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Abstract

In last two decades, semiconductor nanostructures, such as quantum wells,

wires and dots, have been recognised as sources and detectors of radiation in

the mid- and far-infrared region of the spectrum. Much of a success has been

obtained with quantum well based intraband devices, such as quantum cascade

lasers and quantum well infrared photodetectors. However due to longer carrier

lifetimes in quantum dots, it is expected that optoelectronic devices based

on intraband transitions in self-assembled quantum dots would have superior

performance to their quantum well counterparts. In order to fully exploit

this prospect, appropriate theoretical models describing electronic, optical and

transport properties of the active region of these devices need to be developed,

which was the subject of this thesis.

It was shown how symmetry of the dot shape can be exploited to efficiently

calculate the energy levels within the framework of the multiband envelope

function method. The implementation of the method in the plane wave rep-

resentation of the Hamiltonian eigenvalue problem and the results of its ap-

plication to square based pyramidal InAs/GaAs quantum dots and hexagonal

III-nitride quantum dots were given.

A semiclassical model of intraband carrier dynamics in quantum dots was

then developed and applied to design an optically pumped long wavelength

mid-infrared laser based on intersublevel transitions in InAs/GaAs quantum

dots. Two orders of magnitude lower pumping flux was predicted than in

similar quantum well based devices.

Next, simulations of the optical absorption spectrum in the existing quan-

tum dot infrared photodetector structures were performed. A special emphasis
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was put into quantum dots-in-a-well structures and explanation of the effect

of well width on the detection wavelength.

A theory of transport in quantum dot infrared photodetectors starting from

the energy levels and wavefunctions obtained by solving the envelope Hamil-

tonian, yielding as output the device characteristics such as dark current and

responsivity, was then developed. The comparison with experimental data

available in the literature was made, yielding a good agreement.

Finally, the theory of electron transport through arrays of closely stacked

quantum dots, where coherent and polaronic effects become important, there-

fore requiring the treatment within the formalism of the nonequilibrium Green’s

functions, rather than the semiclassical approach, was presented. A design of

a structure promising to act as a terahertz quantum dot cascade laser was

given.
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5. N. Vukmirović, Z. Ikonić, D. Indjin, and P. Harrison, ”The use of

hexagonal symmetry for the calculation of single-particle states in III-

nitride quantum dots”, The 14th International Symposium - Nanostruc-

tures: Physics and Technology, St. Petersburg, Russia, 26-30 June 2006.
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ence of injector doping density and electron confinement on the properties

of GaAs/Al0.45Ga0.55As quantum cascade lasers”, International Sympo-

sium on Compound Semiconductors, Rust, Germany, 18-22 September

2005.
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Chapter 1

Introduction

1.1 Semiconductor quantum dots and their importance

In last three decades, remarkable progress in technology has been made, en-

abling the production of semiconductor structures of nanometer size. This is

the length scale where the laws of quantum mechanics rule and a range of new

physical effects is manifested. Fundamental laws of physics can be tested on

the one hand, while on the other hand many possible applications are rapidly

emerging.

The ultimate nanostructure where carriers are confined in all three spatial

dimensions is called a quantum dot. In the last 15 years quantum dots have

been produced in several different ways in a broad range of semiconductor

material systems. The properties of quantum dots and their possible applica-

tions are largely dependent on the method they have been obtained, which can

therefore be used as a criterion for classification of different types of quantum

dots:

• Electrostatic quantum dots. One can fabricate quantum dots by

restricting the two dimensional electron gas in a semiconductor het-

erostructure laterally by electrostatic gates, or vertically by etching tech-

niques [5, 6]. The properties of this type of quantum dots, sometimes

termed as electrostatic quantum dots, can be controlled by changing the

applied potential at gates, the choice of the geometry of gates or by

external magnetic field.
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• Nanocrystals. A very different approach to obtain quantum dots is

to synthesise single crystals of the size of a few nanometers, via chem-

ical methods. The dots obtained this way are called nanocrystals or

colloidal quantum dots [7]. Their size and shape can be controlled by

the duration, temperature and ligand molecules used in the synthesis [8].

• Self-assembled quantum dots. The quantum dots that will be the

main interest in this thesis are self-assembled quantum dots. They are

obtained in heteroepitaxial systems with different lattice constants. Dur-

ing the growth of a layer of one material on top of another, the formation

of nanoscale islands takes place [9], if the width of the layer (so called

wetting layer) is larger than a certain critical thickness. This growth

mode is called Stranski-Krastanov mode. The most common experi-

mental techniques of the epitaxial nanostructure growth are Molecular

Beam Epitaxy (MBE) and Metalorganic Chemical Vapour Deposition

(MOCVD) [10, 11].

Quantum dots have enabled the study of many fundamental physical effects.

Electrostatic quantum dots can be controllably charged with a desired number

of electrons and therefore the whole periodic system [12] of artificial atoms

created, providing a wealth of data from which an additional insight into the

many-body physics of fermion systems could be obtained [5]. Single electron

transport and Coulomb blockade effects on the one hand, and the regime of

Kondo physics on the other hand, have been investigated [13, 14].

One of the most exciting aspects of quantum dot research is certainly the

prospect of using the state of the dot (spin state, exciton or charged exciton)

as a qubit in quantum information processing. Coherent control of an exciton

state in a single dot selected from an ensemble of self-assembled quantum

dots has been achieved [15], as well as the manipulation of the spin state in

electrostatic quantum dots [16, 17]. These results appear promising, although

the control of a larger number of quantum dot qubits is not feasible yet, mainly

due to difficulty of controlling qubit-qubit interactions.
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Cavity quantum electrodynamics experiments with quantum dots have

been performed demonstrating strong coupling of the exciton state in a quan-

tum dot with the mode of the surrounding cavity [18]. This has motivated

quantum computing architecture proposals [19] where quantum information is

converted from stationary quantum dot qubits to flying photonic qubits, which

are ideal information transmitters. Most recent technological advances have

enabled the realisation of quantum dots (QDs) doped with a single magnetic

ion [20], as well as to controllably populate these dots with selected numbers

of electrons. If the dot were placed within the appropriate cavity (microdisk,

micropost or photonic crystal), the realised system would enable a highly fun-

damental study of physical interaction between a single charge, single spin and

a single photon.

The practical applications of quantum dots certainly do not lag behind

these exciting areas of fundamental science with quantum dots. For example,

colloidal quantum dots have found several cutting-edge applications such as

fluorescent biological labels [21], highly efficient photovoltaic solar cells [22],

and nanocrystal based light emitting diodes [7].

Self-assembled quantum dots find the main application as optoelectronic

devices - lasers, optical amplifiers, single photon sources and photodetectors.

The following section will cover their use in this field.

1.2 Optoelectronic devices based on self-assembled

quantum dots

Most of the semiconductor optoelectronic devices utilise transitions between

the state in the conduction band and the state in the valence band, so called

interband transitions, illustrated in Fig. 1.1. Electrons and holes created by

injection recombine and emit photons. The active medium can in principle

be just a bulk semiconductor, but it is widely understood that much better

performance of the devices can be achieved if heterostructures, where a material

of lower value of bandgap is embedded within the larger bandgap material, are
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used.

Figure 1.1: Schematic description of interband optical transition in bulk semi-

conductor (left) and quantum dot (right).

The main advantage in using low dimensional heterostructures as active

medium of lasers stems from the increased density of states near the band

edges, compared to the bulk case [23]. The degradation of device performance

at higher temperatures is caused by carriers effectively populating higher en-

ergy states, reducing the population of near band edge states responsible for

lasing [24]. The increased density of states near the band edge clearly sup-

presses this effect, and as a consequence, concentrates injected carriers near

the bottom of the conduction band and the top of the valence band. Quantum

dots, where the density of states has the form of a delta function, is an ultimate

system where the above effect is fully exploited.

Following the initial idea to use quantum heterostructures in semiconductor

lasers [25] reported by Dingle and Henry in 1976, rapid progress was made in

the development of quantum well based devices [26–28]. In 1982 Arakawa and

Sakaki analysed the influence of dimensionality on the threshold current [29].

They have predicted that its temperature sensitivity is much smaller for highly
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confined structures and is nearly temperature independent in the case of three

dimensionally confined structures - quantum dots. Furthermore, these predic-

tions were confirmed experimentally by placing a quantum well laser in a mag-

netic field, mimicking the effect of additional quantum confinement. Asada et

al. [30] also predicted a significant reduction of the threshold current and gain

in quantum dot structures, termed as quantum boxes at the time. However,

for the realisation of realistic devices it was necessary to enable fabrication of

high density ensembles of relatively uniform quantum dots, with low defect

densities. This was possible only when the growth of self-assembled quantum

dots in the Stranski-Krastanov mode was developed, leading to the demon-

stration of quantum dot lasers [31]. The most investigated material system for

quantum dot lasers is certainly In(Ga)As/GaAs on GaAs substrate covering

mainly the wavelength range 1− 1.3µm. This wavelength range was extended

to longer wavelengths with InAs dots grown on InP [32]. Shorter wavelengths

in the red part of the visible spectrum were achieved with InP/InGaP dots

grown on InP [33].

While nonuniformity of quantum dots leading to spectrally broad gain is a

disadvantage for the development of lasers, it can be very useful for the design

of optical amplifiers [34]. Due to the promise for use in photonic networks

and expected advantages over quantum well and bulk amplifiers [35], optical

amplifiers have been developed at telecommunication wavelengths of 1.3µm

and 1.55µm [32,36].

The applications of quantum dots mentioned thus far in this section in-

volve ensembles of quantum dots. On the other hand, it has become possible

to isolate individual quantum dots for example by etching mesas in the sam-

ple grown by MBE [37]. These dots can be used as single photon sources for

applications in the field of quantum cryptography. Indeed, sources of trig-

gered single photons from InAs/GaAs quantum dots employing the excitonic

transition have been realised [38, 39], and most recently sources of triggered

entangled photons employing biexcitonic cascade decay [40, 41].
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1.3 Intraband transitions in quantum nanostructures

The operating wavelength of the interband devices mentioned in Sec. 1.2 is

mainly determined by the bandgap of the material employed and is therefore

limited to the near-infrared and visible part of the spectrum. However, if one

wishes to access longer wavelengths, a different approach is necessary, i.e. the

transitions within the same band have to be used. These transitions are called

intraband transitions. Intraband optical transitions in bulk are not allowed

and therefore low dimensional nanostructures have to be used. Therefore, in

the last two decades, semiconductor nanostructures, such as quantum wells,

wires and dots [42, 43] have been recognised as sources and detectors of elec-

tromagnetic radiation in the mid- and far-infrared region of the spectrum. A

brief note on terminology is in place here. In quantum wells, where the en-

ergy spectrum is still continuous and consists of subbands (Fig.1.2 - left), the

appropriate term for intraband transitions is intersubband. On the other, in

quantum dots where the spectrum is fully discrete (Fig.1.2 - right), more ap-

propriate term is intersublevel, although sometimes the term intersubband is

also used.

IntersublevelIntersubband

Intraband

Figure 1.2: Intersubband optical transition in quantum well (left) and inter-

sublevel optical transition in quantum dot (right).
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Those spectral regions are interesting due to a range of applications. The

two atmospheric windows at 3 − 5µm and 8 − 13µm where the atmosphere

is transparent for electromagnetic radiation offer the possibility of free space

optical communications, remote sensing and detection. Many molecular com-

pounds have their vibrational modes in the 3 − 17µm part of the spectrum

and their detection enables the applications as measuring pollution, industrial

process monitoring and detection of hidden explosives [44]. As many objects

(including the human body) are the most emissive in this spectral region, cor-

responding detectors can be used for night vision. The far-infrared (terahertz)

part of the spectrum can be potentially applied for medical imaging, astronomy

and food quality control [45].

1.3.1 Quantum well intersubband devices

The historical development of intraband optoelectronic devices based on low

dimensional heterostructures, has followed a similar path as in the case of in-

terband devices. The first developments motivated by the theoretical proposal

of Kazarinov and Suris [46] were achieved with quantum wells, and quantum

dot based devices became possible only after the techniques of growth of high

density ensembles of self-assembled quantum dots were developed.

The quantum well infrared photodetector (QWIP) consists of a periodic

array of quantum wells subjected to an electric field perpendicular to the plane

of the wells. Its operating principle is illustrated in Fig. 1.3. Carriers from the

ground state are excited to a higher state by absorbing incident photons. If

the structure is subjected to an electric field, these carriers are included in

transport through continuum states and form a photocurrent. Such structures

were first realised in the mid 1980s [47]. An impressive characteristic of all

intersubband devices is that the operating wavelength can be designed by the

choice of quantum well widths and material composition. Therefore, the mid-

infrared part of the spectrum was covered within the next few years [48], and

more recently terahertz QWIPs have been realised as well [49].
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Figure 1.3: Principle of operation of quantum well infrared photodetectors.

In an optically pumped intersubband laser (also termed a quantum fountain

laser) population inversion between the upper laser level (marked 3 in Fig. 1.4)

and the lower laser level (marked 2 in Fig. 1.4) is achieved by optical pumping

of carriers from the ground state (marked 1 in Fig. 1.4) to the upper laser level.

The radiative transition between levels 3 and 2 then takes place. Depopulation

of level 2 must be faster than the undesired nonradiative depopulation of level

3 in order to obtain gain. This is realised by designing the energy spacing

between levels 2 and 1 to match an longitudinal optical (LO) phonon energy.

While their operating principle is simple and it is relatively easy to design

them, a clear disadvantage of this type of devices is that an external pumping

source is necessary. The interest in these devices is therefore limited and this

is probably the reason why they were realised for the first time [50] several

years after electrically injected quantum cascade lasers, which have a more

complicated structure.

The quantum cascade laser (QCL) is an intersubband semiconductor laser

consisting of periodically repeated carefully engineered multiple quantum wells

that direct the electronic transport along the desired path and enable gain in

the structure. Following its first realisation in 1994 [51], a number of different

designs has been realised in material systems such as InGaAs/AlInAs [51],

AlGaAs/GaAs [1, 52], InGaAs/AlAsSb [53], InAs/AlSb [54]. The wavelength
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LO

3

2

1

Figure 1.4: Energy level scheme of an optically pumped intersubband quan-

tum well laser.

range spans the region from ≈ 3µm to ≈ 190µm [55] in the terahertz range [56],

and up to 215µm [57] in strong external magnetic fields, with a forbidden gap

around 34µm corresponding to LO phonon energy. The energy level scheme

in the heart of the active region (Fig. 1.5) is similar to the one in optically

pumped lasers, however one needs to ensure efficient injection of electrons into

the upper laser level and extraction from the lower laser level and ground state.

This is achieved by adding a so called injector region (Fig. 1.5) as an electron

Bragg reflector.

1.3.2 Intraband quantum dot devices

While achievements in the realisation of a variety of quantum well intersubband

devices are certainly impressive, the realised devices still have their limitations

and one is facing the evergoing quest for the devices based on new concepts

that would cover the so far unreachable parts of the spectrum and/or have

an improved performance. Following the same idea in the development of

the interband devices, improvements in performance can be achieved by using

quantum dots in the active region of intraband devices.

Several limitations of QWIPs have motivated the development of quan-
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Figure 1.5: Scheme of the wavefunctions of most relevant levels in a quantum

cascade laser structure from Ref. [1].

tum dot infrared photodetectors (QDIPs). The main origin of dark current

in QWIPs is thermal excitation (due to interaction with phonons) of carriers

from the ground state to continuum states. The discrete electronic spectrum

of quantum dots as opposed to continuum spectrum of quantum wells signif-

icantly reduces the phase space for such processes and therefore reduces the

dark current. Higher operating temperatures of QDIPs are therefore expected.

Due to optical selection rules, QWIPs based on intersubband transitions in the

conduction band interact only with radiation having the polarisation vector in

the growth direction. This is not the case in quantum dots since these are

three dimensional objects where such selection rules do not exist.

QDIPs comprising III-As self-assembled quantum dots have indeed become

a very important technology for the detection of mid- and far-infrared elec-

tromagnetic radiation [58–72]. Since their initial realisation and demonstra-

tion [58–60], there has been a lot of experimental success leading to continuous

improvements in their performance. For example, the concept of a current

blocking layer [61, 62] was introduced to reduce the dark current. Quantum
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dots-in-a-well (DWELL) photodetectors [63–65] provide a way to tailor the

detection wavelength within a certain range by changing the well width and

focal plane arrays based on QDIPs have also been demonstrated [66, 67, 73].

Most recently, room temperature operation of a resonant tunnelling QDIP with

InGaAs quantum dots grown on GaAs substrate [68], as well as of QDIP com-

prising InAs quantum dots grown on InP substrate [74], has been achieved.

These are probably the most exciting results, since room temperature opera-

tion of QWIPs has never been achieved.

Although In(Ga)As/GaAs quantum dots grown on GaAs substrates [59,

60,63,64,68,69,71,72,75–81], being probably the most explored quantum dot

material system, are typically used in QDIPs, other material systems have

also attracted attention such as InAs quantum dots grown on InP [82], In-

GaAs/InGaP dots grown on GaAs substrate [83–85], InAs/InAlAs dots grown

on InP [86], GaN/AlN [87, 88] and Ge/Si quantum dots [89]. QDIP devices

utilise two different geometries - lateral conductivity QDIPs and vertical con-

ductivity QDIPs [34]. Vertical QDIPs have been the subject of more intensive

research due to their suitability for application as focal plane arrays [66,67], al-

though lateral QDIPs have demonstrated excellent performance too [34]. The

mentioned devices exhibit response in the mid-infrared range, but most re-

cently the terahertz range was approached with QDIPs, as well [90].

On the other hand, there has been less success in the development of quan-

tum dot intraband emitters. In quantum well based intersubband lasers the

lasing threshold depends on the lifetime of the upper laser level which is deter-

mined by LO phonon scattering and is of the order of picoseconds. In order to

have a lower threshold, LO phonon scattering needs to be reduced. Due to the

discrete nature of states in quantum dots, electron relaxation due to the inter-

action with LO phonons has previously been considered to be vanishingly small

unless the energy levels are separated by the energy of an LO phonon [91].

Consequently, a quantum dot cascade laser with six orders of magnitude lower

threshold current than in quantum well based devices was expected [92]. How-
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ever, current thought is that the electron – LO phonon interaction in quantum

dots should be considered in the strong coupling regime [93,94], and theoretical

predictions of relaxation due to LO phonon decay [95,96] have indicated relax-

ation times of the order of hundred of picoseconds, in accordance with experi-

mentally measured values [97, 98]. This is still two orders of magnitude larger

than in quantum wells and hence the latest theoretical proposals of quantum

dot cascade lasers [99–101] still predict lower threshold currents. Electrolu-

minescence from such structures has been observed [102–104] but lasing has

not been observed yet. Experimental evidence that the system with truly dis-

crete states should have a lower threshold current comes from extremely low

threshold currents observed in quantum well based QCLs in strong magnetic

fields [105]. From the commercial point of view it is necessary to avoid the use

of high magnetic fields and have a system with truly discrete states.

As far as optically pumped intraband quantum dot lasers are concerned,

prior to work reported here, there have been no reports on theoretical analysis

of their feasibility or experimental attempts of their realisation.

1.4 Thesis outline

From the discussion presented in Sec. 1.3.2, one can see that the prospect of

having quantum dot intraband devices superior to existing quantum well in-

tersubband devices, has not been fully exploited. While this is partly due to

difficulties in technological realisations of quantum dot structures with desired

characteristics, there is also a lack of understanding of complex physical pro-

cesses within the devices and the absence of appropriate device models. The

goal of this thesis is to bridge the mentioned gap by developing the appropriate

models of intraband quantum dot devices.

In Chapter 2 the theoretical framework used in this work will be presented.

Chapters 3 and 4 will present efficient methods for electronic structure calcu-

lation in quantum dots, based on exploiting the symmetry of the dot shape,

in the case of materials with zincblende and wurtzite crystal structure, respec-
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tively. In Chapter 5 the design and simulation of an optically pumped laser

based on InAs/GaAs quantum dots will be given. Calculations of the absorp-

tion spectrum of InAs/GaAs QDIPs and their comparison with experimental

results from the literature will be presented in Chapter 6. Chapter 7 will be

devoted to understanding the performance of DWELL detectors, namely the

effect of wavelength tailoring by changing the well width and the Stark shift in

these structures. A model of electron transport in QDIPs, capable of predicting

the output device characteristics is presented in Chapter 8, and used to investi-

gate a realistic device. In Chapter 9 the application of nonequilibrium Green’s

functions formalism to transport in quantum dot structures is introduced and

transport through a superlattice of quantum dots is investigated. The prospect

of realising quantum dot QCLs is analysed and one possible design is given.

Finally, a summary of the work presented, along with the conclusion and sug-

gestions for possible future direction of the research in this exciting area are

given in Chapter 10.
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Chapter 2

Theoretical framework

The theoretical framework used in the thesis will be presented in this Chapter.

The discussion will start with an overview of the existing models used in the

calculation of the electronic structure of quantum dots. The k ·p model, which

was mostly used in this work will be presented next, along with the ways to take

into account the effects of strain and external electromagnetic field. Different

numerical methods for solving the k · p Hamiltonian and finding the strain

distribution in quantum dots, with a special emphasis on those exploited in

this thesis, will be then presented. The following section will describe the

interaction of carriers in quantum dot with phonons which is essential for

understanding the dynamical and transport properties of quantum dot devices.

Finally, the nonequilibrium Green’s functions theory of transport in quantum

dots, will be described in the last section of this Chapter.

2.1 Electronic structure of quantum dots

Self-assembled quantum dots typically have lateral dimensions of the order of

15−30nm and height of the order 3−7nm. While on the one hand, they seem

to be small and simple objects, a look at their structure from the atomistic side

reveals their high complexity. Having in mind that the lattice constants of the

underlying semiconductor materials are typically of the order of 0.5nm, one

can estimate that a single quantum dot contains ∼ 106 nuclei and even a larger

number of electrons interacting among each other with long range Coulomb
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forces. This clearly indicates that direct solution of the many body quantum

dot Hamiltonian is not a feasible approach and that smart and efficient methods

need to be developed. Fortunately, there is a wealth of theoretical methods

that have been applied to the calculation of the electronic structure of bulk

semiconductors, many of which can be appropriately extended to quantum

dots.

The method that is closest to being able to be called ab initio and yet

relatively efficient to provide some hope that it will be feasible for quantum

dot systems is density functional theory (DFT). It is based on the theorem

by Hohenberg and Kohn [106] of a unique correspondence between the elec-

tron density and the ground state of a many electron system. Furthermore,

Kohn and Sham [107] showed how it is possible to replace the many electron

problem by an equivalent set of self-consistent single particle equations. These

equations contain the functional of exchange correlation potential, whose ex-

act form is not known, and needs to be approximated. While the initially

developed DFT treats ground state only, it was later developed to treat ex-

cited states as well. The method has been applied to a range of solid state

systems [108], nevertheless despite its elegance it is still limited to systems of

several thousands atoms. Calculations of the electronic structure and optical

spectra of clusters and nanocrystals of the size up to ∼3 nm have indeed been

performed [109–113], however much larger self-assembled quantum dots still

seem to be out of the range of present day computational resources.

An approach that has been highly successful in modelling the bulk band

structure of semiconductors is the empirical pseudopotential method [114,115].

The method is based on the assumption that the effect of the nucleus, core

electrons and potential of valence electrons on a single electron can be replaced

by a single potential, therefore reducing the problem to a single particle prob-

lem. The mentioned potential is represented in plane wave expansion, and it

turns out that only a small number of coefficients in the expansion (so called

form factors) is necessary to accurately reproduce the band structure over a
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wide range of energies and throughout the whole Brillouin zone. The empiri-

cal pseudopotential method can be extended to quantum dot structures. The

pseudopotentials fitted to the experimental results of bulk materials consitut-

ing the quantum dot and embedding matrix are then used as known values

and total potential experienced by an electron in quantum dot is expressed

as a sum of pseudopotentials of each atom [116]. An additional complica-

tion is that in the strained structures the equilibrium positions of atoms are

not known in advance, therefore the system of atoms has to be relaxed to its

equilibrium position before the pseudopotential Hamiltonian is calculated and

diagonalised [117,118]. The corresponding eigenvalue problem is solved either

by expanding the wavefunction in plane waves or in a linear combination of

bulk Bloch bands [119]. The electronic structure calculation within the empir-

ical pseudopotential method is computationally demanding, but it is feasible

with present day computers. An interesting method that has been developed

more recently is the charge density patching method [120]. Central quantities

in this method are electronic charge densities, rather than pseudopotentials.

Its main idea is to patch the charge densities calculated for smaller systems by

DFT, to obtain the charge density of a bigger system.

Another method that was initially applied to bulk crystals, and then ex-

tended to quantum heterostructures is the tight-binding method. The method

is atomistic in nature as it treats individual atoms. The model Hamiltonian

of the structure is constructed by considering the interactions of electron or-

bitals originating from one atom with orbitals of its few nearest neighbours

only. Similarly as in the empirical pseudopotential method, the parameters

of the Hamiltonian are chosen to accurately fit the bulk band structure [121].

Although the resulting Hamiltonian matrix is large, it is sparse and can be

diagonalised using efficient routines for such matrices, which has resulted in

relatively frequent applications of the method to studies of quantum dot elec-

tronic structure [122–125].

For most of the electronic and optical properties of semiconductors and
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nanostructures based upon them, it is only a certain region of momentum space

where carriers reside. The idea of the k · p method and its simplest version

the effective mass method is to exploit this fact and make an expansion of the

wavefunction in a limited number of bulk Bloch bands at some characteristic

point, usually the point k = 0, the so called Γ-point. While one can in principle

form a k · p Hamiltonian from any number of bulk bands, the most popular is

the 8-band Hamiltonian, which fairly well describes the top of the valence band

and the bottom of the conduction band. It has therefore often been applied

in quantum dot electronic structure calculations [126–131]. While possibly

limited in the description of some subtle effects, the k·p method can inherently

incorporate the effects of band mixing, strain, piezoelectricity, as well as the

influence of external fields, keeping a lower computational cost compared to

atomistic methods. It has therefore been the method of choice for the electronic

structure calculations reported in this work and will be described in more detail

in sections that follow.

2.2 k · p method

Let the Hamiltonian of an electron in a semiconductor be

Ĥ =
p̂2

2m0

+ V0(r) + Ĥso, (2.1)

where p̂ is the momentum operator, V0(r) the periodic crystal potential (in-

cluding nuclei, core electrons and self-consistent potential of valence electrons),

and Ĥso the spin-orbit interaction Hamiltonian arising from relativistic correc-

tions to Schrödinger equation given by

Ĥso =
~

4m2
0c

2
[∇V0(r) × p̂] · σ, (2.2)

where σ is a vector of Pauli matrices

σx =





0 1

1 0



 , σy =





0 −i
i 0



 , σz =





1 0

0 −1



 . (2.3)



2.2 k · p method 18

According to Bloch’s theorem, the wavefunction of an electron in a periodic

potential can be expressed as

Ψ(r) = unk(r)eikr, (2.4)

where k is the wave vector from the first Brillouin zone and unk(r) is a periodic

function, a so called Bloch function. The index n anticipates that for each k

vector, there will be a discrete set of solutions of the Schrödinger equation (so

called bands)

ĤΨ = EΨ. (2.5)

After substituting (2.4) into (2.5) one arrives at

(

p̂2

2m0
+ V0(r) +

~
2k2

2m0
+ ~

k · p̂
m0

+
~

4m2
0c

2
[∇V0(r) × p̂] · σ+ (2.6)

+
~

2

4m2
0c

2
[∇V0(r) × k] · σ

)

unk(r) = Enkunk(r).

Due to the smallness of ~k compared with matrix elements of p̂, the last term

in Eq. (2.6) will be neglected in further discussion. The solutions at the Γ

point when spin-orbit interaction is excluded satisfy the eigenvalue problem of

a Hermitian operator with periodic boundary conditions

Ĥ0un0(r) =

(

p̂2

2m0

+ V0(r)

)

un0(r) = En0un0(r), (2.7)

and therefore form an orthonormal basis of functions with periodicity of the

crystal lattice. At this place, one can see that the introduction of a discrete

index n was justifiable. Since Bloch functions un0 form an orthonormal basis,

one can express the solution of (2.6) as their linear combination

unk(r) =
∑

n

cnkun0(r), (2.8)

which leads to the eigenvalue problem of the Hamiltonian matrix whose ele-

ments are given as

hmn = 〈um0|
(

Ĥ +
~

2k2

2m0

+ ~
k · p̂
m0

)

|un0〉 . (2.9)
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Using (2.7) and the orthonormality condition, one gets:

hmn =

(

En0 +
~

2k2

2m0

)

δm,n +
~

m0
〈um0|k · p̂ |un0〉 + 〈um0| Ĥso |un0〉 . (2.10)

Since the second term in Eq. (2.10) is crucial in determining the Hamiltonian

matrix, the method being described is called the k · p method. If infinitely

many bands were taken, the solution of the eigenvalue problem of matrix hmn

would lead to exact eigenvalues of Hamiltonian (2.1). Clearly, in practice, one

has to restrict it to a finite number of bands. Historically, it was first applied to

valence band (6-band Hamiltonian) [132,133] and later on the conduction band

was added (8-band Hamiltonian) [134]. In Secs. 2.2.1 and 2.2.2, the explicit

forms of 8-band Hamiltonians in semiconductors with zincblende and wurtzite

crystal structure, used in this work, will be derived.

2.2.1 The 8-band k · p Hamiltonian for semiconductors

with zincblende crystal symmetry

Many of the technologically important semiconductors crystalise in zincblende

structure. Apart from InAs and GaAs that are mostly of interest here, these

are also AlSb, CdTe, GaP, GaSb, InP, InSb, ZnS, ZnSe, and ZnTe. Moreover,

the point Td symmetry group of the zincblende crystal is a subgroup of the

diamond group of Ge and Si, and therefore the same k · p Hamiltonian, can

be applied to these semiconductors, as well.

The first step in the construction of the explicit form of the k·p Hamiltonian

is the choice of bands to be included in the expansion (2.8). A logical choice is

to include the highest states in the valence band and the lowest states in the

conduction band. Following the notation of Ref. [135], the point group Td has

five irreducible representations (IRs) Γ1–Γ5. The lowest state in the conduc-

tion band transforms under the operations of a symmetry group according to

one dimensional representation Γ1, and will be labelled as |S〉, while the high-

est states in the valence band transforms according to the three dimensional

representation Γ5, and will be labelled as |X〉, |Y 〉, and |Z〉. While analogy of
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these states with s and px−z orbitals of a spherically symmetric system (such

as for example hydrogen atom) does exist, one should still have in mind that,

for example Γ1 state is not spherically symmetric and transforms as s only

under the symmetry operations of group Td, and similarly for Γ5 states. The

basis consisting of spin up and down states of the four selected Bloch functions

{u1, . . . , u8} = {|S ↑〉, |X ↑〉, |Y ↑〉, |Z ↑〉, |S ↓〉, |X ↓〉, |Y ↓〉, |Z ↓〉} (2.11)

is therefore chosen in expansion (2.8).

As a second step in the construction of the k · p Hamiltonian, one has to

evaluate the matrix elements appearing in (2.10). The momentum operator p̂

transforms as Γ5 under the operations of the symmetry group and this fact can

be exploited to conclude that many of the matrix elements of the components

of the p̂-operator are equal to zero. This stems from the theorem that says

that the matrix element 〈i|Ô|f〉 is non zero only if the product of the IRs of

f and Ô contains the IR of i [136]. From multiplication tables [135] of IRs of

the group Td, and additional symmetry considerations, it follows that only the

following matrix elements are non-zero and that they are mutually equal:

P0 = −i ~

m0
〈S|p̂x|X〉 = −i ~

m0
〈S|p̂y|Y 〉 = −i ~

m0
〈S|p̂z|Z〉, (2.12)

where P0 is the interband matrix element of the velocity operator [137] usually

reported in energy units as EP = 2m0

~2 P
2
0 .

The symmetry of the crystal also allows only certain matrix elements of

the spin-orbit interaction operator to be non-zero, in particular these are

∆

3
= −i ~

4m2
0c

2
〈X| [∇V0(r) × p̂]y |Z〉 =

= −i ~

4m2
0c

2
〈Y | [∇V0(r) × p̂]z |X〉 = (2.13)

= −i ~

4m2
0c

2
〈Z| [∇V0(r) × p̂]x |Y 〉.

The following discussion will make evident the fact that ∆ is the spin splitting

of the states in the valence band. After explicitly calculating all 64 matrix
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elements in the 8-dimensional manifold of states (2.11), one obtains the 8-

band Hamiltonian

Ĥ =





G+Gso Γ

−Γ∗ G+G∗
so



 , (2.14)

where the respective blocks are given by

G =

















E ′
C + ~

2k2

2m0
ikxP0 ikyP0 ikzP0

−ikxP0 E ′
V + ~2k2

2m0
0 0

−ikyP0 0 E ′
V + ~

2k2

2m0
0

−ikzP0 0 0 E ′
V + ~2k2

2m0

















, (2.15)

where E ′
C and E ′

V are the conduction and valence band edges when spin orbit

interaction is not included, and

Gso =
∆

3

















0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

















,Γ =
∆

3

















0 0 0 0

0 0 0 1

0 0 0 i

0 −1 i 0

















. (2.16)

The eigenvalues of the spin-orbit part of the Hamiltonian are 0 (doubly de-

generate, with eigenvectors related to conduction band states), ∆
3

(fourfold

degenerate) and −2∆
3

(doubly degenerate). Therefore, the actual position of

the conduction band edge at the Γ point is EC = E ′
C , but the position of the

valence band edge is EV = E ′
V + ∆

3
. It is the difference of EC and EV that is

equal to the experimentally measured energy gap, therefore these will be used,

rather than E ′
C and E ′

V .

The Hamiltonian (2.14) represents the reduction of the total Hamiltonian

of a zincblende semiconductor to an 8-dimensional space of states (2.11) and

is therefore clearly only an approximation of the total Hamiltonian. One way

to improve this approximation would be clearly to include more bands which

would result in a matrix of larger dimensions. There is, however, a more at-

tractive approach due to Löwdin [138], which allows one to perturbatively take

into account the influence of the states outside the chosen manifold (so called
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remote bands), and at the same time keep the size of the Hamiltonian ma-

trix at the same value. Within Löwdin’s perturbation theory, the Hamiltonian

U with second-order perturbative corrections due to the influence of remote

bands is given by

Uαβ = Hαβ +
∑

r

HαrHrβ

E −Hrr
, (2.17)

where the indices α and β refer to states within the manifold, and r to all other

states. The eigenvalue problem of U becomes a nonlinear problem since the

energy E explicitly appears in the Hamiltonian. However, as is often done in

perturbation expansions of this kind, one approximates E with a certain value.

There is some ambiguity in the choice of this value, especially when corrections

to off-diagonal matrix elements are concerned. Usually, in the corrections to

all matrix elements among the valence band states, E is replaced with E ′
V ,

and in the elements among conduction band states with E ′
C . The ambiguity

is pronounced when the elements between conduction and valence band states

are concerned and then E is sometimes replaced with 1
2
(EC +EV ) [130]. After

symmetry considerations of matrix elements between states in the manifold and

remote bands and neglecting spin-orbit terms in the correction, one obtains the

following additional terms to the Hamiltonian blocks G

Gr =
~

2

m0

















A′k2 Bkykz Bkxkz Bkxky

Bkykz wx N ′kxky N ′kxkz

Bkxkz N ′kxky wy N ′kykz

Bkxky N ′kxkz N ′kykz wz

















, (2.18)

where wxx = M ′(k2
y + k2

z) + L′k2
x, wyy = M ′(k2

x + k2
z) + L′k2

y, and wzz =

M ′(k2
x+k2

y)+L
′k2

z . The B coefficient exactly vanishes in crystals with diamond

structure, and in crystals with zincblende structure it appears to be very small

and is usually neglected [139].

One can in principle work in the basis (2.11), although it is more usual to

work in the basis of the total angular momentum operator |JJz〉 that diago-
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nalises the Hamiltonian at k = 0, given by:

|1〉 = |1
2
,−1

2
〉 = |S ↓〉,

|2〉 = |1
2
,
1

2
〉 = |S ↑〉,

|3〉 = |3
2
,
1

2
〉 = − i√

6
|(X + iY ) ↓〉 + i

√

2

3
|Z ↑〉,

|4〉 = |3
2
,
3

2
〉 =

i√
2
|(X + iY ) ↑〉,

|5〉 = |3
2
,−3

2
〉 = − i√

2
|(X − iY ) ↓〉, (2.19)

|6〉 = |3
2
,−1

2
〉 =

i√
6
|(X − iY ) ↑〉 + i

√

2

3
|Z ↓〉,

|7〉 = |1
2
,−1

2
〉 = − i√

3
|(X − iY ) ↑〉 +

i√
3
|Z ↓〉,

|8〉 = |1
2
,
1

2
〉 = − i√

3
|(X + iY ) ↓〉 − i√

3
|Z ↑〉.

The Bloch functions labelled by 1 and 2 correspond to electron states of spin

down and spin up, those labelled by 3 and 6 to light-hole states, 4 and 5

to heavy-hole states and 7 and 8 to split-off band states. In this basis, the

Hamiltonian acquires the form

Ĥk = (2.20)










































A 0 V + 0
√

3V −
√

2U −U
√

2V +

0 A −
√

2U −
√

3V + 0 −V
√

2V U

V −
√

2U −P + Q −S+ R 0
√

3
2S −

√
2Q

0 −
√

3V −S −P − Q 0 R −
√

2R 1√
2
S

√
3V + 0 R+ 0 −P − Q S+ 1√

2
S+

√
2R+

−
√

2U −V + 0 R+ S −P + Q
√

2Q

√

3
2S+

−U
√

2V +
√

3
2S+ −

√
2R+ 1√

2
S

√
2Q −P − ∆ 0

√
2V U −

√
2Q 1√

2
S+

√
2R

√

3
2S 0 −P − ∆











































,
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where

A = EC +
~

2

m0
A′k2 +

~
2k2

2m0
,

U =
1√
3
P0kz,

V =
1√
6
P0(kx − iky),

P = −EV + γ1
~

2k2

2m0
,

Q = γ2
~

2

2m0

(

k2
x + k2

y − 2k2
z

)

,

R = −
√

3

2

~
2

m0

[

γ2

(

k2
x − k2

y

)

− 2iγ3kxky

]

,

S =
√

3γ3
~

2

m0
kz(kx − iky),

and γ1 = −1− 4
3
M ′− 2

3
L′, γ2 = 1

3
(M ′−L′), γ3 = −1

3
N ′ are Luttinger parameters

of the 8-band model. More experimentally accessible are the parameters of the

6-band model (M , L, and N , or γL
1 , γL

2 , and γL
3 ) as they are directly related

to effective masses in the valence band. By applying Eq. (2.17) to the 6-

band and 8-band model and subtracting these equations, one gets M ′ = M ,

L′ = L+ 1
2

EP

Eg+∆

3

, and N ′ = N+ 1
2

EP

Eg+∆

3

, where Eg = EC −EV is the energy gap.

Consequently, one gets the relation for 8-band model Luttinger parameters

expressed in terms of the parameters of the 6-band model

γ1 = γL
1 − EP

3Eg + ∆
,

γ2 = γL
2 − 1

2

EP

3Eg + ∆
,

γ3 = γL
3 − 1

2

EP

3Eg + ∆
.

Furthermore, A′ can be related to conduction band effective mass m∗. By

calculating m∗ considering all bands other than the conduction band as remote

bands and applying Löwdin’s perturbation theory, one gets

~
2

m0
(
1

2
+ A′) =

~
2

2m∗ − P 2
0

Eg + 1
3
∆
. (2.21)

In this work, however, it will be taken that A′ = 0. One can see, for example

from the matrix elements in Ref. [140] that conduction band is coupled most
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strongly to the valence band and weakly to other bands, implying that the

value of A′ that measures the coupling to other bands is small.

