
temperatures is followed by an incoherent transport at higher temperatures domi-
nated by the large scattering rate, and with resistivities an order of magnitude larger
than the Mott-Ioffe-Regel (MIR) limit [@, @, H, @], which is the maximal resistiv-
ity that can be reached in a metal according to the Boltzmann semiclassical theory.
The resistivity of the MIR limit corresponds to the scattering length of one lattice
spacing. From the theoretical point of view, the violation of the MIR condition and
the appearance of the maximum in the resistivity temperature dependence is not
easy to explain. However, at least for x-organics, a significant progress has been
recently achieved when the transport properties were successfully described even on
the quantitative level within the dynamical mean field theory (DMFT) [H, H, E]

Very recently, the effects of disorder on the optical and dc conductivity of the or-
ganic charge-transfer salts have been systematically explored by introducing defects
by X-ray irradiation [IB, @, H] The conductivity has proven to be very sensitive on
the duration of the irradiation, and different physical mechanisms were advocated

to explain such a behavior |42, , |. Since the disorder is gradually generated
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by X-ray irradiation, the simplest approach of disorder averaging on the level of
coherent-potential approximation (CPA), that we apply in this chapter, should be
sufficient to explain the main modifications in the optical and dc conductivity caused
by the disorder |[L1|. Motivated by the experiments on k-organics, we calculate the
resistivity in a wide temperature range for several levels of disorder. In this Chap-
ter we present the results for the temperature dependence of the density of states,
optical conductivity and dc resistivity near the Mott transition for the pure and dis-
ordered system. Our results are compared with the experiments on X-ray irradiated
k-organics. The high temperature results are obtained with OCA impurity solver
and CTQMC is used for the lowest temperatures.
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4.1 DENSITY OF STATES AND OPTICAL CONDUCTIVITY

4.1 Density of states and optical conductivity

The phase diagram of fully frustrated half-filled Hubbard model in DMFT approxi-
mation is well known, see Figure Here we focuse on the crossover region from
the Fermi liquid, across the incoherent metal to the high temperature insulating-like
phase, for the values of interaction equal and slightly lower than U, and for several

levels of disorder. We consider the disoreder half-filled Hubbard model (see section

3.1)
H=— Zti’jCIUng + UzniTnil + ZU@TLZ‘U - ,U/an. (41)

ij,o i
where the disorder is modeled by random energies v; taken from uniform distribution
in the interval (—W/2,W/2). Since the lattice structure enters the DMFT equations
only through the density of states, the transport properties does not depend much
on the details of the band structure, and we will consider the hypercubic lattice

which has the density of states in the form of a Gaussian

D(e) = \/g e (4.2)

where the energy is given in units of the half-bandwidth.

The central quantity that we calculate is the optical conductivity. The details of
these calculations are presented in the chapter Bl Here we express the conductivity
in units of the Mott-Ioffe-Regel limit for minimal metallic conductivity. The MIR
limit, o0,,,,, is the conductivity which is reached when the electron mean free path
becomes comparable to the lattice spacing, [ ~ a. According to the semiclassical
arguments, the electrons can scatter at most on every atom and the conductivity in
a metal cannot be smaller than o,,,,.. For half-filled hypercubic lattice (which has
Gaussian density of states), the MIR condition [ = a is equivalent to F.7 = 1, where
E

and 77! is the scattering rate. Here h is set to 1. Therefore, the MIR limit is set by

. 1s the bare Fermi energy, i.e. half-bandwidth of the noninteracting electrons,
a condition
7! = -2Im%(07) =1, (4.3)

MIR

where ¥ is the self-energy measured in units of Ep.
The density of states and optical conductivity for a clean system and in a presence

of moderate disorder, W = 1, are shown in Figure EEIl The disorder effectively
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Figure 4.1: Density of states and optical conductivity as a function of frequency
in the clean case for U = 0.94U.|w—o (upper panel) and disordered case, U =
0.94U.|w=1 (lower panel). Different colors correspond to the four distinctive trans-
port regimes (see the text). The insets show the temperature dependence of dc
resistivity. 7', w and W are given in units of bare Fp.

increases the bandwidth and the critical interaction U.. In our case, we find that
Uelw=o = 2.2 and U,|w=1 = 2.45. The increase of U, due to disorder is in agreement
|. The critical

temperature T, weakly depends on the disorder strength, T.|yw—1 =~ T.|w=o = 0.04,

with earlier estimates obtained by iterated perturbation theory

where kg is set to 1. On Figure we compare the data at the same relative value
U/U. = 0.94, and for several characteristic temperatures. We see that the disorder
does not lead to qualitative differences and if the interaction is the same when scaled
with U,, the density of states and the optical conductivity are even quantitatively
very similar.

We can identify several regimes of the electron transport [Iﬁl] At low temperature

(green dotted lines and crosses in the insets) the scattering rate, 77! = —2Im%(07"),
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Figure 4.2: (a) Scattering rate (full line) and dc resistivity (dashed) as a function of
temperature. (b) Quasiparticle weight as a function of temperature. The data are
for the clean system at U = 0.95U...

is small and the transport is dominated by long-lived coherently propagating quasi-
particles. The blue dash-dotted lines (blue circles in the insets) correspond to the
temperature when the resistivity is already larger then the MIR limit, the scattering
rate 771 is larger than Ex, and the Fermi liquid picture of well-defined quasiparticles
ceases to be valid. However, a Drude-like peak in the optical conductivity, as well
as a peak in the density of states, are still present. Our results show that this is the
case also in the presence of moderate disorder. The resistivity maximum (red full
line and square) is reached when the peak at the Fermi level is fully suppressed and
when a dip at the Fermi level appears both in the density of states and in the optical
conductivity. The resistivity maximum is more than an order of magnitude larger

than Puir = T

e At even higher temperatures (violet dashed line and triangle)

low frequency optical conductivity increases due to the thermal excitations.

Figure helps us to further distinguish the mechanism leading to the large
resistivity and its strong temperature dependence. We see that the scattering rate
gives the main contribution to the resistivity temperature dependence and causes
the violation of the MIR limit, Figure EZ2(a), while the quasiparticle (Drude) weight
Z = (1 +|0ReX(w)/0wl|,—0)~" is almost temperature independent, Figure E2|(b).
The dotted part of the line is an extrapolation of the OCA results to zero tempera-
ture. We have also checked that Z depends very weakly on the temperature using
more reliable CTQMC impurity solver. Therefore, we can conclude that the driving

mechanism for large resistivity is the large scattering rate and not the reduction
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4.1 DENSITY OF STATES AND OPTICAL CONDUCTIVITY

of the spectral weight near the Fermi level. This feature, already seen in the ex-
periments on VO [57] and charge-transfer salts [@], seem to be common for the
systems with half-filled conduction band near the Mott transition. This should be
contrasted with the doped Mott insulators where the main reason for the violation
of the MIR condition is a decimation of the Drude peak in the optical conductivity
by the time MIR limit is reached, which can be interpreted as a reduction of the

number of charge carriers [49, 52].
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Figure 4.3: Temperature dependence of dc resistivity for different interaction U in
the clean case, W = 0 (a) and disordered case, W =1 (b). U is given in units of
Ue(W).

The results for temperature dependence of dc resistivity, p, = o~ (w — 0), for
several values of interaction U are shown in Figure 3 The resistivity is given in
units p,,,,. For clarity it is shown on a logarithmic scale. The resistivity in the
clean and disordered case are even quantitatively very similar when the interaction
is scaled with U.(WW).
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4.2 Increase of metallicity by disorder

Very recent experiments [IB, , B] on the charge-transfer organic salts provide a
rather unique opportunity to study the effects of disorder on transport properties
without changing external parameters or chemical composition. The level of defects
(disorder) directly depends on the time of exposure to the X-rays. The optical and
dc conductivity are proven to be very sensitive on irradiation time showing an in-
crease in the conductivity with the time of irradiation. The experiments measured
both interlayer and in-plane resistivity with similar conclusions. Different physi-
cal mechanisms were proposed to explain the increase of conductivity. Analytis et
al. [42] proposed a defect-assisted interlayer conduction channel for the reduction
of resistivity, and Sasaki et al. , B3| proposed that the irradiation leads to the
effective doping of carriers into the half-filled Mott insulator.

