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KING’S COLLEGE LONDON

Abstract

Spontaneous Segregation of Adaptive Agents in Auctions

by Aleksandra ALORIĆ

When a population of agents divides into subgroups, and subsequently interactions

happen between largely fixed subgroups, we regard the population as segregated. The

segregated state might confer benefits, e.g. a buyer who has a strong preference for a

particular seller has shorter exploration time when buying. As it might also add vulner-

ability to a system, understanding how segregation emerges is essential.

To investigate whether the segregation can arise spontaneously, as a consequence of

repeated interaction and co-adaptation among the agents, a stylised model of double auc-

tion markets and traders is developed and investigated. We show that in a system with

two discrete-time double auctions and a large population of adaptive traders a collabo-

rative segregated state emerges.

When the typical scale of market returns become higher than some threshold, the

preferred state of the system is segregated: both buyers and sellers are segmented into

subgroups that are persistently loyal to one market over another. The segregated state

is stabilised by some agents acting cooperatively to enable trade and provides higher re-

wards than its unsegregated counterpart both for individual traders and the population

as a whole. Realising that the agent’s adaptation is the key promoter of the segrega-

tion, we investigate the robustness of our findings in continuous double auctions with

sophisticated trading strategies – adaptive agents still prefer to segregate. Accordingly,

to create informed regulations e.g. in large financial systems, we believe it is necessary to

investigate benefits and risks that segregation brings and consequently how to promote

or suppress it.



4

Acknowledgements

Apart from the tremendous efforts of myself, this research relied largely on the sup-

port and guidelines of many others. I take this opportunity to express my gratitude

to the people who have been instrumental in the successful completion of this project.

My intellectual debt is to my supervisor, Prof. Peter Sollich for enlightening discussions

and endurance of continually increasing phenomenology emerging from a model that

seemed so trivial at the beginning. Physics intuition and knowledge that he shared have

been greatly appreciated. I owe my deepest gratitude to Prof. Peter McBurney whose

empirical insights inspired this research and who kept helping me put my research into

the wider context. I am indebted by his kind words of encouragement during times when

the end seemed unattainable. I would also like to thank Dr Tobias Galla for stimulating

discussions and fruitful collaboration.

My research and time spent in the Disordered Systems Group would not be the same

without the “disordered girls”. Silvia, I am especially grateful for all the endless discus-

sions about our oscillating research success, our amazing students and King’s experience,

for the sleepless nights we were working together before deadlines, and for all the fun we

have had living and working together. Barbara, thanks for so many inspiring moments

while travelling, visiting art galleries and discussing politics.

For being a scientist I am greatly indebted to Petnica Science Center that already dur-

ing highschool formed me as a researcher with integrity, a critical thinker and an idealist

in constant pursuit of better scientific society.

Nemanja, I am grateful for all the drawings of Sale that made me laugh when it was

the hardest. Thanks for supporting me and believing in me, despite blaming my thesis

for the last four years of our long-distance life.

Finally, I must express my very profound gratitude to my family for providing me

with unfailing support and continuous encouragement throughout so many years of

study. This accomplishment would not have been possible without Sofija, Teodora, Stanija

and Ratko. Thank you.



5

Contents

Declaration of Authorship 1

Abstract 3

Acknowledgements 4

List of Figures 8

List of Abbreviations 11

List of Symbols 12

1 Introduction 15

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Review of existing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Aims and approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Previously published work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Model for spontaneous segregation 29

2.1 Model of learning at double-auction markets . . . . . . . . . . . . . . . . . 30

2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Analytical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 The Large Memory Limit 63

3.1 Finite N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.1 2 players - synchronisation . . . . . . . . . . . . . . . . . . . . . . . 63



6

3.1.2 4 players - onset of segregation . . . . . . . . . . . . . . . . . . . . . 71

3.2 Population with a fixed preference for buying pB . . . . . . . . . . . . . . . 75

3.3 2-subgroup population (p
(1)
B , p

(2)
B ) . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Model Extensions 110

4.1 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Multiple markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Toth and Scalas model of continuous double auctions . . . . . . . . . . . . 126

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Evolutionary Auctions 136

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 Evolutionary dynamics for games with continuous strategy space . . . . . 139

5.2.1 Functional system-size expansion . . . . . . . . . . . . . . . . . . . 141

5.2.2 Replicator limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3 Evolutionary auctions with discrete strategy space . . . . . . . . . . . . . . 154

5.3.1 All-pay biological auctions APA . . . . . . . . . . . . . . . . . . . . 158

5.3.2 All-pay auctions with 2 rewards . . . . . . . . . . . . . . . . . . . . 166

5.3.3 Second price all-pay auctions . . . . . . . . . . . . . . . . . . . . . . 171

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6 Concluding Remarks 175

6.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A Details of the Fokker-Planck description 184

B Binder cumulant 189

C Envy-free Nash Equilibrium 192

D Numerical simulations 196



7

E Linear stability analysis of the Fokker-Planck equation 200

F Linear noise analysis for evolutionary auction games 205

G Evolutionary stable strategies in two reward APA games 212

H Discrete evolutionary auction games 216

I SAPA game on finite domain 222

Bibliography 225



8

List of Figures

2.1 Illustration of the market mechanism . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Illustration of the market mechanism - equilibrium trading price . . . . . . 33

2.3 Steady states in numerical simulations . . . . . . . . . . . . . . . . . . . . . 37

2.4 Binder cumulant of a simulated system of adaptive agents . . . . . . . . . 39

2.5 Persistence times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Decay of the attraction autocovariance with time . . . . . . . . . . . . . . . 41

2.7 Steady states of the reduced model . . . . . . . . . . . . . . . . . . . . . . . 49

2.8 Binder cumulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Returns of the strongly segregated states . . . . . . . . . . . . . . . . . . . . 52

2.10 Segregation thresholds for different symmetric agent types, at different

markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.11 Segregation threshold for various agent types . . . . . . . . . . . . . . . . . 56

2.12 Segregation threshold for fully adaptive traders . . . . . . . . . . . . . . . 57

2.13 Regions of different steady states in the space of parameters r and β . . . 59

3.1 2 player-dynamics phase portraits . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 2 players (θ, β) phase diagram and returns . . . . . . . . . . . . . . . . . . 69

3.3 2 players synchronisation threshold for system parameters θ and pB . . . . 71

3.4 4 players (θ, β) phase diagram and returns . . . . . . . . . . . . . . . . . . 73

3.5 4 players (β, pB) phase diagram and returns . . . . . . . . . . . . . . . . . . 74

3.6 Homogeneous population βc as function of (θ1, θ2) . . . . . . . . . . . . . . 78

3.7 Steady states of decisive buyers . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.8 Single population steady state types in the space of market order parame-

ters (D1, D2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.9 Types of steady states of population with decisive traders . . . . . . . . . . 86



9

3.10 Types of steady states of population with indecisive traders . . . . . . . . 88

3.11 Types of steady states of 2 symmetric subpopulation system in (β, pB) space 94

3.12 Average returns of different steady states as function of forgetting rate r . 97

3.13 Decisive agents’ returns for different steady states in the r → 0 limit . . . . 98

3.14 Indecisive agents’ returns for different steady states . . . . . . . . . . . . . 100

3.15 Instability of the strongly segregated state and decay to a weakly segre-

gated state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.16 Binder cumulant time series for different forgetting rates r at the fixed in-

tensity of choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.17 Strongly segregated lifetime for different system sizes N . . . . . . . . . . 106

3.18 Binder cumulant time series for different initial conditions . . . . . . . . . 107

4.1 Effect of α on the segregation threshold βs in population with adaptive

buy/sell preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Effect ofα on the segregation threshold βs in population with fixed buy/sell

preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 Return of the unsegregated state α = 0 against intensity of choice β . . . . 116

4.4 Segregation threshold βs as a function of the third market bias . . . . . . . 119

4.5 Simulated steady states of a system with two symmetrically biased and a

fair market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Simulated steady states of a system with three markets Θ = (0.3, 0.7, 0.7) . 121

4.7 Simulated steady states of a system with three fair markets . . . . . . . . . 122

4.8 Segregation of uninformed traders in the Toth model . . . . . . . . . . . . 131

4.9 Segregation of informed traders in the Toth model . . . . . . . . . . . . . . 132

4.10 Steady state distribution and wealth averages for different information lev-

els at different markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1 Fixed point mixed strategy distributions of evolutionary auction games

with different number of players k . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Fixed point distributions for the APA evolutionary game with two rewards

and variable number of players k . . . . . . . . . . . . . . . . . . . . . . . . 151



10

5.3 3-player All-Pay Auction with 3 available strategies . . . . . . . . . . . . . 159

5.4 3-player All-Pay Auction with 4 available strategies . . . . . . . . . . . . . 160

5.5 Fixed point distribution of 3-player All-Pay Auction with 21 available strate-

gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.6 Power Spectra in 3-player APA game with variable number of strategies . 163

5.7 Power Spectra in k-player APA game with L = 21 different strategies . . . 164

5.8 2-player APA game with 3 available strategies . . . . . . . . . . . . . . . . 165

5.9 Fixed point distribution of the 5-player APA game with two equal rewards 167

5.10 Fraction of players bidding the highest value (s = V ) as function of α in

the 5-player APA game with two rewards . . . . . . . . . . . . . . . . . . . 168

5.11 Effect of α on the power spectra in the 4-player 2 rewards APA game with

L = 20 strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.12 Power spectra of APA game with 2 equal rewards . . . . . . . . . . . . . . 170

5.13 Fixed point and power spectra in the 3-player SAPA auction with discrete

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

G.1 Existence of the Evolutionary Stable Strategy . . . . . . . . . . . . . . . . . 215

H.1 3-player APA power spectra for different strategy number parity . . . . . 220

H.2 3-player APA game with no reward splitting . . . . . . . . . . . . . . . . . 221



11

List of Abbreviations

TAC Trading Agent Competition

CAT CATallactics; CAT tournament is a mechanism design tournament

EWA Experience Weighted Attraction

ZI Zero Intelligence

NE Nash Equilibrium

APA All-Pay Auctions

SAPA Second highest bid All-Pay Auctions

ESS Evolutionary Stable Strategy



12

List of Symbols

a ask value

a(s, s1, . . . , sk−1) payoff function

Aγ attraction to an action γ

Ai
γ denotes single agent’s (i) attraction

A
(g)
γ denotes group’s (g) attraction

A vector of attractions

b bid value

B Binder cumulant

Cγδ autocovariance function

k number of players in an auction

L number of discrete strategies

Mn n-th jump moment

n trading period counter

n(s) number of agents playing strategy s

N number of agents

Nγ number of agents taking an action γ

pτ probability to trade in a role τ ∈ {B,S}, e.g. buyer or seller

r forgetting rate

Qγ probability that an order is valid

s strategy

S return, specially Sγ return at action γ

t rescaled time, t = nr

Tγ trading probability, e.g. probability of finding a trading partner

V value of reward in evolutionary auctions



13

α forgetting rate interpolating parameter (Chapter 4)

α reward ratio (Chapter 5)

β intensity of choice, specially βs is segregation threshold

γ action, γ = {m, τ}where m denotes market, τ denotes order type

∆ attraction difference ∆ = A1 −A2, ∆i and ∆(g) as for attractions A

θm bias of a market m

θ() Heaviside step function

µ distribution mean, specially µa mean ask, µb mean bid

πm trading price at market m, specially πeq is an equilibrium price

π(s) fitness when playing strategy s

σ distribution standard deviation

σβ() sigmoid function σβ(x) = 1/(1 + exp(−βx))

φ(s) strategy cumulative distribution

ψ(s) strategy probability density distribution

ω frequency



14

Sofiji, Teodori, Staniji i Ratku



15

Chapter 1

Introduction

1.1 Motivation

When a population of agents divides into subgroups, and subsequently interactions hap-

pen between largely fixed subgroups, we regard the population as segregated. For in-

stance: buyers who always buy from the same type of merchants, airline companies who

target only a subset of a buying population, individuals who trade books on Amazon,

but when trading electronic devices their choice is eBay.

An argument can be made that a segregated state develops as a consequence of some

attributes exogenously imposed, such as wealth distribution (airline companies are gro-

uped based on targeting customers of different budget constraints) or geographical dis-

tribution (all conditions being equal an agent will probably prefer to buy from a vendor

in his/her geographical vicinity). However, changes in the economic system – such as

e-commerce or cryptocurrencies – raise the question if segregated states can emerge en-

dogenously.