2.2.2 The 8-band k · p Hamiltonian for semiconductors

with wurtzite crystal symmetry

III-nitride semiconductor compounds such as GaN, AlN, and InN often crys-

talise in the wurtzite structure. The point symmetry group of this crystal is

C6v and has six IRs Γ1 – Γ6. The lowest state in the conduction band trans-

forms as Γ1 and will be labelled as |S〉. The two highest states in the valence

band that transform according to two dimensional representation Γ6, and will

be labelled as |X〉 and |Y 〉, are followed by a state that transforms as Γ1 and

is labelled as |Z〉. The 8-band Hamiltonian in the manifold (2.11) then takes

the form (2.14) where the blocks in the Hamiltonian are given by

G =
~

2k2

2m0
+

















E ′
C ikxP⊥ ikyP⊥ ikzP‖

−ikxP⊥ E ′
V + ∆1 0 0

−ikyP⊥ 0 E ′
V + ∆1 0

−ikzP‖ 0 0 E ′
V

















, (2.22)

Gso = ∆2

















0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

















,Γ = ∆3

















0 0 0 0

0 0 0 1

0 0 0 i

0 −1 i 0

















, (2.23)

where

P⊥ = −i ~

m0

〈S|p̂x|X〉 = −i ~

m0

〈S|p̂y|Y 〉,

P‖ = −i ~

m0

〈S|p̂z|Z〉,

E ′
C = 〈S| p̂2

2m0

+ V0(r)|S〉,

E ′
V = 〈Z| p̂2

2m0
+ V0(r)|Z〉,

E ′
V + ∆1 = 〈X| p̂2

2m0
+ V0(r)|X〉 = 〈Y | p̂2

2m0
+ V0(r)|Y 〉,
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where ∆1 is called the crystal field splitting,

∆2 = −i ~

4m2
0c

2
〈Y | [∇V0(r) × p̂]z |X〉,

∆3 = −i ~

4m2
0c

2
〈X| [∇V0(r) × p̂]y |Z〉 = −i ~

4m2
0c

2
〈Z| [∇V0(r) × p̂]x |Y 〉.

The momentum matrix elements P‖ and P⊥ can be related to effective mass

parameters by [141]

P 2
‖ =

~
2

2m0

(

m0

m‖
− 1

)

(Eg + ∆1 + ∆2)(Eg + 2∆2) − 2∆2
3

Eg + 2∆2
,

P 2
⊥ =

~
2

2m0

(

m0

m⊥
− 1

)

(Eg + ∆1 + ∆2)(Eg + 2∆2) − 2∆2
3

(Eg + ∆2)(Eg + ∆1 + ∆2)
Eg,

where m⊥ and m‖ are the transversal and longitudinal bulk conduction band

effective mass, ∆2 = ∆3 = 1
3
∆so and Eg is the energy gap.

In principle, G should also contain terms linear in k that couple |Z〉 to

|X〉 and |Y 〉. However, the values of these terms extracted from empirical

pseudopotentials in Ref. [142] are small, and these terms are not considered in

the literature [141, 143, 144].

When the effect of remote bands is included the following additional terms

appear

Gr =
~

2

m0

















w1 B1kykz B1kxkz B2kxky

B1kykz w2 N ′
1kxky N ′

2kxkz

B1kxkz N ′
1kxky w3 N ′

2kykz

B2kxky N ′
2kxkz N ′

2kykz w4

















, (2.24)

where w1 = A′
⊥(k2

x + k2
y) + A′

‖k
2
z , w2 = M ′

1k
2
y + M ′

2k
2
z + L′

1k
2
x, w3 = M ′

1k
2
x +

M ′
2k

2
z + L′

1k
2
y, and w4 = M ′

3(k
2
x + k2

y) + L′
2k

2
z .

Several approximations can be made at this point. Spin-orbit splitting can

be neglected, which is justified by its small value in nitrogen containing semi-

conductors (∆2 = ∆3 = ∆so/3 . 5meV [4]). This leads to block diagonalisa-

tion of the total 8-band Hamiltonian into two identical 4-band Hamiltonians.

Next, B1 and B2 terms are neglected in a similar manner as in the case of

zincblende crystals. Finally, it also turns out that in the (1, 1) term in (2.24),

the coefficient after k2 is small and can be omitted [141, 143].



2.2 k · p method 27

After transforming to a new basis

|1〉 = i|S ↑〉,

|2〉 =
1√
2
|(X + iY ) ↑〉,

|3〉 =
1√
2
|(X − iY ) ↑〉, (2.25)

|4〉 = |Z ↑〉,

one obtains the following 4-band Hamiltonian

Ĥk =

















Ec + ~
2k2

2m0
V V + U

V + Ev + F K+ H+

V K Ev + F H

U H H+ Ev + Λ

















, (2.26)

with

H = i
~

2

2m0
A′

6kzk+,

K =
~

2

2m0
A′

5

(

k2
x − k2

y + 2ikxky

)

,

Λ = −∆1 +
~

2

2m0

[

A′
1k

2
z + A′

2

(

k2
x + k2

y

)]

,

Θ =
~

2

2m0

[

A′
3k

2
z + A′

4

(

k2
x + k2

y

)]

, (2.27)

F = ∆1 + Λ + Θ,

V =
1√
2
P⊥k+,

U = P‖kz,

and A′
1 = 1 + 2L′

2, A
′
2 = 1 + 2M ′

3, A
′
3 = 2M ′

2 − 2L′
2, A

′
4 = L′

1 + M ′
1 − 2M ′

3,

A′
5 = N ′

1, A
′
6 =

√
2N ′

2. From Löwdin’s perturbation formula one gets the

relation between the parameters of the four and three band model L′
1 = L1 +

m0

~2

P 2

⊥

Eg
, L′

2 = L2 + m0

~2

P 2

‖

Eg
, M ′

1 = M1, M
′
2 = M2, M

′
3 = M3, N

′
1 = N1 + m0

~2

P 2

⊥

Eg
,

N ′
2 = N2+

m0

~2

P⊥P‖

Eg
, and consequently the relations between the A′

i (i = 1, . . . , 6)

parameters in the four band model with the three band model parameters Ai
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(i = 1, . . . , 6)

A′
1 = A1 +

2m0

~2

P 2
‖
Eg
,

A′
2 = A2,

A′
3 = A3 −

2m0

~2

P 2
‖
Eg
,

A′
4 = A4 +

m0

~2

P 2
⊥
Eg

, (2.28)

A′
5 = A5 +

m0

~2

P 2
⊥
Eg

,

A′
6 = A6 +

√
2m0

~2

P⊥P‖
Eg

.

2.3 The effect of strain

Strain has a strong effect on the electronic structure of semiconductors. The

displacement of constituent atoms from their equilibrium positions changes the

potential created by them and therefore the bandstructure is modified. The

aim of this section will be to quantitatively describe how the effect of strain

can be incorporated in the k · p model. The approach of Ref. [130] is mainly

followed in this section.

Let the component of the displacement vector of a point in the semicon-

ductor in the direction i be ui. The strain tensor components are then defined

as

eij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

. (2.29)

Both the x, y, z and 1, 2, 3 notation for the indices ij will be used. A case of the

strain homogeneous in space will be assumed. The periodicity of the crystal is

then still present, but with a different deformed unit cell whose basis vectors

are related to the original basis vectors by

a′
i =

∑

j

(δij + eij)aj. (2.30)

The relation between the old and new coordinates is then

xi =
∑

j

(δij + eij)x
′
j. (2.31)
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The relationship between momentum operators in old and new coordinates is

then up to terms linear in strain

p̂i =
∑

j

(δij − eij)p̂
′
j. (2.32)

One should note that Bloch’s theorem can now be applied only if the Hamil-

tonian (2.6) is expressed in new primed coordinates, since the system has the

periodicity described by the vectors a′
i, rather than ai. The crystal potential

in the strained case is up to terms linear in strain then given by:

V (r) = V0(r
′) +

∑

ij

Vij(r
′)eij. (2.33)

After replacing (2.31), (2.32) and (2.33) into (2.1) and applying Bloch’s theo-

rem in new coordinates, one obtains the eigenvalue problem for Bloch functions

in the new coordinate system

(

Ĥ ′
b + D̂0 + D̂1

)

vnk(r′) = Enkvnk(r′), (2.34)

where Ĥ ′
b is the Hamiltonian on the left hand side of (2.6) with r and p replaced

by r′ and p′

D̂0 =
∑

ij

[

−
p̂′ip̂

′
j

m0
+ Vij(r

′)

]

eij =
∑

ij

D̂ijeij, (2.35)

and

D̂1 = − ~

m0

∑

ij

kieij p̂
′
j. (2.36)

The terms that couple the strain to the spin-orbit interaction have been ne-

glected as is exclusively done in the literature [127, 131, 139, 145]. Next, the

explicit forms of the strain part of the Hamiltonian in the case of crystals with

zincblende and wurtzite symmetry will be derived.

2.3.1 Strain in zincblende crystals

For the case of crystals with zincblende symmetry, the appearance of addi-

tional terms D̂0 and D̂1 leads to additional contributions to the 4 × 4 blocks
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of the Hamiltonian of the form

Ge =

















wss wx wy wz

w∗
x wxx nexy nexz

w∗
y nexy wyy neyz

w∗
z nexz neyz wzz

















, (2.37)

where wss = a′(exx + eyy + ezz), wxx = lexx + m(eyy + ezz), wyy = leyy +

m(exx + ezz), wzz = lezz + m(exx + eyy), wx = b′eyz − iP0

∑

j exjkj, wy =

b′exz−iP0

∑

j eyjkj, wz = b′exy−iP0

∑

j ezjkj, a
′ = 〈S|D̂xx|S〉, b′ = 2〈S|D̂xy|Z〉,

l = 〈X|D̂xx|X〉, m = 〈Y |D̂xx|Y 〉, and n = 2〈X|D̂xz|Z〉. The b′ term is very

small and is usually neglected [139].

The strain part of the Hamiltonian in the basis (2.19) is then

Ĥs = (2.38)
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√
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√
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,
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where

e = e11 + e22 + e33,

p = ave,

q = b

[

e33 −
1

2
(e11 + e22)

]

,

r =

√
3

2
b(e11 − e22) − ide12,

s = −d(e13 − ie23),

u =
1√
3
P0

3
∑

j=1

e3jkj,

v =
1√
6
P0

3
∑

j=1

(e1j − ie2j)kj,

where ac and av are the conduction and valence band hydrostatic deformation

potentials, respectively, b and d are the shear deformation potentials, related

to previously introduced constants as ac = a′, av = −1
3
(l + 2m), b = 1

3
(l−m),

d = n√
3
.

2.3.2 Strain in wurtzite crystals

The strain part of the Hamiltonian in this case reads

Ge =

















w1 wx wy wz

w∗
x w2 n1exy n2exz

w∗
y n1exy w3 n2eyz

w∗
z n2exz n2eyz w4

















, (2.39)

where wx = b⊥eyz − i
∑

j Pjexjkj, wy = b⊥exz − i
∑

j Pjeyjkj, wz = b⊥exy −
i
∑

j Pjezjkj, with P1 = P2 = P⊥, P3 = P‖, w1 = a⊥(exx + eyy) + a‖ezz. w2 =

l1exx +m1eyy +m2ezz, w3 = l1eyy +m1exx +m2ezz, w4 = l2ezz +m3(exx + eyy).

The deformation potentials in (2.39) are given by a⊥ = 〈S|D̂xx|S〉,
a‖ = 〈S|D̂zz|S〉, b⊥ = 2〈S|D̂yz|X〉, b‖ = 2〈S|D̂xy|Z〉, l1 = 〈X|D̂xx|X〉,
l2 = 〈Z|D̂zz|Z〉, m1 = 〈X|D̂yy|X〉, m2 = 〈X|D̂zz|X〉, m3 = 〈Z|D̂xx|Z〉,
n1 = 2〈X|D̂xy|Y 〉, n2 = 2〈X|D̂xz|Z〉.
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The strain terms that couple the conduction and valence bands are some-

times neglected [144] which can be justified by the fact that they are much

smaller than the corresponding terms in the kinetic part of the Hamiltonian

(typically 2 orders of magnitude smaller as they contain eij terms that are of

the order of . 0.01). One then obtains the following Hamiltonian in basis

(2.25)

Ĥs =

















w1 0 0 0

0 f k∗ h∗

0 k f h

0 h h∗ λ

















, (2.40)

with

λ = D1ezz +D2 (exx + eyy) ,

θ = D3ezz +D4 (exx + eyy) ,

f = λ+ θ, (2.41)

k = D5 (exx − eyy + 2iexy) ,

h = D6 (exz + ieyz) ,

where Di (i = 1, . . . , 6) are the deformation potentials given as D1 = l2,

D2 = m3, D3 = m2 − l2, D4 = 1
2
(l1 +m1) −m3, D5 = 1

2
n1, and D6 = n2√

2
.

2.3.3 Piezoelectric effect

The main effect of strain on the electronic structure is through the strain part

of the Hamiltonian. However, the strain also induces piezoelectric polarisation

which further modifies the potential. Its components in a crystal of arbitrary

symmetry are given as

Pi =
3
∑

k,l=1

εiklekl, (2.42)

where εikl are the piezoelectric constants of the material. In a crystal with

zincblende symmetry, the only nonzero components of εikl are

ε123 = ε132 = ε213 = ε231 = ε312 = ε321, (2.43)
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and will be denoted as ε14. In the crystal with wurtzite lattice, the piezoelectric

polarisation components are related to strain tensor components by [42, 146]

P pz
1 = 2ε15e13,

P pz
2 = 2ε15e23, (2.44)

P pz
3 = ε31(e11 + e22) + ε33e33,

where εij are the piezoelectric constants.

2.4 Application of k · p Hamiltonian to quantum dot

heterostructures

The k · p Hamiltonians derived in Sec. 2.2 apply to bulk semiconductors only,

when Bloch’s theorem is valid. In heterostructures, the periodicity is broken

and these Hamiltonians cannot be applied directly. The wavefunction of the

electron is not periodic any longer, it is modulated by a slowly varying function,

the so called envelope function.

A heuristic way of obtaining the Hamiltonian for quantum dot heterostruc-

tures is simply to replace the wave vectors k by the operators p̂ acting on

the envelope functions. Since material parameters in the Hamiltonian are now

position dependent and the operators of momentum and coordinate do not

commute, an ambiguity arises about the proper choice of operator ordering.

It is necessary to choose the ordering in such a way that the Hamiltonian

remains hermitian, however this condition still does not give a unique choice.

The discussion of Ref. [147] will be followed to show how one can systematically

introduce the appropriate ordering of operators.

The envelope representation of the wavefunction of an electron is given by

Ψ(r) =
∑

i

ψi(r)ui(r), (2.45)

where ui(r) form the complete orthonormal set of functions with periodicity of

the Bravais lattice and ψi(r) are slowly varying envelope functions. The most
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common choice of the functions ui are bulk Bloch functions at the Γ point. It

has been pointed out in Ref. [147] that (2.45) is an exact representation of the

wavefunction Ψ(r) if the same ui functions are used throughout the whole space

(i.e. both in the dot and the surrounding matrix) and a condition is imposed

on ψi(r) that their plane wave expansion contains only the contribution from

the first Brillouin zone. After the replacement of (2.45) in the Schrödinger

equation and making an approximation that eliminates the non-local terms

that appear in the derivation, one arrives at [147, 148]

− ~
2

2m0
∇2ψm(r)+

∑

n

−i~
m0

pmn ·∇ψn(r)+
∑

n

Hmn(r)ψn(r) = Eψm(r). (2.46)

The terms in the previous equation are given by

pmn =
1

Ω

∫

um(r)∗p̂un(r)d3r, (2.47)

where the integration goes over the volume of the crystal unit cell Ω, and

Hmn(r) is the term that, away from the interfaces, reduces to the bulk matrix

elements of the Hamiltonian

Hmn =
1

Ω

∫

um(r)∗Ĥun(r)d3r. (2.48)

The next step in the derivation of the k · p Hamiltonian for quantum dot

heterostructures is to select the bands that will be included as the main bands

for forming the Hamiltonian (which will be labelled with indices α and β) and

to add the influence of remote bands (which will be labelled with r). After

applying Eq. (2.46) to a remote band r and neglecting the first term in it, as

well as much smaller terms containing other remote bands, one gets

ψr =
1

E −Hrr

∑

β

(−i~
m0

prβ · ∇ψβ +Hrβψβ

)

. (2.49)
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The replacement of (2.49) into (2.46) applied to state α leads to

− ~
2

2m0

[

∇2ψα +
2

m0

∑

β,r

pαr · ∇
(

1

E −Hrr
prβ∇ψβ

)

]

+

+
∑

β

−i~
m0

pαβ∇ψβ +
∑

β

(

Hαβ +
∑

r

Hαr
1

E −Hrr
Hrβ

)

ψβ + (2.50)

+
∑

β

[

∑

r

−i~
m0

pαr · ∇
(

1

E −Hrr
Hrβ

)

]

ψβ +

+
∑

β

∑

r

−i~
m0

1

E −Hrr

(pαrHrβ +Hαrprβ)∇ψβ = Eψα

The first term in (2.50) gives rise to terms quadratic in k in the bulk Hamil-

tonian, the second and the fifth term are related to the terms that couple the

conduction and valence band, while the third term represents the band edges

of appropriate zones. The fourth term that does not have its bulk counterpart

can be neglected as a first approximation. By comparing the terms in (2.50)

with the expressions for parameters of the bulk band structure, one can ex-

press all of them in terms of the bulk parameters, obtaining the Hamiltonian

for heterostructures with appropriate operator ordering, as will now be shown.

The term connecting |S〉 states in (2.50) is

− ~
2

2m0
∇2 − ~

2

2m0

∑

r

pSr · ∇
2

m0

1

E −Hrr
prS∇. (2.51)

After introducing the notation k̂ = −i∇, one gets the rule for operator ordering

in the (1, 1) element of the Hamiltonian block Gr (Eq. (2.18)) as

A′k2
i → k̂iA

′k̂i. (2.52)

The same rule is also obtained for other diagonal elements of Gr. It has been

suggested in Ref. [149] that the rule for (1, 2), (1, 3) and (1, 4) elements og Gr

is

Pki → P k̂i. (2.53)

It is most difficult to derive the rule for elements that connect the states in

the valence band, such as for example the (2, 3) element of Gr. These elements
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come from the first term in (2.50). One has to identify the contributions from

remote bands of different symmetry in order to express this term in terms of

Luttinger parameters. The result, when the influence of Γ4 remote bands is

neglected reads [149, 150]

N ′kxky → k̂yMk̂x + k̂x (N ′ −M) k̂y. (2.54)

Equations (2.52)–(2.54) give a systematically derived set of rules for operator

ordering.

Many of the existing quantum dot electronic structure calculations [126,

127, 129, 131, 139] use heuristic, symmetrical arrangement of operators

f(r)kikj → 1

2

(

k̂if(r)k̂j + k̂jf(r)k̂i

)

, (2.55)

f(r)ki → 1

2

(

k̂if(r) + f(r)k̂i

)

.

It has been pointed out that such ordering of operators can lead to unphysical

solutions in some circumstances [151]. On the other hand, the rules (2.52)–

(2.54) have been derived for unstrained heterostructures in the absence of

external static or time varying electromagnetic fields. A different set of rules

has to be derived if one wants to include each of these effects, as well. This

has been done only recently for the case of external magnetic fields [152].

Recently, it has been also argued that the existing derivations of envelope

function theories (such as for example the one in Ref. [147]) do not take into

account the perturbative corrections up to the same order, which lead to the

development of a new, more systematic, envelope function theory for the case

of unstrained structures [153].

The development of envelope function theories is therefore still an active

area of research with questions that remain to be answered. The main interest

of this work was, however, to predict the physical characteristics of intraband

quantum dot optoelectronic devices, where it is necessary to include the effects

of strain and external electromagnetic fields on the one hand, but where due to

a lack of structural information about quantum dot characteristics and nonuni-

formity of quantum dot ensembles, a high level of precision is not essential.



2.5 The influence of electromagnetic fields 37

Therefore, for the sake of consistency, throughout this work, the conventional

but heuristic, symmetrical arrangement of operators as in (2.55) was used.

2.5 The influence of electromagnetic fields

2.5.1 Interaction with external electromagnetic radia-

tion

It is essential for any theoretical description of optoelectronic devices to have

an appropriate treatment of interaction of the active region of the device with

electromagnetic radiation. Let the radiation be described classically by the

magnetic vector potential A in the Coulomb gauge [154]. The microscopic

Hamiltonian of interaction of electrons with electromagnetic radiation is ob-

tained by substitution in the Hamiltonian [154, 155]

p̂ → p̂ + |e|A, (2.56)

leading to a Hamiltonian of interaction

Ĥ ′ =
(p̂ + |e|A)2

2m0
− p̂2

2m0
. (2.57)

Throughout this work, the main interest will be in the linear response to exter-

nal electromagnetic field, therefore the terms quadratic in A will be neglected.

The wavelengths of interest will be those in the mid-infrared region of the spec-

trum, when the wavelength of the radiation is much larger than the size of the

quantum dot. Therefore, in a certain moment of time, the dot effectively sees

a constant electromagnetic field, and consequently the spatial dependence of

A can be neglected (the dipole approximation). Within these approximations,

the Hamiltonian of interaction reduces to

Ĥ ′ =
|e|
m0

p̂ · A. (2.58)

According to Fermi’s Golden rule, the transition rate from an initial state

|i〉 to a final state |f〉 due to the interaction with electromagnetic radiation of
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angular frequency ω is given by

Wif =
2π

~

∣

∣

∣

〈

i
∣

∣

∣
Ĥ ′
∣

∣

∣
f
〉
∣

∣

∣

2

δ (Ef − Ei ∓ ~ω) , (2.59)

where the ’–’ sign corresponds to absorption and ’+’ to emission, and Ef and

Ei are the energies of the final and initial state, respectively.

Since A does not depend on the coordinate, one can first consider only the

momentum operator in evaluation of the matrix elements between states. The

matrix element of the momentum operator between two states i and f whose

envelope function representations are given as

Ψ(i)(r) =
∑

n

ψ(i)
n (r)un(r), (2.60)

Ψ(f)(r) =
∑

m

ψ(f)
m (r)um(r),

is then given by

Pif =

∫

d3rΨ(i)∗(r)p̂Ψ(f)(r), (2.61)

leading to

Pif =
∑

mn

∫

d3rψ(i)∗
n u∗n

[

ump̂ψ(f)
m + ψ(f)

m p̂um

]

. (2.62)

The slowly varying envelope functions F (r) feel only the average value over

the unit cell of Bloch functions that vary rapidly, which can mathematically

be expressed as
∫

d3rF (r)u(r) =

∫

d3rF (r)〈u(r)〉, (2.63)

where 〈u(r)〉 is the average value over unit cell of a rapidly varying function.

After exploiting this relation, and using the condition of orthonormality of the

Bloch functions, as well as Eq. (2.47), one arrives at

Pif =
∑

mn

∫

d3rψ(i)∗
n

(

δnm~k̂ + pnm

)

ψ(f)
m , (2.64)

with k̂ = p̂/~. Comparing the expression in brackets in (2.64) with the k · p
Hamiltonian h given in Eq. (2.10), one gets

Pif =
m0

~

∑

mn

∫

d3rψ(i)∗
n

(

∂h

∂k

)

nm

ψ(f)
m , (2.65)
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or symbolically

Pif =
m0

~
〈i|∂h
∂k

|f〉. (2.66)

Since this work will address the response of quantum dot ensembles, present

in realistic devices, the linewidth of the transition is entirely determined by

the nonuniformity in the sizes of the quantum dots in an ensemble. These

linewidths are of the order of at least several meV and are much larger than

the inherent homogeneous linewidths of a transition in a single dot. Therefore,

the recipe is adopted to treat the inhomogeneous broadening due to size inho-

mogeneity of the quantum dot ensemble by replacing the delta function with

a Gaussian, i.e.

δ(x) → g(x, 2σ) =
1

σ
√

2π
exp

(

− x2

2σ2

)

. (2.67)

The optical cross section of the i → f transition is the quantity that nor-

malises the transition probability to the flux of incident radiation and is there-

fore given by σif = Wif/Φ, where Φ is the optical pump flux. Using the relation

between the flux and the vector potential one gets

σε
if (ω) =

2π

nε0cω

∣

∣Mε
if

∣

∣

2
g(Ef − Ei ∓ ~ω, 2σ), (2.68)

where n is the refraction index. Mε
if =

〈

i
∣

∣

∣
Ĥ ′
∣

∣

∣
f
〉

/A is the matrix element

which depends only on the direction ε of light polarisation and not on the

amplitude of A, related to Pif by

Mε
if =

|e|
m0

Pif · ε. (2.69)

2.5.2 Spontaneous emission of photons

The formalism describing the interaction of electrons with a classical external

electromagnetic field, presented in Sec. 2.5.1 can reliably determine the transi-

tion rates due to the processes of absorption and stimulated emission. On the

other hand, it is known [154] that the process of spontaneous emission can be

described only if the electromagnetic field is quantised.
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The formula for the transition rate from the initial state i to the final state

f due to the spontaneous emission of photons will be derived in this section.

The operator of the vector potential of quantum electromagnetic field is given

by

Â = i
∑

k,σ

√

~

2εωV

(

b̂k,σe
ik·r − b̂+k,σe

−ik·r
)

· εσ, (2.70)

where b̂k,σ and b̂+k,σ are the annihilation and creation operators of a photon

mode, ε is the dielectric constant at angular frequency ω, V the volume of the

system, k the wave vector, σ the polarisation and εσ is the unit vector in the

direction of polarisation. The Hamiltonian of the electron-photon interaction

is given by

Ĥ ′ = Ĥk(k +
|e|
~

Â) − Ĥk(k) (2.71)

and the transition rate from the state |i; 0〉 with no photons to the states

|f ; 1q,σ〉 with an electron in the state f and one photon in any of the states

(q, σ) is equal to

Wif =
2π

~

∑

q,σ

∣

∣

∣
〈i; 0|Ĥ ′|f ; 1q,σ〉

∣

∣

∣

2

δ(Ei − Ef − ~ω). (2.72)

In the dipole approximation the exponential terms in (2.70) are equal to 1, the

terms quadratic in Â are neglected and after putting (2.70) and (2.71) into

(2.72) one gets

Wif =
2π

~

∑

q,σ

~

2εωV
|Mεσ |2δ(Ei − Ef − ~ω), (2.73)

Wif =
V

(2π)3

∫

d3q
π

εωV
δ(Ei − Ef − ~ω)

∑

σ

|Mεσ |2. (2.74)

One then has

Wif =
V

(2π)3

2

3

∫

d3q
π

εωV
δ(Ei − Ef − ~ω)

(

|Mex|2 + |Mey |2 + |Mez |2
)

,

Wif =
1

(2π)3

2

3
4π
(

|Mex|2 + |Mey |2 + |Mez |2
)

∫

q2dq
π

εω
δ(Ei − Ef − ~ω),

and using ω = cq/n the final result yields

Wif =
(Ei − Ef )n

3~2ε0πc3
(

|Mex|2 + |Mey |2 + |Mez |2
)

. (2.75)
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2.5.3 Static electric and magnetic fields

Realistic quantum dot optoelectronic devices operate under external bias and

therefore quantum dot energy levels and wavefunctions are modified by the

presence of an electric field. On a microscopic level, the external electric field

is added simply by adding its corresponding potential VF (r) = |e|F · r. One

can easily verify that the things remain simple in the envelope representation

as well, and that electric field can be included in k · p Hamiltonian by adding

VF (r) to all diagonal elements of the Hamiltonian.

The effect of a magnetic field on quantum dot electronic structure is not

as dramatic as in the case of quantum wells or wires where the spectrum is

changed from a continuous one to a discrete set of so called Landau levels. In

quantum dots, where the spectrum is discrete in the absence of magnetic field

already, the magnetic field only splits otherwise degenerate states of opposite

spin and shifts the energy levels. This is the reason why its influence on

quantum dot optoelectronic devices has not been experimentally investigated

much and therefore not much emphasis has been put on it in this work either.

Nevertheless, for completeness the mathematical description of the effect of a

magnetic field within the envelope function theory will be given here. There

is certainly some prospect in using a magnetic field for fine tuning of the

operating wavelength for example, although it is possible that the fields may

be too large.

A magnetic field is added to the k · p Hamiltonian by making the minimal

gauge substitution (2.56) and explicitly adding the Zeeman term. In the case

of the axial magnetic field B = Bez (assuming the symmetric gauge for the

vector potential A = 1
2
B (−y, x, 0)) the nonzero elements of the Zeeman term
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of the 8-band Hamiltonian in basis (2.19) are given by:

Ĥ11
Z = −Ĥ22

Z = − |e|~
2m0

B,

Ĥ33
Z = −Ĥ66

Z = −κ |e|~
2m0

B,

Ĥ44
Z = −Ĥ55

Z = −3κ
|e|~
2m0

B, (2.76)

Ĥ77
Z = −Ĥ88

Z =

(

κ+
1

2

) |e|~
m0

B,

Ĥ83
Z = Ĥ38

Z = − 1√
2

(κ+ 1)
|e|~
m0

B,

Ĥ76
Z = Ĥ67

Z = − 1√
2

(κ+ 1)
|e|~
m0

B,

where κ is the modified Luttinger parameter related to the Luttinger parameter

κL by

κ = κL − 1

2

EP

3Eg + ∆
. (2.77)

The matrix elements of the 8-band k ·p Hamiltonian in the case of a magnetic

field of arbitrary direction are given in [156, 157] for the bulk case and the

Hamiltonian with proper ordering of operators for the case of heterostructures

has recently been presented in Ref. [152] and applied to quantum dots.

2.6 Numerical methods

2.6.1 Methods for solving the k · p Hamiltonian

From the numerical point of view, the eigenvalue problem of the envelope

function n-band Hamiltonian can be viewed as a set of n coupled partial dif-

ferential equations for functions of three spatial variables. It is therefore a

challenging numerical task to solve it. There are two overall strategies that

one can accordingly employ:

• Finite-difference method (FDM). Within the finite-difference

method, the wavefunction is represented by points on a discrete three

dimensional grid of size NxNyNz, and partial derivatives are then re-
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placed with finite differences. One therefore obtains the eigenvalue prob-

lem of a very large matrix, its dimension being given by nNxNyNz. If

Nx ∼ Ny ∼ Nz ∼ 50 grid points are taken in each direction, the resulting

matrix is of the order of ∼ 106 already. Fortunately, the matrix is sparse,

and specialised algorithms for the diagonalisation of sparse matrices can

be employed [139]. FDM has therefore indeed been employed in several

studies of quantum dot electronic structure using the multiband envelope

function Hamiltonian [126, 128, 129, 158].

• Wavefunction expansion methods (WEM). The idea of the wave-

function expansion method [159] is to expand the envelope functions as

a linear combination of a certain set of orthonormal basis functions

ψj(r) =
∑

l

Ajlal(r), (2.78)

and find the coefficients Ajn in the expansion. After making the substi-

tution of (2.78) into the Hamiltonian eigenvalue problem

∑

j

Ĥijψj(r) = Eψi(r), (2.79)

one gets
∑

jn

Hij(m,n)Ajn = EAim, (2.80)

where

Hij(m,n) =

∫

d3ram(r)∗Ĥijan(r). (2.81)

Therefore, the eigenvalue problem (2.80) has to be solved. The matrix

H is dense, but with a smart choice of basis functions, one can obtain

the correct eigenvalues by employing a relatively small basis set (of the

order of 10–20 basis functions per dimension). Present day personal

computers can solve eigenproblems of dense matrices of the size ∼ 10000

and parallel supercomputers even larger matrices ∼ 50000, which makes

this approach feasible, albeit still relatively computationally demanding.

Several different choices of orthonormal basis functions have been used
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in the literature to calculate the electronic properties of quantum dots.

These include plane waves [131, 144, 160–162], the eigenfunctions of the

particle in a cylinder with infinite walls (referred to as cylindrical basis in

what follows) [145,163], and eigenfunctions of a harmonic oscillator [164].

While a claim is not made that the WEMs are better than FDMs, a few of

their advantages will be mentioned here, which have led to them being made

the method of choice for this work. It is not easy to give a fair comparison of

two different sets of methods employed and say which one is better, i.e. faster.

The time for diagonalising sparse matrices in FDM scales approximately as

∼ N , and for dense matrices as ∼ N 3. Therefore, if an extremely high preci-

sion solution of the eigenvalue problem were necessary, than the linear scaling

offered by FDM would be more favourable. However, for the precision of

eigenenergies of several meV, which is entirely sufficient for any analysis of op-

toelectronic devices, the number of necessary basis functions in WEM is small,

making the calculations fully feasible. Another good side of WEM is that after

the wavefunctions are calculated, other relevant physical quantities, such as for

example optical matrix elements and carrier lifetimes, can be expressed from

the coefficients in the expansion, rather than by performing three dimensional

numerical integration.

Another important issue of WEM is that the elements of the Hamiltonian

matrix H need to be calculated efficiently. This is fullfilled in the case of

plane waves where the expressions for Hij(m,n) are fully analytical, since

differential operators act on plane waves as simple multiplication. In the case

of a cylindrical basis, the expressions are not fully analytical, but these can be

calculated efficiently as well. Finally, the methods developed in this work and

presented in Chapters 3 and 4 enable additional significant speed-up of plane

wave calculations in quantum dots with symmetric pyramidal shape, based

on block diagonalisation of the matrix H. Symmetry can also be exploited

in dots with cylindrical symmetry and this fact has been implemented in the

calculation in the cylindrical basis in Chapter 6. More technical details on
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WEM methods will be given in sections where they are applied to particular

problems.

2.6.2 Methods for finding the strain distribution

In Secs. 2.3.1 and 2.3.2, it has been described how one can include strain in the

envelope function Hamiltonian. The aim of this section will be to describe how

strain can actually be calculated in quantum dots. There are two overall groups

of models [9] that are used to calculate the strain distribution in nanostructures

• Atomistic models. In atomistic models, each atom in a quantum dot

is considered and the total elastic energy of the structure is expressed

as a sum of interaction energies among atoms represented by a sum of

classical n− body interaction potentials

W =
∑

i,j

V (2)(ri − rj) +
∑

i,j,k

V (3)(ri − rj, ri − rk) + · · · (2.82)

The energy can then be expressed in terms of the displacements of each

individual atom from its equilibrium position and from its minimisation

one finds new, relaxed, positions of atoms. Several different models of

interaction potentials are available in the literature. In atomistic calcu-

lations of strain in quantum dots [116, 117, 126, 128, 139, 160, 165], the

valence-force field (VFF) model of Keating [166] and Martin [167] is

mostly used. The interaction of an atom with its nearest neighbours

only are considered in the VFF model.

• Continuum mechanical (CM) models. In this group of models,

the quantum dot structure is modelled by an elastic classical continuum

medium whose elastic energy is given by

W =
1

2

∑

ijkl

∫

d3rλijkleijekl, (2.83)

where λijkl is the elastic tensor relating the stress and strain tensor by

Hooke’s law

σij =
∑

kl

λijklekl. (2.84)
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There have been several comparisons in the literature between the VFF

and CM models [126, 165, 168]. While certain differences have been obtained,

the results of the two models give overall agreement. From the computational

point of view, the VFF model is more demanding as the displacement of each

atom is considered, in contrast to CM models where a grid of the size of lattice

constant or even larger may be used, leading to a smaller number of variables to

be handled. The minimisation of the VFF functional (2.82) leads to a system of

nonlinear equations for atom displacements, while in the CM model where the

strain functional (2.83) depends quadratically on displacements, a much less

computationally demanding system of linear equations is obtained. Moreover,

in several important cases, there are analytical or nearly analytical solutions

of the CM model [169, 170]. On the other hand, from the fundamental point

of view, the advantage of the VFF model is that it captures the atomistic

symmetry of the crystal, while CM models have a higher symmetry group.

Nevertheless, throughout this work, this weakness of the CM model will be

exploited as a strength from the computational point of view, allowing the

possibility to exploit the symmetry in the calculation, as will be shown in

Chapters 3, 4, and 6. The CM model has therefore been adopted as a model of

choice for this work, and therefore it will be presented in more detail in what

follows.

The problem of finding the strain field of an inclusion in an infinite medium

has been formulated and considered by Eshelby in 1957 [171] and it is therefore

a classical problem that has found one of its important application in the

calculation of strain in quantum dots. It will be shown here, following Ref. [9,

169], how analytical formulae for the Fourier transform of components of the

strain tensor can be obtained in the case where the elastic constants of the dot

and the surrounding matrix are the same.

Let the displacements ui in the problem be defined with respect to the

atomic sites of the undeformed matrix. The strain is then defined by Eq. (2.29)

and related to stress via (2.84). The presence of the dot induces body forces
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f that are related to stress via

∑

k

∂σjk

∂xk

+ fj = 0. (2.85)

After the replacement of Hooke’s law (2.84) and the expression for strain (2.29)

into (2.85) one gets
∑

klm

λjklm
∂

∂xk

∂ul

∂xm

+ fj = 0. (2.86)

Since the tensor eij is by the definition symmetric, one can assume that λijkl

is symmetric as well (λijkl = λklij = λijlk), since the contribution from its

antisymmetric parts would give a vanishing contribution to stress. This fact,

as well as the assumption that λijkl is constant in space have been exploited

to obtain (2.86). In order to find the displacement field in the medium a

method of inclusions can be used [171]. The idea of this method is to find the

response of the medium to a small point-like inclusion first, and then integrate

the result over the volume of the dot to find the total displacements. Following

this general idea, it is natural to introduce the Green’s function

∑

klm

λjklm
∂

∂xk

∂Gln (r − r′)

∂xm
+ δjnδ (r − r′) = 0, (2.87)

representing the displacement in the direction l at point r, due to a unit body

force acting in the direction n at point r′.

At this point the zincblende symmetry of the crystal will be assumed, and

that the small inclusion of lattice constant aincl is placed at point r′, in medium

with lattice constant a. In the crystals with zincblende lattice the elastic tensor

is of the form

λijkl = C12δijδkl + C44 (δikδjl + δilδjk) + Can

3
∑

p=1

δipδjpδkpδlp, (2.88)

where C12, C44 and Can = C11 − C12 − 2C44 are the elastic constants.

The inclusion then creates the strain eij = e0δijδ(r
′) (where e0 = −a−aincl

a
),

the stress σij = λijkleij = e0(C11 + 2C12)δijδ(r
′), and consequently it acts as a

body force

fj(r
′) = −

∑

k

pjk
∂δ(r′)

∂x′k
, (2.89)
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where pjk = e0(C11 + 2C12)δjk. The displacement of the medium to this point

inclusion is then

wi (r) =
∑

jk

∫

d3r′Gij (r − r′)

(

pjk
∂δ(r′)

∂x′k

)

= −
∑

jk

pjk
∂Gij (r)

∂xk
, (2.90)

and the displacement due to the presence of a quantum dot is consequently

found by treating the dot as a superposition of small inclusions

ui (r) =

∫

d3r′χQD (r′)wi (r − r′) , (2.91)

where χQD (r) is the quantum dot characteristic function equal to 1 inside the

dot and 0 outside the dot. Since the displacements were defined with respect

to the undeformed matrix, this has to be accounted for, and the expressions for

strain tensor components that enter the k · p Hamiltonian are given by [172]

eij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

− e0χQD (r) δij. (2.92)

Equations (2.87), (2.90), (2.91), and (2.92) form the system of equations from

which the strain distribution can be found. Transforming these equations into

Fourier space, they reduce to a system of ordinary algebraic equations. Their

solution for the strain distribution yields

eij(q) =
aM−aQD

aQD
χQD(q)







δij −
1

2

(C11 + 2C12)qiqj/q
2

1 + (C12 + C44)
∑3

p=1

q2
p

C44q2+Canq2
p

×

×
[

1

C44 + Canq2
i /q

2
+

1

C44 + Canq2
j /q

2

]}

, (2.93)

where aM and aQD are the lattice constants of the matrix and the dot material,

where the following definition for the Fourier transform was used

F (q) =
1

(2π)3

∫

d3r exp (−iq · r)F (r). (2.94)

As already mentioned, equation (2.93) is derived under the assumption of the

elastic constants of the dot and the matrix both equal to the elastic constants

of the matrix. The elastic constants of a material in a state of high strain

may differ from those of the relaxed material and there is no obvious choice



2.6 Numerical methods 49

for the values of the elastic constants. However, there are arguments [9, 169]

that choosing the elastic constants of the barrier material for all the materials

in the system is appropriate.