The DMFT has successfully described the transport properties of organic salts
even on the quantitative level [H, E] In order to make a comparison with the ex-
periments with irradiation induced defects, we solve the DMFT equations for fixed
interaction U and vary the level of disorder W [L1l|. The results for dc resistivity are
shown in Figure E4l(a). The data for T' < 0.01 are obtained using CTQMC impurity
solver. The presence of even a weak disorder significantly decreases the resistivity
by effectively moving the system away from the Mott insulator, as explained in the
previous section. Our data are very similar to the measurements on charge-transfer
salt k-(BEDT-TTF),Cu(SCN), from Ref. [IB], which are shown in Figure EZ4(b).
We note that these data are for interlayer resistivity while our DMFT calculation
corresponds to in-plane transport. However, the interlayer transport is due to inco-
herent tunneling which is proportional to in-plane conductivity [I%] Therefore the
temperature dependence of out-of-plane resistivity should follow the temperature
dependence of in-plane resistivity. Indeed, the in-plane optical conductivity mea-
surements on the Mott insulator x-(BEDT-TTF),Cu|[N(CN),|Cl, also show that the
Mott system becomes more metallic in a presence of disorder. These measurements
show the transfer of the spectral weight to low frequency region as the irradiation

fid b
We iﬁphasize that our model, as opposed to the physical mechanism proposed
in Ref.

number of carriers per site remains equal to one. The local occupation number,

time increases, followed by the collapse of the Mott gap
|, does not assume an introduction of new charge carriers since the total

however, depends on the random site potential, and we can say that the system is

39



4.2 INCREASE OF METALLICITY BY DISORDER

W=0.0 —— |
W=0.2 wemmeene

W=0.4 s
W=0.6 -

25

20

pDC/pMIR

. & e,
¥ 5 . v,
: K o, Doy
S iy, pON
15 3 s
3 ~ tey
H R

.....

10

0.14

400

300

200

p (Qcm)

100

0 50 100 150 200
T (K)

Figure 4.4: (a) Temperature dependence of dc resistivity for fixed U = 2.2 = U, |w—o,
and various levels of disorder. (b) Experiments on x-(BEDT-TTF),Cu(SCN),, taken
from Ref. [IE]

effectively locally doped [@] The occupation number, for a given spin orientation,
as a function of random site potential is shown in Figure L3 It is interesting to
note that the local occupation number, n(v;), deviates much less from its average
value than it would be the case in the absence of interaction. This is a consequence
of very strong disorder screening of site-diagonal disorder on the metallic side of

the Mott transition [60]. Therefore, the resistivity curves on Figure EE(a) cross
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Figure 4.5: Local occupation number per spin as a function of site disorder v; for
T=0.01,U=21,and W = 1.

at very low temperatures and our current model cannot explain the intersection of
curves in Figure EE(b) which happens at much higher temperature. The dramatic
reduction of the elastic scattering is also demonstrated in Ref. |61], which shows
that the inelastic scattering dominates in the incoherent regime. We stress that we
do not assume Matthiessen’s rule. This is a salient feature of DMFT, which can

operate in a regime where conventional approaches to the electron transport fail.
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4.3 Conclusions

In summary, we have examined the influence of random potential on the optical
and dc conductivity for half-filled Hubbard model in a vicinity of the Mott transi-
tion. Our results show, in agreement with the experiments on x-organics, that the
disorder can make the system effectively more metallic [1L1]. The disorder increases
the bandwidth which increases U, and weakens the correlation effects, moves the
system away from the Mott transition and leads to a decrease in the scattering rate
and resistivity. We emphasize that the randomness in our model does not change
global doping, as the system remains on average half-filled, but the number of charge
carriers locally deviates from the average value. Therefore, global carrier doping of
a Mott insulator due to irradiation defects, proposed in Ref. [35], is not necessary
to make the system more metallic. We also find that the maximal possible value of
metallic resistivity remains more than an order of magnitude larger than the MIR
limit even in a presence of moderate disorder. As in the clean case, the violation of
the MIR limit is driven by a large scattering rate due to the electron-electron scat-
tering, and Drude-like peak in the optical conductivity persists even at temperatures

when the resistivity is well beyond the MIR limit.
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5. Scattering mechanism in diluted 2D elec-
tron gases: interaction vs. disorder

The physical nature of scattering processes which control transport represents one
of the most fundamental properties for any material. At the lowest temperatures
the thermal excitation are few, and elastic impurity scattering dominates. Raising
the temperature introduces two basic pathways to modify transport. First, elas-
tic scattering can acquire a temperature dependence either through the modified
screening of the impurity potential, or through dephasing processes [62, 63]. This
general mechanism encapsulates the physical content of all “quantum corrections”
— both in the diffusive and the ballistic regime — predicted within the Fermi liquid
framework. Indeed, careful and precise experiments have confirmed the validity of
this physical picture for many good metals with weak disorder [B] Physically, it
relies on the existence of long-lived quasiparticles within a degenerate electron gas.

The second route comes into play in instances where correlation effects due to
electron-electron interactions are significant. Here, the Fermi liquid regime featur-
ing degenerate quasiparticles is often restricted to a very limited temperature range
T < T* <« Tg, well below the “coherence temperature” 7%, which itself is much
smaller then the Fermi temperature 7. In such materials, which include rare-earth
intermetallics @, H many transition metal oxides |51, and several classes of or-
ganic Mott systems E, @, |, a broad intermediate temperature regime emerges
T ~ T* < Ty where inelastic electron-electron scattering dominates all transport
properties. Such scattering directly reflects the thermal destruction of Landau quasi-
particles — a situation describing the demise of a coherent Fermi liquid. In these
materials, in the relevant temperature range, the electron-phonon scattering is much
weaker than the electron-electron one.

When a material is tuned to the vicinity of any metal-insulator transition, both
disorder and electron-electron interactions are of a prior: importance. But which of

these two scattering mechanisms — elastic or inelastic — dominates the experimen-
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tally relevant temperature range? Answering this question should provide important
clues as to which of the localization mechanisms dominate in any given material.
Unfortunately, experimental systems permitting sufficiently precise tuning of con-
trol parameters are generally rather few. An attractive class of systems where a
dramatic metal to insulator crossover is observed in a narrow parameter range is
provided by 2D electron gases (2DEG), such as silicon MOSFETs or GaAs/AlGaAs
heterostructures |67, ,E] One of the most striking features observed in these
systems is the pronounced resistivity drop on the metallic side of the transition.
While conventional, relatively weak temperature dependence is found at high densi-
ties (n > n..), very strong temperature dependence is found near the critical density
ne, roughly in the same density range n. < n < 2n. where other strong correlation
phenomena were observed, e.g. large m* enhancement [Iﬁ] Here, pronounced resis-
tivity maxima are observed at T' ~ T,,,,(n), followed by a dramatic resistivity drop
at lower temperatures, whose physical origin remains a subject of much controversy
and debate EEL @, E]

In this Chapter we argue that the electron-electron scattering dominates the
transport in a broad concentration and temperature range on the metallic side of the
metal-insulator transition [B] in Si MOSFETS and GaAs/AlGaAs heterostructures.
This conclusion is reached by: (i) A detailed scaling analysis of the metallic resis-
tivity curves; (ii) Establishing a similarity in the transport properties of the 2DEG
and well-studied strongly correlated materials near the interaction-driven MIT; (iii)
Making a comparison of the resistivity curves in 2DEG with those in a simple model
of the Mott MIT. Our conclusions favor the interaction-driven (Wigner-Mott) sce-
nario [IEL B, E, , E] of the MIT in 2DEG and give a guidance for the development

of a microscopical theory of incoherent transport in diluted 2DEG.
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5.1 Metal-insulator transition in two dimensions

The interest for the physics of the strongly-correlated, disordered systems has been
renewed since the beginning of 1990’s, due to many unexpected and puzzling trans-
port properties of high mobility silicon metal-oxide semiconductor field-effect tran-
sistors (MOSFETs). Despite the extensive experimental and theoretical studies,
many of the transport properties of these materials remained unclear.

In early 1980’s there was a wide spread belief that there should be no metal-
lic phase in (infinite) two dimensional disordered systems in zero magnetic field.
In the case of noninteracting charge carriers such result was obtained within the
scaling theory of localization [76l]. This theory predicted that as the temperature
approaches zero, the resistivity becomes infinite. The growth of resistivity is shown
to be logarithmic in the case of “weak localization” and exponential for “strongly lo-
calized” charge carriers. Subsequent studies have shown that the localization effects
increase even further in the presence of weak interaction [Ia] In the opposite limit
of the strongly interacting particles the Wigner crystallization occurs [78]. Even a
small amount of disorder, in this case, leads to the pinning of the Wigner crystal
that makes system insulating. Therefore, the two-dimensional electron systems were
expected to be insulating in both limits: weak (or absent) and very strong inter-
particle interaction. That question was considered as resolved until the experiments
on highly diluted 2D electron gases were performed.

Recent availability of high mobility MOSFET samples enabled the systematic
research of 2D systems in the range of very low electron densities, typically below
10" ¢m ™2 [Iﬂ] An important result of these studies is the strong temperature de-
pendence of the resistivity well below Fermi temperature. In addition, the existence
of the critical density n. is obtained for which the resistivity is almost temperature
independent and it is of the order of the quantum unit of resistance, h/e? ~ 25.6 k€.
Above n,. the resistivity decreases with the temperature down to the lowest accessible
temperatures of ~ 4 mK. All this strongly suggests that there is a metal-insulator
transition at 7" = 0.