Especially, the increasing fraction of global trades that now takes place online in the

form of high-frequency algorithmic trading (around 30% of equity trading in the UK and

around 60% in the USA [1]) raises many challenges for market regulations. To make

regulation as informed as possible more research is needed to understand the possible

long-run states of systems of coevolving markets and traders. The segregated population

of traders is one possible long-run state and although it might confer benefits, e.g. an

agent who has a strong preference for a particular seller has shorter exploration time

when buying, it might also add vulnerability to a system, for example by reducing market
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liquidity.

Market consolidation versus market fragmentation is another term very closely re-

lated to the questions of segregation. In a consolidated or concentrated market, ma-

jority of trades occur in one (or a few) as opposed to numerous trading venues. With

proliferation of trading venues, especially with online marketplaces and darkpools1, the

question whether market fragmentation confers advantages or disadvantages is a widely

researched topic (see e.g. [3]). Trading costs, liquidity, execution times, latency arbitrage

are among investigated consequences of market fragmentations. Whether market frag-

mentation aids or hinders these effects is a long standing debate [4–9]. Specially, in an

already fragmented financial markets that mostly employ continuous trading, authors

of [10] argue that latency arbitrage needs to be considered and they show that it nega-

tively affects market efficiency. Conversely, discrete-time market is proposed as a way

to improve efficiency which motivates our investigation of stylized discrete time double

auctions.

Understanding if states like segregation emerge in large systems of adaptive agents

is a challenging question in the domain of engineering sciences, too. Technological ad-

vances created the need for development and management of extensive automated sys-

tems (e.g. online marketplaces with algorithmic traders, but also systems for monitoring

and control of urban traffic flow, etc. [11]). For optimal design and control of such sys-

tems, it is essential that an engineer knows about possible collective states as e.g. seg-

regation and how to induce them (if beneficial) or suppress them (if risky). All things

considered, we believe investigating how segregation emerges is necessary.

To understand the segregation-like phenomena we believe the first step is to repro-

duce it under controlled conditions. This would allow us to isolate causes and effects

and gain possible insights into benefits of such state. In this thesis, I develop one such

model of interacting adaptive agents using which we can observe and analyse sponta-

neous segregation. In most of what follows, I focus on the emergence of segregation

in a population of adaptive traders who choose among different markets, e.g. eBay or

1Alternative trading venues that guarantee anonymity, which among other things prevents price drops
when large quantities of shares are sold, see e.g. [2].
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Amazon, New York Stock Exchange or London Stock Exchange, or across various cur-

rency exchange markets, etc. The central questions this thesis addresses are: Under what

conditions does the segregation emerge? Does the segregation bring benefits to a popu-

lation? When does a competition between markets lead to market coexistence and when

does a subset of markets or monopoly arise? We extend the list of questions and describe

further the aims and approaches taken in this research after a brief review of existing

work.

1.2 Review of existing work

The emergence of collective behaviour among autonomous agents has been a prolific re-

search topic among physicists during the last couple of decades. The main reason for this

is a presumption that statistical physics techniques that contributed to the understanding

of macroscopic phenomena built from an understanding of large systems of interacting

microscopic entities can be applied to various biological, economic and social systems.

A large body of work exists on collective motion of animals [12–14], mass movement

of people [15, 16], but also voting patterns [17, 18] (for a detailed overview of physics

application in the domain of social sciences see e.g. Castellano et al. [19]), etc.

In a similar vein, in this thesis, I address a macroscopic effect – segregation, i.e.

the emergence of group structure within an initially homogeneous population, inves-

tigating whether it can arise spontaneously, just as a consequence of interactions at the

agents’ level and individual adaptation. It is worth nothing that, differently from the

Schelling segregation [20], i.e. the emergence of spatial separation between different

types of agents, especially different ethnicities, we address segregation in the form of

group formation in the space of preferences or some other individual attribute, rather

than the actual physical space. Nevertheless, the remarkable result from the Schelling

model informs us that, contrary to intuition that a strongly racially segregated society

must be a signal of intense racism, a small preference to be surrounded by neighbours

of the same ethnicity gets pronounced by interactions and the population tends towards

full segregation.
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Another interesting cellular automata based model is the sugarscape, a model of artifi-

cial societies developed by Epstein and Axtell [21]. The authors study many phenomena

emerging out of a few simple update rules based on nearest neighbour interactions, but

especially, they address the evolution of a system when trading is introduced. The agents

need two commodities for survival, sugar and spice, both initially scattered across space

and can be acquired either directly or by trade. The study offers a decentralised perspec-

tive into trading assuming that neighbours locally bargain until a mutually agreeable

deal is reached, investigating this way the questions of efficient markets and equilibrium

trading prices. In the simulated system, it was shown that trade often occurs among the

same agents and some agents would persistently obtain one of the commodities through

trade while the other will be directly extracted from the surrounding space.

Other authors focus on the Minority game [22], a mathematical formalisation of the

“El Farol” bar [23] problem, because of its simplicity, yet rich phenomenology [24]. In the

simplest form of the game, an agent needs to decide whether to go to the bar or not and

only if (s)he is in the minority group (either as an agent in the bar or at home) (s)he wins.

Typically agent’s strategies are formalised in terms of instructions how to act based on

the history. Although apparently the game does not have any relation to financial mar-

kets, it is commonly used as a market toy model because the choices to go or to stay can

be interpreted as to buy or to sell and if the price is determined based on the relation be-

tween the demand and supply, an agent in the minority will receive higher returns. Many

extensions to the game exist, and while some are known to reproduce market stylised

facts such as volatility clustering and fat tails in the return distribution [25], others aim

to replicate segregation-like effects. Especially, in the study [26] it was noted that “. . . a

population of competing agents with similar capabilities and knowledge will tend to

self-segregate into opposing groups characterised by extreme behaviour”. The variant of

the minority game used in this study supposes that agents can choose to follow a global

strategy based on collective memory – this is the primary driver of segregation. Another

group of authors consider multi-asset minority games [27] and show that in a system of

agents who have the option of copying a winning (minority) strategy from their neigh-

bourhood with some probability p, a self-organized grouping of strategies arises when
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the probability p is large enough. Grouping was only found when the underlying inter-

action network is well connected, and when agents have perfect information about the

success of their neighbours. Compared to these studies where the minority game is used

as a metaphor for financial markets and a large amount of public information is shared

among agents, in this thesis I focus on studying segregation effects among agents who

participate in auctions with different types of mechanisms and the information they have

at their disposal will always be only their own history.

Specialisation or grouping in agent’s strategy space was studied in the paper by

Hanaki et al. [28] with a focus on a system of agents competing for parking spots in a one-

way street. As in the model we propose in the following chapters, the authors study the

development of agents’ preferences when they learn based on their trials with rewards

(the closer to the city centre the better) and penalties (an agent is punished if (s)he reaches

the centre without parking). When an agent’s strategy is the distance at which they start

searching for the first available spot where they will park, the authors notice that at high

choice intensities2 specialization in the population occurs – some agents learn to be lucky,

they always start searching for parking space very close to the target location, while the

others settle for parking far from the city centre aiming to avoid disappointment of not

finding a parking spot in the locations closer to the city centre. Although this study fo-

cuses on a different problem, the techniques we use, primarily to analyse interactions of

only a few players, resemble their analysis very closely with a difference in the details of

return mechanisms.

A more closely related model with adaptive agents in a financial market was studied

by Brock and Hommes [29]. They examine the dynamics of agents who have to decide

whether to purchase a sophisticated price predictor or use a freely available naive predic-

tor of price. Even though the agents are faced with a choice that might be related to our

investigation goals, this scenario differs from our model in a number of ways; apart from

the more sophisticated trading strategies of the agents, it assumes perfect information

about previous prices and the performance of any price predictor. What is important

2Intensity of choice is a parameter of agent’s learning dynamics that will be defined and used through
the thesis. In its essence it describes how strongly agents rely on the choices that were the most rewarding
in the past.
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in the analysis of Ref. [29], however, is that the limit of a large population of agents is

implicitly taken, so that the system can be described entirely in terms of the fraction of

agents choosing a given action (price predictor) at any instant in time, with these frac-

tions evolving deterministically in time. The authors of Ref. [29] show that depending on

the intensity of choice, these two fractions can exhibit rich dynamics. The origin of this

is that when all traders use sophisticated predictors, the cost of this predictor leads some

agents to start choosing the free predictors, while there is a reverse effect from positive

feedback when all traders use the simple predictor.

Kirman and Vriend [30] study emergence of loyalty between buyers and sellers in

a fish market in Marseille. Motivated by two empirical facts, buyer-seller loyalty and

a large price dispersion, the authors develop a stylised model to describe the observed

phenomena. In its core question, this work is very closely related to ours, as stated pre-

viously: once segregated, the population largely interact within specific subgroups that

indeed resembles a long lasting loyalty. However, aiming to address very particular mar-

ket, the authors have made several assumptions that we will avoid later: the number of

sellers is an order of magnitude smaller than the number of buyers, and there is an as-

sumed difference between buying and selling strategy, not only in the order price (as we

will later consider as well), but the seller is supposed to make a decision how (s)he will

address a loyal buyer. These assumptions are reasonable in the type of market the authors

are discussing, where the interaction is direct, but when modelling interactions over an

anonymous market such as the currency exchange, there is no reason for the disparity of

buyer and seller numbers, and similarly most of the markets will hide traders identity.

Finally, it is not entirely clear whether the observed loyalty is only a consequence of a spe-

cial strategy trait that is loyalty related. Nevertheless, the authors replicated stylised facts

observed in the real market and found that the loyal buyers receive an overall higher ben-

efit as opposed to buyers who randomise their choice of sellers. Contrary to this model

the loyalty we observe between traders and markets is signalled by persistence in mar-

ket visitation patterns, but the markets do not distinguish between loyal or randomising

agents. As we will argue in more detail later, the benefit the segregation will bring is

stability in the number of trades.
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The Trading Agent Competition [31] was developed to instigate more research into

optimal automated trading strategies evaluated against fixed market rules. Similarly

but in the reverse direction, the CAT market design tournaments [32–35] were aimed

at promoting development and investigation of more sophisticated market specialists

strategies. As TAC tournament organisers provided the market setup at which trading

strategies competed against each other, CAT tournament organisers populated the sys-

tem with automated traders who had a variety of trading and market choosing strategies.

Submitted market designs in CAT tried to attract many traders, but also to maximise the

profit from the traders taking place under their governance. Some of the trading strate-

gies that participated in the CAT tournaments were the ones we use extensively in our

study (e.g. Zero Intelligence Traders), but other types of strategies had more sophisti-

cated order pricing mechanisms, e.g. chartists or fundamentalists. Similarly, a variety

of market choosing strategies were implemented ranging from random market selection

to sophisticated learning strategies. During the five consecutive successful competitions

(2007-2011) a pool of different market strategies was acquired, which made it a useful

tool for development and evaluation of new market mechanisms (see e.g. [33, 36]). But

even more interestingly in the context of this study, in an in silico experiment based on

CAT Market Design tournaments segregated states were observed in the co-adaptation of

markets and traders [34]. Some markets ended up focusing on attracting specific traders,

and some traders preferred to trade at a specific market, although no such fixed propen-

sities were imposed from the beginning. Further signals of segregation like phenomena

include persistence in customer visitation patterns [37], segmentation in credit markets

in the Philippines [38], specialisation and herding in financial markets [39], etc. As men-

tioned before, it can be argued that something else in these systems (geographic, wealth

or other heterogeneity) prompted the segregation-like effect. However, the observations

made in CAT-based experiments suggest that an endogenously developed segregation is

possible too. This encouraged us to develop an analytically tractable model to investigate

such possibility.

More research focuses on the exploration of the already segmented population, in

order to target the product to a particular, previously untargeted niche of customers.
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These lines of work are a continuation of Adam Smith’s [40] postulate that specialisation

leads to better exploitation (see for example [34, 41–43]).