Along similar lines, one can also find the Fourier transform of the strain

distribution in quantum dots made of crystals with wurtzite symmetry. The

formula analogous to (2.93) for the case of crystals with wurtzite symmetry is

derived in Ref. [144].

The approach described where an analytical formula for the strain distri-

bution is obtained is highly attractive when combined with plane wave calcu-

lations of the electronic structure, where Fourier transforms of strain tensor

components are required [131,144] and the obtained formulae will therefore be

used in Chapters 3 and 4.

On the other hand, if some other method for the electronic structure is

used where the values of strain in real space are necessary, it may be more

efficient to calculate the strain directly in real space, rather than to transform

it from Fourier space to real space. Furthermore, if the dot is not embedded in

an infinite medium and the effect of boundaries is important, then the derived

formulae are not valid and real space approach might be more efficient. The

finite element method [173] can be used for that purpose. The main approach in

the finite element method is to minimise the total elastic energy given by [172]

W =
1

2

∫

dV
∑

ijkl

λijkl

[

eij(r) − e
(0)
ij (r)

] [

ekl(r) − e
(0)
kl (r)

]

, (2.95)

where eij(r) are the elastic strain tensor components, and e
(0)
ij (r) the local

intrinsic strain induced by the changes in the lattice constant

e
(0)
ij (r) =

a(r) − a

a
δij, (2.96)

where a(r) is the unstrained lattice constant at r and a the substrate lattice

constant. The continuum space is then discretised on a nonuniform rectangular

grid of the size Nx ×Ny ×Nz and the components of the displacement in each

point of space are expressed in terms of the displacements ui
l (l ∈ {x, y, z},
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i ∈ {1, 2, . . . , 8}) in the 8 neighbouring nodes of the grid, where first order

Lagrange interpolation is used. i.e.

ul(x, y, z) =
1

8

8
∑

i=1

ui
l (1 + cxiηx) (1 + cyiηy) (1 + cziηz) , (2.97)

where ηx = 2(x − x)/dx, ηy = 2(y − y)/dy, ηz = 2(z − z)/dz,

(cx1, cy1, cz1) = (1,−1,−1), (cx2, cy2, cz2) = (1, 1,−1), (cx3, cy3, cz3) =

(−1, 1,−1), (cx4, cy4, cz4) = (−1,−1,−1), (cx5, cy5, cz5) = (1,−1, 1),

(cx6, cy6, cz6) = (1, 1, 1), (cx7, cy7, cz7) = (−1, 1, 1), (cx8, cy8, cz8) = (−1,−1, 1),

while x, y and z are the coordinates of the centre of the rectangular box and

dx, dy, dz its dimensions (see Fig. 2.1). Consequently, the elastic energy of

the system W is a quadratic functional of the 3NxNyNz displacements at the

nodes of the grid. Its minimisation therefore leads to a sparse system of lin-

ear equations for the displacements at the nodes, which is solved using the

conjugate gradient method [174].

dx

1 2

34

5 6

78

y

x

z

dy

dz

Figure 2.1: A rectangular finite element, dx, dy, dz are its dimensions and

1 − 8 its nodes.

2.7 Electron – phonon interaction and polarons

The theory presented in this chapter so far covered only the stationary elec-

tronic structure of quantum dots when atoms are in their equilibrium positions.
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However, at finite temperatures atoms can vibrate around their equilibrium po-

sitions. These quantised lattice vibrations are called phonons. Phonons create

additional potential that perturbs otherwise stationary electronic states and

causes transitions among them. Depending on the type of crystal, there are

several different types of electron – phonon interaction [175]

• Deformation potential coupling to acoustic phonons. Lattice de-

formations caused by vibration of atoms create an additional potential,

in a similar way the strain does. It turns out that out of three acous-

tic phonon branches only the longitudinal phonons effectively create this

potential.

• Polar coupling to optical phonons. This type of interaction is present

in polar crystals only. The charged ions in a unit cell oscillate in opposite

directions creating an effective electric field that electrons interact with.

Again, only longitudinal optical phonons create this potential.

• Deformation potential coupling to optical phonons. This type

of interaction is based on the same physical mechanism as coupling to

acoustic phonons. In polar crystals, it is weaker than polar coupling to

optical phonons and is therefore usually neglected.

• Piezoelectric coupling to acoustic phonons. The origin of this in-

teraction is the creation of an effective field due to the piezoelectric effect,

which is present in crystals lacking inversion symmetry. The matrix el-

ement for this interaction scales with phonon wave vector as ∼ 1/
√
q,

in contrast to deformation potential interaction where it scales as ∼ √
q.

Therefore, for sufficiently large energy spacing, typically present in quan-

tum nanostructures, deformation potential coupling to acoustic phonons

is much stronger than piezoelectric coupling.

Throughout this work, only polar coupling to optical phonons and deformation

potential coupling to acoustic phonons will therefore be considered. As it
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is thought that the influence of phonon confinement is not so important in

AlGaAs/GaAs and InGaAs/GaAs nanostructures [176, 177], bulk LO phonon

modes are assumed.

The Frölich interaction Hamiltonian describing polar coupling to optical

phonons is then given by [42, 175]

Ĥe−ph =
∑

ijq

Mij(q)â+
i âj

(

b̂q + b̂+−q

)

, (2.98)

where b̂q and b̂+q are phonon annihilation and creation operators, â and â+ the

same operators for electrons, Mij(q) = α(q)Fij(q),

α(q) =
1

q

√

e2~ωLO

2V

(

1

ε∞
− 1

εst

)

, (2.99)

and

Fif(q) =
8
∑

j=1

∫

V

d3rψf
j (r)∗eiq·rψi

j(r) (2.100)

is the electron – phonon interaction form factor, and ε∞ and εst are high

frequency and static dielectric constants, respectively. Optical phonons are

nearly dispersionless and for simplicity, a constant LO phonon energy ωLO is

assumed.

The Hamiltonian of the deformation potential interaction with acoustic

phonons is given by the same formula (2.98) except that in this case

α(q) =

√

D2
A~q

2ρvsV
, (2.101)

where DA is the acoustic deformation potential, ρ the material density and vs

the longitudinal sound velocity. To a very good approximation, a linear and

isotropic acoustic phonon dispersion relation ω(q) = vsq can be assumed.

2.7.1 Carrier lifetime in quantum dots

Electron – LO phonon interaction

In order to calculate transition rates among different electronic states due to

the interaction with LO phonons, it is tempting to apply Fermi’s Golden rule,
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which is a good approximation in quantum wells, for example [42]. However,

its direct application to quantum dots leads to the result that transition rates

are zero unless two levels are separated by one LO phonon energy exactly [91].

Such an approach treats the electron and phonon systems separately with their

interaction being only a perturbation. It is currently known that electrons

and phonons in quantum dots form coupled entities – polarons and that the

polaron lifetime is determined by anharmonic decay of an LO phonon into

two low energy phonons [94–98]. A full description of processes in quantum

dots would therefore require considerations in Hilbert space containing both

electronic and phononic degrees of freedom and the problem would most likely

become intractable. Since the electronic charge carries current and the external

radiation mostly interacts with electronic degrees of freedom, an approach that

will keep track of electronic states only would be useful. Such a description is

derived here following Ref. [95].

The transition rate from the initial state of the electron – phonon system

|Ψi; {nq}〉 with an electron in the state i and nq LO phonons with the wave

vector q (where q takes all possible values of the phonon wave vector) to the

final state |Ψf ; {nq ± δq,k}〉 with an electron in the state f and one more (less)

phonon with the wave vector k will be derived here. It is expected to be a good

approximation to the transition rate from electron state i to state f , providing

the contribution to polaron states from the electron states is mainly due to

one electron state. It should be also mentioned that the following derivation

is strictly valid for a two level system only. Nevertheless, the transition rates

obtained can be used as a reasonable approximation in a multilevel system,

too.

Let |Ψi; {nq}〉 be the initial state of the electron – phonon system. The

time dependence of the state of the system is given by

|Ψ(t)〉 = a(t)e−iEit/~|Ψi; {nq}〉 +
∑

k

bk(t)e−i(Ef±~ωLO)t/~|Ψf ; {nq ± δq,k}〉,

where |Ψf ; {nq ± δq,k}〉 represents the state of the system with an electron in

the state f and one more (less) phonon with the wave vector k and Ei and Ef
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are the energies of the states i and f , respectively. The initial conditions are

a(t = 0) = 1, bk(t = 0) = 0. The coefficients a(t) and bk(t) can be found by

solving the time-dependent Schrödinger equation

i~
d|Ψ(t)〉

dt
= Ĥ|Ψ(t)〉, (2.102)

where Ĥ is the Hamiltonian of the system given by

Ĥ = Ĥe + Ĥph + Ĥe−ph, (2.103)

where Ĥe is the Hamiltonian of electrons,

Ĥe =
∑

i

εiâ
+
i âi, (2.104)

where εi are energies of the electron states, Ĥph is the Hamiltonian of phonons

Ĥph =
∑

q

(

b̂+q b̂q +
1

2

)

~ωLO, (2.105)

Ĥe−ph is the Frölich Hamiltonian of the electron – phonon interaction (2.98).

After substituting (2.103) into (2.102) one arrives at

(

i~
da

dt
+ a(t)Ei

)

e−iEit/~|Ψi; {nq}〉 +

+
∑

k

e−i(Ef±~ωLO)t/~

[

i~
dbk
dt

+ (Ef ± ~ωLO) bk(t)

]

|Ψf ; {nq ± δq,k}〉 =

= a(t)Eie
−iEit/~|Ψi; {nq}〉 + a(t)e−iEit/~Ĥe−ph|Ψi; {nq}〉 +

+
∑

k

(Ef ± ~ωLO) e−i(Ef±~ωLO)t/~bk(t)|Ψf ; {nq ± δq,k}〉 +

+
∑

k

e−i(Ef±~ωLO)t/~bk(t)Ĥe−ph|Ψf ; {nq ± δq,k}〉,

i.e.

i~
da

dt
e−iEit/~|Ψi; {nq}〉 +

∑

k

i~
dbk
dt

e−i(Ef±~ωLO)t/~|Ψf ; {nq ± δq,k}〉 =

= a(t)e−iEit/~Ĥe−ph|Ψi; {nq}〉

+
∑

k

e−i(Ef±~ωLO)t/~bk(t)Ĥe−ph|Ψf ; {nq ± δq,k}〉. (2.106)
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After multiplying (2.106) from the left by 〈Ψi; {nq}|, one obtains

i~
da

dt
=
∑

k

e−i(Ef−Ei±~ωLO)t/~bk(t)〈Ψi; {nq}|Ĥe−ph|Ψf ; {nq ± δq,k}〉 (2.107)

and after multiplying (2.106) from the left by 〈Ψf ; {nq ± δq,k}|

i~
dbk
dt

= a(t)ei(Ef−Ei±~ωLO)t/~〈Ψf ; {nq ± δq,k}|Ĥe−ph|Ψi; {nq}〉.

Finally one gets the equations

da

dt
= − i

~

∑

k

gke
i∆t/~bk(t), (2.108)

dbk
dt

= − i

~
g∗ke

−i∆t/~a(t), (2.109)

where ∆ = Ei − Ef ∓ ~ωLO and

gk = 〈Ψi; {nq}|Ĥe−ph|Ψf ; {nq ± δq,k}〉 (2.110)

is the electron – LO phonon coupling strength.

So far it has been assumed that LO phonons are stable. However due to

cubic anharmonic terms in the crystal potential energy the LO phonons decay.

It is thought that the physical process responsible for that decay process is

either the decay to two LA phonons [95,178] or to one acoustic and one optical

phonon [96]. Nevertheless, whatever the physical origin of the process is, it

can be phenomenologically taken into account by adding an extra decay term

−Γk

~
bk(t) into (2.109), i.e.

dbk
dt

= − i

~
g∗ke

−i∆t/~a(t) − Γk

~
bk(t), (2.111)

where Γk/~ is the inverse LO phonon lifetime. Taking the Laplace transform

of (2.108) and (2.111) one arrives at

sA(s) − 1 = − i

~

∑

k

gkBk(s− i
∆

~
), (2.112)

sBk(s) = − i

~
g∗kA(s+ i

∆

~
) − Γk

~
Bk(s). (2.113)
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As shown in Ref. [178], the LO phonon lifetime is weakly dependent on the

wave vector and it will therefore be considered to be a constant. Solving

Eqs. (2.112) and (2.113) one gets

A(s) =
s− γ

s2 − γs+ g2
, (2.114)

where γ = −Γ+i∆
~

and g2 =
∑

k |gk|2. Taking the inverse Laplace transform

one obtains

a(t) = eγt/2

(

cos βt− γ

2β
sin βt

)

, (2.115)

where β2 = g2

~2 − 1
4
γ2. The probability that the system stays in its initial state

after time t is equal to

P (t) = |a(t)|2 =
1

16|β|2
[

|2β − iγ|2e−(Γ

~
−2β2)t + |2β + iγ|2e−(Γ

~
+2β2)t +

+2 cos(2β1t)e
−Γ

~
t
(

4|β|2 − |γ|2
)

+ 8 sin(2β1t)e
−Γ

~
t(

Γ

~
β1 − β2

∆

~
)

]

, (2.116)

where β1 = Reβ and β2 = Imβ. It can be seen from (2.116) that the dominant

exponentially decaying term is e−(Γ

~
−2β2)t and therefore the relaxation time is

equal to τ−1 = Γ
~
− 2β2. After finding the explicit expression for β2 one gets

the approximate transition rate

W =
Γ

~
−
√

2(R−X)

~
, (2.117)

where R =
√
X2 + Y 2, X = g2 + (∆2 − Γ2)/4, Y = Γ∆/2.

Eq. (2.117) has been verified experimentally, as it was used to fit the ex-

perimental results on intraband carrier dynamics in quantum dots [98, 179].

Electron – acoustic phonon interaction

The interaction with acoustic phonons is much weaker than the interaction with

optical phonons in semiconductor nanostructures [42]. Therefore, it can be

satisfactorily treated perturbatively within Fermi’s Golden rule. The transition

rate from an initial state i to a final state f is then given by

Wif =
2π

~

∑

q

|〈Ψf ; {nk ± δk,q}|
(

α(q)âqe
iq·r + α(q)∗â+

q e
−iq·r)(2.118)

|Ψi; {nk}〉|2 δ(Ef − Ei ± ~ω(q)),
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where ~ω(q) is an LA phonon energy, implying

Wif =
2π

~

∑

q

(nq +
1

2
± 1

2
)|α(q)|2|Fif(q)|2δ(Ef − Ei ± ~ω(q)). (2.119)

After replacing the summation in (2.119) by integration one arrives at [179]

Wif =
2π

~

V

(2π)3

∫

q2 sin θ dq dθ dϕ(nq+
1

2
±1

2
)|α(q)|2|Fif(q)|2δ(Ef−Ei±~ω(q))

(2.120)

and

Wif = Θ(±(Ei − Ef ))(nqs +
1

2
± 1

2
)
D2

Aq
3
s

~ρv2
s

∫

sin θdθdϕ|Fif(qs)|2, (2.121)

where qs = |Ei − Ef |/(~vs), Θ(x) is the step function and (θ, ϕ) are the polar

coordinates of the vector qs.

2.7.2 Polaron spectrum in quantum dots

In this section it will be shown how one can relatively efficiently find polaron

states in quantum dots. Even when one is interested in electron transport

only, knowledge of the polaron spectrum can be useful to check whether the

approximations introduced in the treatment of the interaction with phonons

are appropriate. The approach of Ref. [180] is mainly followed here.

In order to find polaron states, one in principle needs to diagonalise the full

Hamiltonian (Eq. (2.103)). Assuming there are N possible electronic states,

and that there are M phonon modes (where M is a large number obtained

by discretisation of continuous phonon wave vector q) that can be occupied

with at most K phonons, the dimension of the Hamiltonian matrix would be

N · (K + 1)M and such an eigenvalue problem would clearly be intractable. It

has however been shown in Ref. [180] that a transformation can be made among

phonon modes after which only N 2 modes will remain coupled to electronic

degrees of freedom. In order to achieve this, one first introduces the operators

Âij =
∑

q

Mij(q)b̂q. (2.122)
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The Hamiltonian Ĥe−ph then takes the form

Ĥe−ph =
∑

ij

(

Âijâ
+
i âj + Â+

ijâ
+
j âi

)

(2.123)

and therefore only new N 2 phonon modes interact with electrons. However

the transformation (2.122) also changes Ĥph which is no longer diagonal.

As a next step, a new transformation will be performed which diagonalises

Ĥph. One can formally look at the operators introduced by (2.122) as vectors in

vector space with basis vectors b̂q. In such a space, Âij are not orthonormalised,

however one can perform a Gram-Schmidt orthonormalisation procedure to

orthonormalise them, yielding new N 2 operators B̂α related to Â-operators by

Âij =
∑

α

tij,αB̂α. (2.124)

The transformation connecting the operators B̂ and b̂ is unitary since it is a

transformation connecting two orthonormal basis. One can then easily verify

the relation
∑

λ

B̂+
λ B̂λ =

∑

q

b̂+q b̂q (2.125)

and therefore, assuming dispersionless LO phonon modes, Ĥph is diagonal in

B̂-operators as well. Explicit form of Ĥe−ph in terms of B̂-operators can then

be obtained by substituting (2.124) in (2.123). One therefore has to solve the

eigenvalue problem of the matrix of size N · (K + 1)N2

, which is feasible for

small N .

2.8 Nonequilibrium Green’s functions theory of trans-

port

The transition rates between quantum dot states, derived in previous sections

of this Chapter, can be used to form rate equations for populations of quan-

tum dot energy levels, from which populations, and consequently observable

quantities, such as absorption or current, can be found. Such an approach

is good not only for the basic understanding of the physics of quantum dot
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devices, but can be also used for quantitative predictions, as will be shown in

subsequent chapters.

However, there are limitations to such an approach. Since only populations

of energy levels are considered, and not the coherences, coherent effects are not

properly taken into account. Additionally, broadening of the absorption or gain

spectrum can be taken into account only in an ad hoc manner by replacing the

delta functions with appropriate line shapes. Polaron shifts of energy levels

are also not included. Despite the fact that these limitations are not severe for

modelling of the existing devices, there is a not only theoretical need, for the

development of more systematic approach, that will take into account all the

mentioned effects.

Two theoretical approaches satisfying this condition have been so far em-

ployed in the literature to analyse the transport and optical properties of

semiconductor nanostructures. These are density matrix formalism and the

nonequilibrium Green’s functions formalism.

Within the density matrix approach [181,182], the main quantities are the

electron density matrices ραβ(t) = 〈âα(t)+âβ(t)〉, where the expectation value

is taken with respect to the initial state of the system. The Heisenberg picture

is used, therefore the operators depend explicitly on time. When one forms

the equation of motion for the density matrix, higher order density matrices

involving expectation values of products of several operators appear, and the

system of equations is therefore not closed. One therefore arrives at an infinite

hierarchy of equations for higher-order density matrices, which needs to be

truncated at some point.

On the other hand, within the nonequilibrium Green’s functions approach

[183,184], the central quantities are expectation values of operators at different

times, such as the retarded Green’s function

GR
αβ(t1, t2) = −iΘ(t1 − t2)〈{âα(t1), â

+
β (t2)}〉, (2.126)

the advanced Green’s function

GA
αβ(t1, t2) = iΘ(t2 − t1)〈{âα(t1), â

+
β (t2)}〉 = GR

βα(t2, t1)
∗, (2.127)
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and the lesser Green’s function

G<
αβ(t1, t2) = i〈â+

β (t2)âα(t1)〉. (2.128)

As can be seen from (2.128), the lesser function at equal times represents

populations and coherences of the states, in terms of which other relevant

physical quantities can be expressed. In order to find the retarded and the

lesser function, one has to solve their dynamical equations. These satisfy the

Dyson equation

i~
∂GR

αβ(t1, t2)

∂t1
−
∑

γ

HαγG
R
γβ(t1, t2) = ~δαβδ(t1 − t2) + (2.129)

+
∑

γ

∫

dt′ΣR
αγ(t1, t

′)GR
γβ(t′, t2),

where the Hamiltonian Ĥ contains the kinetic energy of the electron and sin-

gle particle potential, while all other interactions, such as electron – phonon,

electron – impurity, electron – electron, etc. are contained in the self-energy

Σ. The equation for G< can also be written in integro-differential form similar

to (2.129), however for certain applications, a more useful form is the integral

form given by the Keldysh relation which in the case of the steady state of the

system reads

G<
αβ(t1, t2) =

∑

γδ

∫

dt′dt′′GR
αγ(t1, t

′)Σ<
γδ(t

′, t′′)GA
δβ(t′′, t2). (2.130)

It is essential for the description of any physical system to arrive at appro-

priate expressions for self-energies, as these are the quantities that contain all

interactions in the system. A systematic way of doing this is via the diagram-

matic techniques of field theory where the time ordered Green’s function [175]

is expanded in a sum of infinitely many diagrams representing interactions

in all orders [175]. In the case of the electron – phonon interaction in the

system with translational invariance [185], when one restricts to second order

in the expressions for self-energies (the so called Born approximation) these



2.8 Nonequilibrium Green’s functions theory of transport 61

expressions read [175, 183, 184]

ΣR
αβ(t1, t2) = i

∑

γδ,q

Mβδ(q)∗Mαγ(q)
[

gR
γδ(t1, t2)D

R(q, t1, t2)+ (2.131)

+g<
γδ(t1, t2)D

R(q, t1, t2) + gR
γδ(t1, t2)D

<(q, t1, t2)
]

,

Σ<
αβ(t1, t2) = i

∑

γδ,q

Mβδ(q)∗Mαγ(q)g<
γδ(t1, t2)D

<(q, t1, t2), (2.132)

where the free electron Green’s functions are denoted by lowercases g, and DR

and D< are the phonon retarded and lesser Green’s functions defined as

DR(q, t1, t2) = −iΘ(t1 − t2)〈[Âq(t), Â
+
q (t′)]〉 (2.133)

and

D<(q, t1, t2) = −i〈Â+
q (t2)Âq(t1)〉, (2.134)

where Âq = b̂q+b̂+−q. One can significantly improve the Born approximation by

replacing the free Green’s functions g by Green’s functions G, which constitutes

the self-consistent Born approximation (SCBA). The SCBA takes into account

all diagrams up to second order and additionally a certain set of diagrams from

all higher orders. Clearly the validity of the Born approximation or the SCBA

depends on the system being investigated and the strength of the interaction

represented by self-energies.

One is usually mostly interested in the steady state of the system. In that

case, Green’s functions and self-energies depend only on the difference of their

time arguments. One can therefore define the Fourier transform of all these

quantities as

F (E) =

∫

d(t1 − t2)e
iE(t1−t2)/~F (t1 − t2). (2.135)

The integro-differential Dyson equation then takes a simple algebraic form

∑

γ

[

Eδαγ −
(

Hαγ + ΣR
αγ(E)

)]

GR
γβ(E) = δαβ (2.136)

and the Keldysh relation reads

G<
αβ(E) =

∑

γδ

GR
αγ(E)Σ<

γδ(E)GA
δβ(E). (2.137)
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The relation between the retarded and advanced function in the energy domain

is

GR
αβ(E) = GA

βα(E)∗. (2.138)

While Dyson’s equation and the Keldysh relation have acquired a much simpler

form in the energy domain, this is not the case for the expressions for self-

energies, which read

ΣR
αβ(E) = i

∑

γδ,q

Mβδ(q)∗Mαγ(q)
1

2π

∫

dE ′ [GR
γδ(E − E ′)DR(E ′)+ (2.139)

+G<
γδ(E − E ′)DR(E ′) +GR

γδ(E − E ′)D<(E ′)
]

,

Σ<
αβ(E) = i

∑

γδ,q

Mβδ(q)∗Mαγ(q)
1

2π

∫

dE ′G<
γδ(E − E ′)D<(E ′). (2.140)

The phonon Green’s functions in the energy domain are given by

DR(E) =
1

E − ELO + iΓ
− 1

E + ELO + iΓ
, (2.141)

D<(E) = −i
[

(NLO + 1)
2Γ

(E + ELO)2 + Γ2
+NLO

2Γ

(E − ELO)2 + Γ2

]

, (2.142)

where Γ is the LO phonon linewidth determined by its anharmonic decay rate

and NLO is the phonon occupation number

NLO =
1

e
~ωLO

kBT − 1
. (2.143)
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Chapter 3

Electronic structure calculation of square

based pyramidal quantum dots

3.1 Introduction

A range of theoretical approaches has been used so far to calculate the en-

ergy levels in self-assembled quantum dots - the effective mass [160, 186–188],

k ·p [126–129] and the pseudopotential method [117,189]. They are usually im-

plemented in such a way to be able to treat a quantum dot of arbitrary shape.

Different quantum dot shapes (such as pyramid [190], lens [191] and disk [192])

of self-assembled quantum dots are often reported, most of them being highly

symmetric. An idea therefore naturally arises to exploit this symmetry in the

energy level calculations.

In quantum dots with cylindrical symmetry, symmetry considerations have

been applied to effectively reduce the geometry of the problem from three

dimensional to two dimensional, both in the effective mass and the k·p method

(within the axial approximation) [163]. The possible symmetries of the states in

hexagonal III-nitride quantum dots have recently been determined [193]. The

symmetry of the pyramid has been used in the effective mass calculation [164]

to reduce the size of the corresponding Hamiltonian matrix, however in none

of the k · p calculations of pyramidal quantum dots has the explicit use of the

symmetry of the Hamiltonian been reported.

Therefore, in this Chapter, a method will be presented that exploits the
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symmetry in the 8-band k · p calculation of the electronic structure of square

based pyramidal quantum dots based on materials with zincblende crystal

symmetry. The method presented is then applied to calculate the electron and

hole states in a periodic array of vertically stacked square based pyramidal

self-assembled InAs/GaAs quantum dots for different values of the period of

the structure and in the presence of an external axial magnetic field.

3.2 The plane wave method

In the presence of an axial magnetic field the total 8-band k · p Hamiltonian

is a sum of the kinetic part of the Hamiltonian Ĥk (Eq. (2.20)) including the

minimal gauge substitution (see Sec. 2.5.3), the strain part Ĥs (Eq. (2.38)),

and the Zeeman part ĤZ (Eq. (2.76))

Ĥ = Ĥk + Ĥs + ĤZ . (3.1)

The state of the system within the framework of the 8-band k · p method is

given as a sum of slowly varying envelope functions ψi(r) multiplied by the

bulk Bloch functions |i〉 (Eq. (2.19)), i.e.

|Ψ〉 =

8
∑

i=1

ψi(r)|i〉. (3.2)

The eigenvalue problem of the 8-band k · p Hamiltonian Ĥ can therefore be

written as
8
∑

j=1

Ĥijψj(r) = Eψi(r). (3.3)

The plane wave method is based on embedding the quantum dot in a box

of sides Lx, Ly and Lz (Fig. 3.1) and assuming the envelope functions are a

linear combination of plane waves

ψi(r) =
∑

k

Ai,k exp (ik · r) , (3.4)

with the coefficients Ai,k to be determined. The wave vectors taken in a sum-

mation are given by

k = 2π

(

mx

Lx
,
my

Ly
,
mz

Lz

)

, (3.5)
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where mx ∈ {−nx, . . . , nx}, my ∈ {−ny, . . . , ny}, mz ∈ {−nz, . . . , nz}. The

number of plane waves taken is thus N = 8(2nx + 1)(2ny + 1)(2nz + 1), where

2nt + 1 is the number of plane waves per dimension t (t ∈ {x, y, z}). Due to

the symmetry of the pyramid, the embedding box sides Lx and Ly are taken

to be equal (Lx = Ly), as well as the number of plane waves per dimensions x

and y (nx = ny).

dWL

z

x

y

hb

L

L

L

y

x

z

Figure 3.1: Quantum dot geometry. The width of the base is b, the height

h, the wetting layer width dWL. The embedding box sides are Lx, Ly and Lz.

The center of the pyramid base is taken as the origin of the coordinate system.

After multiplying Eq. (3.3) from the left by 1
(2π)3

∫

V
d3r exp (−iq · r) , where

the integration goes over the volume of the embedding box, using (3.4) and

the identity

∫

V

d3r exp

[

2iπ

(

mxx

Lx
+
myy

Ly
+
mzz

Lz

)]

= LxLyLzδmx,0δmy ,0δmz ,0, (3.6)

one arrives at
∑

j,k

hij(q,k)Aj,k = EAi,q, (3.7)
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where

hij(q,k) =
1

V

∫

V

d3r exp (−iq · r) Ĥij exp (ik · r) . (3.8)

The explicit expressions for the Hamiltonian matrix elements are given in Ap-

pendix A.

In order to find the energy levels and the wavefunctions in the quantum

dot, the eigenvalue problem (3.7) should be solved. The direct application of

this approach would lead to an eigenvalue problem of a matrix of size N ×
N . However, it is possible to exploit the symmetry of the system to block

diagonalise the corresponding matrix, as will be done in Sec. 3.3.

3.3 The symmetry of the model

The main idea is to transform the plane wave basis in such a way that in a

new, symmetrised basis, the matrix acquires block diagonal form, see Fig. 3.2.

This is mathematically a nontrivial task as the operators of rotation act both

on the envelope functions and Bloch functions. In order to achieve this, one

has first to establish what is the symmetry group of the model. As a second

step, one has to represent operators of the symmetry group. When this is

accomplished, the results of mathematical group theory can be used to adapt

the plane wave basis to symmetry.

Figure 3.2: Hamiltonian matrix in the plane wave basis (left), and in the new

symmetrised basis (right).
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The symmetry group of the quantum dot physical system is the intersec-

tion of the geometrical symmetry of the dot shape and the symmetry of the

zincblende bulk crystal. The symmetry of the model of the quantum dot phys-

ical system therefore depends on the model used to describe the underlying

bulk structure.

The symmetry of a pyramidal InAs/GaAs quantum dot when atomistic

structure is considered which captures the full symmetry of the crystal lattice

(as is done for example in the empirical pseudopotential method) is C2v and

is lower than the symmetry of the dot’s geometrical shape [189]. On the other

hand, the 8-band k ·p model does not capture the full symmetry of the system

and the symmetry group of the InAs/GaAs pyramidal quantum dot model is

the C4v group. One should note that this is not an inherent limitation of the

envelope function methods, as for example, within the 14-band k · p model,

the symmetry would be C2v.

Additionally, one has to establish how the strain part of the Hamiltonian

affects the symmetry of the model. When the strain distribution is incorpo-

rated in the 8-band k · p method, the continuum mechanical model preserves

the C4v symmetry, while the valence force field model, due to its atomistic

nature, breaks it [126, 128].

Since in this work, the 8-band k · p method with the strain taken into

account via the continuum mechanical model is used, the symmetry group of

the model is C4v. The fact that the 8-band k · p model does not capture

the full symmetry of the system is often emphasised as its drawback from the

fundamental point of view [189]. However if the amount of physical information

provided by 8-band k · p model is satisfactory for a particular purpose, as has

been established in Chapter 2, this drawback can be turned into a strength from

the computational point of view, by exploiting the symmetry of the system in

the calculation. In this work, only the C4 symmetry will be exploited since the

presence of an external axial magnetic field reduces the symmetry from C4v to

C4.
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3.3.1 Representation of the symmetry group operators

The generator of the rotation group is the total angular momentum F̂z and

therefore the representations of the elements of the group are given by the

operators D̂(R(ϕ)) = exp(−iϕF̂z), where ϕ ∈ {kπ/2} (k ∈ {0, 1, . . . , 7}) and

R(ϕ) is a rotation by an angle ϕ. In order to find how the operators D̂(R(ϕ))

act on the states (Eq. (3.2)), it is enough to find how D̂(R(π/2)) acts on the

states since D̂(R(kπ/2)) = D̂(R(π/2))k. The total angular momentum F̂z is a

sum of the total angular momentum of the Bloch function Ĵz and the orbital

angular momentum of the envelope function L̂z, i.e. F̂z = Ĵz + L̂z [194]. The

action of the operator D̂(R(π/2)) on state |Ψ〉 is composed of a rotation of the

envelope functions in real space generated by its orbital angular momentum L̂z

and a rotation of the Bloch function generated by its total angular momentum

Ĵz

D̂(R(π/2))|Ψ〉 =

8
∑

i=1

[

exp(−iπ
2
L̂z)ψi(r)

] [

exp(−iπ
2
Ĵz)|i〉

]

. (3.9)

Since the basis of the Bloch states |i〉 is the eigenbasis of Ĵz it follows that

exp(−iĴzπ/2)|i〉 = exp(−iJz(i)π/2)|i〉, (3.10)

where Jz(i) is the eigenvalue of the z−component of the total angular mo-

mentum of Bloch function |i〉 (Jz(1) = −1/2, Jz(2) = 1/2, Jz(3) = 1/2,

Jz(4) = 3/2, Jz(5) = −3/2, Jz(6) = −1/2, Jz(7) = −1/2, Jz(8) = 1/2). Thus

the operator D̂(R(π/2)) acts on the state |Ψ〉 as

D̂(R(π/2))|Ψ〉 =

8
∑

i=1

ψi(y,−x, z) exp(−iJz(i)π/2)|i〉. (3.11)

By assuming the envelope functions as a linear combination of a finite

number of plane waves, one has already reduced the otherwise infinite Hilbert

space of the model to the Hilbert space H of dimension N formed by linear

combination of plane waves multiplied by the Bloch functions. The basis of

the space H is given by

|k, i〉 = exp(ik · r)|i〉, (3.12)
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where k = 2π
(

mx

Lx
, my

Ly
, mz

Lz

)

, mx ∈ {−nx, . . . , nx}, my ∈ {−ny, . . . , ny}, mz ∈
{−nz, . . . , nz} and i ∈ {1, 2, . . . , 8}.

Next, one wishes to represent the operator D̂(R(π/2)) in the plane wave

basis of the space H. For that, one needs to know how D̂(R(π/2)) acts on the

basis vectors. Using (3.11) and (3.12) one gets

D̂(R(π/2))|(kx, ky, kz), i〉 = exp(−iJz(i)π/2)|(−ky, kx, kz), i〉. (3.13)

At this point, one can explicitly verify that D̂(R(π/2)) commutes with the

Hamiltonian of the model, and therefore the assumed group is indeed the

symmetry group of the model. One can note that for (kx, ky) = (0, 0) the

action of D̂(R(π/2)) on the basis vector is just a phase shift and the orbit of

action of the group elements is just a one dimensional space (it will be denoted

as H(0,0,kz),i), while for (kx, ky) 6= (0, 0) the orbit is a four dimensional space

(that will be denoted as H(kx,ky,kz),i, where kx > 0 and ky ≥ 0 to avoid multiple

counting of the same space) with the basis

|b1〉 = |(kx, ky, kz), i〉,

|b2〉 = |(−ky, kx, kz), i〉,

|b3〉 = |(−kx,−ky, kz), i〉,

|b4〉 = |(ky,−kx, kz), i〉. (3.14)

In the space H(0,0,kz),i the representation D̂ reduces to a one dimensional rep-

resentation defined by

D̂(0,0,kz),i(R(π/2)) = exp(−iJz(i)π/2), (3.15)

while in the space H(kx,ky,kz),i it reduces to a four dimensional representation

which is given in the basis from Eq. (3.14) by

D̂(kx,ky,kz),i(R(π/2)) = exp(−iJz(i)π/2)

















0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

















. (3.16)
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Since the spaces H(kx,ky,kz),i and H(0,0,kz),i are invariant for the representation

D̂, it is given by an orthogonal sum

D̂ =
⊕

kx,ky,kz,i

D̂(kx,ky,kz),i +
⊕

kz ,i

D̂(0,0,kz),i. (3.17)

From Eqs. (3.15) and (3.16) one finds that the characters (defined as the trace

of operators D̂) of the representation of the group elements are given by

χ
(

D̂(kx,ky,kz),i(R(kπ/2))
)

=



















4 k = 0

−4 k = 4

0 k ∈ {1, 2, 3, 5, 6, 7}

(3.18)

and

χ
(

D̂(0,0,kz),i(R(kπ/2))
)

= exp(−iJz(i)kπ/2). (3.19)

The characters of the irreducible double valued representations of the group

C4 are given by χ
(

Amf
(R(kπ/2))

)

= exp(ikmfπ/2), where

mf ∈ {−3/2,−1,−1/2, 0, 1/2, 1, 3/2, 2}

and k ∈ {0, 1, . . . , 7}. One finds from (3.18) that

D̂(kx,ky,kz),i = A1/2 + A−1/2 + A3/2 + A−3/2 (3.20)

and from (3.19) obviously

D̂(0,0,kz),i = A−Jz(i). (3.21)

Eqs. (3.20) and (3.21) were obtained using the formula that the apperance of

the irreducible representation Amf
in the reduction of representation D̂ is [136]

amf
=

1

8

7
∑

k=0

χ
(

Amf
(R(kπ/2))

)∗
χ
(

D̂(kx,ky,kz),i(R(kπ/2))
)

. (3.22)

Using (3.20) and (3.21), it follows from (3.17) that

D̂ = N1A1/2 +N1A−1/2 +N2A3/2 +N2A−3/2, (3.23)

where

N1 = 8nx(ny + 1)(2nz + 1) + 3(2nz + 1) (3.24)

and

N2 = 8nx(ny + 1)(2nz + 1) + 2nz + 1. (3.25)
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3.3.2 The symmetry adapted basis

Projection operators [136] were then used to find the symmetry adapted basis.