The first experiments indicating the existence of MIT in 2D electron systems were
performed on highly diluted silicon MOSFETs [@, H] Significant property of these
materials was an order of magnitude larger mobility than in previous investigations,
reaching more than 4 x 10* cm?/Vs at T = 4.2 K. At these very low electron

concentrations the electron-electron interaction E._. becomes dominant and much
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larger than the Fermi energy. Estimates of these energies for Si MOSFETSs at ng =
101 em ™2 yield

2
Eoo ~ S (1ny)2 2 10meV, (5.1)
€
while 12
Ep="""% ~0.58 meV, (5.2)
2m*

where e is the electron charge, € is the dielectric constant, Er is the Fermi energy,
and m* is the effective electron mass. Typical values of dimensionless parameter
rs = Eeo/Er in these samples is above 10. In the very dilute 2D electron systems
the formation of the Wigner crystal is expected, and according to the numerical
simulation [78] this should occur at r; &~ 37 + 5, and at even higher density in the
presence of disorder [82]. Hence, these 2D systems can be considered as strongly
correlated electron liquids at rs ~ 10.

These findings were supported by subsequent experiments in diluted 2D electron
systems like silicon MOSFETs with different geometry and oxide thicknesses [@]
and other 2D systems (p-GaAs, n-GaAs, p-SiGe, etc.). Typical experimental re-
sults [@, M] of the resistivity dependence on the electron density and temperature
are presented in Figure B3l Aforementioned critical electron density n. is clearly
distinguished together with the metallic family of the curves having n, > n. and
insulating curves with negative slope for ny < n.. The most striking property is
change in resistivity by several orders of magnitude, caused by change of the con-
centration of only a few percent. The temperature dependence of the resistivity
becomes weak above T™ ~ 2 K. At higher densities, of the order of those used in the
experiments in the 1980s, a weak insulating temperature dependence is observed,

reminiscent of Anderson localization.
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5.2 Scaling analysis of the resistivity maxima

The experimental data reveal well defined trends in the density dependence of the
resistivity maxima, suggesting a scaling analysis. While many different scenarios for
the metal-insulator transition predict some form of scaling, its precise features may

provide clues to what mechanism dominates the transport.
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Figure 5.1: Resistivity as a function of temperature from the experiments on Si
MOSFET by Pudalov et al. [84].

All the curves displaying a resistivity maximum have an almost identical shape
Figure Bl strongly suggesting that unique physical processes are responsible for a
strong temperature dependence of the resistivity [12] in a large range of concentra-
tions. The resistivity maxima are typically observed at temperatures comparable

to the Fermi temperature, where a physical picture of long-lived quasiparticles is
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5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA

no more valid. Complementary experiments [IE, @] on the same material have re-
vealed that large effective mass m* enhancements are observed in the same density
range. This behavior is a clear signature of strong correlation effects which, in all
known examples, produce very strong inelastic electron-electron scattering in the
appropriate temperature range. The electron-phonon scattering is negligibly small
for T'< Tr < 10 K [83]. Since a strongly correlated system is typically characterized
by a single characteristic energy scale T* ~ (m/m*) Tr, we expect the scaling func-
tion f(x) to assume a universal form, while the scaling parameters 7,,,,, = T and
Pmae t0 assume a simple, power-law dependence on the effective mass m*. Guided
by these observations, in this Section we introduce a scaling ansatz and perform a

scaling analysis of the resistivity curves in Si MOSFETs and GaAs heterostructures.

5.2.1 Phenomenological scaling hypothesis

In accordance to what is typically found in other examples of strongly correlated
metals with weak to moderate disorder [5|, we expect the resistivity to assume
an additive form, p(T) = p, + dp(T). Here, p, is the residual resistivity due to
impurity scattering, and the temperature-dependent contribution dp(7T') is expected
to be dominated by inelastic electron-electron scattering. Based on these general
considerations, we propose that the temperature-dependent term assumes a scaling

form

0p(T) = 0pmaz f(T/ Trnaz ), (5.3)

where 0pmar = Pmaz — Po-

To test this phenomenological scaling hypothesis, we perform a corresponding
analysis of experimental data in several systems displaying 2D-MIT [12]. We start
with the Si MOSFET data M] analyzed in Ref. [86]. We concentrate on metallic
curves below the separatrix C. In the range of concentrations 0.83 < n < 1.10,
the resistivity curves have a clear maximum, and nicely collapse with the proposed
scaling ansatz, Figure E2(a). In fact, we can use the scaling ansatz to collapse
also the data for 1.21 < n < 1.75, where T}, and pnq. are determined from the
least square fit to the scaling curve. Clearly all eight resistivity curves belong to
the same family (have the same functional form), and thus must be explained by a
single dominant transport mechanism. This conclusion is even more convincing if we
apply the same analysis to several different materials, including ultra high mobility

GaAs sample, Figure B2(b). While the diffusive physics cannot possible apply in
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Figure 5.2: Scaled resistivity as a function of scaled temperature for different electron
(hole) concentrations, for Si MOSFET (a) and GaAs heterostructures (b). The
experimental data are taken from Ref. [@] (MOSFETS), Ref. [@] (p-GaAs/AlGaAs,
blue symbols), Ref. [@] (n-GaAs/AlGaAs, green symbols), and Ref. [@] (p-GaAs,
orange symbols). The solid line is the scaling function obtained for a simple model
of the MIT (see section B.4).

such a broad parameter range, we see that the scaling form we propose proves to
be an extremely robust feature of all available 2D-MIT systems. This result is very
significant, because disorder effects must be significantly weaker in these ultra-clean

materials, while the interaction effects are expected to be even stronger.
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0 Pmaz = Pmaz — Po 1N uNits W%€2 (b), as a function of a reduced density. The data
are taken from Refs. [‘@, 1817, |-

5.2.2 Critical behavior of the Wigner-Mott scaling

Having demonstrated data collapse, we are now in a position to examine the critical
behavior of the relevant crossover scale. We thus examine the behavior of T,,,,, and
Pmaz s a function of reduced concentration (n — n.)/n. and effective mass m* (as
determined by complementary experiments).

For different realizations of 2DEG, T,,.. shows approximately power law de-
pendence on the reduced concentration, Figure E3(a), and even the exponents are

similar. 7},,, in our physical picture has a clear physical interpretation as a coher-
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Figure 5.4: (a) Maximum resistivity 0pmez = Pmaz — Po as a function of T),... (b)
Tnae as a function of inverse effective mass m*. my, is the band mass in Si MOSFETs.
The data are taken from Refs. [@], [@]

ence temperature - the temperature when the inelastic electron-electron scattering
time becomes comparable to h/Er, leading to incoherent transport. The resistivity
maximum, however, shows less universal form. It varies a lot in different physical
systems. This does not come as a surprise since the resistivity shows nonuniversal
features also in three dimensional strongly correlated materials near the Mott tran-
sition. We discuss in detail the analogy with the Mott systems in sections. and
5!

In a Si MOSFET the resistivity maximum 09,4z = Pmaz — Po Shows power law
dependence on T}, in a fairly broad concentration range, Figure E4)(a). We further
analyze the critical behavior for Si MOSFET using the data for the effective mass
as determined by Shashkin et al. [Iﬂ] from magnetoresistance measurements in a
parallel magnetic field. We find that 7},,, is inversely proportional to the effective
mass m*. This behavior is typical to all systems near the Mott MIT, where the
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5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA

coherence temperature is inversely proportional to the effective mass, as a landmark

of strong correlations.

5.2.3 Breakdown of the diffusion mode scaling

We have successfully collapsed resistivity curves in a broad temperature and con-
centration range and for several physical realizations of 2DEG. The physical picture
behind the proposed scaling is that the 2D MIT is an interaction-driven (Wigner-
Mott) MIT [IE', B, E, B, |, and that the dominant temperature dependence in

the resistivity originates from strong electron-electron scattering. Another proposed
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Figure 5.5: Resistivity as a function of temperature scaled as in Ref. [@] Red solid
line is the calculated scaling curve.

scenario envisions disorder as the principal driving force for localization [@, m],
while the interactions are most important above the critical density and at low tem-
peratures, where they suppress the tendency to localization. An appropriate theory,
based on Fermi liquid framework [86|, has predicted that a resistivity maximum
should be observed on the metallic side, with the resistivity assuming the scaling

form

P(T)/ prmaz = flPmaz (T Tinaa)]- (5.4)

Here f(z) is a universal scaling function predicted by theory. The authors point
out, though, that this prediction is expected to be valid only within the diffusive

regime, where the thermal energy kg7 is smaller then the elastic scattering rate
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h/7. According to this picture, a different (ballistic) mechanism for transport is
expected outside the diffusive regime, presumably leading to a different temperature
dependence, so the proposed scaling no longer holds. This analysis was applied to the
experimental data of Ref. |[84], but was accordingly restricted to only three densities
closest to the transition. Indeed, if the scaling formula is applied in a broader
range of concentrations, the resistivity curves clearly do not collapse [Figure B0
While the Fermi liquid renormalization group calculations are very important in
order to answer a fundamental question of necessary conditions for a true MIT at
zero temperature, our analysis emphasizes that the understanding of various diluted
2DEG in a broad range of parameters requires the physics beyond the conventional

Fermi liquid framework.
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5.3 Scaling in 3D materials
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Figure 5.6: Scaled resistivity curves for UBe;3 (upper panel) and x-(ET),C
(lower panel), for different external pressure. The data are taken from Refs.
Strong temperature dependence of resistivity is well known feature of many
A pronounced resistivity maximum is observed in
H] and charge transfer organic salts [H @ E] where the cor-

strongly correla’[lcﬁi materials.
relation strength is tuned by applying an external pressure. The essential mechanism

heavy fermions
of transport in these materials relies on strong inelastic electron-electron scattering,
and the Fermi liquid behavior is restricted to the lowest temperatures. As the tem-
perature increases, the electron mean free path becomes comparable, or smaller than
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5.3 SCALING IN 3D MATERIALS

the lattice spacing, and the transport becomes incoherent. The electron-phonon
scattering is here much weaker than the electron-electron one. The temperature of
resistivity maximum can be taken as a definition of the coherence temperature 7

|. It is inversely proportional to the effective mass, and much smaller than the
bare Fermi temperature, 7% ~ (m,/m*) Tr. The same scaling ansatz as given by
Eq. was used to collapse the resistivity curves for CeCug already in an early
paper by Thompson and Fisk [64].