Finally, authors such as Ellison et al. [44] and Shi et al. [36] focus on studying compe-

tition of markets and conditions under which this contest might lead to multiple market

coexistence and conversely when it will lead to monopoly. The authors name two signif-

icant effects in the competition of double auctions, one of them is the positive size effect,

i.e. agents prefer trading in a market where there are already many traders of the oppo-

site type (e.g. sellers like trading at markets where there are many buyers), as the choice

among offers is better. The authors additionally suggest the existence of the negative size

effect in a double auction market, as agents will prefer being in the minority group to

trade more often (e.g. buyers see the benefit of trading at a market where there are not

many buyers, see e.g. [45]). Ellison et al. [44] point out that due to the negative size ef-

fects coexistence of many markets is possible. On the other hand Shi et al. [36] investigate

which of the two effects is stronger and finds that due to more substantial positive effects

in many situations monopoly will be a favoured end-state. When there is a strong market

differentiation, the authors of [36] argue that market coexistence is possible, especially for

markets that have different pricing policies, e.g. one market charges a fixed participation

fee versus the market that charges a profit fee.

Although in what follows we will consider markets without fee charging policies, we

will find that various system parameters enable markets coexistence, e.g. both markets

will be populated with roughly the same numbers of traders, but we also identify the

parameters for which one market is dominant. Interestingly we will find out that coexis-

tence of the two markets will be driven by agents’ learning parameters and it can happen

even when the two markets are identical. Important to note is that in principle these dif-

ferent results are not necessarily comparable, because not only do we avoid considering

fee charging policies, but the previous works focused on finding either the Nash Equilib-

ria or states favoured by the replicator dynamics while we look into dynamics based on

agent’s learning, which we believe is more appropriate in the context of agents engaging

in economic interactions3.

3We believe a more relevant update mechanism in a social system is related to adaptation by learning
rather than by natural selection. Although it might be argued that some basic reflex strategies could have
emerged as favoured by evolution, in repeated interactions such as the ones we will study, the time scales
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We are additionally fascinated by segregation-like effects in an ecological context.

Namely, there are many collective phenomena that share similarities with the segregated

states, e.g. generalist vs. specialist in virus-host relationships [47], compartmentalization

in food webs [48], emergence of mutualistic networks and hierarchical structures between

species [49], nestedness in networks of mutualistic relationships [50], etc. All these ex-

amples signal some segregation within the population indicated with interactions that

primarily take place within specific subgroups. All these effects are argued to offer sta-

bility and robustness to ecological systems (see e.g. [49]). Another segregation-like effect

is related to one of the fundamental questions of evolution – speciation, i.e., emergence of

new species. Besides what is called allopatric speciation (that assumes a geographic barrier

in species interaction which is crucial for the speciation), empirical evidence also asks

for models and understanding of sympatric speciation, where speciation happens even

without geographical barriers (e.g., in Lakes Malawi and Victoria [51]). A large body of

work is devoted to mathematical understanding of mechanisms that could lead to this

phenomena, including various concepts that are themselves similar to segregation: poly-

morphism (occurrence of two or more alternative phenotypes that cannot be explained

by mutation only; the distinctive types are assumed to coexist in the same habitat with

random mating [52]), disruptive selection (where selection favours the coexistence of two

extremal trait values rather than an averaged one), but also specialization in either choos-

ing mating partners or mutualist partners [53] (an example of speciation model in a plant-

pollinator system can be found in [54]). All these examples are fascinating phenomena on

their own and their investigation helps in building a deeper understanding of speciation.

Our attention was especially attracted by evolutionary auction games [55] in which

the authors report that when many rewards are offered specialisation in the population

occurs. Early on authors [56–59] realized that many interactions in a biological context

have forms of auctions, too, for example: energy investment in competition for resources

are those more suitable for learning. Additionally, Sato and Crutchfield [46] show that an equation similar
to the replicator dynamics can be developed starting by learning rather than the birth/death process under
natural selection.
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(e.g., competition of tree height to reach most of the sunlight) or development of orna-

ment or weapon traits in males to attract a female or defend a territory. The main dif-

ference between evolutionary auctions and auctions studied in an economic context for

a very long time lie in the fact that in the biological context a realistic assumption is that

everyone pays their bid. Compared to early works [59, 60], Reiter et al. [55] extend evo-

lutionary games asking how the bidding strategies change when competitors are offered

more than one reward. Interestingly, already the introduction of the second reward sug-

gests that the evolutionary stable state is such that the population is specialised in low

and high bidders. What additionally differs evolutionary auctions compared to games

studied to a large extent such as prisoner’s dilemma or the hawk-dove game is that its

strategy space is continuous - an agent in a contest for the reward can bid any real value

s. Contrary to the discrete strategy games where evolution is studied with evolution-

ary dynamics methods, such as replicator and similar equations, such formalism has not

been developed for continuous strategy games, but the games have been studied only by

means of static tools, such as evolutionary stable strategies [56, 57]. Building on the works

of [61–64], we develop a macroscopic equation describing evolutionary dynamics start-

ing from a microscopic birth-death process of players. Our goal is hence to investigate

whether under evolutionary adaptation agents who interact via evolutionary auctions

will specialise and if such states are stable under the dynamics we study.

1.3 Aims and approach

The central question of this thesis is the possibility of segregation emergence among

adaptive traders who interact via auctions. In particular, can we develop a stylised model

of the double auction markets and traders aiming to reproduce phenomena observed in

CAT tournaments [34]? Can we identify segregation drivers? Are there benefits that

segregation brings to a population? Are the findings robust under changes of model

assumptions?

As opposed to the paradigm of a rational, fully informed, utility maximising, repre-

sentative agent, in pursuing answers to those questions we will start from an agent-based

model (for a detailed review, see [65]), which is a growing new economic paradigm trying
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to allow for all the heterogeneity that exists in financial systems. Many existing models

already showed a good level of success in reproducing market stylised facts (e.g. [66–

68]), but also offering insights into the emergence of collective effects like herding and

trade-following (e.g. [69, 70]). Although there is growing interest in developing larger

and empirically tuned Agent Based Models to allow for direct comparison with financial

data, we will take a different route and build a simple, stylised model hoping to unravel

prevalent driving forces behind phenomena, without overspecialization to any type of

market interaction.

Different possible double auction mechanisms that prompted our research are de-

scribed here [35, 71, 72]; In particular we start with a discrete time, global price set-

ting market, that we can fully describe analytically. We proceed and test our findings

in the more realistic continuous double auction markets. When modelling agent’s trad-

ing strategies we follow the route proposed by previous authors [73–75] and assume

that agents are trading at random [76]. This assumption is often motivated by the de-

sire to reduce system complexity in the space of trading strategies to be able to inves-

tigate system properties that are the consequence of market mechanisms or intrinsic to

the system. Once we have developed an analytical description and understanding of the

system adaptation with these stylised traders, as in the case of market mechanisms, we

also probe robustness of our findings with more sophisticated trading strategies – the

fundamentalists.

Finally, when modelling how agents choose between the markets we rely on the Expe-

rience Weighted Attraction learning [77, 78]. The two main paradigms in agent’s adap-

tation are reinforcement and belief-based learning [74]. The belief-based paradigm as-

sumes agents are acutely aware of the existence of other players: often an agent is able

to keep track of other agent’s scores, infer their strategy and base his/her choices on that

belief, all of which we assume should not be taken for granted in the system we address.

Instead, we suppose agent’s actions are based on the reinforcement learning - trial and

error and decision making based only on agent’s own history. This approach does not

even assume the agent is aware of the market mechanisms nor existence and numbers

of other players. Agent only tries different options and based on those forms attraction



Chapter 1. Introduction 26

to these choices in the future that are with the logit function transformed into a market

choosing strategy, e.g. probability of visiting any of the markets. As we do not assume

market mechanisms nor other players’ choices are always easily accessible information

available to each agent, in what follows we focus on investigating adaptation based on

reinforcement learning, though we address different versions of it.

As concluded in the review by Duffy [74], despite the abundance of literature on dif-

ferent learning models, the consensus between reinforcement learning vs. belief-based

learning only exist in as much that both of the learning mechanisms are better predictors

of the agent’s adaptation than previously used static analysis such as the Nash equilib-

rium. On the question which of the paradigms is more justified results are less conclusive

as often the two lead to experimentally indistinguishable results, or experiments were

not as long as necessary to demarcate between the two. Thus, we believe that the choice

must be made case by case, depending on the context in which the learning is imple-

mented (for example in our model we argue belief-based model is not appropriate) until

more conclusive experimental findings are available.

In the domain of agents in the ecological context whose interactions we model by

evolutionary auctions, in this thesis we ask when the specialisation is possible. When

is the specialised population a fixed state of the evolutionary dynamics? We aim to ad-

dress the emergence of specialisation among agents who adapt through the natural se-

lection. We focus on previously reported evolutionary stable states that show the emer-

gence of specialisation in a population of agents playing evolutionary auctions. We de-

velop macroscopic equations of evolutionary dynamics from the underlying birth-death

process driven by the repeated interactions. This result was not previously extended to

games with continuous strategy space, while now it enables us to study dynamics of the

evolutionary auctions. We analyse the fixed points, their stability and other dynamical

phenomena such as noise induced cycles for different type of evolutionary auctions.

1.4 Structure of thesis

The remainder of this thesis progresses as follows. In Chapter 2, a novel model of double

auction markets and adaptive traders is developed. Compared to similar models which
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study the emergence of grouping or specialised agents, this model considers the pos-

sibility of the emergence of segregation in the context of double auction markets. We

show results of the numerical simulations that demonstrate the existence of a segregated

steady state in a domain of large intensity of choice - agent’s learning parameter. The

detailed analytical description that retrieves numerical results with remarkable precision

and gives insights into benefits that segregation brings to the whole population are pre-

sented.

Chapter 3 continues an analytical investigation of the system of agents and markets

introduced in Chapter 2; especially, we address the large memory limit where the transi-

tion between an unsegregated and the segregated state is sharp. Firstly we analyse small

systems of two and four agents that are tractable and easy to interpret, yet nevertheless

show a variety of steady states of synchronised and segregated type. We continue anal-

ysis on a large homogeneous population where we introduce all necessary techniques to

detect and categorise different types of steady states. We conclude by returning to the

numerical model to analyse stability and the existence of a variety of segregated states

the theory predicts.

In Chapter 4 we address robustness of our findings by extending our model to probe

effects of various simplifying assumptions we have introduced. We show that a more re-

alistic trading models (e.g. agents with budget constraints, fundamentalist trading strate-

gies, continuous double auction market with limit order books, etc.) share qualitative

features of the simplified model – there is a threshold intensity of choice above which the

population of agents segregates. We re-examine the learning mechanism proposed and

show that our results are robust under a wide variety of reinforcement learning models.

Finally, we address segregation in systems with more than two markets and show that

not all traders will visit all types of market, i.e. markets will appear specialised even

when there is no intention to target subsets of traders.

In Chapter 5 we turn to adaptive agents in a biological context. Instead of learning

we consider evolutionary dynamics of agents who interact in the form of k-player all-pay

auctions. We extend existing methods of deriving macroscopic equations of the replica-

tor type for the games with continuous strategy space. In particular, for the finite system
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sizes we analyse effects of demographic noise on the fixed points of the dynamics. Fi-

nally, we investigate under which conditions an analogue of segregation – specialisation

– occurs and study stability of such states.

Chapter 6 draws conclusions based on the research carried out within the thesis, re-

views the contributions that this thesis has made and discusses how this work can be

extended in the future.

1.5 Previously published work

1. Alorić, A., Sollich, P., & McBurney, P. (2015). Spontaneous segregation of agents

across double auction markets. In Advances in Artificial Economics (Lecture Notes in

Economics and Mathematical Systems 676). Springer International Publishing.

2. Alorić, A., Sollich, P., McBurney, P., & Galla, T. (2016). Emergence of Cooperative

Long-Term Market Loyalty in Double Auction Markets. PLoS One , 11(4).

Autor contributions: A.A., P.S. and P.M. conceived the study. A.A. and P.S. carried out

the research, A.A. developed the simulations, carried out the analytical calculations and

prepared the figures. A.A., P.S. and T.G. interpreted the data and shaped the study. All

authors wrote and reviewed the manuscripts.