These operators have the property that they project an arbitrary state to a

state of given symmetry. They are given by

P̂Amf
((kx, ky, kz), i) =

1

8

7
∑

k=0

χ
(

Amf
(R(kπ/2))

)∗
D̂(kx,ky,kz),i(R(kπ/2)), (3.26)

while

P̂Amf
((0, 0, kz), i) = 1. (3.27)

The explicit forms of the projection operators are derived from (3.26) and

(3.16) and in the basis (3.14) are equal to

P̂A−3/2
(1) = P̂A−3/2

(6) = P̂A−3/2
(7) = P̂A−1/2

(5) =

= P̂A1/2
(4) = P̂A3/2

(2) = P̂A3/2
(3) = P̂A3/2

(8) = M1,

P̂A−3/2
(2) = P̂A−3/2

(3) = P̂A−3/2
(8) = P̂A−1/2

(1) =

= P̂A−1/2
(6) = P̂A−1/2

(7) = P̂A1/2
(5) = P̂A3/2

(4) = M2,

P̂A−3/2
(4) = P̂A−1/2

(2) = P̂A−1/2
(3) = P̂A−1/2

(8) =

= P̂A1/2
(1) = P̂A1/2

(6) = P̂A1/2
(7) = P̂A3/2

(5) = M3,

P̂A−3/2
(5) = P̂A−1/2

(4) = P̂A1/2
(2) = P̂A1/2

(3) =

= P̂A1/2
(8) = P̂A3/2

(1) = P̂A3/2
(6) = P̂A3/2

(7) = M4, (3.28)

where (kx, ky, kz) was omitted in all brackets for brevity and where the matrices

M1, M2, M3 and M4 are given by

M1 =
1

4

















1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

















, M2 = 1
4

















1 −i −1 i

i 1 −i −1

−1 i 1 −i
−i −1 i 1

















,

M3 =
1

4

















1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

















, M4 = 1
4

















1 i −1 −i
−i 1 i −1

−1 −i 1 i

i −1 −i 1

















. (3.29)
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The elements of the symmetry adapted basis are finally given as:

|A1/2, (0, 0, kz), i〉 = |(0, 0, kz), i〉 i ∈ {1, 6, 7}

|A1/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 + |b2〉 + |b3〉 + |b4〉) i ∈ {1, 6, 7}

|A1/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 − i|b2〉 − |b3〉 + i|b4〉) i ∈ {2, 3, 8}

|A1/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 − |b2〉 + |b3〉 − |b4〉) i = 4

|A1/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 + i|b2〉 − |b3〉 − i|b4〉) i = 5, (3.30)

|A−1/2, (0, 0, kz), i〉 = |(0, 0, kz), i〉 i ∈ {2, 3, 8}

|A−1/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 + |b2〉 + |b3〉 + |b4〉) i ∈ {2, 3, 8}

|A−1/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 − i|b2〉 − |b3〉 + i|b4〉) i = 4

|A−1/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 − |b2〉 + |b3〉 − |b4〉) i = 5

|A−1/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 + i|b2〉 − |b3〉 − i|b4〉) i ∈ {1, 6, 7},(3.31)

|A−3/2, (0, 0, kz), i〉 = |(0, 0, kz), i〉 i = 4

|A−3/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 + |b2〉 + |b3〉 + |b4〉) i = 4

|A−3/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 − i|b2〉 − |b3〉 + i|b4〉) i = 5

|A−3/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 − |b2〉 + |b3〉 − |b4〉) i ∈ {1, 6, 7}

|A−3/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 + i|b2〉 − |b3〉 − i|b4〉) i ∈ {2, 3, 8},(3.32)

|A3/2, (0, 0, kz), i〉 = |(0, 0, kz), i〉 i = 5

|A3/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 + |b2〉 + |b3〉 + |b4〉) i = 5

|A3/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 − i|b2〉 − |b3〉 + i|b4〉) i ∈ {1, 6, 7}

|A3/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 − |b2〉 + |b3〉 − |b4〉) i ∈ {2, 3, 8}

|A3/2, (kx, ky, kz), i〉 = 1
2
(|b1〉 + i|b2〉 − |b3〉 − i|b4〉) i = 4. (3.33)

The Hamiltonian matrix elements between basis elements having different

symmetry are equal to zero implying that in this basis the Hamiltonian matrix

is block diagonal with four blocks (Fig. 3.2) of sizes N1×N1, N1×N1, N2×N2
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and N2 × N2, respectively. The time necessary to diagonalise the matrix of

size N × N scales approximately as N 3. Therefore the block diagonalisation

obtained reduces the computational time approximately by a factor of 16. Since

all the basis vectors of the symmetry adapted basis are linear combinations

of one or four vectors of the plane wave basis, it follows that Hamiltonian

matrix elements in the symmetry adapted basis can be expressed as linear

combinations of one, four or sixteen Hamiltonian matrix elements in the plane

wave basis. Therefore all the elements of the four blocks are given by analytical

formulae that can be easily derived from the analytical formulae for the matrix

elements in the plane wave basis given in Appendix A.

It can be proved by considering the two dimensional double valued irre-

ducible representations of the group C4v [136] that states with the same ab-

solute value of mf are degenerate in pairs (the Kramer’s degeneracy). This

degeneracy is lifted in the presence of external axial magnetic field B when

the symmetry reduces from C4v to C4 and the time reversal symmetry relation

Emf
(B) = E−mf

(−B) holds then.

3.3.3 Piezoelectric effect

It has been pointed out [195, 196] that piezoelectric effects in single dots of

realistic sizes are small, changing the eigen-energies of the ground state of the

system by about ∼ 1meV, and can be ignored as a first approximation. It

has also been shown that in a vertically stacked double quantum dot the influ-

ence of a piezoelectric field is more important since the piezoelectric potential

generated by the two dots adds up in the regions above and below the dots,

while it is almost cancelled out in the region between the dots. Consequently,

it is expected that in a periodic array of vertically stacked quantum dots con-

sidered in Sec. 3.4 the piezoelectric potential in the region between the dots

would be almost cancelled out and that the influence of piezoelectric effect on

eigen-energies would be small.

Therefore the piezoelectric potential that breaks the symmetry of the sys-
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tem from C4 to C2 can be treated as a perturbation. It belongs to the A2

representation of the C4 group and therefore only the matrix elements be-

tween the states with ∆mf = 2 are non zero. Consequently, the piezoelectric

potential doesn’t change the energies in the first order of the perturbation the-

ory and second order perturbation theory is needed to take the piezoelectric

effect into account.

3.3.4 Notation of states

The following notation for the electron states is introduced: nemf
, where n

is a positive integer labelling the states with given mf in increasing order of

their energy. Since the quantum number mf originates from the double valued

irreducible representations of the group C4 whose elements are generated by

the total angular momentum, its physical interpretation is that it represents

the total quasi-angular momentum. The hole states will be labelled by nhmf
,

with the same meaning of the symbol as for the electron case, except that n

labels the states in decreasing order of their energy, as is natural for holes.

One can verify that after calculating the matrix elements of interaction with

an electromagnetic field in the dipole approximation (2.69) between states with

a well defined symmetry, the following selection rules are obtained: If the light

is z−polarised then ∆mf = 0, while if the light is σ± circularly polarised then

∆mf = ±1 (where by definition 3/2 + 1 = −3/2 and −3/2 − 1 = 3/2).

3.4 Results

The method presented was applied to the calculation of the electronic structure

of periodic arrays of vertically stacked pyramidal self-assembled quantum dots

(Fig. 3.3). The dimensions of the dots in an array were taken to be equal

to those estimated for the structure reported in Ref. [197] - the base width

b = 18nm, the height h = 4nm, the wetting layer width dWL = 1.7ML, while

the period of the structure in z−direction Lz was varied in the interval from
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Lz = h + dWL where the dots lie on top of one another to Lz = 16nm.

The dimensions of the embedding box Lx = Ly = 2b were taken and

13 plane waves per dimension (nx = ny = nz = 6) were enough to obtain

convergence of the order 1meV for all the states considered. The calculations

have therefore been performed with nx = ny = nz = 5 which leads to matrices

of size ∼ 2600 × 2600 that can be routinely diagonalised on single processor

machines using standard LAPACK [198] routines.

A comment is necessary at this time about the meaning of the choice of

the box size in the calculation. A choice of the box size of the dimensions

Lx, Ly, and Lz and the application of the plane wave method implies that

it is actually the state of three dimensional superlattice with periods Lx, Ly,

and Lz that is modelled. If one wishes to model a single dot, Lx, Ly, and

Lz have to be sufficiently large, and if one wishes to model a one dimensional

quantum dot superlattice, as is the case in this Chapter, Lx and Ly have to be

large. It is currently known (and has also been confirmed in Sec. 3.4.2) that

carrier wavefunctions decay exponentially away from the dot, and therefore a

box whose sides are approximately twice larger than the dot dimensions is suf-

ficiently large for unstrained structures, as has been demonstrated for example

in Ref. [199]. However, the strain decays more slowly, with a power law, and a

larger box would be necessary for calculations of strained structures. For larger

boxes, it follows that a larger number of plane waves becomes necessary, which

significantly slows down the calculation. On the other hand, self-assembled

quantum dots within one layer are usually not isolated and a dot feels the

strain field from neighbouring dots. Although the dots within a layer are not

arranged in a perfect two dimensional superlattice, the superlattice model still

gives an estimate of the strain field of neighbouring dots.

The material parameters were taken from Ref. [3] and are summarised in

Appendix C. According to Bloch’s theorem, the k−th component of the state

spinor is given by

Ψk(r) = exp(iKzz)ψk(r), (3.34)
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where k ∈ {1, 2, . . . , 8} and ψk(r) is periodic in the z−direction with the period

Lz. Therefore, the matrix elements in the four blocks of the Hamiltonian

matrix for calculating E(Kz) are given by linear combinations of the elements

obtained by the same formulae from Sec. 3.2 except that kz and qz should be

replaced by kz + Kz and qz + Kz, respectively. Since the relation E(Kz) =

E(−Kz) holds, only the states with Kz ≥ 0 will be considered. The InAs

unstrained conduction band edge is taken as the energy reference level.

dWL

z

x

y

Lz

h
b

Figure 3.3: Geometry of a periodic array of pyramidal quantum dots. The

width of the pyramid base is b, the height h, the wetting layer width dWL, the

period of the structure is Lz.

The small piezoelectric effect was assumed to be negligible in the calcula-

tion. In order to check this assumption it was included in the framework of

second order perturbation theory (Sec. 3.3). Its influence on the state energies

was of the order of 1meV and less, confirming the assumption.



3.4 Results 77

3.4.1 Quantum mechanical coupling and strain distri-

bution

Two main factors influence the electronic structure of the periodic array of

quantum dots: the strain distribution and quantum mechanical coupling.

The influence of quantum mechanical coupling is intuitively clear - as the

distance between the dots increases the coupling is weaker implying smaller

miniband widths. Due to their large effective mass, heavy-holes are the least

influenced by coupling and the minibands of dominantly heavy-hole like states

are narrow, while the minibands of electron and light-hole states are much

wider.

On the other hand, the strain distribution is complex and in principle all

six components of the strain tensor influence the electronic structure. Still, the

most important are hydrostatic strain eh = e11 + e22 + e33 that determines the

position of the electron and hole levels and biaxial strain eb = e33− 1
2
(e11 + e22)

whose main influence is on the splitting of the light and heavy-hole states. The

bigger the value of hydrostatic strain, the lower the conduction band states

are in energy and the higher the valence band states are in energy. When

the biaxial strain is negative, the light-holes tend to have higher energy than

heavy-holes, while when it is positive the situation is opposite. Having the

importance of those two components of strain in mind, it has been investi-

gated first how they change when the distance between the dots in an array is

varied. It has been found that as the distance between the dots increases, the

hydrostatic strain in the dots decreases. On the other hand, for small values

of the period, the biaxial strain is negative, while for larger values it changes

sign and increases further.

3.4.2 Energy levels in the conduction band

The dependence of the miniband minima and maxima on the period of the

structure is given in Fig. 3.4. This behaviour is expected. When the dots
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are close, they are strongly coupled and the minibands are wide, while as Lz

increases the coupling is weaker and the energy spectrum becomes discrete.

For large values of the period when the miniband width practically vanishes,

one can still see a rising trend in energy. This rise is caused by a still decreasing

value of hydrostatic strain. This leads to the conclusion that the range of strain

effects is larger than the range of quantum mechanical coupling.

4 6 8 10 12
 L

z
 [nm]

0.5

0.6

0.7

0.8

E
 [e

V
]

1e
±1/2

2e
±1/2

, 1e
±3/2

2e
±3/2

Figure 3.4: The conduction miniband minima and maxima dependence on

the period of the structure Lz. The 1e±1/2 miniband is represented by squares,

the 1e±3/2 and 2e±1/2 miniband by circles, the 2e±3/2 miniband by triangles.

The ground miniband has |mf | = 1/2 symmetry, while the first and second

excited miniband having different symmetries |mf | = 1/2 and |mf | = 3/2 are

nearly degenerate. Their difference in energy is less than 1meV, too small to

be seen on the graph. A comment should be given about the near degeneracy

of those two states. It has been a practice in the literature to say that these two

states are exactly degenerate in the absence of a piezoelectric effect and that

the piezoelectric effect breaks the degeneracy of these states. This is indeed

true if the carrier energy spectrum in the quantum dot is modelled by a simple

one band Schrödinger equation. The symmetry group is then C4v, consisting
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of transformations in real space generated by the orbital angular momentum

L̂z and the first and second excited state transform according to the same

two dimensional irreducible representation of C4v, implying their degeneracy.

However, when the 8-band k · p model, which is inherently spin-dependent,

is used, the Hamiltonian no longer commutes with the rotations generated by

orbital angular momentum, but the total angular momentum. In the case when

the symmetry of the 8-band k · p Hamiltonian is used, the symmetry group

is the C4 group that has only the one dimensional irreducible representations

and there is no a priori reason for the states with different absolute values of

mf to be degenerate.

In order to explain the near degeneracy of the states with different sym-

metry, the 8-band k · p Hamiltonian was further investigated and it has been

checked that it would still commute with the transformations in real space gen-

erated by orbital angular momentum if the valence band spin-orbit splitting

would be set to zero. Since the influence of valence band spin-orbit splitting

on the levels in the conduction band is not substantial, the degeneracy of the

two states is small. This implies that the origin of splitting of the first and

the second excited state is not just the piezoelectric effect but also the valence

band spin-orbit splitting.

All the minibands shown in Fig. 3.4 exhibit minima at Kz = 0 and maxima

at Kz = π/Lz for all values of the period Lz. For small values of the period Lz

there is an energy overlap between different minibands, while the minibands

are completely separated for larger values of Lz. There is no crossing between

states of different symmetry.

3.4.3 Energy levels in the valence band

The miniband minima and maxima dependence on the period of the structure

are given in Fig. 3.5 for the three highest minibands in the valence band.

Due to the combined effects of strain, mixing of light and heavy-holes and

quantum mechanical coupling between the dots, the hole minibands exhibit a
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more complex structure than the electron minibands.
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Figure 3.5: The miniband minima and maxima dependence on the period of

the structure Lz. The 1h±1/2 miniband is represented by squares, the 1h±3/2

miniband by circles and the 2h±3/2 miniband by triangles.

In order to explain such behaviour it should be noted first that the effective

potential felt by carriers depends on Kz. One can define the effective potential

as the value obtained by diagonalising the Hamiltonian with kx = ky = 0 and

kz = Kz. The z-dependence of electron, light, heavy and split-off hole Kz = 0

and Kz = π/Lz effective potentials at the pyramid axis for a few different

values of Lz is shown in Fig. 3.6.

Since the effective mass of the light-holes is small, the light-hole effective

potential is substantially different for Kz = 0 and Kz = π/Lz, while in the

case of heavy-holes that difference is much smaller. As can be seen from Fig.

3.6, as the period of the structure increases, the effective potential felt by

Kz = 0 light-holes decreases, while quite oppositely the effective potential felt

by heavy-holes increases. Both of these trends are an expected consequence

of the increase in the value of the biaxial strain. Consequently, in the range

of low values of Lz the hole states with Kz = 0 are dominantly of the light-
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Figure 3.6: Effective potentials at three different values of the period Lz at

Kz = 0 (full lines) and Kz = π/Lz (dashed lines) for electrons (E), light-holes

(LH), heavy-holes (HH) and split-off holes (SO).

hole type, while the states with Kz = π/Lz are dominantly heavy-hole like.

The states with Kz = π/Lz remain of the heavy-hole type across the whole

investigated interval of Lz and their energy therefore increases with increasing

Lz. The energy of the light-hole Kz = 0 states decreases with increasing Lz

and at the same time their heavy-hole content increases. As a consequence of

two different energy trends for Kz = 0 and Kz = π/Lz the miniband width

decreases for all the states until a certain point where the energy of the Kz = 0

state becomes less than the energy of the Kz = π/Lz state. This point, where

the inversion of the sign of the miniband effective mass occurs is different for

different states, for the 1h±1/2 state it occurs around Lz = 6.5nm, while for

the 1h±3/2 and 2h±3/2 states it occurs around Lz = 5.8nm. The light-hole

content of the Kz = 0 states decreases with increasing Lz and eventually they

become dominantly heavy-hole like. This light to heavy-hole transition occurs

at Lz = 7.5nm for the 1h±1/2 state, at Lz = 5.5nm for the 1h±3/2 state and

Lz = 5.0nm for the 2h±3/2 state. Since the energy of the light-hole states

decreases with increasing Lz and the energy of the heavy-hole states increases,

the position of the light to heavy- hole transition corresponds approximately

to the position of the energy minima of Kz = 0 states, as can be verified from

Fig. 3.5. One can further observe that the ground hole state for Lz ≤ 6.5nm
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is 1h±1/2 having |mf | = 1/2 symmetry, while for Lz > 6.5nm it is 1h±3/2

having |mf | = 3/2 symmetry. Therefore at the critical point Lz = 6.5nm, an

interesting effect of a simultaneous change of ground hole state symmetry, a

change of the sign of the effective mass and a change of the ground state type

from light to heavy-hole like, is observed.

The split-off band certainly influences the exact positions of the energy

levels, however, being far in energy from the light and heavy-hole bands it

doesn’t influence the overall behaviour described in the previous paragraph.

This is verified by the fact that the spin orbit band content of the hole states

is typically of the order of 5%.

As far as the spatial localisation of the wavefunctions is concerned, one

would expect from the effective potential profiles given in Fig. 3.6 that dom-

inantly light-hole states would be confined outside the dots and dominantly

heavy-hole states inside the dots. However, the states are of light-hole type

only when the dots are very close to each other and the effective potential well

is then too narrow to confine the hole. Therefore, the light-hole like states are

spread both inside and outside the dots. When the distance between the dots

increases and light to heavy-hole transitions take place, the hole state becomes

localised inside the dots.

3.4.4 Influence of external axial magnetic field

The magnetic field dependences of the miniband minima and maxima of the

conduction and valence band states for the structure with the period Lz = 6nm

are shown in Figs. 3.7 and 3.8, respectively. As already mentioned, Kramer’s

degeneracy is broken in a magnetic field. The relation Emf
(B) = E−mf

(−B)

holds, thus only the B ≥ 0 part of the dependence is shown on the graphs.

The magnetic field splitting between 1e+3/2 and 1e−3/2 states, as well as

between 2e−1/2 and 2e+1/2 states is significant because the mesoscopic angular

momentum [200] of those states is different from zero. However, the splitting

between the 1e−1/2 and the 1e+1/2 states and between the 2e+3/2 and the 2e−3/2
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is much smaller, too small to be seen on the graph (of the order of few meV).

There is no crossing between states of different symmetry. The 1e+1/2 and

1e−1/2 minibands overlap with 2e−1/2 and 1e−3/2 minibands for B = 0 but

as the magnetic field is increased this overlap vanishes (for B & 12T). The

energy separation of the minibands has an important effect on the dynamical

characteristics of the structure since it suppresses all the one particle energy

conserving scattering mechanisms between those minibands (like ionised im-

purity scattering) and with further separation even suppresses the mechanisms

with energy exchange (like acoustic phonon and longitudinal optical phonon

scattering).
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Figure 3.7: Magnetic field dependence of miniband minima and maxima for

1e−3/2, 1e−1/2, 1e+1/2, 1e+3/2, 2e−3/2, 2e−1/2, 2e+1/2 and 2e+3/2 states. The

position where different minibands separate is marked.

The splitting between the hole states is also of the order of a few meV,

however since the energy difference between different states is also small, this

splitting is enough to cause crossings between states of different symmetry.

It is further found from Fig. 3.8 that the minibands 1h−3/2 and 1h+3/2 that

are degenerate at B = 0 become completely separated already at B & 3T
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and the same effect for 2h−3/2 and 2h+3/2 occurs at B & 23T. Although

the magnetic field splitting is the most pronounced for the 1h−1/2 and 1h+1/2

states, the effect of the separation of those minibands occurs at magnetic fields

larger than 30T, which is a consequence of a larger miniband width than in

the previous cases. Apart from separation of the minibands, the magnetic field

can also concatenate otherwise nonoverlapping minibands. It is seen in Fig. 3.8

that 1h+1/2 and 1h−3/2 start to overlap at B ∼ 11T and that for B & 22T the

range of energies of 1h−3/2 becomes a subset of the range of energies of 1h+1/2

miniband.
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Figure 3.8: Magnetic field dependence of miniband minima and maxima for

1h−3/2 (full circles), 1h+3/2 (empty circles), 1h−1/2 (full squares), 1h+1/2 (empty

squares), 2h−3/2 (full triangles) and 2e+3/2 (empty triangles) states. The posi-

tions where different minibands separate or concatenate are marked.

3.5 Conclusion

In conclusion, a symmetry based method for the calculation of electronic states

in pyramidal InAs/GaAs quantum dots was developed. The corresponding

Hamiltonian matrix obtained by the plane wave method was block diago-
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nalised into four matrices of approximately equal size, which enabled signifi-

cantly faster calculation of energy levels within the plane wave method. The

symmetry considerations not only enabled more efficient calculation of the elec-

tronic structure but also give more insight about the physics of the system by

introducing the quantum number of total quasi-angular momentum and giving

the selection rules for interaction with an electromagnetic field. The method

developed was applied to calculate the electronic structure of a periodic ar-

ray of vertically stacked pyramidal self-assembled quantum dots. It was found

that as the distance between the dots is increased, at a certain critical point

the ground hole state simultaneously changes symmetry from |mf | = 1/2 to

|mf | = 3/2 and type from light to heavy-hole. The influence of magnetic field

on the energy levels is in general less pronounced than the influence of quan-

tum mechanical coupling and strain but nevertheless it can be used for fine

tuning of the properties of the structure since its increase or decrease is able

to separate energy overlapping minibands.

The work presented in this Chapter was published in Physical Review

B [201].



Chapter 4

Symmetry based calculation of single-particle

states and intraband absorption in hexagonal

GaN/AlN quantum dots

4.1 Introduction

Wide band-gap III-nitride materials attracted significant research attention in

the 1990s which led to the demonstration of commercially attractive emitters

in the blue and ultra-violet spectral range [202]. Further improvements in GaN

based optoelectronic devices [203] have been achieved by using GaN quantum

dots [204–206] in the active region. GaN quantum dots have also been shown

to be promising for the realisation of solid state quantum computing [207,208].

In the last few years, intraband transitions in the telecommunications wave-

length range (1.3-1.55 µm) in GaN/AlGaN low dimensional heterostructures

at room temperature have been demonstrated [209–212]. Due to ultrafast

electron dynamics caused by enhanced interaction with longitudinal optical

phonons these transitions can be exploited for realising detectors and optical

modulators operating at high bit-rates. Theoretical proposals also suggest the

possibility of operation of GaN quantum well based unipolar devices in the

Reststrahlenband (∼ 34µm) where III-As based unipolar devices cannot oper-

ate [213, 214]. Most recently, intersubband luminescence from GaN quantum

wells was observed [215].

Having all these possible applications of GaN heterostructures and particu-
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larly quantum dots in mind, there have been several theoretical studies of their

electronic structure [144, 216–221]. The energy levels of GaN/AlGaN hexag-

onal quantum dots taking into account the strain distribution as well as the

internal electric fields generated due to spontaneous and piezoelectric polar-

isation were calculated in Ref. [144] using the plane wave expansion method

within the framework of the k · p model and in Refs. [216] and [217] using the

tight-binding approach. Spherical unstrained GaN quantum dots have also

been studied theoretically [218, 219]. However, although the electronic states

in III-nitride dots have been symmetry classified in Ref. [193], the hexago-

nal symmetry of the dots hasn’t yet been exploited in the calculation of the

single-particle states. So far, the intraband absorption in III-nitride quantum

dots was treated within the simple quantum well approach only [211]. No

theoretical studies of intraband absorption taking into account a fully three

dimensional nature of electron confinement have been reported.

Along this line, the aim of this Chapter is to extend the method developed

in Chapter 3 to exploit the symmetry in the calculation of energy levels of

hexagonally shaped III-nitride quantum dots within the framework of the k ·p
method. Furthermore, the symmetry based method developed is applied to

study intraband transitions in these dots theoretically.

4.2 Theoretical framework

The 8-band k · p Hamiltonian for semiconductors with wurtzite crystal struc-

ture [143] can be block diagonalised into two 4-band Hamiltonians for carriers

with opposite values of spin assuming the spin-orbit splitting ∆so is zero. The

state of the electron is then of the form

|Ψ〉 =
4
∑

l=1

ψl(r)|l〉, (4.1)

where ψl(r) are the slowly varying envelope functions of electron states (l = 1),

heavy-hole states (l = 2 and l = 3), and light-hole states (l = 4), and |l〉 the

corresponding Bloch functions given by (2.25). The 4-band Hamiltonian is of
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the form

Ĥ = Ĥk + Ĥs + VpI4, (4.2)

where Ĥk is the kinetic part of the Hamiltonian (Eq. (2.26)), Ĥs is the strain

part (Eq. (2.39)), Vp is the potential induced due to spontaneous and piezo-

electric polarisations present in III-nitride materials [222] and I4 is the 4 × 4

unity matrix.

Rt
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H t
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R t
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z
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Figure 4.1: Schematic view of a truncated hexagonal pyramid quantum dot

with upper base radius Ru, lower base radius R and height h embedded in a

hexagonal prism with radius Rt and height Ht – top view (left) and side view

(right). The primitive vectors of the corresponding Bravais lattice (a1 and a2)

and its reciprocal lattice (b1 and b2) are also shown in the figure.

In the plane wave expansion method, the dot is conventionally embedded in

a rectangular box and the plane waves that form the basis of functions periodic

on a cubic lattice are taken. However, in this work, due to the hexagonal shape

of the dots, it seems more natural to embed the dot in a hexagonal prism and

take the plane waves that form the basis of functions periodic on a hexagonal

lattice in the expansion. Hence, let the dot be embedded in a hexagonal prism

with side length Rt and height Ht, as shown in Fig. 4.1. The primitive vectors
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of the Bravais lattice corresponding to the hexagonal lattice are given by

a1 = Rt

(√
3

2
ex +

3

2
ey

)

,

a2 = Rt

(

−
√

3

2
ex +

3

2
ey

)

, (4.3)

a3 = Htez.

The primitive vectors of the reciprocal lattice bj (j = 1, 2, 3) satisfy the con-

dition ai · bj = 2πδij and are therefore given by

b1 =
4π

3Rt

(√
3

2
ex +

1

2
ey

)

,

b2 =
4π

3Rt

(

−
√

3

2
ex +

1

2
ey

)

, (4.4)

b3 =
2π

Ht
ez.

The envelope functions are then assumed in the form

ψl(r) =
∑

k

Al,ke
ik·r, (4.5)

where the summation is performed over k vectors of the form

k = m1b1 +m2b2 +m3b3, (4.6)

where m1, m2 and m3 are integers.

After putting (4.5) into the Hamiltonian eigenvalue problem

4
∑

j=1

Ĥijψj(r) = Eψi(r), (4.7)

one arrives at the eigenvalue problem of the Hamiltonian matrix

∑

j,k

hij(q,k)Aj,k = EAi,q, (4.8)

where

hij(q,k) =
1

V

∫

V

d3r exp (−iq · r) Ĥij exp (ik · r) (4.9)
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are the Hamiltonian matrix elements (the integration is performed over the

volume of the embedding hexagonal prism V ). They can all be expressed as a

linear combination of elements Ei as given in Appendix A.

The elements of the Hamiltonian matrix due to the presence of spontaneous

and piezoelectric polarisation are given by [144]

hp
ij(q,k) =

(2π)3

V

i|e|
(q − k)2ε0εr

(q − k) · P (q − k)δij, (4.10)

where εr is the static dielectric constant, P (q) is the Fourier transform of

the sum of the spontaneous and piezoelectric polarisation vectors P = P sp +

P pz. The spontaneous polarisation vector is given by P sp = P spez, while the

piezoelectric polarisation components are related to strain tensor components

by (2.44). The Fourier transform P (q) can therefore be calculated in a similar

way as the kinetic and strain Hamiltonian matrix elements.

The optical absorption cross section is calculated using (2.68), with the

inhomogeneous broadening due to size inhomogeneity of the quantum dot en-

semble taken into account by replacing the delta function in Fermi’s Golden

rule, with a Gaussian given by (2.67). The matrix element (2.69) can be ex-

pressed in terms of the coefficients in the plane wave expansion

Mε
if = V

∑

l,q

∑

j,k

Ai∗
l,qA

f
j,kGlj(q,k), (4.11)

where

Glj(q,k) =
1

AV

∫

V

d3r exp (−iq · r) Ĥ ′
lj exp (ik · r) (4.12)

are the Fourier transforms of the perturbation Hamiltonian matrix elements

that can also be calculated analytically.

4.3 Symmetry considerations

The symmetry of the hexagonal quantum dot system when the location of ev-

ery atom is taken into account is C3v and is lower than the symmetry of the dot

geometrical shape [189, 193]. In a similar manner as in the case of pyramidal

quantum dots made of material of zincblende symmetry, the symmetry of the



4.3 Symmetry considerations 91

8-band k ·p model applied to a quantum dot is C6v, being higher than the full

atomistic symmetry. The strain part of the Hamiltonian doesn’t break that

symmetry when the strain distribution is taken into account via the contin-

uum mechanical model [126], as is done here. The spontaneous polarisation is

directed along the z−axis and obviously preserves the symmetry. In contrast

to square based pyramidal InAs/GaAs quantum dots, where piezoelectric ef-

fects reduce the symmetry [201] from C4v to C2v, the piezoelectric potential

in the dots considered here is C6v symmetric and doesn’t affect the symme-

try. Consequently, the symmetry of the model is C6v. In this work, only the

C6 symmetry will be exploited as the presence of an external axial magnetic

field reduces the symmetry from C6v to C6, and although magnetic field effects

will not be considered in this Chapter, the symmetry adapted basis derived is

general enough to be used in such situations as well.

The 4-band Hamiltonian commutes with the rotations around the z-axis

by ϕk = k · 2π/6 (k ∈ {0, 1, . . . , 11}) which are generated by the operator of

z−component of the total angular momentum F̂z, which is a sum of orbital

angular momentum of the envelope function L̂z and total angular momentum

of the Bloch function Ĵz. The action of the generator of the double valued

representation of the rotation group

D̂(Rϕ1
) = e−iF̂zϕ1 (4.13)

on the basis vectors of Hilbert space

|k, i〉 = eik·r|i〉, (4.14)

(where k vectors are given by (4.6) and i ∈ {1, 2, 3, 4}) is given by

D̂(Rϕ1
)|k, i〉 = eik′·re−iJz(i)ϕ1 |i〉, (4.15)

where Jz(1) = 1/2, Jz(2) = 3/2, Jz(3) = −1/2, Jz(4) = 1/2 and the k-vector

is rotated by ϕ1 around the z−axis

k′ = Rϕ1
k = (m1 −m2)b1 +m1b2 +m3b3, (4.16)



4.3 Symmetry considerations 92

or in the cartesian coordinates

k′x + ik′y = eiϕ1(kx + iky),

k′z = kz. (4.17)

The orbit of action of the group elements on the basis vectors when

(m1, m2) = (0, 0) is a one dimensional space H(0,0,m3),i. The labelling intro-

duced of the form (m1, m2, m3), i will also be used in the rest of the text to

label the reduction of representation D̂ to the space H(m1 ,m2,m3),i, as well as

to label the group projectors and the elements of the symmetry adapted basis

belonging to this space. In H(0,0,m3),i the representation D̂ reduces to

D̂(0,0,m3),i(Rϕ1
) = e−iJz(i)ϕ1 . (4.18)

On the other hand, when (m1, m2) 6= (0, 0) the orbit is a 6-dimensional space

H(m1,m2,m3),i (with 0 ≤ m2 < m1 ≤ n1 = n2 to avoid multiple counting of the

same space, and |m3| ≤ n3, where n1, n2 and n3 are positive integers.) spanned

by the vectors |bl〉 = |Rlϕ1
k, i〉 (l ∈ {0, 1, . . . , 5}). The operator D̂(Rϕ1

) in this

basis reads

D̂(m1,m2,m3),i(Rϕ1
) = e−iJz(i)ϕ1





0 1

I5 0



 , (4.19)

where I5 is the 5 × 5 unity matrix. The characters of the group elements in

this representation are then given by

χ(D̂(m1,m2,m3),i(Rlϕ1
)) = 6δl,0 − 6δl,6 (4.20)

and

χ(D̂(0,0,m3),i(Rlϕ1
)) = e−iJz(i)lϕ1 . (4.21)

Consequently one finds the reduction of the representation in these spaces to

its irreducible double valued representations Amf
whose characters are given

by χ
(

Amf
(Rlϕ1

)
)

= exp(−ilmfϕ1) (where mf ∈ {−5/2,−2,−3/2, . . . , 5/2}
and l ∈ {0, 1, . . . , 11}):

D̂(0,0,m3),i = AJz(i) (4.22)
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and

D̂(m1 ,m2,m3),i = A−5/2 + A−3/2 + A−1/2 + A1/2 + A3/2 + A5/2. (4.23)

From (4.22) and (4.23), one gets that the reduction of D̂ to the irreducible

representations is given by

D̂ = N−5/2A−5/2 +N−3/2A−3/2 +N−1/2A−1/2 +N1/2A1/2 +N3/2A3/2 +N5/2A5/2,

(4.24)

where N1/2 = 6n3 [2 + 2n1(n1 + 1)], N−1/2 = N3/2 = 6n3 [1 + 2n1(n1 + 1)] and

N−3/2 = N5/2 = N−5/2 = 12n3n1(n1 + 1). The projection operators [136] are

given by

P̂Amf
((0, 0, m3), i) = 1 (4.25)

and

P̂Amf
((m1, m2, m3), i) =

1

12

11
∑

l=0

χ
(

Amf
(Rlϕ1

)
)∗
D̂(m1 ,m2,m3),i(Rlϕ1

). (4.26)

After explicit calculation one gets

P̂Amf
((m1, m2, m3), i) = M(eiϕ1(Jz(i)−mf )), (4.27)

where M(u) is the matrix defined by

M(u) =





























1 u u2 u3 u4 u5

u5 1 u u2 u3 u4

u4 u5 1 u u2 u3

u3 u4 u5 1 u u2

u2 u3 u4 u5 1 u

u u2 u3 u4 u5 1





























. (4.28)

The elements of the symmetry adapted basis are finally given by

|A1/2, (0, 0, m3), 1〉 = |(0, 0, m3), 1〉,

|A3/2, (0, 0, m3), 2〉 = |(0, 0, m3), 2〉,

|A−1/2, (0, 0, m3), 3〉 = |(0, 0, m3), 3〉, (4.29)

|A1/2, (0, 0, m3), 4〉 = |(0, 0, m3), 4〉,
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where −n3 ≤ m3 ≤ n3 and

|Amf
, (m1, m2, m3), i〉 =

1√
6

5
∑

l=0

eilϕ1(mf−Jz(i))|bl〉, (4.30)

where 0 ≤ m2 < m1 ≤ n1 = n2, −n3 ≤ m3 ≤ n3, i ∈ {1, 2, 3, 4} and

mf ∈ {−5/2,−3/2,−1/2, 1/2, 3/2, 5/2}.
In this basis, the Hamiltonian matrix is block diagonal with 6 blocks of

approximately equal size (more precisely, the sizes of the blocks are N1/2,

N−1/2 = N3/2 and N−3/2 = N5/2 = N−5/2, see equation (4.24)). Since all the el-

ements of the symmetry adapted basis are linear combinations of the elements

of the plane wave basis, all the elements of the 6 blocks of the Hamiltonian

matrix can be expressed in terms of the elements of the Hamiltonian matrix

in the plane wave basis. The computational time necessary to diagonalise 6

blocks is approximately 36 times smaller than the time necessary within the

straightforward plane wave approach.

Apart from reducing the computational time within the plane wave method,

the method presented introduces the quantum number mf which can be inter-

preted as the total quasi-angular momentum. The selection rules for the inter-

action with electromagnetic radiation in the dipole approximation have then

been derived as: ∆mf = 0 for z−polarised light and ∆mf = ±1 for in-plane

polarised light (where by the definition 5/2 + 1 = −5/2 and −5/2− 1 = 5/2).

These rules are very restrictive, and although the quantum dots allow for the

absorption of radiation of any polarisation in contrast to quantum wells, these

transitions are allowed only for certain pairs of states. The same notation for

labelling of states as in Chapter 3 is introduced.

4.4 Results

The method presented was first applied to the calculation of electron and hole

energy levels in an ideally periodic array of hexagonal truncated pyramidal

GaN/AlN quantum dots. In a realistic case the number of quantum dot layers

is finite and therefore the strain distribution and the effective potential are
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not strictly periodic. It is also difficult to achieve identical size of the dots in

all layers. Nevertheless, in a quantum dot superlattice containing several tens

of quantum dot layers one certainly expects that the results obtained within

the periodic model can be used as a very good approximation of the actual

system. The dot radius was taken to be R = 9.0nm, the height h = 3.7nm,

the upper base radius Ru = 3.5nm and the diameter of the embedding box

2Rt = 30.0nm. The period of the superlattice was varied over the interval

from Ht = 4.3nm, when the dots almost lie on top of one another, to Ht =

12.3nm. Material parameters in the calculation were taken from Ref. [4] and

are summarised in Appendix C. The unstrained AlN conduction band edge

was taken as the reference level.

The number of plane waves used in the calculation was n1 = n2 = 12 and

n3 = 10. In order to check that this number of plane waves is enough, the

calculation of energy levels has been performed with different number of plane

waves used. Three sets of calculations were done - in the first set both n1 = n2

and n3 were set to the same value n, which was then varied, in the second

n1 = n2 were set to 12 and n3 to the value n that was varied, and finally n3

was set to 10 and n1 = n2 were varied. The results of the test are shown in

Fig. 4.2. The energies of the ground state and the excited state to which the

absorption of z−polarised radiation is dominant, are presented in the figure.

As expected, more plane waves are needed to achieve the same level of precision

in the calculation of excited states than in the case of the ground state. One

can see that already for n1 = n2 = n3 ∼ 7 − 8 the errors become of the order

10 meV, which may be a sufficient precision having in mind the large values

of band offset in the investigated material system and the uncertainties in the

values of III-nitride band parameters. The number of plane waves chosen for

the rest of the calculations provides convergence to better than 1 meV for the

ground state in the conduction band and the convergence of the order of 1 meV

for those excited states in the conduction band that are mainly responsible for

the absorption of z−polarised radiation. The number of plane waves necessary
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to obtain a certain degree of precision in GaN/AlN quantum dots is therefore

larger than for the same precision in InAs/GaAs quantum dots. The main

reason for this is the presence of an effective triangular potential well that

localises the electrons near the top of the dot, and the holes near the bottom

of the dot (Fig. 4.6). The wavefunctions are therefore localised in a small area

of space and therefore plane waves with higher wave numbers are necessary to

accurately represent them.
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Figure 4.2: The results of the convergence test. Dependence of the energy of

the ground state (1e1/2) and 4e1/2 state on the number of plane waves used.

Superlattice period is Ht = 8.3nm.

The effective electron potential on the z-axis defined as Ve = H11(k = 0),

the heavy-hole potential defined as Vhh = H22(k = 0), and the light-hole

potential defined as Vlh = H44(k = 0) are shown in Figs. 4.3 and 4.4. One can

see that significant changes in the effective potentials occur when varying the

period of the structure, which therefore influence considerably the electronic

structure of the quantum dot superlattice.