Here we illustrate the similarity in transport properties of these systems and
2DEG by scaling the resistivity data for heavy fermion UBe;3 from Ref. [Ia], Fig-
ure (upper panel), and for a charge-transfer conductor x-(ET)2Cuy(CN); Fig-
ure .0l (lower panel). The collapse of the resistivity curves is excellent for UBey3, and
well-defined trends are seen in k—(ET)3Cuy(CN)s. Remarkable similarity in resistiv-
ity curves in so diverse physical systems like Si MOSFETs, GaAS heterostructures,
heavy fermions and charge-transfer organic conductors, is in our view, a manifesta-

tion of the same physical processes in the vicinity of the interaction-driven MIT.
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5.4 Scaling in the microscopic model of the interac-
tion driven MIT

Having phenomenologically established precise and well defined scaling behavior of
the experimental curves on the metallic side of the 2D MIT for temperatures near
T, we now address its microscopic origin. More precisely, we would like to under-
stand just how robust this result is. Does it depend on subtle details describing the
interplay of disorder and interactions of 2DEG materials, as suggested in Ref. [92],
or is it a generic feature of strong correlation near interaction-driven MIT. To answer
this important question we deliberately focus on the simplest microscopic model for
interaction-driven MIT: The clean single-band Hubbard model at half-filling. Accu-
rate and quantitatively precise results can be obtained for temperature-dependent
transport for this model within the DMFT approximation [IE] While the DMFT
reproduces Fermi liquid behavior at the lowest temperatures, it is particularly useful
in the studies of “high temperature” incoherent transport. Results of such calcula-
tion, obtained by the Continuous Time Quantum Monte Carlo (CTQMC) impurity
solver [Iﬂ @] followed by the analytical continuation by the Maximum Entropy
Method|38], can be analyzed using precisely the same scaling procedure we pro-
posed for experimental data. We concentrate on the metallic phase of the Hubbard
model with the interaction parameter U smaller than the value at the critical end-
point U.. The resistivity curves in Figure B(a) have qualitatively the same form
as in 2DEG. The resistivity sharply increases with temperature, reaches a maxi-
mum and than decreases. The temperature of resistivity maximum decreases as the
system approaches the MIT.

Most remarkably, precisely the same scaling form as in 2DEG is found to describe
all resistivity curves close to the Mott transition [B] Figure B7(b). In addition, we
find that the scaling parameters T},,, and p.. again display a power law depen-
dence on the effective mass, Figure B8 and even the exponents are similar. Finally,
we contrast the DMF'T scaling function with that obtained from 2DEG experiments.
We find surprisingly accurate agreement between the DMFET prediction for the scal-
ing function f(x) and experimental data on all available materials Figure We
emphasize, however, that our scaling hypothesis is valid only in the metallic phase
for U < U, and for temperatures comparable to 7" ~ 1/m*. It should be contrasted
with the scaling near the critical end-point (U,, T.) [Ia, |, or the proposed quantum

critical scaling in the high-temperature regime above the critical end-point [40)].
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Figure 5.7: (a) Resistivity as a function of temperature for several interaction
strengths in the half-filled Hubbard model solved within the DMFT. The resistivity
is normalized to the Mott limit value, which corresponds to the scattering length of
one lattice spacing. (b) Scaled resistivity curves.

We should point out that for this model, the proposed resistivity scaling is not
valid at the lowest temperatures 7" < 1,4, deep within the Fermi liquid region:
According to the Kadowaki-Woods relation, here p ~ AT? where A ~ 1/m*? ~
1/T?

max?

and the scaling is violated if the resistivity is scaled by ppa.. For T 2
0.3Tnaz the collapse of the resistivity curves is excellent, see the Figure BZ(b), and
we define the DMFT scaling curve for this temperature range. This is also the

reason of the deviations in the scaling in Figure B0(b) for k-organics, the materials
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Figure 5.8: (a) Maximum resistivity as a function of the corresponding temperature
from the DMFT solution of the Hubbard model. (b) T},4. as a function of the inverse
effective mass.

whose properties are described remarkably well within the Hubbard model [B, @]
In the Anderson lattice model, on the other hand, the resistivity maximum does
not change much near the MIT and it saturates approximately to the value which
corresponds to the scattering length of one lattice spacing (Mott limit). In this case
our scaling ansatz is valid in the whole temperature range up 7" = 0 93], and the
collapse of the resistivity curves seen in the experiments is excellent Figure B6(a).

Microscopic theory of the 2DEG should also include nonlocal correlations which
are neglected in a simple DMFT approach. A more realistic extended Hubbard
model displays a two-stage Wigner-Mott localization [Iﬂ, @] The metal-insulator
transition in this model is found in the region with already developed nonlocal
charge correlations. In the immediate critical regime, the critical behavior can be
represented by an effective Hubbard model, partially justifying the success of the

present modeling. The existence of a coherence scale 7™ which vanishes at the
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onset of charge order is also found in the 2D extended Hubbard model solved by
finite-T" Lanczos diagonalization [@] This result is relevant for quarter-filled layered
organic materials, which further supports the importance and generality of the ideas

presented here.
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5.5 Scaling in the model with disorder

We have already tested our phenomenological scaling on various strongly correlated
systems dominated by the strong electron-electron scattering. The phenomenologi-
cal scaling we have proposed is obviously the common feature of strongly correlated
systems. If this is true it should hold for systems with weak or moderate disor-
der. We have tested our scaling procedure on the resistivity results in the presence
of disorder. We have concentrate on the regime of strong disorder W = 2.5, but
the physical picture is qualitatively the same as for weak or moderate disorder (see

section B1l). The same scaling hypothesis holds in this case. The main effect of
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Figure 5.9: Scaled resistivity curves for several interaction strengths in the presence
of disorder (dots), DMFT disordered scaling curve (black), scaling curve of experi-
ments on disordered GaAs heterostructures [97| (green), DMFT scaling curve in the
clean case (red).

disorder is the broadening of the scaling curve. Even more, our CPA-DMFT scaling
curve surprisingly well coincides with the scaling curve obtained from experiments

on disordered GaAs heterostructures [97).
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5.6 Conclusion and discussion

In this Chapter we argued that the emergence of resistivity maxima upon thermal
destruction of heavy Fermi liquids should be regarded as a generic phenomenon in
strongly correlated systems [12]. We demonstrated that the resulting family of re-
sistivity curves typically obeys a simple phenomenology displaying scaling behavior.
Our detailed model calculations show that all the qualitative and even quantita-
tive features of this scaling phenomenology are obtained from a microscopic model
of heavy electrons close to the Mott metal-insulator transition. We should stress,
however, that the proposed scaling behavior obtains - both in our theory and in
experiments - only within the metallic regime not too close to the transition and
the temperature regime around the resistivity maxima. In contrast, earlier exper-
iments focused on the immediate vicinity of the metal-insulator transition, where
different “quantum critical” scaling was found [Ial, H, Q, @] Remarkably, precisely
such behavior is also found in very recent studies of quantum critical transport near
interaction-driven transitions l@i but this was identified in a different parameter
regime than the one studied in the present chapter.

Our results provide compelling evidence that several puzzling aspects of trans-
port in low density two-dimensional electron gases in zero magnetic fields can be
understood and explained within the Wigner-Mott scenario of strong correlation |71,

,E, , [73]. This physical picture views the strong correlation effects in the low
density 2DEG as the primary driving force behind the transition, and additional dis-
order effects as less significant, secondary processes. In the Wigner-Mott picture the
insulator essentially consists of interaction-localized magnetic moments. Remark-
ably, magneto-capacitance measurements of Prus et al. [90| show that the behavior
characteristic of localized magnetic moments, x(7)/n ~ gu%/T, is seen near the
critical density, while only weak Pauli-like temperature dependence was observed at
higher density. Very recent experiments on Si MOSFETs find that the thermopower
diverges near the MIT [99]. The authors argue that divergence of the thermopower
is not related to the degree of disorder and reflects the divergence of the effective
mass at a disorder-independent density, behavior that is typical in the vicinity of an
interaction-induced phase transition. Additional hints supporting this physical pic-
ture of 2D MIT are provided by existing first principle Quantum (diffusion) Monte
Carlo results for the low density 2DEG of Ceperley | and others [@, ; @]

These calculations find that the correlated metallic state has an “almost crystalline”
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structure, thus having very strong short range charge-order (i.e, as seen, for example,
in the density correlation function).