Published papers cover the content of Chapter 2 and parts of Chapters 1 and 4. Chap-

ter 5 is collaborative work with Tobias Galla who devised the study and developed the

method presented in section 5.2.1, I have carried out the research, developed the simula-

tions and carried out the analytical calculations and prepared figures and other relevant

results presented in the chapter and supporting material.
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Chapter 2

Model for spontaneous segregation

of adaptive agents facing choice of

double auctions

While the CAT tournament results referred to in Chapter 1 provide a clear impetus to

study spontaneous segregation, they are difficult to analyse theoretically due to the com-

plexity of both the agents’ trading strategies and the market mechanisms of the com-

peting markets. We therefore devise and analyse a stylized individual-based model of

a double auction. We focus on agents using experience-weighted attraction learning

(EWA) [77] to learn from the payoffs received for past actions and thus optimise future

trading. By developing a stylized model we obtain an intuitive and analytically tractable

tool for understanding whether and when segregation can emerge spontaneously in a

system of competing double auction markets. We start with a desription of the Model

and then provide Numerical results, summarizing the main findings from our numerical

simulations. In the following subsections we develop an Analytical description in the

large market limit, using a Fokker-Planck approach to investigate the steady states of the

system mathematically and in particular to develop insights into the properties of the

segregated state.
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2.1 Model of learning at double-auction markets

To address the question of spontaneous segregation, we study a stylized model of a pop-

ulation of adaptive traders and two double auction markets. We hypothesize that seg-

regation can arise as a product of co-adaptation of traders, and construct on this basis a

minimal model for both traders and markets. We investigate this in detail by numeri-

cal simulation, and provide a full theoretical understanding and characterisation of the

observed segregation effects.

Traders. Following the works of Gode and Sunder [76], Ladlay [73] and Duffy [74],

we populate our system with agents without sophisticated trading strategies, essentially

zero-intelligence traders. This is done because our aim is to investigate whether market

loyalty can arise as an intrinsic property of a system of interacting agents without reliance

on complex trading strategies. The orders to buy at a certain price (bids) and orders to

sell at a certain price (asks) are assumed to be unrelated to previous trading success or

any other information. We assume that bids, b, and asks, a, are normally distributed

(a ∼ N (µa, σ
2
a) and b ∼ N (µb, σ

2
b )), and that their means satisfy µb > µa.

The assumption that the average bid is higher than the average ask is not crucial;

it mainly allows a larger number of successful trades as the resulting trading price is

typically below the average bid and above the average ask. In the work of Gode and

Sunder (Ref. [76]) various demand and supply curves were used and thus both orderings

of average bids and asks, 〈a〉 > 〈b〉 and 〈a〉 < 〈b〉, were investigated: they lead qualita-

tively to the same results. We similarly explored the case µa > µb, and apart from the

obvious quantitative consequence that a smaller fraction of orders is valid for trade and

consequently the number of successful trades is smaller, the qualitative results remain

the same.

In the spirit of the work of Gode and Sunder [76], a, b can be thought of as cost and

redemption values for each trader. These values are private to each trader but correspond

to order prices if submitted bids and asks are truthful and reflect the actual valuation of

goods by the agents. Traders will not accept any price from the market: sellers will trade
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only if the trading price π is no less than their asking price (π ≥ a), and buyers require

that the trading price is no greater than what they bid (π ≤ b)1.

After each round of trading each agent receives a score, reflecting their payoff in the

trade. The scores of agents who do trade are assigned as in works of previous authors [76,

79]: buyers value paying less than they offered (b), and so their score is S = b− π. Sellers

value trading for more than their ask (a), and so S = π− a is a reasonable model for their

payoff. We note that these scores are based on a linear model and do not reflect effects

such as diminishing returns. Traders who do not get to trade in a given round receive

return S = 0. The assignment of returns that we are using was introduced in Ref. [76],

where it is associated with budget constraints of "Zero Intelligence-Constrained" traders.

Exactly these agents were shown to reproduce the efficiency of human traders in dou-

ble auction markets. Although the assignment of returns is the same in our model, we

do not use the term budget constrained in the description as our agents are allowed to

persistently buy (or sell), which is possible only if there is no overall wealth constraint2.

Markets. The role of a market is to facilitate trades so we define markets in terms of

their price-setting and order matching mechanisms; for an in-depth review of possible

double auction market mechanisms see [35, 80]. We consider a single-unit discrete time

double auction market where all orders arrive simultaneously and market clearing hap-

pens once every period after the orders are collected. (Note that each period consist of

one round only, which is why we will talk only in terms of periods.)

We also assume that a uniform price is set by the market – once all orders have arrived,

these are used to determine average bid 〈b〉 and average ask 〈a〉 and set the global trading

price between:

π = 〈a〉+ θ(〈b〉 − 〈a〉) (2.1)

where θ fixes the price closer to the average bid (θ > 0.5) or the average ask (θ < 0.5);

1This is in line with Gode and Sunder [76] where the traders that turned out to be more similar to human
traders were the zero-intelligence ones with budget constraint, i.e. traders who were not allowed to trade at
loss – higher than the redemption value for buyers and lower than the cost value for sellers.

2We note that also in Ref. [76], agents were preassigned the role of a buyer or a seller and were not
allowed to change this during trading, thus acting as if there was no overall constraint on the possession of
money/goods for trade.
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the parameter θ thus represents the bias of the market towards buyers or sellers3. Once

the trading price has been set, all bids below this price, and all asks above it, are marked

as invalid orders as they cannot be executed at the current trading price. The remaining

orders are executed by randomly pairing buyers and sellers; the execution price is π.

Note that we assume here that each order is for a single unit of the good traded.

FIGURE 2.1: Illustration of the market mechanism. Left: example distri-
butions of orders received in one trading period (orange – orders to buy,
blue – orders to sell, black – the trading price for θ = 0.8). Right: ex-
ample distributions of returns from validated orders at θ = 0.8. In the
situation shown, where buyers are in the minority after validation of or-
ders, all buyers find a trading partner (orange). If all sellers could trade
they would achieve the “desired” return distribution (light blue). But only
a randomly selected fraction finds a trading partner, leading to the “real-
ized” return distribution (dark blue); the other sellers receive a return of
zero. The realized sellers’ return distribution has the same total area as the

buyers’ return distribution as both represent the total number of trades.

Fig. 2.1 shows graphically how the trading price is set and how the return distribu-

tions look after invalid bids and asks are eliminated. If, as in the example in the figure,

the trading price is closer to the average bid (θ > 0.5): only a fraction of the sellers who

submitted valid asks gets to trade, but with the higher trading price – so those that do

trade receive higher returns. The buyers who submitted valid bids are in a minority com-

pared to the sellers and so determine the number of trades. They can all trade, but receive

relatively low returns on account of the high trading price.

3Note that traders are not informed about these market biases, nor the market mechanism in general;
they only obtain information through the scores they receive.
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An example of a discrete time double auction market is the Opening Auction of New

York Stock Exchange which is used to determine the opening prices on the market. At

the opening auction, once all the orders are submitted, the trade occurs at the single price

set by the market that maximises the volume of trades, the equilibrium trading price.

In Figure 2.2 we show the demand and supply curves corresponding to the bid and ask

FIGURE 2.2: Illustration of the market mechanism - equilibrium trading
price. The demand and supply curves, showing the number of orders to
buy above (resp. sell below) a certain price. The vertical black line marks
the equilibrium trading price, i.e. the price at which demand equals supply,

while the arrows show how the trading price changes with θ.

distributions shown in Fig. 2.1. The most efficient resource allocation happens when the

demand equal supply - the equilibrium trading price. In a setup like ours where the

bids and asks are Gaussian random variables with equal variances (σa=σb) and when the

number of buyers is equal to the number of sellers at a given market the equilibrium

trading price corresponds to θ = 0.5, i.e. the price is πeq = (〈b〉 + 〈a〉)/2 (marked with

black line in Fig. 2.2). In the following sections we will address cases of efficient markets

(the trading price is equilibrium trading price, we also call them fair markets), but we also

allow possibility that the markets are not efficient and that the trading price deviates. In

Fig. 2.2 we note that for θ > 0.5 there is excess of supply, suggesting that not all sellers’

needs will be accommodated at that trading price, which we also demonstrated with the

desired and realized return distribution in Fig. 2.1.
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Reinforcement Learning Rule. So far we have described how agents interact at a given

market. We next define how they decide how to trade (to buy or to sell), and where to

trade (at which market). Agents trade repeatedly in our model, and they adapt their

preferences for the various choices from one trading period to the next. We focus on the

case of two markets, though the model can easily be extended to an arbitrary number of

markets.

We assume that each agent decides on an action at the beginning of each trading

period, only based on his or her past experience. To formalize this we introduce a set

of attractions Aγ for each player, one for each action γ: buy at market 1, sell at market

1, buy at market 2, sell at market 2. The attractions will generally differ from player to

player, but we suppress this in the notation for now. The attractions are updated after

every trading period, n, using the following reinforcement rule:

Aγ(n+ 1) =







(1− r)Aγ(n) + rSγ(n), if the agent chose action γ in round n

(1− r)Aγ(n), if the agent chose an action δ 6= γ in round n.

(2.2)

The quantity Sγ(n) is the score gained by taking action γ in the n-th trading period. The

length of the agents’ memory is set by r: agents weight returns obtained ∆n time steps

ago with exponentially decaying factors (1− r)∆n, effectively corresponding to a sliding

window of length of order 1/r for the weighted averaging of past returns.

The update rule above is a special instance of a more general experience-weighted

attraction rule [77, 78], which has been shown to be in reasonable agreement with exper-

imental data on human learning in repeated games. Many special cases of this rule are in

common use in evolutionary biology and in the game-theoretic literature. One important

variant of EWA is a case in which all actions are updated with their returns, no matter

whether that action was actually taken or not (belief based models [77]). This assumes

that an agent can calculate or at least estimate the return (s)he would have obtained from

actions γ that (s)he did not choose to play [46, 81]. We argue that an agent would not

normally have sufficient information to do this in the context of a double auction market:

(s)he would need access to the current price, and to the numbers of valid bids and asks
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submitted. This is unrealistic, which is why we posit that scores of unplayed actions are

updated with an effective payoff of zero. One plausible alternative that does not rely on

estimation of returns from unplayed actions would be an update rule where the attrac-

tions to unplayed actions are forgotten with a different rate (or not forgotten at all); we

return to this in Chapter 4.

It only remains to specify how agents choose their actions based on the attractions.

This is done in line with the experience-weighted attraction literature [77, 78], simply

by converting the attractions to probabilities using the so-called softmax or logit function.

Explicitly, each agent takes action γ in trading period n with probability P (γ|A(n)) =

exp (βAγ(n))/
∑

γ′ exp (βAγ′(n)) ∝ exp (βAγ(n)), where β is the intensity of choice [81]

and regulates how strongly the agents bias their preferences towards actions with high

attractions. For β → ∞ the agents choose the option with the highest attraction, while

for β → 0 they choose randomly with equal probabilities among all options.

One way to interpret β is as parameterizing the degree of human rationality, where

β → ∞ corresponds to the limit of unboundedly rational players who always choose

the optimal course of action [82]. Another interpretation is that 1/β sets a scale of return

differences below which traders no longer significantly differentiate between the options

available to them. Indeed, if all Aγ(n) are within 1/β of each other then the exponents in

the softmax function differ by less than unity and so the resulting probabilities are close

to uniform. The existence of such a threshold is not implausible: higher return differences

should drive a trader towards optimizing his or her actions more, e.g. by following the

historically most rewarding options, while the choice between actions giving nearly the

same return will be largely random. The intensity of choice β is sometimes denoted λ

and has also been referred to as response sensitivity [28, 77, 78] or learning sensitivity [46].

2.2 Numerical results

Emergence of loyalty - return-oriented and volume-oriented traders. We begin our

exploration of the two-market setup defined above with results from numerical sim-

ulations (more details in Appendix D). Unless specified otherwise, numerical simula-

tion parameters are as detailed in Table D.1 in Appendix D. All agents start with equal
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preferences for all four choices, i.e. Aγ = 0 ∀γ ∈ {B1,S1,B2,S2} where B = buy and

S = sell. To aid visualization we project the four-dimensional space of attractions Aγ

down to two coordinates, the overall attraction to buying as against selling, defined as

∆BS = (AB1 + AB2) − (AS1 + AS2), and the attraction to market 1 as against market 2,

∆12 = (AB1 + AA1) − (AB2 + AS2). Due to the nonlinearity of the softmax function, a

single-peaked distribution of attractions with a non-zero spread will, for large enough

intensity of choice β, become a multimodal distribution in the space of preferences. This

effect cannot be regarded as genuine segregation. For this reason we will avoid repre-

senting agents in the space of their preferences Pγ , and use the underlying attractions

instead.