The electron and hole energy levels, when the period is varied in the above

interval, are shown in Fig. 4.5. For each value of mf , the first few energy
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Figure 4.3: The effective potential on the z-axis experienced by electrons for

three different values of the period Ht.

levels in the conduction band and the highest energy level in the valence band

are shown. A very weak dispersion with the superlattice Bloch wave vector

Kz was found and therefore only Kz = 0 states are presented. To illustrate

this effect, the wavefunctions of the electron and hole ground states when the

period is equal to Ht = 5.3nm are shown in Fig. 4.6. One can see that there is

no overlap between the states of neighbouring periods and hence no electronic

coupling. Therefore, even in the case of dots that almost lie on top each other,

electronic coupling is almost negligible. The origin of such a weak electronic

coupling between dots in a superlattice is the strong internal electric field (see

Figs. 4.3 and 4.4) that creates a deep triangular potential well at the top of

the dot for electrons (and at the bottom of the dot for holes) which prevents

interaction between neighbouring dots. Another effect caused by the electric

field that can be also verified from Fig. 4.6 is the localisation of the electron

states at the top of the dot and hole states at the bottom of the dot, as

previously reported by others [144, 223].

The energy levels with mf = −1/2 and mf = 3/2 are degenerate. The
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Figure 4.4: The effective potential on the z-axis experienced by light- (LH)

and heavy-holes (HH) for three different values of the period Ht.

same holds for mf = −3/2 and mf = 5/2. The origin of these degeneracies is

the fact that the used 4-band Hamiltonian also commutes with the operators

of rotations and reflections in real space, that form the single valued repre-

sentation of the C6v group. The mentioned degeneracy then stems from two

dimensional irreducible representations of the C6v group.

One can see from Fig. 4.5 that as the superlattice period increases, the

effective energy gap of the structure decreases, in contrast to the behaviour

observed in InAs/GaAs. Such a behaviour is governed by the changes in the

value of the internal electric field. As the distance between the dots increases,

the field in the dot also becomes larger, the effective electron and hole potential

wells are therefore deeper (Figs. 4.3 and 4.4) and consequently both electron

and hole states are more confined.

The type of hole states is further discussed: When the superlattice period is

small (Ht ∼ 5nm), the effective potential for light-holes is significantly larger

than for heavy-holes (Fig. 4.4) and despite the smaller light-hole effective mass,

they are more strongly confined and therefore the hole ground state is of light-
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Figure 4.5: The dependence of electron (left axis) and hole (right axis) energy

levels on the superlattice period. For each value of mf , the first few energy

levels in the conduction band and the highest energy level in the valence band

are shown.

hole type. However, when the period increases, the difference between the

light and heavy-hole effective potentials becomes smaller, and due to the larger

effective mass, the hole ground state becomes of the heavy-hole type. In the

intermediate region, one finds that the ground hole state is a mixed light- and

heavy-hole state. However, this region is very narrow and although interesting

effects in the optical spectrum due to hole mixing can be expected, it would

be very hard to access this region experimentally. As far as excited hole states

are concerned, due to the above mentioned effects, when the period increases

the heavy-hole character of the states also prevails.

As the ground electron state has mf = 1/2 and selection rules for the

absorption of z−polarised radiation only allow the transitions with ∆mf =

0, it follows that the peak positions in the z−polarised radiation absorption

spectrum will be determined by the positions of the energy levels having mf =

1/2 symmetry. The dependence of the positions of the mf = 1/2 energy levels

on the period of the structure is given in Fig. 4.7. One can see that the first
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Figure 4.6: Wavefunction moduli squared in the yz-plane of the electron and

hole ground states when the period is equal to Ht = 5.3nm.

three well separated energy levels (labelled as 1, 2 and 3) are followed by three

groups of closely spaced levels (labelled as G1, G2 and G3).

Although the symmetry allows transitions from the ground state to any of

the mf = 1/2 states, it turns out that only some of these transitions have sig-

nificant values of matrix elements. The intraband optical absorption spectrum

from the ground state for z−polarised radiation is shown in Fig. 4.8. The stan-

dard deviation σ of the Gaussian linewidth on each of the transitions was taken

to be equal to 10% of the transition energy, which is approximately the exper-

imental value in Ref. [211]. The strongest absorption occurs for the transition

from the ground state to the states from the G1 group, as the matrix ele-

ments for these transitions are the largest, Fig. 4.9 (among them the strongest

is the transition to 4e1/2). The absorption maximum at Ht = 8.3nm occurs

at 490 meV, and is followed by a weaker line with a maximum at 860 meV

originating from the transitions to the G3 group of states. These results are in

reasonable agreement with the experimental results of Ref. [211], where for the

same value of the period and for dots of similar size the strongest absorption

occurs at 520 meV or 590 meV for two different samples investigated there,

and is followed by two weaker lines at 730 meV and 980 meV or 850 meV and
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Figure 4.7: The dependence of the mf = 1/2 electron energy levels on the

period of the structure.

970 meV.

The wavefunctions of the first four states with mf = 1/2 are shown in

Fig. 4.10. The absorption of z−polarised radiation from 1e1/2 is strongest

towards 4e1/2, although both 2e1/2 and 3e1/2 have excellent spatial overlap

with 1e1/2 as well. In order to explain why the absorption matrix element is

much larger on the 1e1/2 → 4e1/2 transition, one may notice that the states

1e1/2−3e1/2 are nearly symmetric with respect to reflections through the plane

normal to the z−axis, denoted in Fig. 4.10 by a dashed line. If that symmetry

was exact, the transitions between those states due to the interaction with

z−polarised radiation would be strictly forbidden, but since it is only approxi-

mate the matrix elements of those transitions have relatively small values. As

seen from Fig. 4.10, the state 4e1/2 is asymmetric with respect to the mentioned

plane and its spatial overlap with the ground state is still good, therefore the

strongest absorption occurs for the 1e1/2 → 4e1/2 transition.

The optical cross section for the absorption of x−polarised radiation from

the ground state is shown in the inset of Fig. 4.8. Symmetry imposed selection
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Figure 4.8: Intraband optical absorption spectrum from the ground state for

z−polarised radiation for three different values of the structure period. The

corresponding spectrum for x−polarised radiation is shown in the inset.

rules generally allow transitions to any state having mf = −1/2 or mf =

3/2, but in reality the spectrum is entirely dominated by the transition from

the ground state (having mf = 1/2) to the degenerate pair of first excited

states (having mf=−1/2, 3/2). The wavefunctions of the 1e1/2 and 1e−1/2,3/2

states are presented in Fig. 4.11. The spatial overlap is good and there are

no approximate selection rules that would inhibit the transition between these

states as in the previous case. The transitions to higher states contribute much

less to the absorption due to a reduced spatial overlap with the ground state

resulting in smaller matrix elements (Fig. 4.9) and an increased transition

energy. As the dot shape investigated is not cylindrical but hexagonal, the

absorption of in-plane polarised radiation should in principle depend on the

polarisation vector. However, it has been found that the change of absorption

for different directions of the polarisation vector in the xy−plane is less than

1% and therefore the results shown in the inset of Fig. 4.8 are valid for any

direction of in-plane polarised radiation.
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Figure 4.9: Optical absorption matrix elements |M|2 vs. energy for different

intraband transitions from the ground state to excited states when the period

is equal Ht = 8.3nm.

4.5 Conclusion

In conclusion, a symmetry based method for the calculation of single particle

states in hexagonal GaN/AlN quantum dots within the framework of the k ·p
model has been developed. The method has been applied to calculate the elec-

tron and hole states in a quantum dot superlattice. It has been found that

changes in the electronic structure when the period of the structure is varied

are caused by changes in the internal electric field and not by the electronic

coupling, which was found to be negligible. The changes in strain distribution

mainly determine the type of hole states. Furthermore, intraband absorption

in the conduction band was studied. Selection rules for interaction with elec-

tromagnetic radiation were derived and the absorption spectra from the ground

state for different polarisations of incident radiation were calculated. The ab-

sorption spectrum for in-plane polarised light is dominated by the transition

to two degenerate first excited states, while for z−polarised light it is deter-

mined by the absorption to a group of excited states located ∼ 500meV above
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Figure 4.10: Wavefunction moduli squared in the yz-plane of the first four

electron states with mf = 1/2 when the period is equal to Ht = 8.3nm. The

states 1e1/2, 2e1/2, 3e1/2 and 4e1/2 are shown respectively from left to right.

Figure 4.11: Wavefunction moduli squared in the yz-plane of the 1e1/2 (left)

and 1e−1/2,3/2 (right) states.

the ground state having the same symmetry as the ground state. Such a re-

sult is in overall agreement with the available experimental data on intraband

absorption in the conduction band in GaN/AlN quantum dots.

The work presented in this Chapter was published in Journal of Physics:

Condensed Matter [224].



Chapter 5

Proposal of an optically pumped intersublevel

laser

5.1 Introduction

Despite the fact that intraband optical transitions in semiconductor nanos-

tructures are the subject of intensive research due to their applications for

sources and detectors of mid- and far-infrared radiation (see Sec. 1.3.2), the

possibility of having an optically pumped laser based on intersublevel transi-

tions in quantum dots has not been analysed, prior to the work reported here.

In this Chapter, the first theoretical proposal of such a laser based on pyra-

midal InAs/GaAs quantum dots, emitting at λ ≈ 14.6µm, is presented. A

theoretical model of the laser active region is developed and applied to calcu-

late the pumping flux and temperature dependence of the gain. Furthermore,

appropriate waveguides for both edge and surface emission are designed. In

comparison with similar lasers based on quantum wells, the proposed laser has

the advantage that in-plane polarised emission is possible and a lower pumping

flux is needed due to the longer carrier lifetimes in quantum dots.

5.2 Theoretical model

The developed theoretical model starts from the energy level and wavefunction

calculation, from which the transition rates among different quantum dot states

are obtained. These are subsequently used to form the rate equations, from
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which the populations of the energy levels in steady state conditions are found.

Finally, from the populations obtained, the temperature and flux dependence

of the gain can be calculated.

The energy levels and wavefunctions of the pyramidal InAs/GaAs quantum

dots were calculated using the method described in Chapter 3. In the calcu-

lation of the energy levels, the small piezoelectric potential that reduces the

symmetry from C4 to C2 was treated within second order perturbation theory.

The dependence of the positions of the first seven energy levels on dot size for

quantum dots considered in this work (whose dimensions are given in Table

5.1) is shown in Fig. 5.1.

Table 5.1: The calculated values of the pump λp and the emission wavelength

λe, gain g77 at the temperature of T = 77K and g300 at T = 300K, at the

pumping flux Φ = 1024 cm−2s−1 for several different quantum dots. The width

of the quantum dot base is b and the height h.

b [nm] h [nm] λp [µm] λe [µm] g77 [cm−1] g300 [cm−1]

14 6 5.7 13.5 513 218

15 7 5.9 14.6 574 243

16 8 6.2 15.5 577 186

17 8.5 6.5 16.5 561 167

18 9 6.8 17.6 577 211

19 9.5 7.1 18.9 537 202

20 10 7.4 20.1 441 170

The optical absorption cross section was calculated as described in

Secs. 2.5.1 and 4.2. The 2σ Gaussian linewidth was taken equal to 12% of

the transition energy, which is a typical value in quantum dot infrared pho-
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Figure 5.1: The dependence of the first seven energy levels on dot size for

quantum dots whose dimensions are given in Table 5.1. The unstrained GaAs

conduction band edge was taken as the reference energy level. The states with

the quantum number mf = ±1/2 are represented with circles and states with

mf = ±3/2 with diamonds. Lines are given only as a guide to the eye. The

inset: Quantum dot geometry. The base width is b, the height h, the wetting

layer width dWL.

todetectors based on bound-to-bound transitions [225, 226].

Next, the processes which lead to electron transitions between different

energy levels are examined.

The transition rate between states due to the interaction with LO phonons

is given by (2.117). From Eq. (2.110), the electron – LO phonon coupling

strength is given by

g2 =
∑

k

(NLO +
1

2
± 1

2
)|α(k)|2|Fif(k)|2. (5.1)

The summation in (5.1) is performed over phonon wave vectors given by (3.5).

With the envelope functions of the final and initial state given by

ψ
f(i)
j (r) =

∑

k

A
f(i)
j,k exp (ik · r) , (5.2)
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for such values of the wave vectors the form factor can be simplified from

Fif(q) =
8
∑

j=1

∑

ki

∑

kf

∫

V

d3rAf ∗
j,kf

Ai
j,ki

exp [i(q + ki − kf ) · r] (5.3)

to

Fif(q) = V

8
∑

j=1

∑

ki

Af ∗
j,ki+qA

i
j,ki
. (5.4)

Some of the calculated LO phonon interaction transition rates for quantum

dots whose dimensions are given in Table 5.1 are shown in Fig. 5.2.
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Figure 5.2: Energy dependence of the calculated LO phonon interaction tran-

sition rates Wij on the transitions: 2 → 1 at T = 77K (circles) and T = 300K

(full circles), 4 → 3 at T = 77K (squares) and T = 300K (full squares), 7 → 5

at T = 77K (diamonds) and T = 300K (full diamonds), 5 → 4 at T = 77K

(triangles) and T = 300K (full triangles) for quantum dots whose dimensions

are given in Table 5.1. The inset: Energy dependence of spontaneous radiative

emission rate on the transition 2 → 1.

The weaker electron – LA phonon scattering transition rate was calculated

using Fermi’s Golden rule as described in Sec. 2.7.1. Acoustic phonon scatter-

ing is only significant when the states are closely spaced in energy (< 10meV),

as for example are states 2 and 3 in Fig. 5.3, while for larger energy separations

the interaction with LO phonons is dominant.
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Figure 5.3: The scheme of energy levels of the pyramidal quantum dot. The

base width is b = 15nm, the height h = 7nm, the wetting layer width dWL =

1.7ML. The quantum number of total quasi-angular momentum mf as well

as the spin of each state is given. The unstrained GaAs conduction band edge

was taken as the reference energy. The position of the wetting layer continuum

and 3D continuum states is indicated, as well.

The transition rate from initial state i to final state f due to spontaneous

emission of photons is given by Eq. (2.75). The spontaneous radiative emission

transition rates on the transition 2 → 1 for quantum dots whose dimensions

are given in Table 5.1 are shown in the inset of Fig. 5.2. It has been found

that the transition rates in the system due to spontaneous emission are less

than 10µs−1 and are thus significantly smaller than the transition rates due to

interaction with phonons, hence they were neglected.

Electron – hole scattering, which is considered to be the dominant mech-

anism in interband quantum dot lasers [11], is not present in this unipolar

device. Since it is assumed that the electrons are excited only to bound states

(this assumption will be justified in Sec. 5.3), the relaxation processes assisted

by the Coulomb interaction between bound and wetting layer carriers [227]

do not exist either. Consequently, electron-electron scattering has no effect
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on rate equations, because in the system with discrete energy levels, due to

energy conservation the transition of an electron from state i to state f must

be compensated by the transition of another electron from state f to state i.

The rate equations for the system considered then yield

dni

dt
=

∑

j 6=i

Wjinj

(

1 − 1

2
ni

)

−
∑

j 6=i

Wijni

(

1 − 1

2
nj

)

−

−
∑

j

σp
ij(ωp)(ni − nj)Φ, (5.5)

where 0 ≤ ni ≤ 2 is the occupancy of level i including electrons of both spin,

Wij is the total transition rate from state i to state j due to interaction with

phonons, σp
ij(ωp) is the optical cross section between states i and j at the pump

wavelength for radiation polarised in the same way as the pump and Φ is the

optical pump flux. The effect of final state blocking is included via the terms
(

1 − 1
2
ni

)

that represent the probability that the final state is empty. It is

assumed that the doping is such that there are nd electrons per quantum dot

on average, i.e.
∑

i ni = nd.

The rate equations (5.5) have been formulated for the cold cavity limit

when there is no radiation in the cavity corresponding only to subthreshold

conditions, i.e. stimulated emission of radiation is not included. The gain

calculated from such a model is sufficient to determine whether there will be

lasing or not, and the larger its value, the larger the intensity of the emitted

radiation. However, if one wants to calculate the value of the intensity of

emitted radiation, it is necessary to couple this equation with the equations

for the electromagnetic field distribution within the cavity, which was not the

subject of this work.

The dots considered here are in the strong confinement regime where the

electron-electron interaction energy (which is of the order of ∼ 10meV per

electron pair [228]) is much smaller than the effective confinement potential

(which is ∼ 500meV). It is therefore expected that the single particle approach

adopted here for the calculation of energy levels and the rate equations model

should be valid when the dots are occupied by a small number of electrons
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(nd ∼ 1−3). This conclusion can also be supported by the results in Ref. [229]

where the excitation spectrum of the quantum dot is almost the same in the

range nd ∼ 1 − 3. Having all this in mind, a value of nd = 2 was chosen in

Sec. 5.3 to obtain a large value of gain on the one hand and to be sure of the

validity of the model presented on the other hand.

The gain at the angular frequency ω for stimulated emission of radiation

polarised in the direction ε is

gε(ω) =
∑

i,j
Ei>Ej

σε
ij(ω)(ni − nj)Nt, (5.6)

where σε
ij(ω) is the optical cross section for interaction with radiation polarised

in the direction ε and Nt is the number of quantum dots per unit volume.

5.3 Results

5.3.1 Active region

A quantum dot with a base width b = 15nm, height h = 7nm, and a wetting

layer of width dWL = 1.7ML, which is a typical representative of the dots

grown in experiments [11, 158], was considered first. It was assumed that the

doping density is such that the dots are occupied with nd = 2 electrons on

average, as already mentioned. The material parameters for the calculation of

the energy levels were taken from Ref. [3], the parameters for the calculation

of transition rates due to interaction with phonons were taken from Ref. [2]

(these are summarised in Appendix C) and the temperature dependence of the

LO phonon lifetime was taken from Ref. [178]. The energy level scheme and

the geometry of the dot considered is presented in Fig. 5.3.

Most optically pumped lasers use three-level or four-level schemes. It will

however be shown that a somewhat more complicated scheme is required to

obtain significant values of population inversion in the quantum dots investi-

gated.
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The standard three-level scheme would include pumping of electrons from

level 1 to level 3, followed by fast depopulation of level 3 to level 2 in order to

obtain a population inversion between levels 2 and 1. However, levels 2 and 3

are close in energy and therefore it is questionable whether selective pumping

from level 1 to level 3 can be achieved in a real ensemble of quantum dots 1. One

should further note that electrons from level 1 cannot be pumped to level 4 or 6

due to selection rules for quantum number mf and spin conservation.

Another possible pumping scheme would be to pump from level 1 to level 5.

Electrons from level 5 then relax into levels 2 and 3 either directly or via level 4.

In order to obtain a significant population inversion between levels 2 or 3, and

level 1, the transition rate from level 5 to levels 2 and 3 should be much larger

than the transition rate from levels 2 and 3 to level 1. However, these transition

rates are of the same order of magnitude, the former being just slightly larger,

hence the calculation has shown that only a small population inversion between

levels 2 and 1 of approximately ∆n21 = n2 − n1 ≈0.2 electrons per dot at T =

77K is possible. The main mechanism that prevents larger values of population

inversions ∆n21 or ∆n31 is backfilling of level 1 by unavoidable stimulated

emission of photons by electrons from level 5 (at the rate σ15Φ(1 − n1

2
)n5).

Therefore, the following scheme which gives the largest values of gain among

all the schemes explored is proposed. The electrons are optically pumped from

level 1 to level 7. The distance between levels 5 and 7 is close to an LO

phonon energy and consequently the transition rate between these two levels

exceeds all other LO phonon interaction transition rates by more than an

order of magnitude, enabling a fast depopulation of level 7. Consequently,

the occupancy of level 7 in steady state is small and thus the undesirable

stimulated emission from level 7 to level 1 is almost completely avoided in this

scheme. The main difference between this and the previous scheme is that

in this scheme there exists a fast depopulation mechanism from the level to

1Nevertheless, such an approach was proposed in a separate theoretical work (supported

by certain experimental results) by other researchers [230], reported after the work presented

here, and is shown to be promising.
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which the electrons are being pumped, which prevents backfilling of level 1 by

stimulated emission of photons. Almost all the electrons from level 7 therefore

go into level 5, which implies that level 6 remains almost unpopulated. The

electrons are further distributed to levels 2–4 and if the pump flux is sufficiently

large, a population inversion between any of the levels 2–5 and level 1 occurs.

As will be shown later, the largest population inversion occurs between levels

2 and 1, as well as between 3 and 1. Since the transition linewidth is of the

same order of magnitude as the energy difference between states 2 and 3, laser

emission is caused by both transitions 2 → 1 and 3 → 1. Due to selection rules

on the transition 1 → 7, the pump needs to be z−polarised, while the emitted

radiation is in-plane polarised, since the selection rules on both transitions

2 → 1 and 3 → 1 allow only such emission. Therefore, a laser based on these

transitions can operate either as an edge emitter or as a surface emitter.
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Figure 5.4: Flux dependence of state occupancies ni at a temperature T =

77K for the quantum dot shown in Fig. 5.3.

The rate equations were solved under steady state conditions to find the

population inversion and gain. The flux dependence of state occupancies ni

at a temperature T = 77K are shown in Fig. 5.4. The population inversion
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between level 1 and any of the levels 2–5 appears at Φ ≈ 2 · 1023 cm−2s−1. All

the curves reach saturation at approximately Φ = 1024 cm−2s−1. There are

more electrons in levels 2 and 3 than in levels 4 and 5 since the transition rates

from levels 4 and 5 to levels 2 and 3 are larger than the transition rates from

levels 2 and 3 to level 1. This implies that the population inversion is strongest

between levels 2 and 1 and the gain is therefore a maximum at the wavelength

of 14.6µm, corresponding to the transition between levels 1 and 2. The pump

wavelength is λp ≈ 5.9µm. When the curves reach saturation, there is a pop-

ulation inversion of approximately 0.7 electrons per dot between levels 1 and 2

and 0.3 electrons between levels 1 and 3. Both of them contribute significantly

to the gain for in-plane polarised radiation at λe ≈ 14.6µm, which is calculated

to be g = 574cm−1. The calculation shows that the dependence of the optical

cross section on the direction of polarisation in the xy-plane is weak and the

above value of gain can be considered as the gain for any polarisation direction

of in-plane polarised radiation. It should be mentioned that this is due to the

fact that the wavefunctions in the absence of the piezoelectric effect were used

in the calculation. Polarisation dependence of 1 → 2 and 1 → 3 transitions

in InAs/GaAs quantum dots has been established both experimentally and

theoretically (see for example Refs. [231, 232]). The origin of this dependence

is the orientation of the wavefunctions of states 2 and 3 along the diagonals

of the pyramid base, while the wavefunctions used in the calculations are C4

symmetric. However, in the pumping scheme presented here, both 2 and 3 act

as upper laser levels and one is interested in the properties of total emission

from levels 2 and 3 to 1, when the individual contributions from levels 2 and

3 are added, and their polarisation is averaged.

It was assumed that the distance between quantum dot planes is Lz =

50nm and the surface density of dots was Ns = 1011 cm−2, which implies a

quantum dot density of Nt = Ns/Lz = 2 · 1016 cm−3. At this point, one can

a posteriori justify the approximation that the continuum states are weakly

occupied. One can see from Fig. 5.4 that among the bound states only the levels
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1–5 are significantly occupied. As the highest among them is 80meV below the

wetting layer continuum states (see Fig. 5.3), the electrons cannot be thermally

excited to the continuum. The excitation to the continuum due to undesired

absorption of pump photons by electrons from levels 2–5 is also negligible

since the corresponding transition matrix elements between the bound and

continuum states are very small.

In order to emphasise the advantages of a quantum dot intersublevel op-

tically pumped laser over its quantum well counterpart, these results are

compared with the theoretical results for optimised optically pumped quan-

tum well lasers with smooth potential profile [233, 234], emitting at a similar

wavelength λ ≈ 15.5µm as the device proposed here. At a pumping flux

of Φ = 1024 cm−2s−1 and a temperature T = 77K the gain of the structure

from Ref. [233] is less than 1 cm−1, while the gain of the proposed structure

is greater than 500 cm−1. An order of magnitude larger flux is required there

to obtain the same gain of g ≈ 570 cm−1. Finally, the gain vs. flux curve

in Ref. [233] and [234] reaches saturation at Φ > 1026 cm−2s−1, two orders

of magnitude larger than in this work. In an experimentally realised opti-

cally pumped quantum well intersubband laser [50] the lasing threshold flux

is Φ ≈ 4 · 1025 cm−2s−1. On the other hand, the threshold flux predicted in

this paper using the values of losses estimated in Sec. 5.3.2 is of the order

Φ ∼ 5 · 1022 cm−2s−1.

The temperature dependence of the population inversions between any of

the levels 2–5 and level 1 ∆ni1 = ni − n1 (i ∈ {2, 3, 4, 5}) at Φ = 1024 cm−2s−1

is given in Fig. 5.5. An increase of ∆n31 in the low temperature part of the

graph is a consequence of the proximity of levels 2 and 3. The distribution

of electrons between levels 2 and 3 here is in favour of the lower level 2. As

the temperature increases, electrons become more evenly distributed between

levels 2 and 3, thus increasing the population of level 3. When this trend

reaches saturation, the decrease of ∆n31 with temperature is caused by an

increase in the population of the ground state. Due to an increase in the carrier



5.3 Results 116

relaxation rates to the ground state with temperature, the pumping flux is no

longer sufficient to entirely depopulate the ground state at higher temperatures.

Therefore, the population inversions ∆n21 and ∆n31 responsible for the gain

decrease with temperature, but even at room temperature significant values of

population inversions and gain are achievable.
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Figure 5.5: Temperature dependence of population inversions ∆ni1 = ni − n1

(i ∈ {2, 3, 4, 5}) at the pumping flux Φ = 1024 cm−2s−1 for the quantum dot

shown in Fig. 5.3.

In order to show that the dot analysed is by no means an exception in

view of the possibility of achieving significant values of gain, several other dots

of different sizes have been investigated. The size, as well as the values of

gain, the pump and the emission wavelength of the dots at the pumping flux

Φ = 1024 cm−2s−1 and the temperatures of T = 77K and T = 300K are shown

in Table 5.1. All the dots considered have values of gain larger than 400 cm−1

at T = 77K, and larger than 150 cm−1 at room temperature, and are thus

obviously suitable for the active region of the laser in the proposed scheme.

The calculated gain profiles for several different quantum dots with base-

to-height ratio b/h = 2 at T = 77K and Φ = 1024 cm−2s−1 are shown in

Fig. 5.6. In larger dots, the splitting between levels 2 and 3 is larger and the
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depopulation of level 3 to level 2 due to LA phonon scattering is much smaller.

Consequently, the electrons are more evenly distributed between levels 2 and 3,

which results in a wider lineshape with two peaks and smaller values of peak

gain for the larger dots, as shown in Fig. 5.6. This effect explains the decrease

of gain as the dot size increases for larger (b ∼ 18−20nm) dots at T = 77K and

consequently a smaller value of gain (see Table 5.1) for the dot with b = 20nm

compared with other dots.
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Figure 5.6: The calculated gain profile for several different quantum dots with

base-to-height ratio b/h = 2 at the temperature T = 77K and the pumping

flux Φ = 1024 cm−2s−1.

It should also be mentioned that either significantly smaller dots or dots

with significantly larger base to height ratio than those investigated here cannot

accommodate the required number of energy levels, and are not suitable for

the proposed pumping scheme.

5.3.2 Waveguide and cavity design

The next thing to consider is the design of an appropriate waveguide, or of the

resonator cavity, for either edge or surface emission, respectively. Since all the

carriers in the proposed scheme are bound to quantum dots, the free carrier
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absorption can be neglected.

The waveguide for an edge emitting device may comprise a 5µm thick

AlAs cladding layer, a 1µm thick GaAs core layer, 40 periods of quantum

dot layers (total thickness of 2µm) and a 2µm thick GaAs cap layer. For

λ = 14.6µm this waveguide supports a single TM mode whose overlap with the

active region is ΓTM = 52% and a single TE mode whose overlap is ΓTE = 48%.

These have been calculated using the method described in Ref. [235], where

in the absence of free carrier absorption the equations reduce to a simple one

dimensional Schrödinger equation. Assuming the reflectivity R ≈ 0.29 at the

waveguide cleaved facets, the mirror losses for l ≈ 1mm long waveguide are

αM = −1/l · lnR ≈ 13 cm−1. The modal gain Γg is thus much larger than the

losses, implying that edge emission from this laser is possible.

With the gain for normally incident light, the quantum dot based structure

enables one to achieve a VCSEL (Vertical Cavity Surface Emitting Laser)

configuration, which would require an appropriate resonator. In view of rather

short lengths of the active medium (thickness of the quantum dot stack), the

resonator must have only small losses. VCSELs operating at visible or near-

infrared wavelengths perform very well and offer numerous advantages over

edge emitters, but none has been fabricated for long wavelengths (13–21 µm),

and this may be a quite challenging task. Here, a couple of possible routes of

their realisation are briefly discussed.

One possibility might be to employ a cavity comprising two Bragg mir-

rors, based on GaAs/AlAs quarter-wavelength multilayer stacks. The mirror

reflectivity is calculated from [236]

R =
n2N

1 − n2N
2

n2N
1 + n2N

2

, (5.7)

where n1 and n2 are the refractive indices of GaAs and AlAs (n1 ≈ 3.3, n2 ≈
2.9), andN is the number of bilayers. Assuming the active layer completely fills

the resonator, and satisfies the proper phase condition d = λ/(2n1) ≈ 2.2µm,

i.e. comprising 44 layers of quantum dots, with interlayer spacing of Lz =

50nm, one finds that the gain, even at room temperature, would exceed the
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equivalent mirror losses αM = −1/d · lnR of an N = 30, or even N = 20 Bragg

stack. A practical difficulty with this approach is that the total width of the

semiconductor layers is about 100 µm, which makes it somewhat impractical

for the whole structure to be grown by the rather slow mathod of MBE (the

growth time might take a few days). A way out might be to employ the much

faster Liquid Phase Epitaxy (LPE) for the lower Bragg stack, polish the surface

to prepare it for quantum dots growth, use MBE next, and finally make the

upper Bragg stack by LPE. While the Bragg mirror performance might not be

affected by the ∼0.05 µm layer width tolerance / roughness inherent to LPE

(because the λ/4 layer widths here are large), it is not quite clear whether

the growth speed-up, at the expense of increased complexity, would make this

approach practical.

The reasons for the Bragg mirrors being so thick are the large operating

wavelength, and the relatively small contrast between the GaAs and AlAs

refractive indices. While there is no cure for the former, the latter can be

enhanced by wet-oxidation of AlAs layers into Al2O3, the technique used for

Bragg mirrors in the near-infrared [237]. With the smaller refractive index of

Al2O3 one finds that just N = 7 or 8 would suffice for lasing. It is not known,

however, what losses Al2O3 formed in this way would present to the 13–21 µm

radiation.

5.4 Conclusion

In conclusion, a theoretical model of the active region of an optically pumped

intersublevel quantum dot laser is presented. The population of energy levels,

and consequently the population inversion and gain were extracted from a rate

equations model where both LO and LA phonon interaction were considered.

The waveguide and cavity for edge and surface emission are proposed as well.

The results predict laser emission in the spectral range 13− 21µm, depending

on the dots size. The predicted threshold pumping flux, required to obtain

laser action is much smaller than in quantum well based intersubband lasers,
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which is due to the longer carrier lifetimes in quantum dots.

The work presented in this Chapter was published in IEEE Journal of

Quantum Electronics [238].



Chapter 6

Absorption spectrum of quantum dot infrared

photodetectors

6.1 Introduction

Following the experimental success in the field of QDIPs, there have been sev-

eral theoretical studies of intraband absorption in QDIPs aimed at understand-

ing the detection process and assigning the experimental peaks to transitions

between certain states. In these studies, the energy levels and wavefunctions

in quantum dots, and then the absorption spectra, have been calculated us-

ing mostly the 1-band effective mass approach [81, 226, 239–241], but also the

8-band k · p method [242]. In InAs/GaAs, the most commonly used material

system, the large lattice mismatch induces a strong strain field and the small

energy gap of InAs causes significant band-mixing; effects that the 1-band

method can hardly take into account. The 8-band k · p method is therefore

obviously a more realistic model, however the simpler and faster effective mass

method is almost exclusively used [81, 226, 239–241], and the question arises

whether it may still perform well enough to be useful for modelling the intra-

band absorption spectrum.

In this Chapter, calculations of the absorption spectrum, obtained by the

two methods, will be presented for several experimentally realised QDIPs. The

aim is not to compare the methods themselves, as it is well known that k · p
performs better in a wider range of relevant energies than the effective mass
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method. The idea is rather to provide a quantitative estimate of how much

can one rely on the quantitative predictions of the widely used effective mass

approach.

In most of the QDIPs reported in the literature, the dots have the shape of a

lens [81], cone [80] or truncated cone [64,243], all belonging to the class of cylin-

drically symmetric dots. Therefore, the symmetry of the dot shape will again

be exploited in the calculation. In contrast to pyramidal quantum dots whose

symmetry group is discrete, the symmetry group of cylindrically symmetric

dots is continuous. It is therefore manifested in a simpler form via separa-

tion of variables and reduction of the problem from three dimensional to two

dimensional, as has been previously demonstrated in the literature [163, 186].

The results obtained in the calculation will be compared with experimental

results.

It should be emphasised that the absorption spectrum calculation is not

sufficient to fully understand the photocurrent spectrum. The contribution of

the carrier absorbed from the ground state to an excited state to the photocur-

rent depends on the position of the final state. Clearly, carriers absorbed to

continuum states are more likely to contribute to photocurrent, than the carri-

ers absorbed to bound states, which need additionally to be thermally excited

or to tunnel to continuum states in order to contribute to photocurrent. The

positions of the peaks of the absorption spectrum should match the experimen-

tal photocurrent peaks, however the peak intensities of the two spectra differ.

The model presented in Chapter 8 is able to treat the photocurrent spectrum,

as well.

6.2 Theoretical models of absorption

6.2.1 Parabolic quantum dot model of absorption

The simplest model which is sufficient to qualitatively understand the quan-

tum dot intraband absorption spectrum is the parabolic dot model, where
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the potential is assumed in a separable form V (r) = V1(x, y) + V2(z), where

V1(x, y) = 1
2
m∗ω2(x2 +y2) is the potential of a two dimensional harmonic oscil-

lator, and V2(z) is the potential of a quantum well with infinitely high barriers.

The solutions are of the form Ψ(r) = hnx(x)hny(y)ψnz(z), where hn(t) is the

wavefunction of a one dimensional harmonic oscillator and ψnz(z) are solutions

of Schrödinger equation with potential V2(z) (corresponding to energies εnz).

The eigenenergies are then of the form E(nx, ny, nz) = ~ω(nx + ny + 1) + εnz .

The factor ~ω corresponds to the transition energy from the ground to first

excited state and for modelling realistic quantum dots it should be set to

~ω ∼ 40− 70meV. Typical quantum dots are wide in the xy-plane (diameters

of the order of 20 nm and more) and have very small height (of the order of

3 nm) in the z−direction, therefore the effective potential well representing

the z−direction confinement is narrow (see Fig. 6.1, left). In a typical case

therefore ε1 − ε0 is of the order of at least 100 meV.

z−polarized

in−plane polarized

z−polarized

in−plane polarized

Figure 6.1: Scheme of energy levels and allowed optical transitions in a

parabolic quantum dot model with infinite potential barriers (left) and finite

potential barriers (right). Only the levels with nx + ny ≤ 2 and nz ≤ 2 are

shown.
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The optical absorption matrix elements on the transitions between states

are proportional to the matrix elements of coordinate operators, therefore by

calculating the latter, one obtains the following selection rules on the transi-

tions between states:

• ∆nx = ±1, ∆ny = 0, ∆nz = 0, for x−polarised radiation,

• ∆ny = ±1, ∆nx = 0, ∆nz = 0, for y−polarised radiation,

• ∆nx = 0, ∆ny = 0, for z−polarised radiation.

The transitions from the ground state are of primary importance for QDIPs.

From the selection rules obtained, one concludes that only the transition to a

pair of degenerate first excited states is allowed for in-plane polarised radiation,

while in the case of z−polarised radiation, only the transitions to higher excited

states are allowed, as demonstrated in Fig. 6.1. In a more realistic model

where V2(z) is the potential of a well with finite barriers (Fig. 6.1, right),

it may happen that the well can accommodate only one state, and that the

absorption of z−polarised radiation may be allowed to continuum states only.

Although the model presented considers the quantum dot bandstructure in

a very simplified manner, it is excellent for understanding the results of more

realistic models. The strict selection rules from this model are then relaxed

and strictly forbidden transitions become weakly allowed. Nevertheless, qual-

itatively, the absorption spectrum retains the same features as in this model.

6.2.2 Effective mass model of absorption

An improved approach is to use the effective mass method, with a realistic

dot shape. In order to keep the simplicity of the approach and avoid the

calculation of the three dimensional strain distribution in quantum dots, one

is attracted to use the effective mass and band offset parameters that take the

effects of strain into account on average. These parameters should in principle

be different for each quantum dot, however usually a single value for a given
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quantum dot material system is used. This approach has often been followed

in the literature [81, 226, 239–241].

Within the framework of the effective mass method the Hamiltonian is

given by

Ĥ = k̂
~

2

2m∗(r)
k̂ + V (r) + |e|F ẑ, (6.1)

where k̂i (i ∈ {1, 2, 3}) is the differential operator k̂i = −i ∂
∂xi

, F = Fez is the

electric field oriented along the z−direction, m∗(r) is the position-dependent

effective mass and V (r) is the position-dependent potential, both assumed

constant within the dot and within the matrix (and within the well in the

case of quantum dots-in-a-well structure). The modified values of the effective

mass in the dot of m∗ = 0.04m0 [160] and the conduction band offset V0 =

450meV [196] are used to take the averaged effect of strain into account.

2R t

dWL

H t

z

Figure 6.2: Schematic view of a quantum dot in an embedding cylinder of

radius Rt and height Ht. The wetting layer width is dWL.

The wavefunction expansion method (see Sec. 2.6.1) in a cylindrical basis

was used to find the eigenenergies and the corresponding wavefunctions. The
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mathematical details omitted in Sec. 2.6.1 are given here. The method is based

on embedding the dot in a cylinder of radius Rt and height Ht (see Fig. 6.2)

and assuming the wavefunction is a linear combination of the expansion basis

functions

ψ(r) =
∑

nl

Anlbnml(r, z, ϕ), (6.2)

with the coefficients Anl (n ∈ {1, . . . , nmax} and l ∈ {−lmax, . . . , lmax}) to be

determined. The basis functions bnml are given by

bnml(r, z, ϕ) = fnm(r)gl(z)Φm(ϕ), (6.3)

where

fnm(r) =

√
2

Rt

Jm(knmr)
∣

∣J|m|+1(knmRt)
∣

∣

,

gl(z) =
1√
Ht

e
i 2π

Ht
lz
, (6.4)

Φm(ϕ) =
1√
2π
eimϕ,

where l and m are integers and n is a positive integer. Jm is a Bessel function

of order m and knmRt is its n-th zero. Due to the cylindrical symmetry of the

dots, the Hamiltonian commutes with the z−component of the orbital angular

momentum, whose eigenvalue m is then a good quantum number and therefore

in (6.2) the summation needs to be performed over n and l only.

After substituting the expansion (6.2) into the Hamiltonian eigenvalue

problem one arrives at an eigenvalue problem of the Hamiltonian matrix

∑

n′l′

Hnml,n′ml′An′l′ = EAnl, (6.5)

where

Hnml,n′m′l′ =

∫

V

b∗nmlĤbn′m′l′ rdr dz dϕ (6.6)

and the integration is performed over the volume of the embedding cylinder.