Within the physical picture that we propose, the inelastic electron-electron scat-
tering takes central stage |12, 61, |, in contrast to disorder-dominated scenarios,
where the interaction effects mainly introduce temperature dependence of elastic
electron-impurity scattering |[63]. The two physical pictures describe two completely
different scattering processes, which are expected to be of relevance in complemen-
tary but in essentially non-overlapping parameter regimes. Indeed, inelastic scatter-
ing dominates only outside the coherent Fermi-liquid regime, which in good metals
happens only at fairly high temperatures. In strongly correlated regimes that we
consider, the situation is different. Here the Fermi liquid coherence is found only at
very low temperatures 17" < T* < Ty, behavior which is generally observed in all
system with appreciable effective mass enhancement. The results presented in this
chapter provide precise and detailed characterization of this incoherent regime, re-
vealing remarkable coincidence of trends observed in the experiment to those found
from the Wigner-Mott picture of the interaction-driven metal-insulator transition.
Our scaling ansatz is proposed based on the physical arguments and the experimen-
tal data. While consistent with simple model calculations for strongly correlated
electronic systems, our work does not directly address specific microscopic mech-
anism responsible current dissipation, a process that in 2DEG systems should be
facilitated by impurities and imperfections [IE] Still, it provides very strong moti-
vation to develop a more realistic microscopic theory of incoherent transport in the
strongly correlated regime of diluted 2DEG. This important task remains a challenge

for future work.
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6. Resistivity in strongly disordered systems
near the Mott transition

The understanding of the physical processes in the regime where both the electron-
electron correlations and the disorder are strong is one of the most important open
problems in the modern condensed matter physics. For the case of noninteracting
electrons, strong enough disorder localizes the wave functions even in three dimen-
sions and the system becomes Anderson insulator. In the clean strongly interacting
systems the electrons localize forming local moments through the interaction- or
doping-driven Mott metal-insulator transition. How these processes, Anderson and
Mott localization, influence each other is a very difficult physical question. It is also
a very important question, specially having in mind that many strongly correlated
compounds are non-stoichiometric and, therefore, intrinsically disordered systems.
In this chapter we study the disordered half-filled Hubbard model within the
statistical DMF'T which is a unique theoretical method that is reliable and control-
lable in a wide temperature, disorder and interaction range. As a reference value
for disorder strength, we focus here mostly on W = 2.5 in units of the half band-
width D = 6t = 1 for the noninteracting cubic lattice (site disorder ¢; is uniformly
distributed in the interval (—W/2,W/2)). This level of disorder correspond to the
critical value for the Anderson localization in 3 dimensions for U = 0. The inter-
action, however, screens the disorder and the system is metallic for W = 2.5 at
small U. At large U the system faces the Mott metal-insulator transition modified
by the disorder. Transport properties on the metallic side of such a metal-insulator

transition are the main focus of this Chapter.
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6.1 COHERENT POTENTIAL APPROXIMATION IN STRONG DISORDER LIMIT

6.1 Coherent potential approximation in strong dis-
order limit

The CPA approximation displays same trends in strong disorder case (W = 2.5),
as for weak disorder, with an important difference that the coexistence region of
metallic and insulating solutions is much narrower. The resistivity maximum exists
very near the metal-insulator transition, and greatly exceeds the Mott-loffe-Regel
limit p,,,, (Figure@&d)). p,,,, is again used as the unite of resistivity. For sufficiently
strong interaction (larger than U, = 3.16) the system becomes Mott insulator. The
region of interactions where the resistivity curves display maxima narrows with in-
creasing of disorder. Similar as in the case of weak disorder, the bandwidth increases
due to the disorder. The density of states, obtained using the maximum entropy an-
alytic continuation from the imaginary axis is shown in Figure The renormalized

energy level of each site remains in the band.
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Figure 6.1: Temperature dependence of the resistivity for several interactions near
the Mott transition for W = 2.5.
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Figure 6.2: Density of states for W = 2.5, U = 2.9 and few temperatures.

6.2 DMFT on the finite cubic lattice

Study of the correlated electrons in strong disorder regime, requires a method capa-
ble to describe spatial fluctuations in the conduction bath, which in the limit of very
strong disorder may lead even to the localization of the electron wave functions. For
this purpose we use statistical DMFT (StatDMFT) which considers finite dimen-
sional lattice. The self-energy is still local (momentum-independent) quantity, but

now varies from site to site.

6.2.1 Finite size effects in three dimensions

To explore the finite size effects, we are solving the statistical DMFT equations
for several sizes of the cubic lattice in the absence of disorder and with periodic
boundary conditions. In this way we obtain the Green’s functions and the self-
energies on every site of the lattice which are all here equal (due to the absence of
disorder). The obtained results for the lattice of the sufficient size should coincide
with the DMFT solution of the infinite cubic lattice. Therefore, for a comparison,
we consider also the DMFT solution using the noninteracting density of states of the
three-dimensional cubic lattice. This is the only part of the StatDMFT study where

we used the real axis IPT impurity solver. In the remaining part of the Chapter,
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the impurity problem in StatDMFT equations are solved using the CTQMC.
Figure B3 (E4)) displays the imaginary part of the Green’s function (self-energy)
for the 10 x 10 x 10 cubic lattice compared with the same quantity for the infinite

cubic lattice at low temperature 7" = 0.02 (Fermi liquid regime). The finite size

U=1.8 T=0.02 W=0.0 U=1.8 T=0.02 W=0.0
10x10x10 cubic lattice = 10x10x10 cubic lattice =
-5 infinite cubic lattice - -5 infinite cubic lattice -

Figure 6.3: Imaginary part of Green’s function for clean system (/W = 0) calculated
within statistical DMFT on the cubic lattice of the size 10 x 10 x 10 (red line), and
within DMFT for infinite cubic lattice (green line). Plots on the right display the
quasi-particle peak, for better view.

U=1.8 T=0.02 W=0.0 U=1.8 T=0.02 W=0.0
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Figure 6.4: Imaginary part of self-energy for the clean system (/W = 0) calculated
with the statistical DMFT on the cubic lattice of the size 10 x 10 x 10 (red line),
and within DMFT for infinite cubic lattice (green line). Plots on the right display
narrow region around Fermi level, for better view.

effects are clearly visible in the density of states due to the finite lattice size, which

leads to the poles in the Green’s function at 7" = 0. The finite size effects for
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6.2 DMFT ON THE FINITE CUBIC LATTICE

the self-energy are present as small oscillations, around the solution for the infinite
system.

If we increase the temperature, the finite size effects decrease and become neg-
ligible for the lattices of the size 6 x 6 X 6 and larger [IE] This is due to the
electron-electron scattering, which increases the imaginary part of the self-energy
and broadens the peaks in the density of states, Figures and The tem-

U=1.8 T=0.04 W=0.0 U=1.8 T=0.04 W=0.0
st "10x10x10 cubic lattice = 25 0 0 "10x10x10 cubic lattice =
! 8x8x8 cubic lattice ’ 8x8x8 cubic lattice =
& BXx6x6 cubic lattice & 6x6x6 cubic lattice
2} % 4x4x4 cubic lattice 4 -2 ™% 4x4x4 cubic lattice

“¢infinite cubic lattice

infinite cubic lattice

Im(G)
Im(G)

Figure 6.5: Comparison of the imaginary parts of Green’s functions for clean system
(W = 0) calculated within statistical DMFT for different sizes of cubic lattices, and
within DMFT for the infinite cubic lattice.

U=1.8 T=0.04 W=0.0 U=1.8 T=0.04 W=0.0

10x10x10 cubic lattice = 10x10x10 cubic lattice =

8x8x8 cubic lattice
@x6x6 cubic lattice

§4x4x4 cubic lattice

Im(Z)
Im(Z)

Figure 6.6: Comparison of the imaginary parts of self-energies for clean system
(W = 0) calculated within statistical DMFT for different sizes of cubic lattices, and

within DMFT for the infinite cubic lattice.

perature 7" = 0.04 used in these figures corresponds to the boundary of the Fermi

liquid region for U = 1.8. Further increase of temperature drives the system into
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6.2 DMFT ON THE FINITE CUBIC LATTICE

bad metallic regime. The StatDMFT is a unique theoretical method for the study
of disordered strongly correlated systems in a broad temperature range, including
the incoherent regime, which is the main interest of this work.

In conclusion, we have established that the finite size effects are negligible at
finite temperature, in the range of strong incoherent scattering. Concerning the
finite size effects when disorder is included, they are expected to be even weaker.