In Fig. 2.3 (left) we present the steady state attraction distribution for a population of

traders with intensity of choice β = 3.45. The initially narrow, delta-peaked distribution

of attractions (all initialized at 0) has been broadened due to diffusion arising from the

random nature of returns and from the stochasticity of the agents’ actions. The steady

state shown in the left panel of Fig. 2.3 represents an unsegregated population of traders.

While this population does include some traders with moderately strong preferences for

one of the actions, preferences remain weak on average. The population as a whole re-

mains homogeneous in the sense that there is no split into discernible groups.

Fig. 2.3 (right) contrasts this scenario with the steady state of a system with exactly

the same set of parameters but at the higher intensity of choice β = 7.14. The popu-

lation of traders now splits into four groups, with the agents persistently trading prefer-

entially at one of the markets and with a preferred buy or sell action. We refer to this

state as segregated. The markets shown in this example (Fig. 2.3) are biased symmetrically

(θ1, θ2) = (0.3, 0.7): if an agent buys at market 1, or sells at market 2 (actions B1 or S2),

and if they manage to trade, they are awarded with a higher score on average than if

they were to choose one of the other two actions (cf. Fig. 2.1, where sellers are the group

with the higher average return). In this symmetric market setup there are therefore two

different kinds of behaviour among the four segregated groups. The agents in two of the

groups (B1 and S2) specialize in actions that award them higher average return, we call

those traders “return-oriented”. We will refer to the agents in the other two groups (B2 or
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FIGURE 2.3: Steady states in numerical simulations. Steady state dis-
tributions of attractions for buying vs selling and for market 1 vs 2, re-
spectively, for forgetting rate r = 0.1. For low enough intensity of choice
(left, β = 3.45), an unsegregated steady state arises, while higher β (right,
β = 7.14) causes traders to segregate into four discernible groups. The
histograms along the axes show the marginal distributions of ∆BS and
∆12, respectively. From the marginals we note that in the segregated state
roughly half of the population specialize in buying (similarly half prefers
market 1), although the fractions of buyers (sellers) at different markets are
not the same. The data shown are taken from 100 trading periods of 100
independent runs (for more details on numerical simulations and system
parameters, see D). The colour scale in the central scatter plots shows the

probability density of agents [83].

S1) as “volume-oriented” for reasons which we explain shortly. If all traders were return-

oriented, they would have no partners to trade as there would be no agents playing B2

or S1. Consequently everyone would receive zero returns. The fact that some traders

have developed persistent preferences for placing orders that give them a lower average

return (here B2, S1) can thus be interpreted as cooperative, trade-enabling behaviour.

Due to the market mechanism, the agents who choose one of B2 or S1 will have their

orders rejected as invalid more often (see the group of buyers in Fig. 2.1). However, those

whose orders are accepted will form a minority group in the market and will always find

a trading partner. Hence, when submitting valid orders, these traders trade more often

so we will call them “volume-oriented”.

There is a tendency for agents to cluster around the diagonal and anti-diagonal in the
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two-dimensional projection shown in Fig. 2.3. Inspection of the underlying attractionsAγ

shows that this arises because many agents have one large attraction, for their preferred

action, while their other attractions are close to zero. For example if a return-oriented

agent, say a buyer at market 1, has attractions A ≈ (AB1, 0, 0, 0), then this projects to

the diagonal ∆BS = ∆12 = AB1. Similarly a volume-oriented trader who prefers to sell

at market 1 is projected to the anti-diagonal −∆BS = ∆12 = AS1 if his/her other three

attractions are close to zero. The fact that the attractions of non-preferred actions are

often small comes from the fact that, within our reinforcement learning dynamics, agents

gradually forget the scores of actions they only use rarely.

To quantify the observed change in the distributions of agent attractions or prefer-

ences as we go from unsegregated to segregated states, we measured higher cumulants

of the distributions P (∆BS) and P (∆12). Specially we tracked the Binder cumulant [84]:

B = 1−
〈(∆− 〈∆〉)4〉P (∆)

3〈(∆− 〈∆〉)2〉2P (∆)

, (2.3)

as it is a good indicator of segregation because it has different limiting values for uni-

modal and bimodal distributions. The Binder cumulant takes the valueB = 0 for a Gaus-

sian distribution, while B = 2/3 for a distribution consisting of two equally weighted

sharp peaks (in Appendix B we show how Binder cumulant is calculated the two limit-

ing cases).

Figure 2.4 shows values of this Binder cumulant for different intensity of choice, with

all other parameters being same as in the previous figures. We note that for low β, the

Binder cumulant of our distributions approaches value characteristic of Gaussian distri-

butions as expected. At the other extreme, in the high β regime, the cumulant increases

towards the other extreme, Binder cumulant values of a distribution consisting of two

sharp peaks with equal weight. The transition between these two regimes is sharper for

smaller values of r, making it possible to estimate the critical intensity of choice for the

onset of segregation.

Persistence and time correlation. The above results indicate that segregation is seen

above a critical intensity of choice, β > βs; we defer a discussion of how βs depends on

the parameters of the model to the section Analytical description below. One has to bear
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FIGURE 2.4: Binder cumulant of a simulated system of adaptive agents.
Binder cumulant for P (∆BS) and P (∆12) distributions, averaged over last
100 trading periods versus intensity of choice β for two different values of

the forgetting rate, r = 0.1 and r = 0.01.

FIGURE 2.5: Persistence times. Average time an agent spends in any one
of the four preference quadrants, plotted against temperature for different
values of the forgetting rate, r = 0.1 (blue), r = 0.05 (red) and r = 0.01
(green). Dashed lines are sketches of how the persistence times would
increase further if they were not limited by the length of our simulation

runs. Other parameters as defined in the Table D.1.

in mind though that the data shown in Fig. 2.3 represents the state of the system at a

given time. It therefore does not tell us whether agents really develop loyalty in the sense

that they stay in one of the segregated groups for a long time, or whether they switch

frequently between groups. To exclude possibility that distributions in the high β regime

might be a consequence of some agents’ preferences becoming essentially frozen after the
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first few trades, we investigated to what extent our system is ergodic. Quantitatively,

we measured persistence times in one of four quadrants – “prefer buying at market 1”

(∆BS > 0 and ∆12 > 0), “prefer selling at market 1” (∆BS < 0 and ∆12 > 0), etc.

Figure 2.5 shows the average time an agent spent in any one of these quadrant before

leaving it for another quadrant, for various intensity of choice β. We present these plots

for different values of the forgetting rate r, and using the rescaled time t = rn, where

n is the number of trading periods. (The use of t rather than n ensures that the trivial

effect on persistence times of agents updating their attractions more slowly at smaller

r is removed.) From Figure one sees that at small enough r, the onset of segregation

is accompanied by a rapid increase in persistence times, showing that in the segregated

state agents do indeed remain "loyal" to a given market for long times. On the other hand,

we see that when β are not too high (i.e. above the levelling off of the small-r curves in

Fig. 2.5) then persistence times are short compared to the overall length of our runs, so

that the system is ergodic.

Consistent with the intuitive meaning of a segregated state one finds that at high

enough intensity of choice β the agents develop “loyalty” to a certain market and a choice

of buying and selling: their persistence times are much longer than the timescale of the

small short-term fluctuations in preferences that every agent experiences. These short-

term fluctuations occur on the time scale of the memory-loss, 1/r. On the other hand

the agents are not frozen, i.e. the persistence times are finite and the agents change loy-

alties on longer timescales. Therefore the steady state we observe is well defined rather

than a consequence of agent preferences frozen-in from early fluctuations in their trading

history.

What emerges from the above discussion is that a key feature of a segregated state

is a separation of timescales in the dynamics of the agents. To quantify this further we

consider the autocovariance function

Cγδ(τ) = 〈(Aγ(t0 + τ)−Aγ(t0))(Aδ(t0 + τ)−Aδ(t0))〉P (A), (2.4)

where 〈. . . 〉P (A) indicates an average over the attractions of players in the population,

and over the time t0 in the stationary state. This is a matrix capturing cross-correlations
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FIGURE 2.6: Decay of the attraction autocovariance with time. The inten-
sity of choice β and forgetting rate r are different from the standard values
in Table D.1: here β = 20, r as shown in the legend. This is to highlight the
separation of timescales in the segregated state. A larger than usual initial
number of trading periods was simulated (≈ 20, 000 trading periods) to

ensure the systems reached steady state at such high β.

in time between the attractions to the various actions an agent can take; here as a sum-

mary statistic we look at the trace C(τ) ≡∑γ Cγγ(τ), i.e. the sum of the autocovariances.

In Fig. 2.6 we show how this autocorrelation function depends on time for various for-

getting rates r at fixed β = 20. We observe two separate decays, which is consistent

with the intuition described above: first a fast decay of correlations occurs as an agent

moves around one of the peaks of the distribution P (A), caused by randomness in re-

turns at a given market and the fact that the decisions of each agent remain stochastic.

This fast decay does not lead to full decorrelation but rather to a plateau in the autocor-

relation function: the attractions of an agent stay in the same “loyalty group" (i.e. within

the same peak of P (A)), and the agent’s actions remain correlated. The decay from this

plateau defines the slow timescale, and it is a measure of how long agents typically stay

in one loyalty group before moving to another peak of P (A).

Because the slow timescale increases very rapidly as r is decreased – the theoreti-

cal description below suggests exponential growth with 1/r – we show a rather smaller

range of r in the figure than elsewhere in the paper. Comparing the curves for different



Chapter 2. Model for spontaneous segregation 42

r we note the increase of the initial value of the autocorrelation function with r, which

makes sense as the variance of the fluctuations within each peak of P (A) grows roughly

proportional to r. We also see that the fast time scale is of the order of unity in the rescaled

time units, t = nr, used in the figure. This reflects the fact that the effective memory of

each agent is 1/r trading periods.

Summary and characterisation of segregated state. Summarizing so far, the existence

of a plateau in the autocorrelation function is clear evidence of the segregation of agents

into groups that remain loyal over extended periods of time to a certain set of preferences

defining a group of agents, while at the same time exhibiting small and much faster fluc-

tuations around these typical preferences. This represents the most intuitive definition of

segregation that we can think of. However, the existence of a plateau – quantitatively, a

turning point in a plot of autocorrelation versus log time – would not be easy to utilize

in practice to detect segretation. This is because already for r < 0.1 the amplitude of the

initial fast decay becomes so small that it merges into the plateau, while at the same time

the slow timescale for switching between loyalty groups outgrows the range of times

that can easily be explored computationally. For practical purposes we therefore stick to

multimodality of P (A) as our criterion for segregation.

Our simulation results suggest that even our simplified trading system shows rich

and interesting behaviour. A more detailed analysis (discussed below) reveals a thresh-

old intensity of choice βs such that for values β > βs the system segregates, i.e. the initially

homogeneous population of traders splits into groups that persistently choose to trade

at a specific market. The pattern of these market loyalties is co-operative, in that some

traders – the volume-oriented ones – forego potentially higher returns and instead choose

actions that enable trade for everyone. We will see below that this behaviour has clear

payback, in giving average returns across all traders that exceed those for the obvious

Nash equilibrium. An obvious question that remains open at this point is how robust the

observed segregation behaviour is to variation in our model parameters and setup; we

defer this issue to the following chapters.
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2.3 Analytical description

Fokker-Planck description. To understand in more detail how segregation arises, and

to characterise the nature of the transition to the segregated state, a theoretical analysis of

the model dynamics would evidently be useful. Mathematically our model is Markovian.

To capture the full dynamics one needs to keep track of the attractions Ai
γ to all actions

γ ∈ {B1,S1,B2,S2} of all agents i = 1, . . . , N , or equivalently the attraction vectors

A
i = (Ai

B1, A
i
S1, A

i
B2, A

i
S2) for all agents. One can write down a master equation for

the evolution of the joint distribution of these 4N variables. This equation is however

difficult to work with and not easily analysed further.