The one-band Hamiltonian contains only terms of the form of T1, T2 and T3

(see Appendix B) and their corresponding Hamiltonian matrix elements can

be evaluated as shown in Appendix B.
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The matrix element for absorption of electromagnetic radiation (Eq. (2.69))

is equal to

Mε
if =

∑

nl

∑

n′l′

Ai∗
nlA

f
n′l′G(nl, n′l′), (6.7)

where the superscripts i and f refer to the initial and final state and the

perturbation Hamiltonian matrix elements

G(nl, n′l′) =
1

A

∫

V

b∗nmlĤ
′bn′ml′ r dr dz dϕ (6.8)

are of the form of T5 (see Appendix B) and can be therefore calculated in a

similar manner. From the last two expressions, the selection rules can easily

be established: ∆m = 0 for absorption of z−polarised radiation and |∆m| = 1

for in-plane polarised radiation.

6.2.3 8-band k · p model of absorption

The 8-band k · p Hamiltonian is a sum of the kinetic part of the Hamiltonian

Ĥk (Eq. (2.20)), the strain part Ĥs (Eq. (2.38)), and the diagonal term |e|Fz
due to a constant electric field F directed along the z−axis. The piezoelectric

effect was neglected here, as it has been shown that it is small in cylindrical

quantum dots lacking sharp features [244].

The symmetry of the kinetic part of the 8-band k · p Hamiltonian Ĥk ap-

plied to cylindrically symmetric quantum dots is equal to the intersection of

the symmetry of the geometrical shape of the dot and the symmetry of the

8-band k · p Hamiltonian applied to the zincblende crystal lattice. Since the

crystal symmetry is lower than cylindrical it turns out that the system consid-

ered is only C4 symmetric. However, the deviations of the Hamiltonian from

the cylindrically symmetric form are only slight and one often employs the ax-

ial approximation [155, 163] (where one explicitly takes γ2 = γ3 = 1
2
(γ2 + γ3)

in and only in the R-terms in Eq. (2.20)) in which Ĥk becomes exactly axi-

ally symmetric. This is highly desirable as such an approximation effectively

reduces the problem from three dimensional to two dimensional and therefore

significantly reduces the computational cost, without influencing the accuracy.
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Such an approximation is therefore used in this work, too. Furthermore, the

strain part Ĥs also slightly deviates from the cylindrically symmetric form and

it would also have to be modified to be able to exploit the cylindrical symme-

try and reduce the computational complexity. A slightly different approach is

used here. The wavefunctions are assumed in the form they would have if the

Hamiltonian was exactly cylindrically symmetric, and therefore its parts that

deviate from symmetry give a zero contribution in the Hamiltonian matrix

elements given by Eq. (6.11).

Since the 8-band model inherently takes into account the spin-orbit interac-

tion, the good quantum number in this case is the quantum number mf (where

mf is half integer) of the z−component of the total angular momentum [163]

(rather than just the orbital angular momentum) given as a sum of the orbital

angular momentum of the envelope function and total angular momentum of

the Bloch function. The envelope functions of the quantum state having mf

can then be assumed in the form

ψi(r) =
∑

nl

Ainlbnm(i)l(r, z, ϕ), (6.9)

where m(i) = mf −mj(i) and mj(i) is the eigenvalue of the z-component of

the total angular momentum of the Bloch function |i〉. After inserting the

envelope function expansion of (6.9) into the Hamiltonian eigenvalue problem

one arrives at
∑

i′n′l′

Hinm(i)l,i′n′m(i′)l′Ai′n′l′ = EAinl, (6.10)

where

Hinml,i′n′m′l′ =

∫

V

b∗nmlĤii′bn′m′l′ r dr dz dϕ. (6.11)

The 8-band Hamiltonian contains terms of the form T1–T10 (see Appendix B),

whose corresponding Hamiltonian matrix elements are given in Appendix B.

The strain was modelled using the continuum mechanical model and the

strain distribution was found using the finite element method in a manner that

was described in Sec. 2.6.2, where the size of the system of linear equations was

reduced by a factor of approximately 8 by noting that only the displacements
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in, for example, the region 0 ≤ y ≤ x can be considered, as the rest of them

can then be deduced using symmetry properties of the system. A nonuniform

mesh for the finite element calculation was chosen to be more dense in the

region around the dot.

The absorption matrix element is in this case given by

Mε
if =

∑

inl

∑

i′n′l′

Ai∗
inlA

f
i′n′l′G(inl, i′n′l′), (6.12)

where the superscripts i and f refer to the initial and final state and the

perturbation Hamiltonian matrix elements

G(inl, i′n′l′) =
1

A

∫

V

d3rb∗nm(i)lĤ
′bn′m(i′)l′ (6.13)

are of one of the forms T1, T4 and T5 (see Appendix B) and can be therefore

calculated in a similar manner. After explicit calculation one can straight-

forwardly derive the selection rules: ∆mf = 0 for z−polarised radiation and

|∆mf | = 1 for in-plane polarised radiation.

6.3 Results

The two methods described in Sec. 6.2 have been applied to calculate the

optical absorption matrix elements and the intraband absorption spectra for

quantum dots of several different shapes and sizes reported for experimentally

realised QDIPs. In typical QDIP operating conditions only the ground state

is significantly occupied as the occupation of the excited states would lead to

a much larger dark current. The intraband absorption spectrum is therefore

calculated by adding the contributions from transitions from the ground state

to each of the excited states (bound or continuum). The material parameters in

the calculation were taken from Ref. [3] and are summarised in Appendix C.

The standard deviation of the Gaussian lineshape was taken to be equal to

10% of the transition energy in the case of the transitions to bound states

and 20% in the case of the transitions to continuum states. These are the

typical values observed in the experiments [64, 80, 81]. In further discussion
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the states obtained within the framework of the 8-band model will be labelled

as nemf
, which represents the n−th electron state having the quantum number

of the z−component of total angular momentum mf (note that for each state

nemf
, there is another state ne−mf

with the same energy), and in a similar

manner the state obtained by the effective mass method nem represents the

n−th electron state having the quantum number of the z−component of orbital

angular momentum m (note that for each state nem there also is an ne−m state

of the same energy). The dimensions of the embedding cylinder taken in all

calculations are Rt = 40nm, Ht = 50nm, while the number of basis functions

is determined from nmax = 10 and lmax = 20. It has been assumed in all

calculations that a 0.5 nm wide wetting layer is present beneath each dot.

Since the choice of the embedding cylinder dimensions is arbitrary one

has to check whether an increase in its dimensions leads to changes in the

calculated spectrum. This is especially important when the transitions to

continuum states dominate the spectral response, as the continuum states are

artificially discretised by embedding the quantum dot in a cylinder of finite size.

Furthermore, it also has to be checked whether the number of basis functions

taken in the calculation is sufficiently large. Such tests were performed by

increasing each of the parameters Rt, Ht, nmax and lmax, while keeping the rest

of them constant. No observable changes in the absorption spectra occurred

during these tests.

It has also been checked that for all structures considered in this Chapter

the changes in absorption spectra with electric field are only slight and therefore

the spectrum obtained at zero bias can be considered as representative of the

spectrum for any value of the field. More specifically, in the range of fields

typically used in QDIPs −50kV/cm < F < 50kV/cm, the positions of the

absorption peaks change by less than 5% for all the structures considered

(see Fig. 6.3 as an example). Clearly, these peaks cannot be observed in the

responsivity spectra at zero bias, but only when the bias is sufficient that the

absorbed carriers can form a photocurrent.
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Figure 6.3: The intraband optical absorption spectrum for a quantum dot of

conical shape with the diameter D = 25nm and height h = 7nm for the case

of z−polarised radiation. The corresponding spectrum for in-plane polarised

radiation is shown in the inset. The absorption spectrum of z−polarised radi-

ation calculated using the 8-band model at the fields of F = −50kV/cm and

F = 50kV/cm is shown as well.

Firstly, the absorption spectrum obtained by the two methods for a quan-

tum dot of conical shape with the diameter D = 25nm and height h = 7nm, is

presented. The dimensions chosen are those which are approximately reported

for quantum dots in a QDIP structure in Ref. [80] (the structure labelled as

S-GaAs therein) based on the combination of atomic force microscopy and

cross-sectional transmission electron microscopy measurements [80, 245]. The

quantum dot is assumed to be of pure InAs as the growth conditions reported

in Ref. [80] are such that intermixing between InAs and GaAs is minimised.

The optical absorption spectrum in the case of z−polarised radiation is shown

in Fig. 6.3. The two peaks in the spectrum originate from the transitions be-

tween bound states 1e1/2 → 3e1/2 and 1e1/2 → 5e1/2 (k·p model based labelling

of states), i.e. 1e0 → 2e0 and 1e0 → 3e0 (effective mass model based labelling
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of states). The states 2e1/2 and 4e1/2 have opposite values of spin from 1e1/2

and transitions to them are therefore forbidden due to spin selection rules. The

transitions to continuum states give a much smaller contribution to the spec-

trum. One can see from Fig. 6.3 that the results obtained by the two methods

are qualitatively similar, however there are significant quantitative differences.

The effective mass method gives larger values of transition energies and pre-

dicts stronger absorption. Since both the one and eight band method predict

approximately the same position of the ground state with respect to the GaAs

continuum (305 meV in one band vs. 295 meV in k · p), one can ascribe these

differences to non-parabolicity effects that are not properly taken into account

within the simple effective mass approach. The one band model therefore un-

derestimates the effective mass of the excited states which leads both to larger

intersublevel energies and larger absorption matrix elements. The correspond-

ing absorption spectrum for in-plane polarised incident radiation is presented

in the inset of Fig. 6.3. There is a single peak in the spectrum which is due to

the transition from the ground state 1e±1/2 to a pair of nearly degenerate first

excited states 2e∓1/2, 1e±3/2. As in the case of z−polarised radiation, the peak

position energy obtained by one band model is larger, which can be attributed

to the same cause. The matrix elements of the dominant transition calculated

within the effective mass method are larger. However, the difference between

the transition energies (on the relative scale) is more prominent than in the

case of z−polarised radiation, which therefore leads to only a slightly larger

value of the peak absorption cross section within the effective mass model.

Next, the theoretical results obtained by the two methods are compared

with the experimental results from Ref. [80] (Fig. 7a therein). One should have

in mind that due to uncertainty in the determination of the dot size, as well

as due to possible effects of In segregation and interdiffusion, any comparison

between theoretical and experimental results should be taken with caution.

The experimental intraband photocurrent spectrum exhibits the main peak at

175 meV and a much smaller peak at 115 meV, in excellent agreement with the
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results obtained for z−polarised incident radiation within the 8-band model

where the corresponding peaks occur at 179 meV and 114 meV, respectively.

As already mentioned, the effective mass method gives peak positions at larger

energies, which is only in qualitative agreement with the experimental results.
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Figure 6.4: The intraband optical absorption spectrum for a quantum dot in

the shape of a truncated cone with the diameter of D = 15nm, height h = 7nm

and base angle of α = 600, with In0.15Ga0.85As layers of thickness d = 6nm

positioned both under and above the dot, surrounded by GaAs barriers, in the

case of z−polarised radiation. The corresponding spectrum for the in-plane

polarised radiation is shown in the inset.

The intraband spectrum for the quantum dot in the shape of a truncated

cone with the diameter of D = 15nm, height h = 7nm and base angle of

α = 600 with In0.15Ga0.85As layers of thickness d = 6nm positioned both under

and above the dot and surrounded by GaAs barriers, is analysed next. The

dimensions were chosen to approximately match the dimensions of the quantum

dots-in-a-well structure studied in Ref. [64] (the structure labelled as F therein).

The optical absorption spectrum for z−polarised radiation is given in Fig. 6.4,

while the inset shows the spectrum for the in-plane polarised radiation. In
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this case, there is a single peak for z−polarised radiation originating from

1e1/2 → 3e1/2 (1e0 → 2e0) transition (2e1/2 has opposite value of spin to 1e1/2),

while the same states as in the previous case are responsible for absorption of

in-plane polarised radiation. Similarly to the previous structure considered, the

effective mass approach predicts larger peak absorption energies and stronger

absorption, which may be attributed to the same effect, as the positions of the

ground state with respect to the continuum, calculated by the two methods,

are again almost the same (270 meV in eight band vs. 280 meV in one band

model). The experimental results in Ref. [64] give the peak spectral response

wavelength at 9.5 µm (Fig. 2 therein, curve labelled as F), the k · p method

predicts the value of 8.6 µm, while the effective mass method gives 6.5 µm.

The discrepancy between the results obtained by the k · p method and the

experiment is most likely due to the effects of intermixing of InAs and GaAs

during growth at elevated temperatures.
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Figure 6.5: The intraband optical absorption spectrum for quantum dots

in the shape of a lens with the diameter of D = 20nm, height h = 3nm

for z−polarised radiation. The corresponding spectrum for in-plane polarised

radiation is shown in the inset.
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Finally, a lens-shaped quantum dot is studied, with a diameter D = 20nm

and a height h = 3nm. Quantum dots of similar shape and size were reported

in several experiments [60,71,79,81] and this is therefore one of the most typi-

cal shapes of InAs/GaAs self-assembled quantum dots. The intraband optical

absorption spectrum calculated by the two methods is shown in Fig. 6.5. The

effective mass calculation was performed with two different values of the con-

duction band offset V0 = 450meV and V0 = 500meV, because the calculated

hydrostatic strain profile suggested that a larger value of V0 than the con-

ventional one (of 450 meV) should be used. Furthermore, the position of the

ground state with respect to the onset of the GaAs continuum, calculated using

the value V0 = 500meV is approximately the same as in the case of the k · p
method (approximately 230 meV), in contrast to the smaller value of 190 meV

when the conventional value of V0 is used.

The dominant line in the absorption spectrum for in-plane polarised in-

cident radiation stems again from the transition to a pair of (nearly) degen-

erate excited states. The position of the peak, at 66 meV, calculated within

the k · p framework is within the range of experimentally observed values

55−85 meV [60, 81], while the effective mass method gives somewhat larger

values. On the other hand, the main peak in the spectrum for z−polarised

radiation originates from transitions to resonance states in the continuum. In

this case, the absorption spectrum calculated by the two methods gives almost

the same peak position of 280 meV, when the same value of the conduction

band offset is chosen as in the previous cases. The overestimation of intraband

energies, due to the neglect of non-parabolicity effects, exists in the effective

mass method in this case too, but it is compensated by the underestimation

of the ground state position with respect to the continuum. When a larger

value of the conduction band offset is taken, which puts the ground states

at the same position, the peak calculated within the effective mass method

appears at a larger energy. On the other hand, the experimental results in

Refs. [60, 71, 79, 81] give the peaks in the range 150–300 meV.
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The results obtained suggest that the in-plane polarised radiation causes

non-negligible transitions only between the ground and first excited state, these

being located in the region 40–80 meV in the far-infrared. On the other hand,

z−polarised radiation causes the transition in the ∼ 100 − 300meV region in

the mid-infrared. The best way to understand the origin of such behaviour

is via a simplified model presented in Sec. 6.2.1. Such behaviour can be al-

tered only if the dot dimension in the z−direction becomes comparable to the

in-plane dimensions. These results are in agreement with previous theoreti-

cal calculations that addressed the issue of polarisation dependence of intra-

band absorption [81,226,246]. Recent experimental studies [71,72,81,247,248]

have also identified the mid-infrared response to originate from z-polarised

radiation, although some earlier studies suggested it is nearly polarisation in-

dependent [249]. On the other hand, the mid-infrared response has been ob-

served on many occasions in experiments performed in normal-incidence geom-

etry [59,63,64,69,77–80,250]. This would contradict the results previously men-

tioned if one assumed ideally in-plane polarised radiation in these experiments.

However, several effects (such as off-normal axis experimental missalignment,

light scattering, etc.) can cause a certain degree of z−polarisation in the ra-

diation interacting with the dots, and cause the response in the mid-infrared

(∼ 100 − 300meV). For example, the polarisation dependent measurements

reported in Ref. [81] have assigned the mid-infrared response measured in

normal-incidence geometry in Ref. [79] to z−polarised radiation. It has also

been emphasised in Ref. [71] that the mid-infrared response results reported in

the literature in the normal-incidence geometry are indeed due to z−polarised

radiation.

In view of the fact that one of the expected advantages of QDIPs over

QWIPs is the ability to detect radiation of any polarisation, these results are

somewhat discouraging. The absorption of z−polarised radiation causing tran-

sition taking place to some higher excited state (possibly even in the contin-

uum) can certainly be observed in photocurrent spectrum. However, in-plane
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polarised radiation causing transition to well bound first excited state(s) can

hardly cause a strong photocurrent response.

6.4 Conclusion

A simulation of several typical InAs/GaAs QDIP structures reported in the

literature and a systematic comparison of the two methods used to calculate the

intraband absorption has been given. The results obtained by the two methods

are in qualitative agreement – the transition from the ground state to the pair of

first excited states is responsible for absorption of in-plane polarised radiation,

while the absorption of z−polarised radiation is due to the transition to a

higher excited bound state in the case of larger dots and due to the transition

to resonance states in the continuum in the case of small and flat dots. On

the other hand, quantitatively, the effective mass method overestimates both

the transition energies and the optical absorption cross sections. Therefore,

while the simple and fast effective mass method can be quite useful for general

understanding of intraband absorption and assignment of the experimental

peaks to different transitions, the k ·p method is more appropriate for a study

aiming to provide quantitative predictions.

The work presented in this Chapter was published in Semiconductor Science

and Technology [251].



Chapter 7

Quantum dots-in-a-well infrared

photodetectors

7.1 The effect of well width

The difficulties in controlling the size and shape of self-assembled quantum

dots make it very hard to engineer these devices and produce a QDIP for a

specified, user-defined detection wavelength. The so called quantum dots-in-

a-well (DWELL) infrared photodetectors [64, 77, 78], where an InAs quantum

dot layer is embedded in an In0.15Ga0.85As quantum well (see Fig. 7.1), have

a special place among different types of QDIPs. They have been introduced

with the motivation to tailor the operating wavelength by changing the well

width, which would therefore lead to a recipe for producing a QDIP with the

desired spectral response. Such expectations were recently confirmed experi-

mentally [64,78] where tailoring of 2–3 µm in the long wavelength atmospheric

window (8–12 µm) has been achieved by varying the well width by 3–5 nm.

Current thought, based on experimental results, is therefore that it is the

modification of the energy levels and the corresponding wavefunctions, due to

the change of well width, that shifts the spectral response peak. A theoretical

study quantifying this effect would therefore be very useful as it might provide

a recipe for the well width necessary to obtain the desired detection wave-

length. However, it has been pointed out in Ref. [64, 78] that unintentional

changes in dot size may also shift the operating wavelength. Furthermore, one
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Figure 7.1: Scheme of an InAs quantum dot embedded in an In0.15Ga0.85As

quantum well.

cannot exclude the possibility of change in the dot composition due to the ef-

fects of interdiffusion and segregation [252]. Uncertainties in the experimental

determination of the dot size and composition make it very difficult to estab-

lish which of the above effects is dominant - the effect of the intentional change

of well width or the effect of unintentional changes in dot size or composition.

Clearly, it would be highly desirable that the effect of intentional control of well

width prevails. In this section, a theoretical study is performed quantifying the

above effects with the aim of understanding the origin of the experimentally

observed wavelength tailoring in DWELLs.

The calculation of the optical absorption spectrum was performed within

the framework of the 8-band k · p method as described in Chapter 6. The

inhomogeneity of the quantum dot ensemble was taken into account assuming

a Gaussian lineshape on each of the transitions with a standard deviation

equal to 10% of the transition energy, which is approximately equal to the

experimental values for the dominant transitions in Refs. [64, 78].

The optical absorption spectrum was first calculated for a quantum dot of

the shape of a truncated cone with a diameter of 15 nm, height 7 nm, base

angle 600, and a 6 nm wide In0.15Ga0.85As layer positioned above the dot layer,

which are approximately the dimensions of the DWELL structures reported in
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Figure 7.2: Absorption spectrum of a DWELL structure with a quantum dot

of the shape of a truncated cone with a diameter of 15 nm, height 7 nm, base

angle 600, a 6 nm wide In0.15Ga0.85As layer positioned above the dot layer and

1 nm (full line) or 6 nm (dashed line) wide layer under the dot. The inset:

Effective potential profile along the z-axis and the first three |mf | = 1/2 energy

levels for the same structure.

Ref. [64]. The width of the In0.15Ga0.85As layer under the dot was varied from

1 nm to 6 nm, as in the experiment [64]. In all calculations a 0.5 nm wide

wetting layer was also assumed. The results of these calculations are shown in

Fig. 7.2. The peak of the spectrum is in both cases positioned around 8.5 µm

with a relative difference between the positions of the two peaks of only 2%,

while in the experiment the spectral response peak wavelength is red-shifted

from 7 µm to 9.5 µm (i.e. by about 30%) when the layer width is increased in

the above interval (Fig. 2 in Ref. [64]). This gives the first indication that the

shift in the operating wavelength cannot be explained in terms of the effect of

the well width. The transition from the ground state (having |mf | = 1/2) to

the third |mf | = 1/2 state dominates the spectrum. Both states are bound

(270 meV and 125 meV below the continuum respectively), and the influence

of the well width on their positions and separation is very weak. It is generally
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expected that the effect of the well width should be more pronounced when

the level to which the absorption is maximal has its energy within the range of

the quantum well confinement potential (roughly within 15% of the conduction

band offset below the continuum in the case of In0.15Ga0.85As well). The same

type of calculation was therefore performed for quantum dots of different height

and In composition in the dot, in order to investigate the effect for different

positions of that level. These calculations also allow quantification of the

sensitivity of the peak absorption wavelength on the changes in dot size or

composition.
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Figure 7.3: The operating wavelength of a DWELL structure from Fig. 7.2

for different quantum dot heights, for the case of 1 nm thick bottom layer (full

line) and 6 nm thick bottom layer (dashed line). The right inset: Effective

potential profile along the z-axis, the ground state and the state to which

absorption is maximal when the dot height is h=3.5 nm. The left inset: The

wavefunctions of the two states in the case of a 1 nm bottom layer.

The change in the detector operating wavelength when the height of the

quantum dot is varied from 3 nm to 9 nm is shown in Fig. 7.3. One can see

that throughout the whole investigated interval of dot heights the change in

the peak absorption wavelength is less than 3% when the bottom layer width
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is changed from 1 nm to 6 nm. For small values of dot height (h . 4nm),

the absorption to the state which is within the range of the quantum well

confinement potential is dominant. Nevertheless, as seen from the right inset

in Fig. 7.3, the influence of the well on the position of this state is weak. When

the bottom layer width is 1 nm the wavefunction of the state is largely confined

to the dot volume, which provides a large overlap with the ground state and

strong absorption. An increase in the bottom layer width induces a change

proportional to the probability that the wavefunction is located in the interval

from 1 to 6 nm beneath the wetting layer, and since this is small (see the left

inset in Fig. 7.3), the change in the state energy is small, too. The change of

well width has a much stronger influence on states that are less confined to

the dot. However, such states have a poor overlap with the ground state and

do not significantly contribute to the absorption. Consequently, the influence

of the well width on the absorption spectrum is weak.

The dependence of the detection wavelength on the In content in the dot

is given in Fig. 7.4. For smaller values of In content in the dot (for example

x = 0.65) the absorption in the case of a 1 nm bottom layer is maximal towards

a resonant state in the continuum (see the right inset in Fig. 7.4), which is less

confined to the dot than the corresponding state when the In content is larger.

The increase in well width then has a larger impact on that state, shifting it

down and correspondingly red-shifting the absorption peak (see the left inset

in Fig. 7.4), and therefore the difference between the operating wavelengths in

the case of a 1 and a 6 nm bottom layer increases as the In molar content in

the dot decreases. However, even in the extreme case of x = 0.5 the relative

difference between the operating wavelengths is just 10%, which is well below

the experimentally observed value of 30%.

From the results obtained, a conclusion can be drawn that tailoring of

the detection wavelength in DWELL structures cannot be explained if one

assumes that the dot remains of the same size and with the same composition.

In fact, the pure effect of well width plays only a minor role in shifting the
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Figure 7.4: Dependence of the operating wavelength λ of a DWELL structure

from Fig. 7.2 on In composition in the dot x. The absorption spectrum when

the In molar content in the dot is x = 0.65 is given in the left inset, while the

right inset shows the effective potential profile along the z-axis, the ground

state and the state to which the absorption is maximal. The results are given

for the case of 1 nm (full line) and 6 nm thick bottom layer (dashed line).

detection peaks. The observed changes in the operating wavelength can then

be explained only in terms of unintentional modification of the quantum dot

size because of changed growth conditions or composition due to the effects

of interdiffusion or segregation. From Fig. 7.4 one can see that in the range

of In content around x = 1 the changes in wavelength with the composition

are only slight and that only extremely large changes in x, which are highly

unlikely in the experiment, would be sufficient to explain the experimental

shifts. On the other hand, variations in the size of the dot can induce more

pronounced changes in the position of the peak of the spectrum, as is evident

from Fig. 7.3. For example, a slight decrease in the size of the dots from 5 nm

to 4 nm changes the wavelength by 26%, which is the value comparable to

the experimentally observed ones. Bearing in mind that the shifts originating

from the pure effect of well width and the changes in dot composition are
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significantly smaller, the dot size variations can be safely identified as the

main source of wavelength tailoring. All the calculations reported have also

been performed for a fixed value of bottom layer width, while varying the top

layer from 1 nm to 6 nm. The magnitude of the observed shifts was similar,

indicating that the conclusions drawn are valid in this case too.

In conclusion, theoretical calculations of the absorption spectrum of

DWELL structures have been performed for a range of dot sizes, composi-

tions and the embedding well widths. From these calculations it has been

shown that experimentally observed detection wavelength shifts cannot be ex-

plained as an effect of intentional changing the well width, and that they rather

originate from the unintentional changes in quantum dot dimensions.

The work presented in this section was published in Applied Physics Let-

ters [253].

7.2 Intraband Stark effect in DWELL structures

The effect of pre-growth tailoring of QDIP detection wavelength was investi-

gated in Sec. 7.1. It would be certainly more attractive if one were able to

tune the detection wavelength of a particular structure, by means of external

fields, for example. In principle both static electric and magnetic fields could

be used. However, as shown in Chapter 3, large magnetic fields (of the order

of at least ∼10T) are necessary to provide a significant effect on the quantum

dot energy levels, which is an approach which is certainly not attractive from

the commercial point of view. On the other hand, external bias is already

necessary for QDIP operation, and therefore it would be highly advantageous

if the Stark shift created by the electric field could be used at the same time

for control of the operating wavelength.

It has indeed been shown that the spectral response of a QDIP may be

voltage dependent [64,254,255]. However, the voltage controllability of QDIP

response reported in Refs. [64, 254, 255] stems from the changes in relative re-

sponse of different peaks in the photocurrent spectrum with applied bias. It
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is not a consequence of the Stark effect as individual peaks remain at approx-

imately the same position. The Stark shift on interband transition in QDs

has been reported in Ref. [256]. Relatively large fields of ∼300 kV/cm were

necessary to cause a shift of ∼10 meV. On the other hand, in QDIP structures

an order of magnitude smaller fields are typically used which makes it difficult

to observe the intraband Stark shift.

As already emphasised in Chapter 6, self-assembled quantum dots typi-

cally have much larger dimensions in the lateral direction than in the growth

direction. As a consequence, mid-infrared intraband absorption transitions

involving higher energy states (which contribute to the photoresponse) are

strongest for radiation polarised in the z−direction. Transitions take place

between the ground state and excited states which arise due to confinement

predominantly in the growth direction. A significant Stark effect for these

transitions is possible if there is a large z-component of the dipole moment,

i.e. if there is a difference of the z-coordinate of the centroids of the two states.

As quantum dot heights are small (a few nanometers), this difference becomes

small as well. In order to increase the difference between the centroids of

the two states, one can displace the excited state by embedding the dot in a

well. In order for this effect to be efficient the excited state should be above

the quantum well confinement potential. This makes dots-in-a-well structures

more suitable for observing the Stark shift than conventional quantum dot

structures. The transition then takes place between the ground state of the

dot, and an excited state which is a mixed quantum dot - quantum well state,

which will for simplicity be called quantum well state.

In this section, the results of the modelling of the DWELL structures where

the intraband Stark effect was observed, will be reported. The structures were

grown and characterised at the University of Sheffield. The DWELL structures

comprised InAs dots placed within an 8 nm In0.15Ga0.85As quantum well, with

1 nm of the well below the dots and 7 nm above. The dots in the structure S1

were obtained by depositing 2.9 monolayers (MLs) of InAs, where in the case
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of S2 2.2 MLs were deposited. The experimental dependence of the transition

energy on applied bias is given in Fig. 7.5. The absorption does not contribute

significantly to the photocurrent at zero and low (<0.4V) negative or positive

biases because of the low electron escape probability from the quantum well

state. Shifts of 15% energy are measured between +1V and −1V for the

2.9 ML sample.
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Figure 7.5: The transition energy dependence on applied bias: for 2.9 ML

sample – experimental (open squares) and calculated (dashed line), and for

2.2 ML sample – experimental (open circles) and calculated (solid line).

The calculation was performed assuming dots of truncated conical shape

with base diameter D, height if the dot were not truncated H, actual height

h, and indium content in the dot x. In the simulations, these parameters

were varied in the range where the calculated absorption spectrum exhibits a

maximum in the same spectral region as the experimental spectrum: h was

varied in the interval 4-7 nm; x from 0.6 to 0.75, D in the range 15-22 nm,

and H was set to 10 nm. The best fit for the dependence of the transition

energy on bias was obtained when h = 4nm, x = 0.7, D = 17nm, as shown

in Fig. 7.5 (dashed line). In order to verify the importance of the presence

of the embedding well for the observation of the Stark shift, an additional
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calculation was performed for the same structure but without the embedding

well. The calculated Stark shift was only 6% in this case, compared to 15% in

the previous case.

It is known that for the transition between two truly discrete states one

obtains the quadratic dependence of the transition energy on the electric field

(including the terms up to second order of perturbation theory). However, in

this case the transition takes place between a truly discrete bound state and a

quasi-continuum density of states. The maximum of the absorption spectrum is

then determined by complex changes in the density of states and does not follow

a simple quadratic trend, as shown in Fig. 7.5. The continuum density of states

is represented by a discrete set of states which is a consequence of embedding

the dot in a cylinder of finite size. It has been checked that the embedding

cylinder is large enough so that the calculated absorption spectrum and the

position of its maximum have converged. In the calculation which involves

discretised continuum states the position of the maximum is determined by

the interplay of the bias dependences of energies of several states, as well as by

the relative contribution to the absorption spectrum of each of these states.

In Fig. 7.6 the wavefunctions of the ground and the excited state to which

the absorption is maximal when the bias is equal to −0.6V and +0.6V, as

well as the on-axis potential profile with the energies of the states that mostly

contribute to the absorption, are shown. One can see from the wavefunctions

shown in Fig. 7.6 that the ground state wavefunction is weakly influenced by

the electric field, while the influence of the electric field on the wavefunction of

higher energy quasi-bound states which mostly contribute to the absorption is

much stronger.

The 2.2 ML sample exhibits a similar photoresponse as 2.9 ML sample with

the transition occurring at a lower energy due to the shallower confinement

potential and a smaller bias dependent shift of the photoresponse (∼11%).

This indicates that S2 has a smaller separation between the centroids of the

quantum dot ground and quantum well state. Detailed information about the
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Figure 7.6: The calculated potential profile along the z-axis (top) and contour

plots of wavefunction moduli of the ground state (bottom) and the state to

which absorption is maximal (middle) in the case of dot dimensions that best

fit the 2.9 ML sample for −0.6V (left) and +0.6V (right).

quantum dot structure would be necessary to introduce a non-uniform indium

profile in the simulation, however an agreement with experimental results can

be obtained using a larger QD height (h = 6nm). The dots are then placed

in the middle part of the well and the asymmetry of the system is smaller.

The best fit to the experimental results (Fig. 7.5, solid line) is obtained when

h = 6nm, x = 0.66, D = 17nm. Therefore the most probable explanation for

the observed differences in the photoresponse of the two samples is an increased

In content in the dot for S1, leading to an increased transition energy and a

decrease of the dot height for S1, leading to an increased Stark shift. Whilst

additional structural investigations would be necessary to unambiguously iden-

tify the origin of the increased Stark shift, the results clearly show that the
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bias dependent spectral shift of the photoresponse is sensitive to quantum dot

growth parameters and may be controlled by varying the asymmetry of the

DWELL system.

In conclusion, it has been shown that DWELL structures are more

favourable in terms of achieving significant values of Stark shift, in compari-

son to conventional quantum dot structures. It should however be emphasised

that not every DWELL structure is suitable for observing the Stark shift. Nu-

merous DWELL structures used as trial structures in fitting the experimental

results, where the dominant optical transition takes place to a bound state,

showed only a weak Stark shift, being no larger than the Stark shift of the

same structure without the embedding well.



Chapter 8

Transport in quantum dot infrared

photodetectors

8.1 Introduction

The realisations of the variety of different QDIP structures have initiated the

development of several theoretical approaches with different levels of complex-

ity to understand the performance of QDIPs. As the detection is based on the

process of absorption of incident radiation, a significant amount of theoreti-

cal work was focused on calculation of the intraband optical matrix elements

within the one band effective mass approach [81, 226, 239–241] or the 8-band

k · p method [242, 251, 253]. Some theoretical efforts have also been made

to model the current under dark or light conditions [76, 257–263]. In these

models, the current is deduced from the analysis of the processes of carrier

capture, thermal escape and photoexcitation. However, the rates of these

processes are calculated using parameters that were either taken phenomeno-

logically [257–259], deduced from experiment or obtained by fitting [76]. None

of these models aims to predict the dependence of relevant QDIP output pa-

rameters, such as responsivity or dark current on the choice of material system

used or on the quantum dot size and composition, which it is highly desirable

to know in order to optimise the QDIP characteristics. Recently, the effects of

interdot coupling [264] and Pauli correlations [265] in QDIPs were also stud-

ied theoretically. Deeper understanding of the underlying QDIP physics can
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also be achieved by obtaining information about carrier distribution among

various quantum dot and continuum energy levels, which is hard to access

experimentally.

In this Chapter, a theoretical model of vertical electron transport in quan-

tum dot infrared photodetectors is therefore presented. The model starts from

the energy level and wavefunctions calculation, followed by evaluation of intra-

and inter-period transition rates, from which a system of nonlinear rate equa-

tions is formed. From its steady state solution in dark or light conditions,

the populations of the energy levels and consequently the dark current and

responsivity are calculated. The details of the model are presented in Sec. 8.2,

while the results obtained by its application to one of the reported InAs/GaAs

QDIP structures [80] are given in Sec. 8.3.

8.2 Theoretical model

QDIPs consist of periodically arranged layers of quantum dots (see Fig. 8.1a),

with the period typically equal to Lz = 50nm chosen to minimise the dark

current channel via transport between bound states of quantum dots in neigh-

bouring periods. At such a value of the quantum dot period, the quantum dots

are not vertically aligned, and the whole structure is not strictly periodic in the

z−direction. Nevertheless, as a reasonably good approximation, the vertical

arrangement and the periodicity of the structure will be assumed in the model

as shown in Fig. 8.1b. The processes that determine the dark and light current

are the excitation of carriers from the bound quantum dot states to resonant

continuum states mainly localised in the quantum dot region, their subsequent

transport via the continuum states to the next period, and the possible capture

of carriers from the continuum by quantum dots, but not the direct transport

between quantum dot bound states of neighbouring periods. Therefore, it is

not expected that the transport properties of QDIPs are dependent on the

details of the quantum dot arrangement, hence the simplest possible periodic

arrangement is chosen in the model.
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In order to prevent high values of dark current, quantum dots used in

QDIPs are typically either doped at a relatively low level to populate just the

ground state or undoped. It is therefore reasonable to assume a uniform electric

field throughout the structure as the formation of electric field domains [266,

267] is expected to occur only at high doping densities.
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Figure 8.1: Schematic view of three QDIP periods: a) a realistic structure, b)

the structure used in the modelling. The period of the structure in the growth

direction z is equal to Lz.

8.2.1 Modelling the electronic structure

The energy states of a quantum dot superlattice subjected to a uniform elec-

tric field possess the property of shift-invariance. For each state assigned to a

certain period of the superlattice (called the central period in the text), there

is a set of corresponding states obtained by translating the wavefunction in the

growth direction by multiples of the superlattice period. The corresponding

eigenenergies are shifted by multiples of the potential drop due to the electric

field over one period (see Fig. 8.2). Therefore, it is enough to find the energy
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levels assigned to one period only, and the others are then obtained by exploit-

ing the shift-invariance property. The states assigned to the central period are

obtained by solving the Hamiltonian eigenvalue problem in the region of space

containing 2N +1 periods (central period, N periods to the left and N periods

to the right, see Fig. 8.3) and selecting only the eigenstates whose probability

of finding a carrier in the central period is larger than in any of the other 2N

periods. In the calculations, a value of N = 2 was taken based on large value

of superlattice period compared to quantum dot size and previous experience

with simulations of QWIPs [268, 269].
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Figure 8.2: The effective potential profile along the z-axis for the analysed

structure subjected to an electric field F = 10kV/cm and the corresponding

energy levels assigned to each of the five periods.

The 8-band strain dependent k ·p Hamiltonian is used to model the single-

particle states in the conduction band, as described in Chapter 6. The strain

distribution was modelled using the continuum mechanical model and was

found using the finite element method as described in Sec. 2.6.2. Due to

the periodicity of the structure, periodic boundary conditions in the growth

direction were imposed, therefore the strain tensor components need to be

found in a single period only.
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Figure 8.3: The region of space in which the Hamiltonian eigenvalue problem

is solved, consisting of 2N + 1 periods (N = 2). The radius of the embedding

cylinder is Rt and its length Ht. It is assumed that quantum dots have conical

shape with diameter D and height h. The wetting layer width is dWL.

8.2.2 Carrier interaction with phonons and electromag-

netic radiation

Due to the discrete nature of states in quantum dots, transition rates between

electronic states due to interaction with LO phonons have previously been con-

sidered to be vanishingly small unless the energy levels are separated by the

energy of an LO phonon [91], as already mentioned in Sec. 1.3.2. Furthermore,

LA phonons, due to their small energy, cause transitions only between closely

spaced energy levels. These expectations led to the predictions of extremely

low dark currents and very small capture rates in QDIPs due to inhibited

carrier dynamics. Consequently, QDIPs were expected to have excellent char-

acteristics. However, it is currently thought that the electron – LO phonon

interaction in quantum dots cannot be taken into account within the frame-

work of first order perturbation theory and should be considered in the strong

coupling regime [93,94], when the entangled electron – LO phonon states called

polarons are formed, as discussed in more detail in Sec. 2.7.1. The transition

rate between states caused by polaronic decay is then given by Eq. (2.117).
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The envelope functions of the initial and final state are given as

ψ
(i)
j (r) =

∑

nl

A
(i)
jnlbnm(j)l(r, z, ϕ), (8.1)

ψ
(f)
j′ (r) =

∑

n′l′

A
(f)
j′n′l′bn′m′(j′)l′(r, z, ϕ), (8.2)

where m(j) = mf −mj(j) and m′(j ′) = m′
f − mj(j

′) with mf and m′
f being

the z-components of the total angular momentum of the initial and final state,

respectively. One of the very convenient features of the wavefunction expansion

method is that the electron – phonon interaction form factor can be evaluated

without the numerically demanding three dimensional integration. Instead,

one finds that it can be expressed in terms of the expansion coefficients as

Fif (q) =

8
∑

j=1

∑

nl,n′l′

A
(i)∗
jnl A

(f)
jn′l′f1(qz,∆l)f2(mf , m

′
f , n, n

′, qr, j), (8.3)

where

f1(qz,∆l) =
1

Ht

e
i
“

qz+ 2π
Ht

∆l
”

Ht/2 − e
−i

“

qz+ 2π
Ht

∆l
”

Ht/2

i
(

qz + 2π
Ht

∆l
) (8.4)

is an analytic function of its arguments, while

f2(mf , m
′
f , n, n

′, qr, j) = 1
2π

∫ 2π

0
dϕ
∫ Rt

0
rdrei∆mf ϕ ×

×ei(qx cos ϕ+qy sin ϕ)rfnm(j)(r)fn′m′(j)(r), (8.5)

where ∆l = l′ − l, ∆mf = m′
f −mf , and

qr =
√

q2
x + q2

y.