Intersite correlations due to disorder are explored in section .42
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6.3 STATISTICAL DMFT: ELASTIC VS. INELASTIC SCATTERING

6.3 Statistical DMFT: elastic vs. inelastic scatter-
ing

There are two types of scattering in disordered interacting electronic systems: Elastic
(impurity) scattering and inelastic (electron-electron) scattering [Lf]. The inelastic
scattering exists only at finite temperatures. Establishing the dominant scattering
mechanism is crucial for the understanding of the transport properties. Quite gen-
erally, the incoherent scattering is more important near the Mott transition, except
at the lowest temperatures (in the Fermi liquid regime).

The scattering rate in the CPA for W = 2.5 and U = 2.9 is shown in Figure £
This scattering rate takes into the account both the elastic and the inelastic compo-
nent. The importance of the elastic scattering can be estimated in the following way.
In the non-interacting case (U = 0) the scattering rate 7, = —2Im>(0) increases
quadratically with the disorder strength W [60] for small W and roughly linearly
for large W (Figure EX). For W = 2.5 this gives 7, * = 1.47. However, the inter-
action strongly renormalizes (screens) random potential [@], and the renormalized

site disorder can be defined as

For U = 2.9 the renormalized scattering rate is only 7, ' = 0.07, which is much
smaller than the total scattering in the CPA. Therefore, the role of the elastic

scattering can be neglected in the remaining part of this chapter.

SC rates elastic - inelastic

10 T T T
.90 — U=3.12 — U=3.17 —
07 —

THW) = 1.47 |
Bw) =007 |

0 0.05 0.1 0.15 0.2
Figure 6.7: Temperature dependence of the CPA scattering rate for several inter-

actions and for W = 2.5. 7' is the elastic scattering rate for U = 0 and 7, ' is
obtained using renormalized €; for U = 2.9.
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6.4 INTER-SITE CORRELATIONS

U=0 scattering rate as a function of disorder strength
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Figure 6.8: Scattering rate as a function of the disorder strength for U = 0.

6.4 Inter-site correlations

Exact treatment of spatial fluctuations within the StatDMFT opens possibility of
developing inter-site correlations. These correlations can lead to the clustering of
the sites with the strong (weak) resistivity, formation of clusters with finite magne-
tization or, at low temperatures to the localization of the electron wave functions
(Anderson localization). Here we explore the inter-site correlations in the local re-

sistivity.

6.4.1 Local resistivity

Within the statistical DMFET, there is no well established procedure for calculating
the resistivity. The most rigorous approach implies the usage of the Meir-Wingreen
formula in the zero bias regime and the usage of the formalism of non-equilibrium
Green’s functions. However, the proper application of this approach requires access
to the non-equilibrium impurity solver, which development is complicated task and
story for itself. To the best of our knowledge, the Meir-Wingreen formula for the
interacting system at finite temperature cannot be reduced to the much simpler
Landauer-like formula (which uses only the equilibrium quantities), so we need a
different approach to calculate the resistivity of the lattice.

Here we will use an effective approach to calculate the lattice resistivity [IE] In
order to do that, we concentrate on the local resistivity that we calculate from the
standard Kubo formula in the DMFT form, using the Eq. (228). Figure B9 presents
the local resistivity distribution in the lattice for the parameters W = 2.5, U = 3.12,
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6.4 INTER-SITE CORRELATIONS

01

10

Figure 6.9: Local resistivity of the lattice for one realization of disorder and parame-
ters W = 2.5, U = 3.12, T = 0.04 (upper panel) and W = 2.5, U = 2.90, T' = 0.007
(lower panel).

T = 0.04 (upper panel) and W = 2.5, U = 2.90, T = 0.007 (lower panel). We can
see that there is no distinguished clustering of the sites with strong or weak local

resistivity. This can be determined more rigorously from the correlation function.
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6.4 INTER-SITE CORRELATIONS

6.4.2 Correlation function

Statistical dynamical mean field theory, by construction, fully includes the spatial
fluctuations and allows the inter-site correlations. In order to study these correla-

tions, we define the local resistivity correlation function in the following way

Xﬂ(rij) = <(p2 - pav)(pj - pav)>a (62)

where p; is the resistivity at the site ¢, r;; is the distance between sites ¢ and j and
Pav 15 the average local resistivity of the lattice. The correlation function assumes

the exponential form
Xp(ﬁ'j) =cC eXp(—Tz‘j/f)a (6.3)

where £ plays a role of the correlation length and the inequality £ < 1 holds in
wide range of parameters that we explored. This result proves that the inter-site

correlations are negligible [16].

U=2.7 T=0.04 W=2.5 U=3.15 T=0.04 W=2.5
60 T T 6e+06 T
| a*exp(-b*x) a*exp(-b*x)
Correlation function  + Correlation function ~ +
50 - a=553+/-04 q 5e+06 a =5000000.0 +/- 69827.4
b=1.28 +/-0.03 b =1.59 +/- 0.06
40 - =>¢=08 1 4e+06 | =>£=0.6

30 3e+06

Xo
Xo

20 2e+06

10 | le+06

Figure 6.10: Local resistivity correlation functions for two values of the interaction
U.
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6.5 RESISTIVITY OF THE LATTICE

6.5 Resistivity of the lattice

There is no exact formula for calculating the lattice resistivity within the Statistical
DMET. Here we use an effective approach to this problem. We consider the lattice
as a resistor network constructed from local resistivities that we have defined in the
previos Section. On every link between neighboring sites ¢ and 7 we place a resistor

with the value of average resistance of the linked sites

ry =220 (6.4)
Here the prefactor which includes the length of the link and its cross section is taken
to be equal to 1. This construction is already used in a slightly different conetxt
[? |. We define the resistivity of the lattice, up to the prefactor, as the equivalent
resistance between the two groups of sites, where the incoming and outgoing leads are
attached. The prefactor is determined to ensure the proper limit of the resistivity
in the case where all the resistors have the same resistance. It corresponds to
the equivalent resistance of the lattice in the case when all the resistors have the
resistance equal to 1.

Following the Kirchhoff rules, the equivalent resistance can be calculated from
the matrix defined by

S Con =i

s
|

(6.5)

ij =

where Cj; is the conductance matrix C;; = 1/7;;. The equivalent resistance between

two sites ¢ and j is equal to the ratio between two minors of the determinant detA,

det A

i = QoA

(6.6)
where we obtain A® by removing i-th row and column, and A®) by removing i-
th and j-th rows and columns. In order to calculate the resistivity of the lattice,
we take for the contacts the short-circuited sites, where the incoming and outgoing
leads are attached. This corresponds to the way that resistivity is measured in most

of experiments.
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6.5 RESISTIVITY OF THE LATTICE

6.5.1 Weak disorder

The CPA approximation gives a good understanding of the processes in the regime
of weak disorder, when we expect that the CPA and the StatDMFT coincide. The
agreement can be understood in the following way: For weak disorder, the spatial
fluctuations in the local conduction bath A;(w) are rather small, and it is approxi-
mately equal to Agpa(w) in the CPA approximation. Therefore, the main disorder
effect originates from the effective local doping which is (in the case of weak disorder)
well captured by the CPA. Roughly speaking, the local doping causes a shift of the
Hubbard bands in the local density of states (LDOS), while the quasiparticle peak
remains at the Fermi level. Another consequence of doping is the decrease of the
inelastic scattering rate due to changes in the local occupation number (electron-
electron scattering is the strongest at half-filling and goes to zero for unoccupied
and doubly occupied sites).

Concerning weakly doped sites, we should keep in mind that the system is in
the vicinity of the Mott transition, thus the inelastic scattering rate is significantly
enhanced on these sites and the quasiparticle peak (if exists) is very narrow. This
causes larger local resistivity than for strongly doped (weakly correlated) sites. One
has to keep in mind that we concentrate on the temperature region 7' 2 T’ , where

transport is dominated by the electron-electron scattering.

6.5.2 Strong disorder

Increase of the disorder leads to the qualitative difference between the CPA and
statistical DMFT. The reason for such behavior is in the spatial fluctuations in
A;(w) which become much more pronounced in this case. The fluctuations in the
local bath are larger due to the wider on-site energy distribution. This leads to
the deviation of the local resistivity (obtained within StatDMFT) from the CPA
curves, Figure GIIl Very close to the Mott transition, Figure (lower panel),
these fluctuations can even switch some site from being metallic to insulating, or in
other words, to open a gap in the local density of states at the Fermi level. This
influences the abrupt changes in the local resistivity.