In order to make progress it is useful to realise that the payoff an agent receives when

they take a particular action only depends on aggregated quantities, but not on the de-

tailed actions of individual other agents. More specifically the return for a given action is

determined by (i) the bid or ask the agent places; (ii) the validity of the bid or ask placed

and (iii) whether or not a suitable trading partner is found. All quantities (i)-(iii) are ran-

dom objects and so the return received for a given action at any one time will be a random

variable itself. Properties (ii) and (iii) only depend on the macroscopic statistics of bids

and asks placed by the population of traders in its entirety. We now focus on the limit of

large (formally infinite) populations, that is we take the limit N → ∞. The distribution

of bids and asks submitted in any trading round will then follow Gaussian distributions

with mean µa and standard deviation σa for asks, and analogously for bids (N (µb, σb)).

By definition in our model the returns that flow from these bids or asks are non-negative,

implying a truncation at zero of the return distributions. These distributions can then be

written as

P (S|m,B) = QBmTBm
1

QBmσb
√
2π

exp

(

−(S − πm)2

2σ2b

)

θ(S) + δ(S)(1−QBmTBm),

P (S|m,S) = QSmTSm
︸ ︷︷ ︸

agent trades

1

QSmσa
√
2π

exp

(

−(S − πm)2

2σ2a

)

θ(S)

︸ ︷︷ ︸

non-negative return

+δ(S) (1−QSmTSm)
︸ ︷︷ ︸

agent does not trade

.

(2.5)
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The return an agent receives depends on the action γ the agent chooses, i.e. on the market,

m, they trade in, and whether they chose to buy, B, or sell, S . This is reflected in our

notation above.

The first term in each of the above expressions describes the case of a non-zero return.

This occurs with probabilityQγTγ , whereQγ denotes the probability that an agent’s order

is valid; once validated, it is executed with probability Tγ , which is the probability of

finding a suitable trading partner. If the order is executed an agent receives a return S

drawn from a Gaussian distribution, truncated to allow only non-negative payoffs; if the

order was invalid, or was valid but not executed, the agent receives S = 0. This occurs

with probability 1−QγTγ .

To complete the above description of the single agent dynamics for largeN one needs

expressions for the market price πm as well as the probabilities Qγ and Tγ . In the deter-

ministic limit, N →∞, the expression in Eq. (2.1) reduces to

πm = µa + θm(µb − µa),

as the means of the bids and asks submitted in any one round become the population

means µb and µa by virtue of the law of large numbers.

The probabilities that an order is valid, Qγ , are calculated from

QBm =
1

σb
√
2π

∫ ∞

πm

db exp

(

−(b− µb)2
2σ2b

)

,

QSm =
1

σa
√
2π

∫ πm

−∞
da exp

(

−(a− µa)2
2σ2a

)

. (2.6)

These expressions reflect the requirement for a bid or ask to be on the correct side of the

market price, and are based on our assumption of Gaussian bid and ask distributions.

The integrals can be carried out in closed form and expressed in terms of error functions

as shown in Appendix A.

The trading probabilities Tγ , finally, can be written as

TBm =
min

(
NBm, NSm

)

NBm

, TSm =
min

(
NBm, NSm

)

NSm

, (2.7)



Chapter 2. Model for spontaneous segregation 45

where Nγ is the total number of agents taking an action γ and submitting a valid order,

Nγ = NQγ 〈P (γ|A)〉 . (2.8)

In this expression P (γ|A) ∝ exp(βAγ) is given by the appropriate softmax function ap-

plied to an agent’s vector of attractions A. The average 〈. . . 〉 is over the distribution

P (A) = 1
N

∑N
i=1 δ(A − A

i) of attraction vectors across all agents. The expressions (2.7)

can be understood as follows: if a trader submits an order that is valid, (s)he will always

be able to trade if (s)he is in the minority group, otherwise his/her probability of being

able to trade is the ratio of the number of traders in the minority and majority groups.

We can now write an evolution equation for the distribution P (A) of attraction vec-

tors across the population of traders. Writing Pn(A) for the distribution at the end of

trading period n, we have

Pn+1(A
′) =

∫

dAK(A′|A)Pn(A), (2.9)

with K(A′|A) a transition kernel that encodes the dynamics of the system. It is of the

form

K(A′|A) =

∫

dS
∑

γ

P (S|γ)P (γ|A)δ(A′ − eγrS − (1− r)A), (2.10)

where eγ is a four-dimensional vector with an entry of 1 for action γ and entries 0 other-

wise. The learning rule of Eq. (2.2) is enforced through the delta function. It is worth not-

ing that (2.9) is not a standard linear Chapman-Kolmogorov equation as the right-hand

side is nonlinear in the distribution Pn(A). This arises because the kernel K depends on

the trading probabilities Tγ as given in (2.7), which in turn depend on Pn(A). The non-

linearity arises because we have effectively projected from a description in terms of all

4N attractions to one involving only four single-agent attractions.

From our reasoning so far, Eq. (2.9) should constitute an exact description of the

model in the limit N → ∞. It can, at least in principle, be solved numerically starting

from our chosen initial condition P0(A) = δ(A). The presence of the δ-peaks at zero

returns S = 0 makes the kernel awkward to deal with numerically, however. We therefore

make one further simplification and transform to a Fokker-Planck description. This is
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appropriate for small r, i.e. agents with long memory. Note to this end that the change in

attraction A
′ −A in any one trading period is directly proportional to r, see Eq. (2.10).

The Kramers-Moyal expansion (see e.g. [85]) of equation (2.9) is of the form

Pn+1(A)− Pn(A) = −r∂A [M1(A)P (A)] +
r2

2
∂2A [M2(A)P (A)] + . . . , (2.11)

where the scaled jump moments

Mℓ(A) =
1

rℓ

∫

dA′(A′ −A)ℓK(A′|A),

are of order r0. The generic ℓ-th order term on the RHS of equation (2.11) comes with a

factor rℓ so for small r one can proceed by neglecting higher-order terms beyond the first

two. Next, it is useful to introduce a re-scaled time t = rn. A unit time interval in t then

corresponds to 1/r trading periods and hence the memory length of the agents. With

this replacement, Equation (2.11) reduces to a Fokker-Planck equation in the limit r → 0.

Specifically we have in this limit

∂tP (A) = −∂A [M1(A)P (A)] +
r

2
∂2A [M2(A)P (A)] . (2.12)

As before and to keep the notation compact, we have not written out the various compo-

nents of the derivatives and jump moments; e.g. ∂A[M1P ] is to be read as
∑

γ ∂Aγ [M1,γP ].

Segregation behaviour can in principle be characterised by studying the steady-state

solution of the above Fokker-Planck Equation (2.12). Specifically one would investigate

the conditions under which this distribution is multimodal, i.e. has several peaks.

Iterative procedure for solving the Fokker-Planck equation. Similar to the kernel K,

the drift and diffusion coefficients M1 and M2 depend on the trading probabilities Tγ . So

finding the steady state requires an iterative approach:

(i) initialize P (A), e.g. with delta peaked distributions, corresponding to agents without

preferences;

(ii) calculate the number of traders taking the various actions [Eq. (2.8)] and thus the trad-

ing probabilities Tγ [Eq. (2.7)];
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(iii) find the steady state solution of the Fokker-Planck equation (2.12) for these Tγ . Steps

(ii) and (iii) are then repeated until a self-consistent solution is obtained, i.e. until the

Tγ no longer change. We note that finding the stationary distribution of the Fokker-

Planck equation (step (iii)) is non-trivial in general. This is true particularly because the

drift and diffusion coefficients M1 and M2 do not define a time-reversible single agent-

dynamics, for which determining the steady state would be much simpler (see for exam-

ple [86]). In the limit of small r, where the stationary distribution takes a large deviation

form P (A) ∝ exp(−f(A)/r) analogous to (2.14) below, it can in principle be found by a

Freidlin-Wentzel construction [87] but implementing this numerically is still challenging

(see e.g. [88]). This is why for analytical work we focus on a slightly simplified model,

details of which are given below.

Once we have the steady-state values of the trading probabilities Tγ , we can also think

of the Fokker-Planck equation (2.12) as describing the dynamics of individual agents

within a large population with fixed average properties. As we argue that our system is

ergodic, the steady state distribution of attractions can then be re-interpreted as the dis-

tribution of a single agent’s attraction sampled over a long enough time interval. Zeros

of the drift velocity M1(A) are fixed points of the single agent dynamics, and for small

amounts of diffusive noise r the single agent will spend most of its time near (stable)

fixed points, causing local maxima of P (A). To detect segregation we therefore look for

multiple stable fixed points of the single agent-dynamics in the steady state population.

Agents with fixed preferences for buying. As finding the steady state solution of the

Fokker-Planck equation even with given trading probabilities is a non-trivial task in the

four-dimensional space of attraction vectors A, we proceed with one more simplification

to produce a theoretical description directly comparable to simulations. We fix the agents’

preferences for buying or selling, i.e. each agent now carries a fixed probability pB with

which they buy. They sell with probability 1− pB. This probability may vary from agent

to agent, but crucially it remains fixed in time for each trader. Agents thus have a single

decision left to make, namely, where to trade.

In the case of two markets the single variable that we then need to track for every

agent is the difference or relative attraction ∆i = Ai
1 − Ai

2. This makes a full numerical
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analysis possible. The resulting Fokker-Planck equation is one-dimensional and so one

can find the steady state solution in closed form, while locating all single agent fixed

points can be achieved e.g. by a bisection method. We do find segregation in this way

as shown below so the reduced model is useful in its own right, and provides evidence

of the robustness of segregation behaviour. Hence we focus on this simplified model

in the following, enabling us to compare numerical predictions for nonzero r directly

to simulations. Wherever possible we will relate the results back to the original, fully

adaptive model.

In the limit of large population size, the analogue of P (A) in the simplified model

is the probability distribution P (∆, pB) = P (∆|pB)P (pB). The quantity P (∆|pB) is the

distribution of attraction differences, ∆, among agents with buying preference pB. The

distribution over preferences for buying P (pB) is fixed as part of the specification of the

model. As a simple case, we investigate a population with P (pB) =
1
2δ(pB−p

(1)
B )+ 1

2δ(pB−

p
(2)
B ), consisting of equal numbers of two types of agents with buying preference pB = p

(1)
B

and pB = p
(2)
B , respectively. Agent i chooses market 1 with probability 1/[1 + exp(−β∆i)]

(that we usually denote as σβ(∆)) and independently chooses to buy with probability

p
(1)
B or p

(2)
B depending on his/her type.

As in the case of fully adaptive agents we can formulate the master equation for the

process, and derive a Fokker-Planck equation in the limit of small memory-loss rates r.

We obtain:

∂tP (∆|p(g)B ) = −∂∆
[

M1(∆|p(g)B , Tγ)P (∆|p(g)B )
]

+
r

2
∂2∆

[

M2(∆|p(g)B , Tγ)P (∆|p(g)B )
]

, (2.13)

where g ∈ {1, 2} (for type or “group”) labels the agent type. The jump moments M1 and

M2 couple the two types of agents via the set of trading probabilities {Tγ}. The generic

steady state solution of the Fokker-Planck equation (3.8) reads (see for example [85]):

P (∆|p(g)B ) ∝ 1

M2(∆|p(g)B , Tγ)
exp

(

2

r

∫ ∆

0
d∆′M1(∆

′|p(g)B , Tγ)

M2(∆′|p(g)B , Tγ)

)

. (2.14)

As the notation emphasizes, the stationary probability distribution is dependent on the
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trading probabilities, and these are themselves function(al)s of the probability distribu-

tions P (∆|p(g)B ), g = 1, 2. Accordingly we use the iterative procedure described above

to find a solution, repeating steps (ii) and (iii) until the trading probabilities Tγ remain

stable to an accuracy of 10−6.

FIGURE 2.7: Steady states of the reduced model. The distributions

P (∆|p(1)
B

= 0.8) from simulation and Fokker-Planck theory; the corre-

sponding distributions for the second type of agents P (∆|p(2)
B

= 0.2)
are mirror images with respect to the y-axis. Left: β = 1/0.45, Right:
β = 1/0.15. Forgetting rate is r = 0.1, other system parameters as spec-

ified in Table D.1.