The function f2 does not depend on the wavefunctions and can be tabulated

once for all arguments before evaluating the form factors. Finally, since Fif (q)

depends on the radial and the z-component of the wave vector only (and not

on the ϕ-component), the summation (integration) over q in Eq. (5.1) can be

simplified from three dimensional to two dimensional.

The weaker electron – LA phonon scattering was calculated using Fermi’s

Golden rule (see Sec. 2.7.1). Since Fif(qs) does not depend on ϕ, the two

dimensional integration in Eq. (2.121) can be reduced to one dimensional.
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Other possible types of scattering were not included in the calculation and

the reasons for that are now discussed. As under normal operating conditions,

only the ground state of the QD is significantly populated and the populations

of the wetting layer and the continuum states are small; all the processes

originating from the Coulomb interaction among carriers, being proportional

to the carrier density, can therefore be neglected. These are, for example,

the relaxation of bound states assisted by the Coulomb interaction between

bound and wetting layer carriers [227, 270], or Coulomb scattering among the

carriers in the continuum or wetting layer. Coulomb scattering between bound

states is also suppressed as in a system with discrete energy levels it is difficult

to achieve the resonance imposed by the condition of energy conservation, as

already emphasised in Chapter 5. This is also the case for ionised impurity

scattering in the case of structures with a doped active region, although in this

work the structure with an undoped active region was considered. It has been

shown in Chapter 5 that the relaxation rates due to spontaneous emission

of photons are much smaller than the other relaxation rates in the system.

Finally, in a realistic device, a number of defects are present, depending on

the quality of growth. The defects are another potential source of scattering,

and as they are not included in the model, it is expected that the results of

the model should be valid in the limit of high-quality samples with low defect

density.

The interaction with incident electromagnetic radiation was treated in a

standard manner within the dipole approximation and Fermi’s Golden rule. In

a similar manner as the form factors, the absorption matrix elements can be

expressed in terms of the expansion coefficients, as given by Eq. (6.12).

8.2.3 The transport model

The energy levels of a quantum dot superlattice will be denoted as i = (M,P )

representing the P -th level in ascending order of energies among the levels

belonging to the period M . The populations of energy levels and the current
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in the device will be found from the semiclassical (Boltzmann equation) model,

which due to the discreteness of the energy levels reduces to the following

system of rate equations:

dni

dt
=

∑

j 6=i

Wjinj

(

1 − 1

2
ni

)

−
∑

j 6=i

Wijni

(

1 − 1

2
nj

)

−

−
∑

j

σp
ij(ω)(ni − nj)Φ, (8.6)

where the same notation as in Chapter 5 is used.

Due to the periodicity of the structure the relations

n(M,P ) = n(L,P ),

W(M,P ),(L,Q) = W(M+K,P ),(L+K,Q), (8.7)

σ(M,P )(L,Q) = σ(M+K,P )(L+K,Q)

hold [268, 269, 271]. After exploiting them, the system of equations (8.6) is

reduced and contains only the occupations of levels assigned to a central period.

Furthermore, in the spirit of the nearest neighbours approximation introduced

in Sec. 8.2.1, only the transitions with |M −L| ≤ N are considered. As usual,

the system of rate equations should be supplemented by the condition imposing

the total number of particles in the system. It is therefore assumed that there

are nd electrons per quantum dot on the average, i.e.
∑

P n(M,P ) = nd. In

order to obtain a finite system of equations, one also has to limit the number

of levels per period, i.e. take into account only the states with P < Pmax. It has

been checked for each field that the number of states taken in the calculation

was sufficient. Due to the presence of closely spaced discretised continuum

states, the number Pmax is of the order of several hundred which makes the

computation rather demanding, as a large number of transition rates among

each pair of states has to be calculated.

As the carrier transition rates in QDIPs are much larger than the frequen-

cies of external excitations, one is mainly interested in the steady-state response

(d/dt = 0). Nevertheless, the rate equations are solved by time integration of

the system of equations (8.6), starting from an initial condition that all carriers
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are in the ground state and performing the integration until a steady state is

reached. Such a method is extremely reliable in terms of convergence unlike

the methods for solving a large system of nonlinear equations [272].

After the system of equations (8.6) is solved, the current in steady-state

conditions is found by selecting a certain reference plane normal to the growth

direction and keeping track of the amount of charge that passes through that

plane in a unit of time. Let pi be the probability that the electron in state i

is located to the left of the reference plane. The contribution to the current

from the transitions from level i to level f is then given by

Jif = −|e| (Wif + σifΦ)ni

(

1 − nf

2

)

[pi(1 − pf) − pf(1 − pi)] . (8.8)

The first term in square brackets in Eq. (8.8) accounts for the carriers that

were initially on the left side of the reference plane and pass to the right side,

while the second term considers the carriers that were on the right and pass

to the left and clearly gives the contribution to current of an opposite sign to

the previous one. The total current is calculated by adding the contributions

of the current from all the transitions considered.

The probability of finding an electron whose wavefunction is given by

Eq. (8.1) in a region of space a ≤ z ≤ b

p =

∫

a≤z≤b

d3r

8
∑

i=1

|ψi(r)|2 (8.9)

can also be expressed in terms of the expansion coefficients as

p =
∑

nll′

∑

i

A∗
inlAinl′

∫ b

a

dzgl(z)
∗gl′(z), (8.10)

where the last integral is evaluated analytically. This expression is used both

for the current calculation according to Eq. (8.8) and assigning a certain period

to the state as described in Sec. 8.2.1.

8.3 Results

The model presented in Sec. 8.2 has been applied to the simulation of the

InAs/GaAs QDIP structure reported in Ref. [80] (the structure labelled as S-
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GaAs therein). The quantum dots are assumed to be of conical shape with

the diameter D = 25nm and height h = 7nm. A combination of atomic force

microscopy and cross-sectional transmission electron microscopy measurements

reported in Refs. [80] and [245] has shown that such shape and dimensions are

a very good approximation for the dots in the QDIP structure considered. A

wetting layer with the width of dWL = 0.5nm is considered as well. The same

set of material parameters for the InAs/GaAs material system as in previous

chapters was taken.

The calculated energy levels, as well as the effective potential profile on the

z-axis for the structure analysed subjected to an electric field F = 10kV/cm

are shown in Fig. 8.2. Due to the relatively large size of the dots, there is

a significant number of bound energy levels. The ground state is strongly

bound and positioned 300 meV below the continuum in agreement with the

experimental results obtained from photoluminescence and photoluminescence

excitation studies [80]. The ground state has the z−component of total angular

momentum |mf | = 1/2, while the other bound states have |mf | ≤ 9/2 and are

shown in Fig. 8.4. The calculations have shown that the change in the energy

level structure of the bound states with electric field is small and therefore

the structure shown in Figs. 8.2 and 8.4 can be considered to be a typical

representation of the position of energy levels for any field. It can be seen

that the states are grouped into five groups according to their energies with

energy gaps in between. While the model presented in Sec. 8.2 treats all the

states on equal footing regardless of whether such grouping occurs or not, the

groups will be labelled with G1–G5 and will be used in the discussion to build

an intuitive picture of the microscopic processes in the device.

8.3.1 The dark conditions

The calculated dark current density–electric field characteristics at three dif-

ferent temperatures are given in Fig. 8.5. For comparison with experimen-

tal results where current voltage characteristics are reported, a mesa area of
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Figure 8.4: Quantum dot energy levels and the quantum number of the

z−component of their total angular momentum at F = 10kV/cm. According

to their energy the states are grouped in five groups G1-G5.

A = 5× 10−4 cm2 in accordance with the reported mesa diameter of 250 µm is

assumed, and a uniform electric field distributed along the 340 nm long struc-

ture is taken. A realistic quantum dot density of 6× 1010 cm−2 is taken and it

is assumed that there are nd = 1 electrons per dot on average, which is a typi-

cal quantum dot occupation number in the case when relatively small voltages

are applied in n+-i-n+ structures [228]. The comparison with the experiment

should be taken with caution as the reported QDIP structure consists of 5 pe-

riods only and it is possible that the effects of contacts, not taken into account

in this model of a periodic structure, might become important in such cases.

Nevertheless, one certainly expects the same trends and at least the same or-

der of magnitude of dark current. The inset in Fig. 8.5 shows that an overall

good agreement between the theoretical and experimentally measured results

at T = 77K is found, especially bearing in mind that the current changes by

seven orders of magnitude in the range of electric fields investigated. It can also

be seen that the expected exponential increase of current with field, followed

by its saturation is obtained, as well as an increase of current with temper-
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ature. The microscopic origin of these expected results will be presented in

what follows.
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Figure 8.5: Calculated dependence of the dark current density on the electric

field at the temperatures T = 50K (circles), T = 77K (squares) and T = 100K

(triangles). The inset gives a comparison of the experimental dark current

results at T = 77K (line) and calculated values (points).

The carrier distribution among various energy levels at T = 77K is shown

in Fig. 8.6. At small values of the electric field the carriers appear to be

thermalised and the distribution resembles the equilibrium one. Most of the

carriers are then in the ground state. At medium fields the majority of carriers

still remain in the ground state, however the nonequilibrium distribution be-

comes clearly evident with some of the continuum states being more populated

than certain bound states. Finally, large values of the electric field significantly

increase the population in the continuum and at the same time the occupancy

of the ground state falls. The effect of temperature (at a fixed electric field)

on the carrier population is similar to the effect of electric field – larger tem-

peratures promote more carriers to the continuum and eventually deplete the

ground state.

In order to identify the main carrier transport channels causing the presence
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Figure 8.6: Occupancies of energy levels at three different values of electric

field at a temperature of T = 77K.

of carriers in the continuum and consequently the dark current in the device,

the transition rates between different quantum dot states are analysed. The

main transition mechanism is due to interaction with LO phonons, while the

interaction with LA phonons that carry only a small amount of energy (.

5meV) mainly causes the redistribution of carriers within the same group of

states, but cannot cause transitions between states from different groups. In

order to participate in the current, the carriers must eventually be excited to

the continuum (group G5, see Fig. 8.4) states. The carriers are naturally in

the ground (G1 group) state and only the excitations such as temperature and

higher electric fields can populate higher states.

At low values of electric field, the main carrier route to the continuum

is via a sequence of transitions G1 → G2, G2 → G3, G3 → G4 and finally

G4 → G5. The transitions between non-adjacent groups of bound states, (such

as G1 → G3, G1 → G4 or G2 → G4), as well as direct excitations to G5

states are much less probable due to the larger energy difference (and hence

the smaller transition rates) between the levels. When the electric field is

increased, the continuum states from the left neighbouring periods (Fig. 8.2)
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start to penetrate the quantum dots of the central period. As the field increases

the energy of these states decreases and the overlap with the bound states of

the central period increases, providing additional channels for carrier excitation

to the continuum states. This firstly affects the transition rate from G4 to G5,

as shown in Fig. 8.7, which increases since the carriers can now be excited

not only to the continuum states assigned to the central period, but also to

the continuum states of the neighbouring periods with smaller energy distance

from G4 and the overlap which is still sufficient to increase the transition

rates. As the electric field is further increased, additional paths of direct carrier

excitation to the continuum, such as G3 to G5, and at larger fields even G2 to

G5, are opened and the dark current is therefore significantly increased.

The influence of temperature on the carrier excitation into the continuum

is more transparent. The transition rates to higher states in all the paths

mentioned, being proportional to the number of LO phonons, increase with

temperature (as seen for example from Fig. 8.7) and therefore the number of

carriers excited to the continuum and the dark current increase.

8.3.2 The light conditions

The results of the simulation of the mid-infrared (100–250 meV) optical re-

sponse of the structure investigated, are now presented. Under normal QDIP

operating conditions the carriers are mostly in the ground state, and the main

origin of the optical response is the absorption of carriers from the ground

state.

The calculation shows that significant absorption of the in-plane polarised

radiation from the ground state may occur only on transitions to G2 states and

is located in the far-infrared region. The carriers excited to G2 states in such

a manner have a low probability of escaping to the continuum and forming

a photocurrent and the structure considered has therefore a poor response to

in-plane polarised radiation. Consequently, the transitions in the mid-infrared

region may only be due to z−polarised radiation and from here the transitions



8.3 Results 164

0 10 20 30
F [kV/cm]

10
3

10
4

10
5

10
6

10
7

10
8

10
9

A
ve

ra
ge

 tr
an

si
tio

n 
ra

te
 [

s-1
]

T=50 K
T=77 K
T=100 K

G
2
➱G

5

G
3
➱G

5

G
4
➱G

5

Figure 8.7: The dependence of the average carrier transition rates from the

states in groups G2 to G4 to the continuum (group G5) on the electric field

at the temperatures T = 50K (circles), T = 77K (squares) and T = 100K

(triangles).

due to this polarisation are addressed.

The energy dependence of the optical matrix elements for the absorption of

z-polarised radiation from the ground state at an electric field of F = 10kV/cm

is shown in Fig. 8.8. It can be also considered as the representative graph for

any value of the electric field, as the dominant bound to bound transition

matrix elements are weakly influenced by the operating bias. The carriers

from the ground state are mainly absorbed to the state of the same symmetry

from the G4 group and to a smaller extent to the state from the G3 group.

The QDIP responsivity at the angular frequency of incident radiation ω is

defined as

R(ω) =
J(Φ) − J(Φ = 0)

~ωΦ
. (8.11)

In the simulation, the standard deviation of the Gaussian linewidth due to size

inhomogeneity of the quantum dot ensemble was taken to be equal to 10% of

the transition energy, which is approximately the experimental value of the
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Figure 8.8: The energy dependence of the optical matrix elements for ab-

sorption of z-polarised radiation from the ground state at an electric field of

F = 10kV/cm.

dominant transition in Ref. [80]. The spectral responsivity curves at several

different values of the electric field and a temperature of T = 77K are presented

in Fig. 8.9. All of them exhibit a main peak around 180 meV originating from

the absorption from the ground state to the state from the G4 group, while at

higher values of the electric field another peak at an energy around 115 meV

occurs, due to a transition to the state from the G3 group. The positions of the

peaks are in agreement with experiment [80] where the strong peak at 175 meV

is accompanied by the weaker one at 115 meV. The peak responsivity mainly

increases with electric field as one might expect, but at large values of the

electric field it starts to drop. These features can be understood as follows. The

carriers that are absorbed from the ground to a state from the G4 group need

to be promoted to the continuum to cause photocurrent. The transition rate

from G4 to the continuum states increases with field, as already explained in

Sec. 8.3.1 and shown in Fig. 8.7, causing the photocurrent to increase. However

at larger values of electric field the population of the ground state falls (see

Fig. 8.6), therefore there are less carriers that can be absorbed, causing the
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photocurrent to decrease, see Fig. 8.9. The smaller peak due to absorption to

the G3 state is not present at low fields due to the small probability of further

promotion of carriers from the G3 states to the continuum. At larger fields,

when the transition path G3 → G5 is activated (Fig. 8.7), this peak starts to

appear.
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Figure 8.9: The dependence of responsivity on the energy of photons of

incident radiation at a temperature of T = 77K and an electric field of

F = 7.5kV/cm (full line), F = 10kV/cm (dashed line), F = 15kV/cm

(dashed-dotted line), and F = 25kV/cm (dotted line).

The spectral responsivity curves for different temperatures at two values

of the electric field are given in Fig. 8.10. The influence of temperature on

the responsivity can be understood in a similar manner as the influence of

electric field. At smaller values of electric field, the responsivity increases with

temperature, as the carriers absorbed to the state from G4 group are more

likely to be promoted to the continuum at higher temperatures. On the other

hand, at larger values of the electric field when the ground state starts to be

depleted, higher temperature additionally reduces the number of carriers in

the ground state, causing less carriers to be absorbed from the ground state

and consequently a smaller photocurrent.
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Figure 8.10: The dependence of responsivity on the energy of photons of

incident radiation at the temperatures T = 50K (full line), T = 77K (dashed

line) and T = 100K (dashed-dotted line) and the values of electric field of

F = 10kV/cm (left) and F = 25kV/cm (right).

It is more difficult to give a fair comparison of the theoretical and experi-

mental responsivity results than in the case of the dark current. In the model,

an ideally z−polarised excitation, performing a single pass through the QDIP

active region, is considered. The experiment reported in Ref. [80] was per-

formed in normal incidence geometry, when the incident radiation is certainly

not ideally z−polarised, as already discussed, and a quantitative comparison

of the actual value of the responsivity would require a more detailed analysis

of the coupling of the optical field with the active region of the QDIP struc-

ture. It can still be said that the results for the responsivity of the order of

R ∼ 1A/W are consistent with the experimental results. Since only a part of

the radiation interacting with the dots is z−polarised, one certainly expects

that the simulated responsivity would overestimate the experimental one. In-

deed, from the photocurrent spectra and the optical excitation power reported

in Ref. [80], one may estimate the experimental responsivity to be of the order

R ∼ (0.1−1)A/W for different values of voltage. Furthermore, the simulation
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also predicts a fall of responsivity at higher voltages, as observed in the exper-

iment. The temperature of T = 77K was identified in the experiment as the

optimal temperature in terms of the maximisation of the responsivity. In the

simulation the responsivity at low voltages increases with temperature, and

at high voltages decreases with temperature, one should therefore expect that

there is an intermediate region where it exhibits a nonmonotonic behaviour.

However, for none of the values of the electric field used in the simulation was

such a behaviour observed, implying that the simulation probably predicts a

steeper transition between the two regimes than in reality.

A further insight into the origin of the photocurrent can be obtained by

analysing the distribution of the photoexcited carriers. The difference between

the state occupancies under light and dark conditions for three values of the

electric field at T = 77K is given in Fig. 8.11. At a field of F = 5kV/cm,

most of the carriers photoexcited to G4 states relax back to the lower states,

rather than escaping into the continuum. The carriers absorbed from the

ground state are then distributed among G2–G4 states. At a higher field of

F = 15kV/cm, the carriers photoexcited to G4 have a significant probability

to make a transition to the continuum states. Most of the carriers absorbed

from the ground state are therefore distributed among continuum levels, as

can be seen from Fig. 8.11. The same also holds for the field of F = 30kV/cm,

but due to a drop in the occupation of the ground state under dark conditions,

the total number of absorbed carriers is smaller than at F = 15kV/cm.

8.4 Conclusion

In conclusion, a microscopic model of electron transport in vertical conductivity

QDIPs was developed. The model considers the transitions between various

quantum dot bound and continuum states to evaluate the current under dark

or light conditions, without resorting to any fitting parameters. The model

was applied to one of the experimentally reported QDIP structures. A very

good agreement with the dark current experimental results was found in the
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Figure 8.11: The change in the occupancies of energy levels due to the optical

flux excitation of Φ = 1018 cm−2s−1 at the peak responsivity photon energy at

three different values of electric field and a temperature of T = 77K. Only

absolute values of the changes are presented and the negative (neg.) quantities

are therefore marked.

range of voltages where the current changes by as much as seven orders of

magnitude. The simulations also predict most of the experimentally observed

trends in responsivity.

The proposed model should therefore serve as a useful tool in the analysis of

the characteristics of existing QDIP devices, providing a better understanding

of their performance and enabling researchers to find the way for possible

device improvements. More importantly, as the model does not contain any

fitting parameters, it can be used to predict the performance of new types of

QDIP devices and suggest whether such devices would perform better than

the existing ones. Finally, the model gives a deeper insight into internal QDIP

physics, extracting important information about carrier excitation paths to the

continuum and carrier distribution both under dark and light conditions.

The work presented in this Chapter was published in Journal of Applied

Physics [273].



Chapter 9

Nonequilibrium Green’s functions theory of

transport in quantum dot cascades

9.1 Introduction

In recent years, a significant experimental interest has been put into the possi-

bility of the development of intraband lasers based on quantum dots [102–104].

Due to the truly discrete electronic spectrum of quantum dots, most of the un-

desired scattering and relaxation processes are suppressed, and such devices

are expected to have two orders of magnitude lower threshold currents than the

corresponding quantum well based devices, as already discussed in Sec. 1.3.2.

Several encouraging experimental results towards the realisation of this

type of device have been obtained. In Ref. [102], electroluminescence has been

observed from the structure consisting of InAs quantum dots embedded in a

GaAs/AlAs quantum well based cascade structure, based on the transition

from the quantum well state to the quantum dot ground state. The transition

from the ground state of AlInAs quantum dots to subbands of GaAlAs/GaAs

quantum wells was the origin of emission reported in Ref. [103]. On the other

hand, electroluminescence from the transition between the dot states of InGaAs

quantum dots in a GaAsN/GaAs superlattice, was achieved in Ref. [104]. Elec-

troluminescence from the transition between the dot states in a single layer of

InAs quantum dots in a superlattice was also observed [274,275]. However, the

lack of precise controlability of quantum dot geometry is probably the main
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reason why lasing has not yet been achieved. Nevertheless, improvements in

technology will, at some point, certainly make such devices feasible.

The physics of such quantum dot devices is essentially different from quan-

tum well devices that possess a continuous spectrum. Polaron effects are known

to be important [270] and one can also expect that due to reduced phase space

for decoherence, coherent processes are relevant. Therefore, there is an obvious

need for the development of an appropriate theoretical framework, capable of

treating such processes. After the initial theoretical proposals of quantum dot

cascade lasers [92, 99], only a few theoretical studies of this type of devices

were reported. Their luminescence spectra was investigated in Ref. [100]. The

structures based on a quantum dot superlattice were proposed and analysed in

Ref. [101]. However, a detailed transport model through such structures has

not yet been developed. Therefore, in this Chapter, a nonequilibrium Green’s

functions theory of steady-state transport through periodic arrays of single or

multiple quantum dots is presented and applied to several structures.

It should be mentioned that the interest in this Chapter is in transport

through bound states of closely stacked quantum dots, as the transport in

quantum cascade lasers takes place through these states. In Chapter 8, QDIPs

were also modelled as periodic arrays of quantum dots. However, the period

of the structure in QDIPs is large and the transport takes place through con-

tinuum states there, which makes the physical situation essentially different.

9.2 Theoretical approach

The current in the steady state through an array of identical quantum dots

will now be calculated within the nonequilibrium Green’s functions formalism

described in Sec. 2.8.

As a first step in application of the formalism to a given physical system,

one has to choose the basis of states to represent the Green’s functions. Any

complete basis can be used in principle since a physical theory must be inde-

pendent of its choice. Here, a basis of states localised mainly to one period
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is chosen. Such a choice enables one to make a tight-binding approximation

where interactions with nearest neighbours only are considered. Additionally,

such a basis gives an excellent insight into the carrier transport in real space.

Due to the periodicity of the structure, the basis states are labelled as (ν, n),

where ν is the index of the state assigned to period n. In the case when only

ground states are important, the first index can be suppressed. The basis

states are calculated as follows.

The electronic miniband structure of a quantum dot superlattice is solved

using the eight band k · p method with strain distribution taken into account

via continuum elasticity theory, as described in more detail in Chapter 6. As a

result of this step one obtains the quantum dot superlattice eight component

spinors |ΨνKz(r)〉, satisfying the Bloch condition

|ΨνKz(r + Lzez)〉 = eiKzLz |ΨνKz(r)〉, (9.1)

where ν is the miniband index, Lz the period of the structure, and Kz the

superlattice wave vector. The phase of the spinors was fixed by imposing the

condition that the value of the dominant spinor component at a particular

point in space is real and positive.

The spinors obtained are then used to construct Wannier states that are

localised to a certain period. The Wannier state originating from miniband ν,

localised to period n is given by

|Ψνn〉 =
Lz

2π

∫ π/Lz

−π/Lz

dKze
−inKzLz |ΨνKz〉. (9.2)

In order to obtain states with even better localisation, the eigenvalue problem

of the operator of z-coordinate is solved in the manifold of states spanned by

|Ψνn〉, n ∈ {−N, . . . , N}. The (N + 1)-th eigenvector then corresponds to the

basis state (ν, 0). The states (ν, n), when n 6= 0 are then obtained by making

a translation in real space by nLz.

Once the basis of states is chosen, one can proceed to calculate the relevant

Green’s functions represented in that basis and afterwards the current in the

structure. As shown in Sec. 2.8, in the steady state of the system, one obtains
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an algebraic system of equations for Green’s functions in the energy domain,

containing the Dyson equation (2.136), the Keldysh relation (2.137), and the

expressions for self-energies. The system of equations is closed by imposing

the periodic condition for all Green’s functions and self-energies

G(ν,n),(µ,m)(E) = G(ν,n+1),(µ,m+1)(E + VF ), (9.3)

where VF is the potential drop over one period of the structure, and introducing

a tight-binding approximation by considering only the Green’s functions and

self-energies with |n−m| ≤ K.

Self-energies are modelled using the SCBA. Within the SCBA, self-energies

due to interaction with LO phonons are given by (2.139) and (2.140). These

take into account the anharmonic decay of LO phonons, which is known to

be important for the proper description of relaxation processes in quantum

dots [95]. The justification of application of the SCBA to electron – LO phonon

interaction self-energies in the system studied here will be given in Sec. 9.3. In

the expressions for self-energies, only the electron – phonon interaction form

factors between states with |n −m| ≤ K are assumed to be nonvanishing, in

the spirit of the tight-binding approximation.

Self-energy terms due to interaction with acoustic phonons are given by the

formulae which have the same form as in the case of LO phonons. These can

be simplified to avoid a demanding integration in the energy domain, assuming

acoustic phonons are stable. They then read [184]

ΣR
αβ(E) =

∑

γδ,q

M∗
βδ(q)Mαγ(q)

[

(Nq + 1)GR
γδ(E − Eq) +NqG

R
γδ(E + Eq)+

+1
2
G<

γδ(E − Eq) − 1
2
G<

γδ(E + Eq)
]

, (9.4)

Σ<
αβ(E) =

∑

γδ,q

M∗
βδ(q)Mαγ(q)

[

NqG
<
γδ(E − Eq) + (Nq + 1)G<

γδ(E + Eq)
]

,

(9.5)

where Eq is the energy of an acoustic phonon. The principal value integrals

appearing in the expression for the retarded self-energy have been neglected,

as is often done in the literature [276].
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An additional self-energy term representing the nonuniformity of quantum

dots can also be included, as described in Sec. 9.7.

The interest here will be in the limit of low doping and carrier densities

where interaction with ionised impurities and electron – electron interaction

can be neglected, and there is no formation of electric field domains. In this re-

gion, current depends linearly on the number of carriers. Therefore, the values

of current presented on figures in this Chapter have been normalised by divid-

ing it by the total occupancy of states in one quantum dot (or double quantum

dot in Sec. 9.8). Current density J can then be obtained by multiplying the

current by sheet carrier density J = NSI.

The system of algebraic equations for Green’s functions and self-energies

was solved in a manner that is now described. The overall strategy consisted of

two steps. In the first step, the spectral properties of the system are found by

solving the Dyson equation and neglecting the lesser Green’s functions in the

expression for the retarded self-energy. This step provides a good initial guess

for the retarded functions for a fully self-consistent procedure in the second

step.

• For the first step, an initial guess for the retarded Green’s function is

chosen in the form of the free particle function broadened by the width

σ as GR
αβ(E) =

δαβ

E−Eα+iσ
, where Eα is the ground energy of miniband α.

The retarded self-energy is then calculated by not including the terms

with lesser Green’s function. Next, the retarded Green’s functions are

calculated from the Dyson equation by solving the appropriate system of

linear equations. The former two steps are repeated until convergence is

achieved.

• In the second step, a fully self-consistent procedure is performed. An

initial guess for the lesser Green’s functions is taken in the form

G<
αβ(E) = 2πi g(E − Eα, σ)nαδαβ, (9.6)

where g is the Gaussian (2.67), and nα is the initial guess for expected
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values of state populations given by the thermal distribution of carriers.

An initial guess for the retarded Green’s functions is provided from the

result of the first step of the calculation. Retarded and lesser self-energies

are then calculated. Next, the retarded Green’s function is found from

Dyson’s equation, and finally the lesser Green’s function is calculated

from the Keldysh relation. These three steps constitute one iteration

of the self-consistent procedure which is repeated until convergence is

achieved. In order to improve the stability of the self-consistent proce-

dure, the lesser and retarded functions for the next iteration are calcu-

lated from their average value in the previous two iterations, as is usu-

ally done in self-consistent calculations. After each iteration the lesser

Green’s functions are adjusted to enable the total number of particles to

be equal to a given predefined value.

When the current – field characteristic is calculated, i.e. when the same

calculation is performed for different values of the electric field, the results

obtained for the previous value of the field can be used as an initial guess,

instead of performing the first step described above. With this approach the

number of iterations necessary decreases significantly from several tens (∼
30 − 50) to just a few (∼ 5 − 6).

It should be mentioned that due to the assumption of dispersionless LO

phonon modes, the integral in the expression for self-energy does not depend

on q. Therefore, the terms Mαβγδ =
∑

qM
∗
βδ(q)Mαγ(q) can be calculated only

once before the self-consistent procedure, rather than in each iteration.

When the self-energies due to the interaction with acoustic phonons are

concerned, due to assumption of isotropic dispersion relation these take the

form
∫

d3qM∗
βδ(q)Mαγ(q)f(|q|). (9.7)

The integral over spherical coordinates θ and ϕ for each |q| can therefore be

calculated before the self-consistent procedure. However, the integral over |q|
must be calculated in each iteration.
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The populations of the energy levels and coherences between states can

finally be calculated by performing an integration of lesser Green’s functions

over the whole energy domain. The current through the structure can also be

calculated as described in Sec. 9.4.

9.3 Validation of the self-consistent Born approxima-

tion

The main approximation in the model described is the use of the self-consistent

Born approximation (SCBA), which therefore needs to be validated.

The SCBA was used in Ref. [277] to describe the transport through two

quantum dots coupled to contacts in the presence of the electron – LO phonon

interaction. The electron – phonon interaction matrix elements Mαααα used in

Ref. [277] were of the order ∼ 0.001×E2
LO, implying a weak interaction where

the SCBA is fully justified, and it has been argued in Ref. [277] that polaron

effects become important when Mαααα approaches E2
LO, which is expected to

be the regime of strong electron – phonon coupling, beyond the reach of SCBA.

In Ref. [270], polaron relaxation in InGaAs quantum dots assisted by the

presence of wetting layer states was treated within the random-phase approxi-

mation (in which only GRD< term in the expression for the retarded self-energy

is considered, and therefore involves neglection of additional terms in compar-

ison to the SCBA). It has been pointed out there that the RPA is expected

to be valid in the presence of continuum states provided by the wetting layer,

which has been verified by the comparison with the first term in the cumulant

expansion [270].

On the other hand, in Ref. [180] the problem of interaction of quantum

dot carriers with dispersionless LO phonon modes was treated, as outlined in

Sec. 2.7.2, and the conclusion was reached that the SCBA cannot reproduce

the exact solution of the idealised model given by a series of delta functions.

This is a consequence of the fact that the SCBA sums only a limited number

of diagrams in the expansion, while a full summation is needed to reproduce
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delta functions.

None of the previous works just mentioned [180, 270, 277] gives a definite

answer on whether the SCBA is a good approximation in the system consid-

ered here. Numerical calculation of the Mαααα matrix element (where α is

the ground state) gives the value of ∼ 0.07 × E2
LO, which is larger than the

value used in Ref. [277] but still significantly smaller than E2
LO. The validity

of the RPA in Ref. [270] was established for a quantum dot system with a

significant number of carriers present in the wetting layer continuum, while

here the interest is mainly in transport through bound quantum dot states.

In contrast to Ref. [180] where a single quantum dot interacting with dis-

persionless LO phonons only is considered, other interactions are included in

the system considered here, such as anharmonic terms leading to LO phonon

decay, the interaction with acoustic phonons, the tunnelling interaction with

neighbouring dots of a quantum dot array, as well as an additional term due

to nonuniformity of the quantum dot ensemble.

In order to validate the use of the SCBA, it will be established here that

for InAs/GaAs quantum dots, the polaron shift of the ground state, as well

as the polaron splitting when the energy difference between the ground and

first excited state is set to an LO phonon resonance, are accurately calculated

in the SCBA. This gives confidence that the positions of the peaks of Green’s

functions are correct. The physical properties of the system depend not only

on the positions of the peaks but also on their linewidths. One therefore

has to establish that the linewidths originate from real interactions in the

system, rather than from the effect described in Ref. [180]. This will be done

a posteriori by showing that the calculated linewidths are significantly larger

than the ones arising due to artificial broadening of the spectrum of electrons

interacting with dispersionless LO phonons only.

A comparison of the polaron shifts in the spectrum calculated by exact di-

agonalisation of the Hamiltonian given in Eq. (2.103) as described in Sec. 2.7.2,

and by the Green’s function method, for different electron – phonon interac-
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tion strengths, is given in Fig. 9.1. The calculations were performed for a lens

shaped single InAs/GaAs quantum dot of diameter 20 nm and height 5 nm,

which is representative of typical self-assembled quantum dots obtained in ex-

periments. The electronic structure of quantum dots was calculated using the

eight band strain dependent k · p model in the axial approximation, as de-

scribed in more detail in Chapter 6. The electronic states obtained that way

were subsequently used as input for both calculations. The strength of the

electron – phonon interaction was artificially varied by multiplying the elec-

tron – phonon interaction Hamiltonian (2.123) by a constant whose value is

given on x−axis in Fig. 9.1.
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Figure 9.1: The dependence of the energy of the ground state and its first

phonon replica of a single InAs/GaAs quantum dot on the electron – LO

phonon interaction strength. A comparison of the results obtained by exact

diagonalisation of the electron – LO phonon interaction Hamiltonian (circles)

and by the Green’s function calculation in the SCBA (full line) is given.

In order to provide a fair comparison, in both calculations, only the ground

and the pair of nearly degenerate first excited states were taken into account,

and only the electron – LO phonon interaction was considered. The energies

of the polaron states that contain a contribution from the purely electronic
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ground state of more than 10% are represented by circles in Fig. 9.1. The

Green’s function calculation was performed by self-consistently iterating be-

tween Eqs. (2.136) and (2.139), where a temperature of T = 77K was as-

sumed. In Fig. 9.1 the positions of the maximum of the spectral function

A11(E) = −2ImGR
11(E), and its replica when its peak value is at least 10%

of the main maximum peak value are shown with a full line. The Green’s

functions of the ground and first excited state are given in Fig. 9.2. One can

see from Fig. 9.1 that excellent agreement for the polaron shift of the ground

state obtained by the two methods is obtained throughout the whole interval

of electron – phonon interaction strengths investigated. On the other hand, for

larger interaction strengths (say larger than 2.5) the positions of the replica

start to differ. Further presentations will show that this replica is important

for the description of carrier transport. Therefore, the conclusion arising from

the results presented in Fig. 9.1 is that the application of the SCBA can be ex-

pected to give reliable prediction of polaron shifts up to the electron – phonon

interaction strength being 2.5 times larger than the strength in the InAs/GaAs

material system which is of central interest here.
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Figure 9.2: Real (dashed line) and imaginary (full line) part of the Green’s

function of the ground state (left) and first excited state (right).

It is shown next that the SCBA also accurately predicts the amount of
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polaron splitting when two levels are at an LO phonon resonance. For that

purpose, a numerical experiment is performed where the energies of the pair of

first excited states are shifted in opposite directions by the same amount ∆E,

which is varied. The electron – phonon interaction matrix elements are kept

constant. The polaron energy levels that contain a contribution from at least

one of the electronic states larger than 10% are shown by circles in Fig. 9.3,

while the maxima of spectral functions Aii whose peak values are at least 10%

of the main peak value are represented by diamonds, squares and triangles, for

i = 1, i = 2 and i = 3, respectively. The results obtained by the SCBA are in

excellent agreement with the results obtained by direct diagonalisation.
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Figure 9.3: Dependence of the polaron energy levels obtained by direct diag-

onalisation (circles) and the maxima of the spectral functions Aii(E) obtained

in the SCBA (diamonds i = 1, squares i = 2 and triangles i = 3) on the

artificial shift ∆E. The corresponding single-particle levels are shown by full

lines.
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9.4 Transport in an ideal superlattice of quantum dots

The electron current through an array of quantum dots can be expressed in

terms of the expectation value of the velocity operator as

I = −|e|
L

〈

dẐ

dt

〉

, (9.8)

where L is the total length of the structure in the z−direction and Ẑ is the

coordinate operator of all the electrons in the system in the Heisenberg picture.

From its equation of motion one gets

dẐ

dt
=
i

~

[

Ĥ, Ẑ
]

, (9.9)

where Ĥ is the total Hamiltonian of the system. Bearing in mind that all

interaction terms commute with Ẑ, as emphasised in Ref. [278], one obtains

the following expression for the current

I = −|e|
L

i

~

〈

∑

αβ

[

Ĥ0, ẑ
]

αβ
â+

α âβ

〉

, (9.10)

where Ĥ0 is the Hamiltonian of an electron in the superlattice potential, ẑ its

coordinate operator, â+ and â are electron creation and annihilation operators

and the summation takes place over a complete basis of states of the system.

Using the definition of the lesser Green’s function one gets

I = − |e|
L~

∑

αβ

[

Ĥ0, ẑ
]

αβ
G<

βα. (9.11)

By exploiting the periodicity of the structure, it follows

I = − |e|
Lz~

∑

β

′
∑

α

[

Ĥ0, ẑ
]

αβ
G<

βα, (9.12)

where Lz is the period of the structure, and the summation over β takes place

over the states of one period only (called the central period). In view of the

nearest neighbour approximation, the summation over α then takes place over

the states in the central period and its few nearest neighbours only.
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The current given by the expression (9.12) was interpreted in Ref. [278] to

be entirely coherent, where the scattering events only redistribute the carriers

in energy domain. Following that interpretation, the origin of all resonances,

presented in the sections that follow, can be explained in terms of oscillations

of coherence between ground states of neighbouring periods, when the external

field is varied. However, such an interpretation would not give an insight into

the origin of the mentioned coherence oscillations. It has also been pointed out

in Ref. [278] that in the basis of Wannier-Stark states coherences are created

by scattering, leading to a well known picture of scattering induced transport

between Wannier-Stark ladder of states.

A very useful view of how coherences are created by scattering comes from

the interpretation of the Keldysh relation. The interpretation in the time

domain [184] considers Σ< as a scattering event, which is then propagated by

GR and GA to a moment of time when coherence G< is observed. Following

a similar interpretation that can be given in the energy domain and the fact

that current is entirely determined by coherences, one can determine the origin

of current in the structure, as follows. In the case when α = γ, δ = β and

γ 6= δ, the contribution to current from G<
αβ(E) originates from a scattering

event (represented by Σ<
γδ(E)) creating coherence at energy E, which will be

observed only if there is available density of states (information about which

is contained in GR
αγ(E) and GA

δβ(E)) at that energy. On the other hand, when

α = γ, δ 6= β and γ = δ, the current originates from a coherent propagation

GA
δβ, which will be observed providing there are carriers scattered into γ = δ

(the term Σ<
γδ(E)) and available density of states at α = γ (the term GR

αγ(E)).