The temperature dependence of the resistivity of the lattice calculated using the
resistor network method is shown in Figure ET2 We have chosen two maximally

distant plains of 36 sites each as the spots where we attach the leads [16]. Because
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Figure 6.11: Comparison of CPA and StatDMFT local resistivity at several temper-
atures for strong disorder (W = 2.5) and interaction U = 0.918 U, (upper panel)
and the same comparison at low temperature 7" = 0.007 for interaction very close
to critical U = 0.987 U.. (lower panel).

of the periodic boundary conditions that distance is three lattice spacing. We have
checked that the result is not sensitive to the particular positioning of the leads. The
resistivity maxima are few times lower than in the CPA (for the same parameters)

and arises at higher temperatures. Also the maxima are wider and the metallic phase
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6.5 RESISTIVITY OF THE LATTICE

persists for stronger interactions as compared to the CPA. It remains to be precisely
determined what is the critical interaction U, for the metal-insulator transition. Also
it appears that the lattice resistivity saturates to a larger value at 7' = 0 very near
the Mott transition than in the CPA case.

12 T T T T T T T T

ccccc
I
WWWLN
RPRRPROO
~NOIN~NO

10 |

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
T

Figure 6.12: Temperature dependence of the resistivity for W = 2.5, for several
interaction strengths.

6.5.3 Strongly and weakly correlated sites

It is interesting to explore the local resistivity p; and the local occupation number n;
as a function of the on-site energy ¢;. Figure displays p; vs. €; and n; vs. ¢; for
U = 2.90 (upper panel) and U = 3.15 (lower panel). The curve n(e;) is a smoothed
spline through actual data (which do not fluctuate much). This plot suggests that
we can distinguish two groups of sites: Strongly correlated (sc), close to half-filling,

and weakly correlated (wc). The local quasiparticle weight

1

Zi =
— 2 ImY,(iw)

(6.7)

w—

is much smaller at the weakly correlated sites, Figure
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6.5 RESISTIVITY OF THE LATTICE

We also notice that the range of the on-site energies, where the bath spatial fluc-
tuations are dominant, is expanding with increase of temperature until it becomes
comparable to the Kondo temperature [IE] and this is the most clearly seen very
close to the transition (Figure B3 lower panel). The local resistivity calculated
within StatDMFT deviates from the CPA for the largest local doping at Kondo tem-
perature. This is the same temperature where the resistivity curves (Figure EI2)
reach their maximuma. Further increase of the temperature opens pseudo gap in
LDOS on every site and smears the spatial fluctuations in the bath. The on-site
energy region of dominant spatial fluctuations is then narrowing and finally the
StatDMF'T data approaches to the CPA.

Figure illustrates the temperature dependence of the local resistivity for
these two groups of sites. We have geometrically averaged the resistivity of sc and
wc sites, and compared with the geometrical average of all sites and with the lattice
resistivity calculated using the resistor network approach. Striking feature is that the
resistivity of weakly correlated sites is almost temperature independent, except at
the lowest temperatures, where the disorder screening due to the interaction is strong

|, while the strongly correlated sites display very strong temperature dependence.
The typical average of the local resistivity including all sites qualitatively follows

the calculated lattice resistivity.

77



6.5 RESISTIVITY OF THE LATTICE

W=2.500, U=2.900

c c
™ N — ™ N — S @© ™~
— — — — — — — — o o o
T T T
e o] o] o]
o |
Ppbdalgi
oo
NN ARt
ol LA
-
@)
0
Ay
™
1]
_ ]
w o
o
o
o
W
Lo
1 1 1 1 1 -
o o o o o o o o |
o D o o ! o D
(qV] — — AN — —
a a

78

Figure 6.13: Local resistivity and occupation number distributions of on-site energy

at few temperatures.



6.5 RESISTIVITY OF THE LATTICE
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Figure 6.14: Imaginary parts of self-energies of a typical weakly (wc) and strongly
correlated (sc) site.
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Figure 6.15: Green’s functions and self-energies for an insulating and a conducting
site.
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Figure 6.16: Geometrically averaged (typical) local resistivity for strongly correlated
(sc), weakly correlated (wc) and all sites together, and the resistivity p,,, of the lattice
calculated using the resistor network method.
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6.6 Summary and open questions

We have successfully applied for the first time the Statistical DMFT method on the
finite size cubic lattice. We used the real axis IPT impurity solver to determine the
importance of the finite size effects, by concentrating on the clean lattice of the size
up to 10 x 10 x 10. We determined that the finite size effects are negligible already
on the lattice 6 x 6 x 6 (except at the lowest temperatures, deep in the Fermi liquid
regime).

Then we concentrated on a single realization of disorder on the lattice 6 x 6 x 6
using the CTQMC as the impurity solver, and the analytical continuation by the
maximum entropy method in order to obtain local quantities on the real frequency
axis. We confirmed that the disorder is strongly screened on the metallic side of the
Mott MIT and that the inelastic scattering is dominant at temperatures 7' > Ty .
We defined a local resistivity and proposed a resistor network method for calculating
the dc resistivity. This approach is justified by the observation that the inter-site
correlations are very weak and that the incoherent scattering is dominant. We
identified two types of sites: strongly correlated with the local occupation close to
1, and weakly correlated away from local half-filling. Non-monotonic temperature
dependence in the resistivity originates from strong temperature dependence of the
local resistivity on strongly correlated sites.

It remains to explore the critical region very near the MIT transition more closely.
There are indications that some sites Mott localize in this regime, while the system
is still overall metallic. Also, it is important to investigate the solution of the
model in the presence of even stronger disorder, where one might expect a two-fluid
behavior where a fraction of sites becomes Anderson localized. The solution of the
model in two dimensions, where the spatial fluctuations are stronger, may reveal

new interesting features as well.
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7. Conclusion

In this thesis we have examined the influence of disorder on the strongly correlated
systems in a wide range of parameters, in the vicinity of the Mott transition. The
disorder is modeled by the random potential (uniform distribution of the on-site
energies) introduced into half-filled Hubbard model. The solutions are obtained
within dynamical mean field theory and its extensions.

In the weakly disordered case we used the coherent potential approximation,
which assumes the averaging of the local Green’s functions over the on-site energy
distribution. Our focus was to understand the consequences of the presence of in-
homogeneities onto the optical conductivity and the dc resistivity. The main effects
captured within the CPA are the increasing of metallicity of the system with dis-
order while the interaction is kept constant. The disorder increases the bandwidth,
which leads to the increase of the critical interaction U., where the Mott transi-
tion occurs. For fixed interaction U this effectively weakens the electron-electron
correlations and causes the decrease of the scattering rate, and dc resistivity. The
same effect of restoring metallicity with disorder was observed in the experiments
on organic charge-transfer salts. Disorder in this experiments was tuned by the X-
ray irradiation. We emphasize that the randomness in our model does not change
the global doping, as the system remains on average half-filled. However, locally
half-filling is not preserved. This provides another view to the explanation of the
observations seen in these experiments. We also find that the maximal possible
value of the resistivity greatly exceeds (more than an order of magnitude) the quasi-
classical Mott-loffe-Regel limit for maximal metallic resistivity even in the presence
of moderate disorder. As in the clean case, the violation of the MIR limit is driven
by a large scattering rate due to the electron-electron scattering. Interestingly, the
Drude-like peak in the optical conductivity persists even at temperatures when the
resistivity is well beyond the MIR limit.

The same trends in the resistivity curves are present in a totally different group
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of materials - diluted two dimensional electron gases in Si MOSFETs and GaAs
heterostructures. The Coulomb interaction in these materials can easily be tuned
by changing concentration of carriers. There were a number of theoretical proposals
that suggested the decisive influence of disorder to the transport properties of these
materials. However, all these theoretical attempts failed to describe observed effects
in a wide range of concentrations, while their application in the high temperature
regime is questionable. We have proposed a phenomenological scaling of the metallic
curves based on the insight obtained from the study of various strongly correlated
systems. By testing the scaling ansatz on several classes of strongly correlated ma-
terials and the half-filled Hubbard model (in disordered and clean case), we have
established that the emergence of resistivity maxima upon thermal destruction of
heavy Fermi liquids should be regarded as a generic phenomenon in strongly cor-
related systems. From the fact that the same scaling works very well for different
two-dimensional electron gases in a wide range of concentrations (practically for all
metallic curves near the transition), we conclude that the strong electron correlations
in the incoherent regime are the primary driving force behind the metal-insulator
transition and that additional disorder effects are less significant. Moreover, we
have documented that practically all main signatures of the strongly correlated sys-
tems are present in these experiments, and that the critical behavior of the crossover
(coherence) scale T in both two dimensional diluted electron gases and strongly cor-
related systems (experimental and theoretical) is basically the same. Despite that
have we not included all microscopic aspects of the 2DEG, our analysis presents
compelling evidences that the strong inelastic electron-electron scattering and not
disorder is the driving force behind the unusual transport properties, advocating a
Wigner-Mott scenario for the metal-insulator transition in these systems.