Fig. 2.7 compares the steady state distributions P (∆|p(1)B ) obtained from direct nu-

merical simulations and from the Fokker-Planck theory described above. The buying

preferences (p
(1)
B , p

(2)
B ) = (0.8, 0.2) are symmetric about 1/2 and so we do not show

P (∆|p(2)B ), which would be the mirror image about ∆ = 0. The distribution obtained

for low β (Fig. 2.7 left) shows the behaviour expected for an unsegregated population,

with a single-peaked distribution of relative attraction ∆ for each agent type; the mean of

the distribution essentially coincides with the fixed point of the single agent dynamics,

i.e. the solution of M1(∆) = 0.

In the high-β regime, the agents of each type segregate into two groups corresponding

to the two peaks of the distribution of the attraction differences ∆. As in the case of fully

adaptive agents, one group is return-driven, i.e. prefers the market that awards them

with higher returns, although they are not always able to trade there. The agents in the
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other group are volume-driven; they settle for the market where returns are lower on

average but where they can trade more regularly.

The Fokker-Planck theory successfully reproduces the qualitative transition from un-

segregated behaviour at low values of the intensity of choice to segregated steady states

at higher values of β. The quantitative agreement with numerical simulations is good,

remarkably so given that the latter were obtained for relatively small systems (N = 200

agents) and for moderate r = 0.1 while we developed the theory for the combined limits

of large N and small r. The agreement between theory and numerical experiment also

suggests that segregation is not a finite-size effect.

Characterising the phase transition. To track the change in the shape of the relative

attraction distributions from unimodal to bimodal as β is changed we again consider the

Binder cumulant, B. In principle, B is dependent on the type of agent considered, g; but

in the situations we consider where the two types have distributions of score differences

∆ that are mirror images of each other, this dependence disappears. For numerical sim-

ulation data we show (B(1) + B(2))/2. For small r, where the ∆-distributions become

sharp around their peak(s) according to Equation (2.14) we expect for β below and above

the segregation threshold βs the cumulant will take limiting values discussed previously

(Gaussian B = 0 in the low β and finite B ≈ 2/3 for equal weighted bimodal distribu-

tion). For finite values of the learning rate r this will become a smooth transition between

the two limiting values.

In Fig. 2.8 we show the predictions of our Fokker-Planck theory for the Binder cu-

mulant of the reduced model with fixed buy/sell-preferences as a function of β, and for

different values of r. These confirm the expectations set out above, with the segregation

transition become increasingly sharp as r decreases. The limit r → 0 of the theory can be

worked out by a separate procedure (which we address in Chapter 3) and gives a sharp

transition at a well-defined segregation threshold βs (for the system presented in Fig. 2.8,

βs = 3.55). The inset of Fig. 2.8 compares numerical simulations and theory for r = 0.1

and again shows very good agreement. We attribute the remaining deviations to finite-

size effects and to the fact that simulations necessarily operate at nonzero r while the

Fokker-Planck theory is derived in the limit of small r. The qualitative behaviour of the
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FIGURE 2.8: Binder cumulant (as defined in Eq. (2.3)) of the relative at-
traction distribution for different values of r as shown in the legend (large
to small r from bottom to top on the right of the plot, r → 0 values are
calculated as explained in Chapter 3 and Appendix B). Inset: Numerical
simulations (blue) versus Fokker-Planck theory (orange) for r = 0.1. Sim-
ulated system size N = 200 traders, with ∆ distributions obtained from

the last 1/r trading periods of 100 independent simulation runs.

Binder cumulant, i.e. a transition between the expected theoretical values for small and

large values of β that becomes sharper with decreasing r, is exactly the same in the fully

adaptive model, as we have seen in Fig. 2.4. There are of course quantitative differences;

e.g. the threshold value βs ≈ 5.9 (for r → 0) is somewhat higher.

Further characterisation of segregation dynamics. So far we have successfully con-

structed a mathematical description that reproduces the segregation effects seen in simu-

lations. We now use the theory to look more closely at the emergence of segregation and

the properties of the segregated state. To this end we consider average returns across the

population of agents. These allow us detect whether segregation brings population-level

benefits even though all agents make decisions on a purely individual basis. Given that

persistence times are finite, the population-averaged returns also give the long-time av-

erage returns for any agent and so they tell us about the benefits of segregation for single

agents.
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In Fig. 2.9 we plot the average return obtained by agents in the steady state against

intensity of choice β for populations with different forgetting rates r. The data shown

are from the Fokker-Planck analysis of the reduced two-strategy model described above.

Remarkably, the average return is a non-monotonic function of β: it has a minimum close

to the segregation threshold βs, at a level that decreases as r is reduced. The qualitative

non-monotonic trend is also found in numerical simulations (see inset). It is harder to

detect there as the absolute changes in returns are fairly small, but appears in both the

reduced and the fully adaptive model. Related to the observed non-monotonicity, it is

important to note two limits - random trading (β → 0) and the best past action trading

(β → ∞). Both will be discussed in more details in the next chapter, but it is worth ob-

serving here that over wide range of learning parameters (r, β) the population on average

earns less when learning how to trade compared to random trading.

FIGURE 2.9: Returns. Average steady state population returns against β
for different values of r (see legend; r decreases from top to bottom), as
predicted by Fokker-Planck theory (circles denote βs for the given value of
r). Black dashed line: average return of an unsegregated population for
r → 0. Horizontal dotted line: envy-free Nash equilibrium (see text). The
segregated solution achieves higher returns than either the unsegregated
population at the same β, or the Nash equilibrium. Insert: comparison
between numerical simulations and Fokker-Planck theory for r = 0.1 and

population size N = 200.
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To put the returns for our segregated steady states into context, we compare them to

two benchmark values. The dashed line in Fig. 2.9 indicates the first of these, which is the

average return of an unsegregated population (in the limit r → 0 limit, to be discussed

in more detail shortly). While this homogeneous population return decreases monotoni-

cally with β, segregation avoids this decrease for intensities of choice β > βs and in fact

converts it to an increase.

As a second baseline we show in Fig. 2.9 the average return in an envy-free Nash

equilibrium. A Nash equilibrium in general is a state in which no agent can increase

their payoff by unilaterally changing strategy. In our system, a state would be specified

by the probability pi1 for each agent i to choose market 1 – as the set of actions is {Market

1, Market 2}. The strategy of an agent is defined by (p1, 1− p1) – and a Nash equilibrium

is reached when no agent i can achieve higher average return by changing pi1, at fixed

strategies of all other players. This still leaves potentially many different Nash equilib-

ria [88] and so we focus on what we will refer to as the envy-free Nash equilibrium. This

is an equilibrium in which no agent is envious of any other agent’s return because they

all achieve the same payoff on average over time. This is realized in our system when the

average returns for all four distinct actions (buy or sell, at market 1 or 2) are the same.

This condition allows us to identify a unique set of trading probabilities and from these

the envy-free Nash equilibrium return (see Appendix B). As Fig. 2.9 shows, this is always

lower than the average return of a segregated population (both in theory and simulations,

see the inset). A segregated steady state is thus better in terms of returns than both the

homogeneous steady state at the same β and the envy-free Nash equilibrium. What is

notable here is that the segregated state is not envy-free over short time horizons: an

agent in the volume driven group obtains a lower return than one from the return driven

group. However, as emphasized above, on very long time scales agents can change their

loyalties, i.e. change group, so that in a long-time average all achieve the same return.

This again emphasizes the co-operative nature of the segregated state.

Estimating the segregation threshold βs: the r → 0 limit. We now proceed to study the

segregation threshold βs of the intensity of choices and how it depends on the parameters

of the model. This is easiest in the limit r → 0 where the segregation transition is sharp,
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see Fig. 2.8 above. We first focus on the regime β < βs, i.e. the unsegregated phase, in

which the distributions P (∆|p(g)B ) will be single-peaked. In the limit r → 0, Equation

(2.14) indicates that (i) this peak becomes infinitely sharp, so that the distributions are of

the form P (∆|p(g)B ) = δ(∆−∆(g)); and (ii) the location ∆(g) of the peak for each group of

players is determined by the zero-drift condition

M1(∆
(g)|p(g)B , Tγ) = 0. (2.15)

The next step is to solve these two equations for ∆(1) and ∆(2), which is the r → 0

analogue of finding the steady state of the FP equation for general r > 0. As before one

needs to make the solution self-consistent so that the trading probabilities Tγ appearing

in (2.15) are those calculated from the distributions P (∆|p(g)B ) = δ(∆−∆(g)) themselves.

The iterative approach explained above can again be used to find such a self-consistent

solution, starting from (∆(1),∆(2)) = (0, 0).

We briefly explore the properties of this homogeneous steady state before considering

how to detect the onset of segregation. We focus on agent types with symmetric biases

toward buying and selling, p
(1)
B = 1 − p(2)B . For this choice we find non-zero (∆(1),∆(2))

even in the limit β → 0. This indicates that agents recognize the more rewarding op-

tion: agents that are more likely to buy have a preference for the market that is good for

buyers, and similarly for sellers. Of course β → 0 means that agents nevertheless choose

randomly between the markets.

As β increases, the relative attractions (∆(1),∆(2)) become more pronounced, i.e. they

move away from zero, and agents start to choose the “better” market more frequently.

This is the reason for the decay of the average return in the homogeneous steady state

with β, as shown in Fig. 2.9: as agents of each type increasingly focus on “their” mar-

ket, buyers congregate in one market and sellers in the other; trading opportunities are

reduced and thus the average return (which includes zero returns for trading periods

where an agent cannot trade) decreases. The more definitive choices agents make are the

consequence of the two effects: (1) the fixed points (∆(1),∆(2)) increase in absolute value

(and they correspond to the difference in the average score an agent receives in the two

markets); (2) the increase of β makes the choices more definitive. Quantitatively, we find
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that (2) is the stronger effect. As the intensity of choice β is increased further, we expect a

transition to a segregated steady state.

To detect this transition we can follow the general logic explained in the beginning

of Analytical Description: a segregated state must have more than one fixed point of the

single-agent dynamics. The peak position ∆(1) is always a fixed point for agent type 1

from Eq. (2.15), and similarly for type 2. To detect the onset of segregation we therefore

need to check when additional fixed points appear, i.e. additional solutions of the zero-

drift condition M1(∆|p(g)B , Tγ) = 0. In looking for these alternative fixed points we need

to keep the trading probabilities Tγ fixed at their values calculated for the homogeneous

steady state, because we are considering the single-agent fixed points. Note that in general

one needs to search for alternative fixed points globally, i.e. across all possible ∆. This is

because for most parameter settings the new fixed points appear far from ∆(1) or ∆(2),

respectively, as pairs of stable and unstable fixed points.

FIGURE 2.10: Segregation thresholds for different symmetric agent
types, at different markets. Segregation threshold as a function of the first

agent type’s preference for buying p
(1)
B

= pB, assuming the other agent

type has the opposite preference p
(2)
B

= 1− pB. Different sets of symmetric
market parameters are compared; non-trivially, the region of segregation

is largest when both markets are fair.
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In Figs. 2.10 and 2.11 we present the segregation thresholds obtained by the method

above, for various parameter settings. In Fig. 2.10 specifically we show how βs changes

with pB for various symmetric markets. One observes that βs does not depend very

strongly on the exact preferences for buying of the agents, except for the region of param-

eters where both agent types have almost even preferences for buying and selling4. In

contrast, the effect of the market biases follows a simple trend: the region of segregation

shrinks as the difference between the two markets increases, suggesting that segregation

is not a trivial effect of market biases.

FIGURE 2.11: Segregation threshold for various agent types. Contour

plots of the segregation threshold βs when preferences for buying p
(1)
B

and

p
(2)
B

of both agent types are varied independently. Left: symmetric markets
(θ1, θ2) = (0.3, 0.7); Right: two fair markets (θ1 = θ2 = 0.5). Contours are

presented in terms of 1/β for visual clarity.

In Fig. 2.11 we show two contour plots to compare the trends in βs when the two agent

types’ buying preferences are varied independently, for two different choices of market

parameters. On the left is the symmetric markets setup (θ1, θ2) = (0.3, 0.7) that we have

already used several times. From the plot we observe that the segregation threshold

βs is lowest when the subgroups are symmetric with respect to buy-sell preferences, i.e.

p
(1)
B +p

(2)
B = 1; the variation of βs along that line is presented in Fig. 2.10. We also note that

when the two agent types have similar preferences (e.g. both prefer buying over selling)

then βs is on average higher than in the case where the types have opposite preferences.