The same interpretation of a coherent origin of current can be given in the

case α 6= γ, δ = β and γ = δ. Other cases where the current originates from

a combination of scattering and coherent propagation are also possible, but

it is expected that these, being higher order processes, give a much smaller

contribution. The results of the calculation presented here will indeed show

that this is the case.
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The current-field characteristics were calculated for a quantum dot array

consisting of quantum dots whose dimensions are given in Sec. 9.3 for several

different values of the period of the structure. The results of the calculation

for different temperatures when the period is equal to Lz = 10nm are given

in Fig. 9.4. It was necessary to take into account two nearest neighbours

(K = 2) in the calculation to obtain convergent results. Self-energies due to

the interaction with LO and acoustic phonons were both included in the calcu-

lation. Only the states originating from the ground miniband were considered

at T = 77K and T = 150K since these are the only ones that are significantly

populated then, while it was necessary to include a pair of first excited states

at T = 300K.
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Figure 9.4: Current – electric field characteristics of a quantum dot super-

lattice at temperatures T = 77K (full line), T = 150K (dashed line) and

T = 300K (dashed-dotted line) when the period is Lz = 10nm.

9.5 The main current peak

The main peak arises when the potential drop over one period VF is equal

to LO phonon energy ELO. The second peak appears at VF = 1
2
ELO at all
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temperatures, while there is also a third peak at VF = 1
3
ELO present at lower

temperatures. The origin of these resonances, as well as the nature of the

electron transport at resonances will be investigated in what follows.

The most similar physical system where resonances of this kind were in-

vestigated are quantum well superlattices in an external axial magnetic field.

It has been predicted [279–281] that optical phonon resonances occur when-

ever nEC + pVF + qELO = 0 (Stark-cyclotron-phonon resonance), and elas-

tic resonances (Stark-cyclotron) when nEC + pVF = 0 (where EC is the cy-

clotron energy). The observation of Stark-cyclotron resonances was reported

in Ref. [282]. A special case of both of these, so called Stark-magneto-phonon

resonances that occur when nEC = pVF = qELO was recently measured in

Refs. [283] and [284]. The resonances predicted in the results reported here

are in full analogy with Stark-cyclotron-phonon resonances or Stark-magneto-

phonon resonances in the case of quantum well superlattices in a magnetic

field.

On the other hand, phonon-assisted transport through a double quantum

dot was theoretically investigated in Ref. [277]. A weak LO phonon peak was

obtained which is a consequence of the fact that a weak LO phonon interaction

strength was assumed.

The focus will be given on the case of low temperatures when only the

ground state is occupied. The results of the calculation were transformed to

a Wannier-Stark basis which is more useful for the physical interpretation of

the results. In that case, one can show using the properties of translational

invariance and the identity G<
αβ = −G<

βα
∗ that in the Wannier-Stark basis, the

expression (9.12) reduces to

I =
e2F

~

∑

α>0

α · 2Re (z0αG
<
α0) . (9.13)

For Lz = 10nm, the current is entirely determined by the α = 1 term, i.e. by

the coherence between two ground states of neighbouring periods G<
10(E). In

order to understand the origin of the current, one therefore has to investigate

the origin of this coherence. It should be mentioned that the fact that G<
10(E)
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determines the current does not necessarily imply that nearest neighbour ap-

proximation is sufficient. Indeed, in this particular case, convergent results are

obtained with second nearest neghbour approximation K = 2.

The dominant contribution to G<
10(E) when VF = ELO comes from the

GR
11(E)Σ<

10(E)GA
00(E) term in Keldysh relation. The corresponding Green’s

functions and self-energies are presented in Fig. 9.5. G<
10(E) exhibits a max-

imum at the energy of level 0, originating from the maxima of the scattering

Σ<
10(E) term and the GA

00(E) term. In view of the interpretation of the Keldysh

relation presented, the origin of the current at this value of the field is LO

phonon scattering from level 1 to level 0, represented by the Σ<
10(E) term. By

expressing G<
10 in the energy domain as

G<
10 =

1

2π

∫

dEG<
10(E) (9.14)

and substituting into (9.13) one can also spectrally resolve the current flow

between periods 1 and 0. The maximum of the spectrally resolved current

appears at the energy of the ground state of period 0, confirming the fact that

the current flows into level 0, as demonstrated in the left part of Fig. 9.6.

When one increases the electric field, the scattering Σ<
10(E) term decreases

as 1 and 0 are no longer set to an LO phonon resonance. One should note that

first phonon replica in the spectral density of states A00(E) = −2ImGR
00(E) (see

Fig. 9.6) is separated from the main maximum by an energy larger than ELO, as

a consequence of the polaron shift, as demonstrated in Sec. 9.3. Consequently,

the resonance between the level 1 and phonon replica of level 0 occurs at a

higher field, which in this particular case corresponds to a potential drop per

period of VF = 38.3meV rather than VF = ELO = 36meV. Around this

resonance, the nature of the electron transport is significantly different than

at an LO phonon resonance. The dominant contribution to coherence G<
10(E),

shown in Fig. 9.7, now comes from the GR
11(E)Σ<

11(E)GA
10(E) term. Therefore,

the current originates from coherent propagation represented by GA
10(E), which

now exhibits a pronounced maximum at the energy of level 1. The coherence

G<
10(E), and hence the current exhibit a maximum at the energy of level 1 (see
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Figure 9.5: Green’s functions and self-energies of the dominant contribu-

tion GR
11(E)Σ<

10(E)GA
00(E) to coherence G<

10(E), and hence the current, at LO

phonon resonance (VF = ELO) when the period is Lz = 10nm.

Fig. 9.7), confirming the interpretation that the transport channel at this value

of the field is coherent tunnelling to phonon replica, as shown schematically

by horizontal arrows in the right part of Fig. 9.6.

At the period length of 10 nm and smaller, the two resonances cannot be

distinguished as their separation is smaller than their width. However, at a

larger value of the period when the linewidth decreases, the peaks become

distinguishable, as shown in the left part of Fig. 9.8. The doublet structure of

the current peak is a transport signature of polaron effects, its width being a

measure of the electron – phonon interaction strength.

At this point, one can make an additional a posteriori justification of the

SCBA, as mentioned in Sec. 9.3. The width of the spectral functions pre-

sented in Figs. 9.5 and 9.6 is significantly larger than the width of the spectral

functions presented in Fig. 9.2. Therefore, the appropriate linewidths do come

from the interactions in the system rather than from artifacts of the SCBA.



9.6 Other resonances 187

10
1

10
2

10
3

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78
E

ne
rg

y 
[e

V
]

10
1

10
2

10
3

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

E
ne

rg
y 

[e
V

]

10
1

10
2

10
3

A
ii
 (E) [eV

-1
]

10
1

10
2

10
3

10
1

10
2

10
3

10
1

10
2

10
3

A
ii
 (E) [eV

-1
]

F=36 kV/cm F=38.3 kV/cm

i=0 i=1 i=2 i=0 i=1 i=2

Figure 9.6: Schematic view of current transport at the field of F = 36kV/cm

corresponding to LO phonon resonance VF = ELO (left) and at F =

38.3kV/cm corresponding to resonance of the phonon replica with the ground

state of neighbouring period (right). Corresponding density of states given by

the spectral function Aii(E) = −2ImGR
ii(E) presented in logarithmic scale, is

shown for each state. The dominant current transport channel in both cases

is marked by arrows.

9.6 Other resonances

The discussion will now be concentrated to a peak appearing at VF = 1
2
ELO.

While one might expect that α = 2 term in (9.13) is of importance here, this is

not the case, i.e. G<
10(E) mainly determines the current, as already mentioned.

The dominant contribution to it comes in this case both from the scattering

GR
11(E)Σ<

10(E)GA
00(E) term and coherent GR

11(E)Σ<
11(E)GA

10(E) term, where

each of these becomes dominant at appropriate energy, as demonstrated in

Fig. 9.9. In order to understand such behaviour, one should note that the

peaks in the spectral function Aii(E) appear not only at the energy of state i

and its phonon replica, but also at energies of other states and their replicae.
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Figure 9.7: Green’s functions and self-energies of the dominant contribution

GR
11(E)Σ<

11(E)GA
10(E) to coherence G<

10(E), at a field of F = 38.3kV/cm, cor-

responding to resonance of phonon replica with the state of the neighbouring

period. The period of the structure is Lz = 10nm.

This is a consequence of the fact that in the presence of interaction Wannier-

Stark states are no longer the eigenstates of the Hamiltonian of the system. The

interaction then couples different Wannier-Stark states, with peaks appearing

in the density of states as a consequence. Resonances in transport then appear

when the peaks in the density of states of different periods overlap. In this

particular case, the peak at 1
2
ELO above the ground state of period i, being a

consequence of LO phonon coupling with the ground state of period (i − 1),

becomes resonant with the ground state of period (i + 1). The scattering

contribution to current between periods i and i − 1 therefore comes from the

LO phonon scattering from the density of states at 1
2
ELO above the ground

state of period i to ground state of period i − 1. On the other hand, the

coherent contribution comes from tunnelling from the ground state of period i

to the density of states at 1
2
ELO above the ground state of period i− 1. These

two contributions are schematically illustrated in Fig. 9.10. One therefore sees

that the transport between the ground state of period i and the ground state
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Figure 9.8: Current – field characteristics for different values of the period,

when the temperature is T = 77K. Convergent results are obtained with

K = 4 when Lz = 8nm, K = 3 when Lz = 9nm, and K = 1 when Lz ≥ 11nm.

of period i− 2 which are at LO phonon resonance takes place by a sequence of

two events: tunnelling event represented by horizontal arrows in Fig. 9.10 and

scattering event represented by diagonal arrows. As the two types of events

follow each other, they yield the same contributions to G<
10, as demonstrated

in Fig. 9.9.

When the dots in a superlattice are closer, additional peaks in the transport

appear. For example when the period is 8 nm, clearly visible peaks at VF =

ELO, 1
2
ELO, 1

3
ELO, 1

4
ELO, and even 2

3
ELO and 2

5
ELO, can be seen in Fig. 9.8.

9.7 Nonuniformities of the quantum dot ensemble

The discussion so far has addressed ideally periodic quantum dot arrays. How-

ever, real quantum dot ensembles are nonuniform and in a real experiment, one

cannot expect to obtain the results predicted by the theory assuming ideal pe-

riodicity. On the other hand, the inclusion of quantum dot nonuniformity in

the theory requires detailed information about the quantum dot size distribu-

tion and is obviously sample dependent. In order to estimate the influence of
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Figure 9.9: The coherence G<
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2
ELO, as well as dominant

contributions to it GR
11(E)Σ<

11(E)GA
10(E) (termed as 11 contribution) and
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11(E)Σ<

10(E)GA
00(E) (termed as 10 contribution).

nonuniformities, additional self-energies were included in the theory according

to the following approach.

Let V be the additional potential due to the difference between the potential

of a real ensemble of dots and an ideal dot superlattice. Within the SCBA,

the contribution to self-energy from this potential is given by

Σ<,R
αβ (E) =

∑

γδ

〈VαγVδβ〉G<,R
γδ (E). (9.15)

The average value 〈VαγVδβ〉 contains information about the quantum dot

nonuniformities, and it should be in principle evaluated from the information

provided by the experimental dot size distribution, which is sample dependent.

For the purpose of an estimate which could be utilised regardless of the de-

tails of the dot distribution, a simple phenomenological approach is adopted

here. It is assumed that 〈VαγVδβ〉 = U2 when states α, β, γ and δ belong to

the same period, and 〈VαγVδβ〉 = 0 otherwise, where U is a constant roughly

representing the standard deviation of the position of quantum dot energy lev-

els due to nonuniformities. This approach therefore assumes zero overlap of
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Figure 9.10: Schematic view of current transport at the field of F = 18kV/cm

corresponding to VF = 1
2
ELO. Corresponding density of states given by the

spectral function Aii(E) = −2ImGR
ii(E), presented in logarithmic scale, is

shown for each state. The dominant current transport channels are marked by

arrows.

the matrix elements of the V -operator between the states of different periods,

which is a reasonable assumption. Additionally, it assumes there is no correla-

tion between the influence of nonuniformities on the states of different periods.

Finally, the most severe assumption which makes this approach be only an

estimate is that U is independent of α, β, γ and δ, when these belong to the

same period. However, when the transport takes place through ground states

only, and therefore only one state per period is involved, as is the case here,

this approximation becomes justified as well.

The current – field characteristics for several different values of U at

T = 150K and Lz = 10nm are presented in Fig. 9.11. As expected, an

increase in U leads to broadening of the current peaks, with weaker peaks

eventually vanishing. The main peak however, although broadened, remains

clearly distinguishable.
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Figure 9.11: Current – field characteristics for several values of phenomenolog-

ical nonuniformity parameter U at T = 150K, when the period of the structure

is Lz = 10nm.

It is also interesting to estimate how nonuniformity affects the doublet

structure of the main current peak. The I–F curve at T = 77K with differ-

ent nonuniformity parameters is presented in the left panel of Fig. 9.12. One

can conclude that already a weak nonuniformity of U ∼ 0.5meV broadens

the stronger peak of the doublet in such a way that the weaker peak van-

ishes. Therefore, in InAs/GaAs material system the doublet structure could

be observable only in extremely highly uniform samples. On the other hand,

InAs/GaAs is a system with weak polar coupling and one can expect a more

favourable situation in systems with stronger coupling. The right panel of

Fig. 9.12 presents the current – field curve when the LO phonon interaction

strength is multiplied by a factor of 2. In this case, the doublet structure re-

mains observable even for nonuniformities of several meV. Therefore, although

InAs/GaAs is not the most appropriate system for observing the signature of

polaronic effects in electron transport, one can expect the effect to be observ-

able in other systems.
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Figure 9.12: Current – field characteristics for several values of the phe-

nomenological nonuniformity parameter U at T = 77K, when the period of

the structure is Lz = 12nm (left panel). The same result when electron – LO

phonon interaction Hamiltonian is multiplied by a factor of 2 is shown in the

right panel.

9.8 Transport in a prototype of a quantum dot cascade

laser structure

In this section, the method developed in the previous sections of this Chapter,

will be applied to design a quantum dot cascade laser structure and evaluate

its characteristics. From a purely theoretical point of view, quantum dots pro-

vide additional degrees of freedom in design in comparison to quantum wells,

as both the dimensions in the growth and lateral directions can be varied in

principle. However, controllability of the dot dimensions is not that mature,

and a realistic design should therefore be as simple as possible. The design

principle for the structure presented here is shown in Fig. 9.13. One period

of the structure consists of two dots A and B of different sizes. The barrier

between the dots is thin enough to provide significant electronic coupling be-

tween the dots. The state originating mainly from dot A is designed to be

the upper laser level and the state originating from dot B is the lower laser
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level. In order to get population inversion in the structure, the depopulation

rate of the lower laser level (transition B2 → A1 in Fig. 9.13) should be faster

than its population rate (transition A2 → B2 in Fig. 9.13). This is achieved

by engineering the energy of the B2 → A1 transition to be close to one LO

phonon energy, while the lasing transition (A2 → B2) energy is significantly

smaller than that. Electronic coupling between the dots provides wavefunction

overlap sufficient both for large values of the optical matrix element on the las-

ing transition and large transition rate on the lower laser level depopulation

transition.

B1
A1

B2
A2

Figure 9.13: Energy levels scheme of a quantum dot cascade structure. Two

periods of the structure are presented.

The above conditions are fulfilled when the dot dimensions are chosen as

follows. Lens-shaped InAs/GaAs quantum dots are assumed, with the dot

diameters set to D = 20nm. The height of the dot A is set to hA = 5nm

and the height of the dot B to hB = 4.5nm. All barriers between the dots are

set to 3nm. The field-current characteristics of the structure at temperatures

T = 77K and T = 150K around the design field are presented in Fig. 9.14.

Two levels per period were included in the simulation and K = 2 was taken.

The imaginary part of the lesser Green’s function G<
ii(E) related to popula-

tions of energy levels is presented in Fig. 9.15, when the field is F = 32kV/cm.

The presence of a population inversion between the upper and lower laser

level is evident from the figure. The calculated population inversion between

the upper and lower laser level at this field is 56% at T = 77K and 53% at
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Figure 9.14: Field-current characteristics of the prototype of a quantum dot

cascade laser structure at temperatures T = 77K and T = 150K.

T = 150K. The transition energy is equal to 19 meV corresponding to a fre-

quency of 4.6 THz. The gain in the structure should in principle be calculated

from the self-consistent procedure as described for example in Ref. [276]. Here,

an estimate will be given based on Eqs. (5.6) and (2.68). Calculated value of

optical matrix element for z−polarised radiation (defined in Eq. (2.69)) on the

lasing transition is |M| ≈ 9.7 · 10−5 eV
T·nm

. Assuming a Gaussian linewidth with

FWHM equal to 12% of the transition energy, one obtains an optical cross

section of σ ≈ 150 · 10−15 cm2. The period of the structure is Lz = 15.5nm.

Assuming the carrier density of 1010 cm−2 and a population inversion of 50%,

one obtains a gain of g ≈ 470 cm−1, which is sufficient for lasing since typical

waveguide losses in terahertz QCLs are much smaller. The operating current

density at this field is equal to J ≈ 15A/cm2, being significantly smaller than

in terahertz quantum well based QCLs, where the threshold current density is

an order of magnitude larger (see for example Refs. [55, 285–289]). It is also

important to note that gain is present in the region of positive differential resis-

tivity and therefore stable operation of the device structure should be feasible.
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A certain degree of electric field tunability is also predicted as for example in

the range of fields from 31 − 34kV/cm the transition energy changes by 10%.
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Figure 9.15: Energy distribution of population of the upper (full line) and

lower (dashed line) laser level of the prototype of a quantum dot cascade laser

structure at the field F = 32kV/cm and temperatures of T = 77K (left) and

T = 150K (right).

9.9 Conclusion

Transport through bound states in periodic arrays of closely stacked quan-

tum dots was analysed in this Chapter. An appropriate theoretical framework

based on nonequilibrium Green’s functions formalism was developed and ap-

plied to calculate the current – field characteristics. As expected, the current

exhibits a strong peak when the potential drop over a period is equal to the LO

phonon energy. The nature of charge transport at this resonance was analysed

in detail. It was found that at low temperatures the peak exhibits a dou-

blet structure with one peak originating from LO phonon scattering between

states of neighbouring periods and the other one from resonant tunnelling to a

phonon replica of the state of the neighbouring period. Therefore the doublet

structure can be considered to be a transport signature of polaron effects. The
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nonuniformities of the quantum dot ensemble act to suppress the weaker peaks,

while the main peak remains present. Finally, a structure with two quantum

dots per period was analysed and it was shown that it had promise to perform

as a quantum cascade laser.



Chapter 10

Conclusions and suggestions for future work

The main achievements of this thesis from the point of view of device applica-

tions can be summarised as follows:

• development of a detailed theory of intraband quantum dot devices,

• implementation of computer codes for the calculation of device charac-

teristics,

• simulation of several existing device structures,

• proposals for new types of devices and their simulation.

In order to achieve this, many fundamental physical questions related to quan-

tum dot properties had to be addressed such as:

• electronic structure and symmetries of states, including the effects of

strain, spin-orbit coupling, piezoelectricity and external fields,

• polaron effects,

• optical absorption and selection rules,

• carrier relaxation and thermal excitation,

• transport of carriers through largely separated or closely stacked quan-

tum dots.

Therefore, many of the results presented in this thesis are of more general

interest than for intraband devices only. Throughout this concluding Chapter,

additional emphasis will therefore be put into underlying the broader nature

of the achievements presented.



199

In Chapter 3, a method for the calculation of electronic structure of square

based pyramidal quantum dots based on materials with zincblende crystal

structure was developed. The method utilises the symmetry of the model to

block diagonalise the matrix obtained in the plane wave representation of the

eight-band k ·p model. The method arose from the need to significantly speed

up the calculation, and therefore to have both a fast and accurate way to de-

termine the energy levels in quantum dots. Although the interest throughout

the thesis was mainly on the energy levels in the conduction band relevant

for intraband devices, and the method was developed with these applications

in mind, a calculation of hole levels in quantum dot superlattices was also

performed in Chapter 3. Interesting features in the hole spectrum were ob-

served, being a consequence in the change of strain and consequently the hole

character from light- to heavy-hole.

The same overall strategy was applied in Chapter 4 to calculate the elec-

tronic structure of hexagonally shaped III-nitride quantum dots. In this case,

however, a different basis set of plane waves adapted to a hexagonal, rather

than a square lattice, needed to be applied. A simulation of available ex-

perimental data on intraband absorption was also performed in this Chapter,

giving an insight into the origin of selection rules on intraband absorption in

these dots.

In Chapter 5, a theoretical model of an optically pumped quantum dot in-

traband laser was introduced and a proposal of an appropriate device based on

InAs/GaAs quantum dots emitting in the long wavelength mid-infrared part

of the spectrum is given. The model starts from a full calculation of single par-

ticle wavefunctions, which were subsequently used to evaluate the transition

rates between states, from which one can find the populations of energy levels

in the steady state, and finally the gain under the given pumping conditions.

The main result of this Chapter is that the proposed device should outper-

form the equivalent quantum well based device by two orders of magnitude.

From a broader perspective, these results confirm and illustrate the expected
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advantages of quantum dot intraband devices.

Chapter 6 was devoted to the simulation of intraband optical absorption

spectra of several existing QDIP structures. Apart from the selection rules

imposed by symmetry, additional approximate selection rules, being a conse-

quence of the flat dot shape were established. The main conclusion arising

from this Chapter from the methodological point of view, is that it has been

established that the widely used one-band effective mass method gives qual-

itatively good results, but that the 8-band k · p method should be used to

make quantitative predictions. It has been also shown theoretically that the

response of most QDIP structures is due to z−polarised radiation, although

many of these experiments are performed in normal-incidence geometry.

In Chapter 7, DWELL detectors were studied. It has been established that

contrary to the usual thought, the origin of change of the operating wavelength

cannot be due to well width variations only, but rather comes from the un-

intentional changes in dot dimensions due to changed growth conditions. It

is also shown that under certain circumstances, the intraband Stark shift can

be observed in these devices, yielding certain prospects for electrically tunable

QDIP devices.

A full model of carrier transport in QDIPs was developed in Chapter 8.

The model does not contain any fitting parameters and predicts the observable

quantities such as dark current and responsivity, starting from the information

about quantum dot geometry and the material system used. While modelling

of the absorption spectrum only, presented in Chapter 6, is extremely useful

in predicting the positions of peaks in the photocurrent spectrum, it cannot

predict their relative intensities. The full transport model is capable of doing

that, which has been demonstrated by the prediction of the appearance of an

additional peak in the photocurrent spectrum at higher biases in agreement

with the experimental results for the structure investigated.

With the theoretical framework developed for optically pumped lasers and

QDIPs, it remained to develop a theory of quantum dot cascade lasers, to
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include all types of intraband devices. Therefore, transport through quantum

dot superlattices with closely coupled quantum dots, was investigated in Chap-

ter 9. For the structure with only one quantum dot per period (not capable of

producing gain), a doublet structure of the main LO phonon resonance peak

was predicted, as a transport signature of polaron effects. Finally, a structure

with more quantum dots per period, capable of producing gain, and therefore

being a prototype of a quantum dot cascade laser, was also investigated.

The work presented in this thesis gives a comprehensive theory of quan-

tum dot intraband optoelectronic devices, but also opens many other research

directions in view of improving the existing models, applying them to differ-

ent devices, as well as calculation methodology development. Some of these

directions are presented in what follows.

• Investigation into the other material systems for optically

pumped lasers. The optically pumped laser was designed in Chap-

ter 5 in InAs/GaAs quantum dot material system, as the most explored

where self-assembled quantum dots are concerned. Other material sys-

tems should also be investigated as some of them may offer a larger

value of gain. Simpler pumping schemes than the one proposed can be

achieved with double or multiple quantum dots, which however increases

the growth complexity.

• The development of nonequilibrium Green’s functions theory of

the gain properties in steady state in optically pumped lasers.

The present model assumes a Gaussian shape of the gain linewidth as

a consequence of nonhomogeneities, which is an approach which should

be sufficient for quantum dot ensembles. However, one can also envisage

single dot experiments where the linewidth is determined by interactions

in the system, and where a detailed lineshape theory would be necessary.

• Absorption to continuous density of states. Within the current

approach the continuum of states (3D continuum and 2D continuum
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provided by the wetting layer and/or embedding quantum well) is ar-

tificially discretised by embedding the dot in a box, and it is checked

that the box is sufficiently large for the system where line broadening

due to nonuniformities of the dot ensemble is taken into account. How-

ever, such an approach is not feasible for single dots where one would

obtain a discrete spectrum due to discretisation, instead of a continuous

one. Therefore, the development of an appropriate method able to treat

absorption to continuous density of states is necessary.

• Simulation of different QDIP structures. A variety of QDIP struc-

tures based on different material systems was reported. The model de-

veloped in Chapter 8 enables in principle the treatment of any of these

structures. It would be interesting to simulate these, particularly recently

emerging structures operating at room temperature [68, 74].

• Influence of rapid thermal annealing on QDIP performance.

Rapid thermal annealing is an experimental technique where interdiffu-

sion of Ga atoms into the InAs dot is caused, therefore changing the dot

potential profile and consequently the energy level structure. The pro-

cess of interdiffusion can be modelled by solving the diffusion equation

for the Ga content in the dot, and further either the absorption spectrum

calculation or the full transport simulation can be performed.

• Design and simulation of photovoltaic quantum dot infrared

photodetectors. For certain applications it is important to have ex-

tremely low dark current, while high responsivity is not essential. QDIPs

operating at zero bias, therefore called photovoltaic, fulfil this require-

ment. In order to maximise the responsivity they have to be designed in

such a way that the whole system is asymmetric, which can be achieved

either with multiple dots per period or by embedding the dots in asym-

metric wells.

• Intraband absorption in quantum dots doped with a single mag-
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netic ion. It has been mentioned in Sec. 1.1 that such quantum dots

are currently feasible. Signatures of electron spin – magnetic ion spin

interaction, as well as magnetic ion – magnetic ion interaction should be

visible in the intraband spectrum of such dots. Furthermore, from the

applied point view, these offer the prospect for magnetic field tunable

absorption.

• Designs of quantum dot cascade lasers. In Chapter 9 it has been

demonstrated that quantum dot cascade lasers are feasible. Following

the technological advances in quantum dot engineering, an interest will

arise in the optimisation of quantum dot cascade laser designs. The

theory developed in Chapter 9 can be used to evaluate the quality of

such designs.

• Transport in structures with combined quantum wells and

quantum dots. An alternative approach to quantum dot cascade lasers

is to combine injectors consisting of quantum wells with the core of the

active region consisting of quantum dots. It is a challenging task to de-

velop a computationally tractable theory of transport in such structures.

• Application of symmetry to other multiband Hamiltonians and

in other basis than plane waves.

• Symmetry based calculations of polaron spectrum.

• Development of the plane wave methodology for treating single

quantum dots. It has been pointed out in Sec. 3.4 that the plane wave

method actually calculates the electronic structure of a 3D quantum dot

superlattice and that a very large box is needed if one wants to treat

truly single quantum dots, due to the slow strain decay away from the

dot. A way has to been found to renormalise the Fourier transform of

strain calculated on larger box to the strain on a smaller box that will

be used for electronic structure calculations.
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Hamiltonian matrix elements in plane wave

basis

All the elements in the Hamiltonian matrix in the plane wave basis are Fourier

transforms of a linear combination of the elements of the form E1 = f(r)eij,

E2 = f(r)eijkl, E3 = f(r)xαyβ, E4 = f(r)xαyβki and E5 = f(r)xαyβkikj,

where ki (i ∈ {1, 2, 3}) is the differential operator ki = −i ∂
∂xi

, eij are the

components of the strain tensor and f(r) is of the form

f(r) = fQDχQD(r) + fM(1 − χQD(r)),

where fQD is the value of a material parameter in the quantum dot and fM its

value in the matrix, χQD(r) is the quantum dot characteristic function equal

to 1 inside the dot and 0 outside the dot. Their Fourier transforms (3.8) are

within the recipe for ordering of differential and multiplication operators (2.55)

thus given by

E1(q,k) =
(2π)3

V
fMeij(q − k) − (2π)6

V 2
∆f
∑

q′

χQD(q − k − q′)eij(q
′),

E2(q,k) =
1

2
(kl + ql)

[

(2π)3

V
fMeij(q − k)−

−(2π)6

V 2
∆f
∑

q′

χQD(q − k − q′)eij(q
′)

]

,

E3(q,k) = fMJxαyβ(q − k) − (2π)3

V
∆fχxαyβ

QD (q − k),

E4(q,k) =
1

2
(ki + qi)

[

fMJxαyβ(q − k) − (2π)3

V
∆fχxαyβ

QD (q − k)

]

,
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E5(q,k) =
1

2
(kiqj + qikj)

[

fMJxαyβ(q − k) − (2π)3

V
∆fχxαyβ

QD (q − k)

]

,

where ∆f = fM −fQD, eij(q) are Fourier transforms of the strain components

given by

eij(q) =
1

(2π)3

∫

V

d3r exp (−iq · r) eij(r).

χxαyβ

QD (q) is Fourier transform of the quantum dot characteristic functions

χxαyβ

QD (q) =
1

(2π)3

∫

QD

d3r xαyβ exp (−iq · r) ,

where the integration goes only over the volume of the quantum dot and

Jxαyβ(q − k) = δkz ,qz

1

Ly

∫ Ly/2

−Ly/2

e−i(qy−ky)yyβ dy
1

Lx

∫ Lx/2

−Lx/2

e−i(qx−kx)xxα dx,

where α and β are non-negative integers from the set

(α, β) ∈ {(0, 0); (1, 0); (2, 0); (0, 1); (1, 1); (0, 2)}.

The center of the pyramid base is taken as the origin of the coordinate system

(Fig. 3.1). The analytical formulae from which eij(q) are derived in a crystal

with zinblende symmetry are given by (2.93). After integration, the character-

istic functions can all be expressed as a linear combination of integrals of the

type

Im(q) =

∫ b/2

0

xmeiqx dx,

where m ∈ {0, 1, 2, 3} and can therefore be evaluated analytically. All the

integrals Jxαyβ(q − k) are evaluated analytically, as well.
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Hamiltonian matrix elements in cylindrical

basis

In order to calculate the Hamiltonian matrix elements in a cylindrical basis,

one needs to evaluate expressions of the form

Ui =

∫

V

b∗nml(r, z, ϕ)Tibn′m′l′(r, z, ϕ) r dr dz dϕ.

The one-band Hamiltonian contains the terms of the form

T1 = F (r, z),

T2 = (k2
x + k2

y)F (r, z),

T3 = k2
zF (r, z),

and therefore after performing the integration one can see that the Hamiltonian

matrix elements will only have terms of the form

U1 = δmm′

∫ Rt

0

dr rfnmfn′m′Fl−l′(r),

U2 = δmm′

∫ Rt

0

dr

(

r
dfnm

dr

dfn′m′

dr
+mm′ fnmfn′m′

r

)

Fl−l′(r),

U3 = δmm′

∫ Rt

0

dr rfnmfn′m′

(

2π

Ht

)2

ll′Fl−l′(r),

where

Fl−l′(r) =
1

Ht

∫ Ht/2

−Ht/2

dz e
−i 2π

Ht
(l−l′)z

F (r, z).

The explicit form of the functions F (r, z) is

Fa(r, z) = PQDχQD(r) + PBχB(r) + PQWχQW(r),
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and when the external bias is also included additional terms appear, which are

of the form

Fb(r, z) = |e|Fz.

PQD, PB and PM are the values of the material parameter P in the dot, barrier

and well respectively and χQD, χB and χQW are functions equal to 1 inside

and 0 outside the dot, barrier and quantum well (without the dot) region, re-

spectively. The quantum well term clearly exists only in the case of quantum

dots-in-a-well structures. The integral Fl−l′(r) can then be performed analyti-

cally for each of the quantum dot shapes with cylindrical symmetry. However,

in the more general case when the indium composition varies smoothly (for

example when the effects of segregation or intermixing occur), Fa(r, z) is not

piecewise constant, and the integration in Fl−l′(r) has to be performed numer-

ically. This approach was chosen and numerical integration was performed to

keep the simulation general enough such that the effects of a smooth variation

of indium composition can be included as well.

In addition to the terms of type T1, T2, T3, the elements of the kinetic part

of the 8-band Hamiltonian contain the terms

T4 = kzF (r, z),

T5 = k∓F (r, z),

T6 = kzk∓F (r, z),

T7 = k2
∓F (r, z),

where k± = kx ± iky. After the integration one finds that the corresponding

terms in the Hamiltonian matrix are of the form

U4 =
π

Ht
(l + l′)U1,

U5 = − i

2
δm,m′∓1

∫ Rt

0

dr rFl−l′(r) ×

×
[

fnm

(

dfn′m′

dr
±m′ fn′m′

r

)

− fn′m′

(

dfnm

dr
∓m

fnm

r

)]

,
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U6 = −i π
Ht

δm,m′∓1

∫ Rt

0

dr rFl−l′(r) ×

×
[

lfnm

(

dfn′m′

dr
±m′ fn′m′

r

)

− l′fn′m′

(

dfnm

dr
∓m

fnm

r

)]

,

U7 = δm±1,m′∓1

∫ Rt

0

dr rFl−l′(r) ×

×
(

dfnm

dr
∓m

fnm

r

)(

dfn′m′

dr
±m′fn′m′

r

)

.

The strain part of the Hamiltonian has terms of the type

T8 = F (r, z)eij,

T9 = F (r, z)eijk∓,

T10 = F (r, z)eijkz,

where eij are the strain tensor components. After performing the integration

over ϕ, one gets

U8 =

∫ Rt

0

dr rfnmfn′m′

1

Ht

∫ Ht/2

−Ht/2

dz e
−i 2π

Ht
(l−l′)z

eij(r, z),

where

eij(r, z) =
1

2π

∫ 2π

0

dϕe−i(m−m′)ϕeij(r, z, ϕ),

and therefore the term U8 becomes of the same form as U1. In a similar manner,

the terms U9 and U10 are of the same form as U5 and U4.
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Material parameters

Material parameters used in this work are summarised in this Appendix.

Table C.1: Material parameters of GaAs relevant for calculations of interaction

with phonons [2]

Parameter GaAs

Acoustic deformation potential [eV] DA 6.8

Longitudinal sound velocity [km/s] vs 5.2

Density of the material [g/cm3] ρ 5.32

LO phonon energy [meV] vs 36

Static dielectric constant εst 13.10

High frequency dielectric constant ε∞ 10.9
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Table C.2: Material parameters of InAs, GaAs and InGaAs relevant for band-

structure calculations [3]

Parameter InAs GaAs boving

Lattice constant [Å] a 6.0583 5.65325

Energy gap [eV] Eg 0.417 1.519 0.477

Spin-orbit splitting [eV] ∆so 0.39 0.341 0.15

Effective mass at Γ point [m0] m∗ 0.026 0.067 0.0091

Luttinger parameters γL
1 20.0 6.98

γL
2 8.5 2.06

γL
3 9.2 2.93

κL 1.20 7.68

Interband matrix element [eV] EP 21.5 28.8 -1.48

Chemical valence band offset [eV] VBO -0.59 -0.80 -0.38

Deformation potentials [eV] ac -5.08 -7.17 2.61

av -1.00 -1.16

b -1.8 -2.0

d -3.6 -4.8

Elastic stiffness constants [GPa] C11 832.9 1221

C12 452.6 566

C44 395.9 600

Piezoelectric constant [C/m2] ε14 0.160 0.045
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Table C.3: Material parameters of GaN and AlN relevant for bandstructure

calculations (part 1) [4]

Parameter GaN AlN

Lattice constant [Å] a 3.189 3.112

c 5.185 4.982

Energy gap [eV] Eg 3.510 6.25

Crystal field splitting [eV] ∆cr 0.010 -0.169

Spin-orbit splitting [eV] ∆so 0.017 0.019

Effective mass at Γ point [m0] m‖ 0.20 0.32

m⊥ 0.20 0.30

Luttinger parameters A1 -7.21 -3.86

A2 -0.44 -0.25

A3 6.68 3.58

A4 -3.46 -1.32

A5 -3.40 -1.47

A6 -4.90 -1.64

Conduction band offset [eV] 1.89
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Table C.4: Materials parameters of GaN and AlN relevant for bandstructure

calculations (part 2) [4]

Parameter GaN AlN

Hydrostatic deformation potential [eV] a‖ -4.9 -3.4

a⊥ -11.3 -11.8

Deformation potentials [eV] D1 -3.7 -17.1

D2 4.5 7.9

D3 8.2 8.8

D4 -4.1 -3.9

D5 -4.0 -3.4

D6 -5.5 -3.4

Elastic stiffness constants [GPa] C11 390 396

C12 145 137

C13 106 108

C33 398 373

C44 105 116

Piezoelectric constants [C/m2] ε15 0.326 0.418

ε31 -0.527 -0.484

ε33 0.895 1.561

Spontaneous polarisation [C/m2] Psp -0.034 -0.090

Static dielectric constant εr 9.6
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Computational issues

All computational codes for the calculations presented in this thesis were de-

veloped by the author of the thesis, except for the usage of standard numerical

packages such as LAPACK [198] and Numerical recipes [174]. The codes were

developed for single processor machines in the Fortran 77 programming lan-

guage. Since the emphasis in the thesis was on the results of the calculation

and their interpretation, a few words about the codes will be given in this

Appendix.

In Chapters 3 and 5, the code developed for symmetry based 8-band k · p
calculations of electronic structure of square based pyramidal quantum dots

based on materials with zincblende crystal structure was used. The main

part of the code calculates the energy levels and wavefunctions, and additional

programs calculate the absorption cross sections, the transition rates due to

interaction with phonons, and solve the rate equations. Most of the compu-

tational time is spent on diagonlisation of the main Hamiltonian matrix. For

the size of matrices typically necessary for energy level precision better than

10meV, the execution time is of the order of tens of minutes. It is the method-

ology developed in Chapter 3 that significantly reduced the computational time

and memory requirements. Otherwise, within the straightforward plane wave

approach, large parallel machines would be necessary for the calculation.

In Chapter 4, the code developed for symmetry based 4-band k · p calcu-

lations of electronic structure of hexagonal quantum dots based on materials

with wurtzite crystal structure was used. Additional program calculates the
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absorption matrix elements using the output of the previous one. Typical

execution times of this code are again of the order of 10 minutes.

In Chapters 6, 7, 8, the code developed for one band and 8-band k ·p calcu-

lations of cylindrically symmetric quantum dots was used. The code consists

of programs for finite element strain distribution calculation, the calculation

of energy levels and wavefunctions, absorption cross sections, carrier transi-

tions rates, solution of rate equations, and finally current calculation. Due to

the reduction of the problem from 3D to 2D, execution times of the electronic

structure calculation are of the order of a few minutes only. The finite-element

calculation takes about the same time. However, application of the code to

QDIPs is very computationally demanding, due to the large number of tran-

sition rates that need to be determined. Therefore, the typical execution time

necessary to calculate the current at the given value of the field is of the or-

der of a week. The calculation was therefore performed on a multiprocessor

computer cluster grinch.

The previous code was extended in Chapter 9 to calculate Wannier states

of a quantum dot superlattice and to solve the self-consistent equations for

Green’s functions and self-energies. Since the calculation was performed with

only a small number of states involved, it can be done quite efficiently. For

example, with only one state per period involved and in the nearest neigh-

bour approximation, one iteration of the self-consistent procedure takes a few

seconds only. However, scaling with the number of states is not favourable.

The code developed for polaron spectrum calculations was also used in

Chapter 9.
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[266] Z. Ikonić, P. Harrison, and R. W. Kelsall, IEEE Trans. Electron Devices

53, 189 (2006).
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