In order to investigate the systems in strong disorder regime, the spatial fluc-
tuations must be treated properly. For this purpose, we employ the statistical dy-
namical mean field theory to solve the disordered half-filled Hubbard model for the
first time at finite temperatures. This method treats the spatial fluctuations on the
finite dimensional lattice while keeping only the local part of correlations. The CPA
and StatDMFT approaches approximately coincide in the regime of weak disorder.
The elastic (impurity) scattering is strongly screened near the Mott transition and
the inelastic (electron-electron) scattering is dominant in the regime of our interest
(T'" 2 Tpr). We have also documented that the finite size effects, are negligible in

this case. The inter-site correlations in the system are weak due to the relatively
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large coordination number (z = 6) in three dimensional cubic lattice. Spatial fluc-
tuations in the local bath greatly influence electron properties in the very vicinity
of the Mott transition in the strong disorder regime. The local resistivity analysis
showed that two groups of sites emerge. One group consists of strongly correlated
sites which are close to half-filling and with the strong temperature dependence of
the local resistivity, and the other group of weakly correlated sites which are shifted
from half-filling and display weak temperature dependence of the resistivity. Finally,
since there is no established exact way of calculating the lattice resistivity within
the StatDMFT, we proposed an effective approach. We constructed the resistor
network from the local resistivities and calculated the equivalent resistance between
the sites where the leads are attached. The maxima in the resistivity calculated
in this way are few times lower than in the CPA and the peak in the resistivity
vs. temperature curve is not as pronounced as in the clean case, or in the CPA
approximation. There are signatures of two fluid behavior near the Mott transition,
where a fraction of the sites are localized, while the system is overall still metallic.
This remains to be more carefully explored in the future work and particularly for
the case of even stronger disorder. Also, an important direction for future work is to
explore the two dimensional systems where the spatial fluctuations can have more

dramatic consequences.
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Mpunor 1.

UsjaBa o ayTopcTBy

MoTnucaHu-a Mwunow Pagowuh

6poj nHaekca D18/2008

UsjaBrbyjem
[a je AoKTOpCcka AvcepTauumja noa HacroBoMm

Influence of disorder on charge transport in strongly correlated
materials near the metal-insulator transition

® pe3yntart ConcTBeHOr UCTpa)kmuBaykor paga,

e [a npeanoxeHa avcepTaumja y LenuHu HU y Aenosuma Huje buna npeanoxeHa 3a
nobuvjake 6Guno koje aunnomMe npema  CTYAMCKUM  Mporpamuma  [Apyrux
BMCOKOLLIKONCKUX YCTaHOBA,

e [a cy pe3ynTtaTi KOPEKTHO HaBedeHU U

* [la HUCaM KpLuuo/na aytopcka npaBa U KOPUCTUMO WHTENEKTyarHy CBOjUHY [pYrux
nua.

MoTnuc gokTopaHaa
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Mpwunor 2.

N3jaBa 0 ICTOBETHOCTMU LUTaMMaHe U eNieKTpoHCke
Bep3uje AOKTOPCKOr paaa

Wme n npeaume aytopa Munow Pagowuh
Bpoj nHaekca D18/2008
CTyamjckun nporpam dusrka KOHOAEH30BaHOr CTaka MaTepuje

Hacnos paga __Influence of disorder on charge transport in strongly correlated

materials near the metal-insulator transition

MeHTOp ap [apko TaHackoBuh

MoTnucaHwu/a Mwunow Pagowuh

W3jaBrbyjem Aa je wrtamnaHa Bep3uja MOr [OKTOPCKOr paja MCToBeTHa €NeKTPOHCKO]
BEp3uj1 Kojy cam npeaao/na 3a objaBremBake Ha nopTany OuvrntanHor peno3utopujyma

YHuBep3uTteTa y beorpaay.

[ossorbaBam aa ce objaBe Moju NUYHU Nofaun Be3aHu 3a pobujare akagemMckor 3Barba
[OKTOpa Hayka, kao LTO Cy UMe W Mpe3vumMe, roanHa v MecTto pofjewa v aaTym onbpaHe

papa.

OBW NWYHY NoAaLUM MOry ce 06jaBUTH Ha MPEXHUM CTpaHuLama aurutante bubnuorteke, y

enekTPOHCKOM KaTtanory 1 y nybnvkaumjama YHueepauteTa y beorpaay.

MoTnuc gokTopaHaa
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Mpwnor 3.

UsjaBa o kopuwhekwy

Osnawhyjem YHuBepauTetcky 6ubnuoteky ,CBeTozap MapkoBuh® ga y [durutanym
peno3uTopujym YHusepauteta y beorpagy yHece MOjy OOKTOPCKY AucepTauujy nopg
HaCcnoBoM:

Influence of disorder on charge transport in strongly correlated
materials near the metal-insulator transition

KOja je Moje ayTopcKo Aeno.

[vcepTauujy ca ceBum npuno3uma npegao/na cam y enekTpoHCKOM hopMaTy MnoroiHoM 3a
TpajHO apxvBupam-e.

Mojy mokTtopcky auceprtauujy noxpareHy y [uratanHu penosvtopujym YHueepsuTeTa y
Beorpagy mory ga kopucte cBu Koju nowTyjy oapenbe cagpxaHe y ogabpaHom Tuny
nuueHue KpeaTtusHe 3ajegHuue (Creative Commons) 3a kojy cam ce oany4duo/na.

1. AytopcTBO
e AyTOpCTBO - HEKOMEpPLMjanHo
@ AyTOopcTBO —HekoMepumjanHo —6e3 npepage
e AyTOpPCTBO —HEKOMepLMWjanHo —A4enuTu No4 UCTUM YCroBuMa
* AytopcTtBo —6€e3 npepage
e AyTOpPCTBO —AE€NUTU NOA UCTUM YCIOBUMA

(Monumo pa 3aokpyxuTe camo jeaHy oA WecT NoOHyReHUX NUUeHUM, KpaTak onuc NuueHLm
Aart je Ha nonefuHn nucta).

MoTnuc aokTopaHaa

—>
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1. AyTtopcTBo - [lo3BOrbaBate yMHOXaBake, AUCTPUMOYLINjY 1 jaBHO caonTaBak-e [era, 1
npepaje, ako ce HaBeJe UMe ayTopa Ha Ha4uuH ogpefeH o cTpaHe ayTopa wnv Aasaoua
nuueHue, 4ak v y komepumjanHe cepxe. OBo je HajcnoboaHuja og CBUX NMULIEHLN.

2. AyTopcTBO — HekoMmepuwmjanHo. [lo3BorbaBaTe yMHOXaBawe, AUCTPUOYLMlY 1 jaBHO
caonwitaBarwe [enia, U npepage, ako ce Hasede UMe aytopa Ha HauuH ofpeheH of
cTpaHe ayTtopa wnv dasaoua nuueHue. OBa nuueHUa He [03BOSbaBa KoMepLwjanHy
ynotpeby gena.

3. AyTopctBO - HekomepumjanHo — 6e3 npepage. [o3BorbaBaTe YMHOKARAHE,
anctpubyunjy 1 jaBHo caoriutaBawe gena, 6e3 npomeHa, npeobnukoBawa nnv ynotpebe
Aenay CBOM [ery, ako ce HaBeJe UMe ayTopa Ha HauvH oapefeH oa cTpaHe ayTtopa unu
Aasaoua nuueHue. Oa nuueHua He Ao3BoSbaBa kKomepuujanHy ynotpeby aena. Y ofHocy
Ha cBe ocTane nuueHle, OBOM JWUUEHUOM ce orpaHu4aBa Hajpehu obum npaga
Kopuwhersa nena.

4. AyTOpCTBO - HeKoMepuujanHO — [AenuTu nog WCTMM  ycnoBuma. [lozssorbasare
YMHOX@Bare, AncTpubyLmjy 1 jaBHO caonwuTaBawe Aena, u npepage, ako ce Haee/e nve
ayTopa Ha HaduH ofpefeH oA CTpaHe ayTopa Wnu gaBaoua NnuUueHUe U ako ce npepana
auctpubympa noa MCTOM UM CNMYHOM  nuueHuoMm. OBa nUUEHUa He [103B0rbLapBa
komepuujanHy ynotpeby aena v npepaga.

5. AytopctBo — 6e3 npepage. [o3BorbaBate yMHOXaBakwe, AUCTPUOyLW)y ¥ jaBHO
caonwTaeare fena, 6e3 npomeHa, npeobnukosarwa unu ynotpebe gena y csom aeny,
aKko ce Haee/le VMe ayTopa Ha Ha4MH ogpefeH of cTpaHe ayTopa unu AaBaolia nuLieHLe.
OBa nuueHLa Jo3BorbaBa KomepuujanHy ynotpeby aena.

6. AyTOpCTBO - AEnnTU Nnoj UCTUM ycrnoBuma. [lo3BorbaBate yMHOXaBake, AUcTprbyLmvjy
W jaBHO caoniuTaBakwe Aena, u npepage, ako ce HaBeae MMe ayTopa Ha HauvH oapeheH
O[ CTpaHe ayTopa unu Aaeaola NuueHuUe 1 ako ce npepaga aguctpubyupa noa uctom munu
cnuyHoM rinueHuom. OBa nuueHua Ao3BoSfbaBa komepuujanHy ynotpeby gena v npepaja.
CnwuyHa je cohTBEepckMM nuueHLamMa, O4HOCHO NyLeHLaMa OTBOPEHOr Koaa.
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