4More details on the reasons behind the change in monotonicity in the intermediate pB region is ad-
dressed in Chapter 3.



Chapter 2. Model for spontaneous segregation 57

This qualitative behavior we see also in the case of two fair markets that set the trading

price at the equilibrium price, as shown in Fig. 2.11 (right). We do not show similar plots

for asymmetrically biased markets; the qualitative behaviour is similar there, but the line

of minimal βs is no longer p
(1)
B + p

(2)
B = 1 but p

(1)
B + p

(2)
B = c, where c is a constant that

depends on the market parameters.

Finally, we can adapt the above method of calculating the segregation threshold to

the original model of fully adaptive agents choosing among all four possible actions (e.g.

γ ∈ {B1,S1,B2,S2}). Because of the difficulties of finding the steady state solution nu-

merically for finite r, this analysis is carried out only in the limit r → 0. Here it is feasible

because we only need to find zeros of the drift M1, rather than solve for a full distribution

P (A) that is a stationary solution of the Fokker-Planck equation. As argued before, the

first moment (M1) is a function of the whole distribution, but in the r → 0 limit and for

β < βs this distribution is a delta distribution, which simplifies the calculation.

FIGURE 2.12: Segregation threshold for fully adaptive traders. Contour
plots of the segregation threshold βs in a system of fully adaptive agents,
against the market bias parameters (θ1, θ2). Along the lines where at least
one market is fair, βs is lowest so that segregation occurs for the widest

possible range of intensities of choice β.

In Fig. 2.12 we show a contour plot of the segregation threshold against the two mar-

ket biases. As in Fig. 2.10, for agents with fixed buy-sell preferences, we notice that the

segregation threshold βs decreases when the difference in the symmetric market biases

decreases; this can be seen specifically by looking at the symmetric markets diagonal of
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Figs. 2.12 and 2.10. Additionally in the system of fully adaptive agents we notice that

this conclusion extends to the case when at least one market is fair, i.e. segregation then

also arises for smaller values of β. In Fig. 2.12 we note also a four fold symmetry, which

we conjecture is a consequence of the fact that agents have more choices: a fully adaptive

agent does not have a preferred market initially, so all four action choices are equal. This

is not the case for an agent with a fixed preference for buying and selling because returns

are buyer/seller-specific. The four fold symmetry in Fig. 2.12 also tells us that the abso-

lute value of θ is enough to describe the market. This further means that the commonly

investigated choice of two symmetric markets is analogous to the case of two identical

markets and we note that the segregation threshold is lowest when both markets are fair.

This is in agreement with the results of the model with agents with fixed buy-sell pref-

erences, see specifically in Fig. 2.11 where for every choice of (p
(2)
B , p

(2)
B ) the segregation

threshold βs is smaller when the markets are fair.

Multiple steady states. When iteratively finding a self-consistent steady state of the

Fokker-Planck equation as discussed around Equation (2.12), we always used as initial

condition a distribution of all agents having zero attractions. While the dynamics of the

iterative solution is not identical to the real dynamics, this choice was sensible to obtain

steady states that match the ones from simulations of the real dynamics as closely as

possible. After further analysis we found that in the numerical simulations for small

values of r one can obtain two qualitatively different classes of segregated states. To

investigate this notion further, we now explore whether there can be more than one self-

consistent solution of the Fokker-Planck equation. Such additional solutions could be

accessible for example by using our iterative procedure, but starting from other initial

conditions.

The simplest way to perform this exploration systematically is to realize that the trad-

ing probabilities Tγ from Equation (2.7) only depend on the demand-to-supply ratios D1

and D2 at the two markets; we define Dm for each market m as the ratio of the number of

buy and sell orders that arrive at the market. Specifying (D1, D2) thus tells us all trading

probabilities, and hence determines a unique steady state solution of the Fokker-Planck

equation. From this steady state solution we can recalculate D1 and D2, and plot in the
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(D1, D2)-plane the two lines where the new and old D1 (D2, respectively) coincide. The

intersections of these two lines are then the self-consistent steady states we are after. We

find numerically, in the range of parameter values that we have explored, that there is

either one such state or there are three.

FIGURE 2.13: Regions of different steady states in the space of param-
eters r and β. Number and nature of the steady state solutions of the
Fokker-Planck equations in the (r, 1/β)-plane (U: unsegregated state, S:
strongly segregated state, W: weakly segregated state). Other system pa-
rameters are set to their default values (see Table D.1). To the left (small r)
of the orange line there are three steady state solutions, while to the right
there is only one. The blue line separates the region where at least one of
the solutions is segregated, i.e. bimodal. Empty circles represent r → 0

endpoints of the two lines, calculated independently.

In Fig. 2.13 we show the resulting phase diagram in the (r, β)-plane and indicate the

number and nature of self-consistent steady state solutions. Where solutions are segre-

gated we differentiate between two possibilities, strong and weak segregation. By strong

segregation we mean a solution branch where the two peaks in P (∆|pB) remain of com-

parable height as r → 0. We call a solution branch weakly segregated when one peak

weight becomes exponentially small for r → 0, so that the solution effectively reduces

to an unsegregated one. In the limit, all agents then typically prefer the same market.

The empty circles in the figure are results from a separate analysis of the deterministic

(r → 0) theory that we address in Chapter 3, and are consistent with the extrapolation of

the results for nonzero r. Numerical simulations confirm the existence of all three solu-

tion types (U, S, W) in the relevant regions of the phase space, where necessary starting
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from appropriately tuned initial conditions, as we also discuss in the following chapter.

The blue line in Fig. 2.13 is the segregation threshold βs discussed previously. It is

nearly constant, increasing only very slowly with r; this shows that the βs values obtained

via the r → 0 analysis will be good estimates also for larger r. A second interesting

feature of Fig. 2.13 is that there is a threshold value of r ≈ 0.054 above which the strongly

segregated solution is the only possible option, for any β large enough for a segregated

state to exist at all: this state is then the genuine steady state. Where agents have only

moderate memory, with 1/r of the order of 10 trading periods, steady states where one

market comes to attract most agents thus disappear, and the emergence of persistent

market loyalties becomes the norm.

2.4 Summary

In this chapter we have developed a stylised model of double auctions and adaptive

traders. We considered two variants of the model, one populated with agents who can

adaptively tune their preferences for buying and selling along with their preferences for

the two markets; in the other model agents have fixed preferences for buying and hence

also selling. The two models share our main qualitative result: above a threshold value βs

of the intensity of choice β the agents segregate, i.e. develop a long lasting loyalty to one

action, or one market. The onset of segregation is signalled both in simulations and in

the analytical description by the emergence of multiple peaks in the distribution of agent

preferences, as summarized e.g. in the Binder cumulant. These peaks are accompanied

by long persistence times for the agents to remain within each peak.

In the model with fixed buying preferences we have shown that one can develop an

analytical description of segregation to a significant level of detail. We find that even

though individual agents do not explicitly try to maximise the well-being of the entire

population, the strongly segregated state is in effect cooperative: it is more beneficial for

every individual player, and the population as a whole, compared to possible unsegre-

gated and envy-free Nash equilibrium states. The segregated state is neither envy-free

– the traders that specialize to what we called volume-driven behaviour have lower re-

turns in the short term than the return-driven ones – nor a Nash equilibrium. In this sense
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the segregated state is stabilized by incomplete information, of each agent about the pre-

cise returns to be expected from each action and about the average returns achieved by

others.

The transition from the homogeneous to the segregated state is caused by increas-

ing the intensity of choice parameter β. There are two ways of interpreting this. One is

that as β grows, agents optimize against return differences on smaller and smaller scales

1/β: our results then show that the more stringently agents optimize their behaviour,

the higher the likelihood of segregation. Alternatively, as β affects the agents’ prefer-

ences only via products with the attractions, which themselves are proportional to the

returns, an increase in β has the same effect as an increase in the scale of returns at fixed

β. When the possible returns are small an agent then plays randomly, while if the stakes

are high an agent will try to take into account information from previous trades as much

as possible. In this interpretation our main result states that there is a critical scale for

single transaction returns above which the preferred state of the agent population is the

segregated one.

We studied in some detail the dependence of the segregation threshold βs on model

parameters. One intriguing finding is that the threshold is generally lowest when the

two markets are similar, demonstrating that segregation is not trivially driven by market

differences. The precise value of βs is determined by collective behaviour, with agents

continually adjusting to trading conditions the population itself creates. This rules out

simple intuitive estimates of βs. It is reassuring, however, that the quantitative variations

in βs are small for the different models we investigated, with values lying in the range

0.1 . . . 0.3 across most of the parameter space of our models.

Finally, it is important to discuss simplifications in our analysis and the way they

might have affected our main results. We have made a number of assumptions about

the bid and the ask distributions. It turns out that when these are relaxed, our main

results change only quantitatively but not qualitatively. For example, we have shown

all data for the case where the mean bid is greater than the mean ask, which enables

more trades at the markets. However, qualitatively identical results are obtained in the

opposite case, with the only change being in the specific value of the threshold βs. The
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specific assumptions we made on the shape of bid/ask distribution can also be relaxed.

In fact, within the Fokker-Planck description only the first and the second moment of

the truncated bid/ask distribution appear and the precise shape of the distribution is

otherwise immaterial (e.g. see more details in Appendix A).

We have also made the simplifying assumption that budget constraints on the agents

can be ignored. Above the segregation threshold our results show substantial persis-

tence times for agents in a particular role (e.g. persistent buying, at one of the two mar-

kets). While this may be in apparent conflict with budget or stock constraints, it is worth

remembering that agents do change their loyalty eventually so they just need a large

enough budget to sustain a long period of buying that is then followed by a long period

of selling. Also, while persistence times do get exponentially large for very small r, our

results show (cf. Fig. 2.13) that segregation can occur up to fairly large values of r. In this

regime persistence times – while longer than in homogeneous states – are only moder-

ately large so that budget constraints should be relatively easy to satisfy. We also note

that in Tóth et al. [89] the authors show that the well documented persistence in orders of

the same sign (i.e. an order to buy tends to be followed by more orders to buy and simi-

lar for an order to sell) at the shorter time scales is dominated by a single trader splitting

his/her order; also the tendency to buy or sell persistently was shown to be stronger than

collective effects such as order herding. Finally, segregation also occurs in models with

explicit budget constraints, as we discuss in Chapter 4.

One question that remains, and which is not easy to address in full generality, is

whether the emergence of segregation is an intrinsic property of systems with adaptive

agents, or a consequence of our specific stylized model. The simplicity of the model itself

argues for the former, as we did not need to make exotic assumptions to find segregation.

But clearly there is still much to do from here to reach a detailed understanding of segre-

gation in real markets, at a level that can directly influence policies. An initial step in this

direction is described in Chapter 4.
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Chapter 3

The Large Memory Limit

In this chapter, we devote special attention to the segregation in the infinite memory

limit (the r → 0 limit). As hinted before this limit is special because only when r → 0

the transition between the unsegregated and segregated state is sharp. But additionally,

in this limit, the analysis is simpler which enables us to explain some of the previously

reported phenomena - multiple segregated states (Fig. 2.13) and nonmonotonicity of the

critical intensity of choice (Fig. 2.10). Also, this analysis will help us to address some

new extensions of the model that would not be accessible in the finite r limit - different

learning models and three markets, that we discuss those in the next Chapter. We start

the large memory limit analysis with small systems - 2 players game and 4 players game.

These are convenient as we can easily track each trader’s adaptation, but still, see some

phenomena that we believe are related to segregation - synchronisation at the same mar-

ket (for N = 2) and segregation - pairwise synchronisation (for N = 4). After the finite

N , we proceed with the large population limit and introduce the problem and analyse

a population with homogeneous buying preferences. Once we develop all the techniques for

one such population, we generalise the results to a system with two subpopulations we

have analyzed previously.

3.1 Finite N

3.1.1 2 players - synchronisation

To understand collective effects in trading systems, we train our intuition by looking at a

very simple model with only one buyer and one seller. The traders have a choice between
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two markets that are symmetrically biased towards one of the players with a higher re-

turn. As the system consists only of two agents and two markets, previously introduced

segregation in which a population will split into distinctive groups favouring one option

is not feasible. However, as a characteristic of the segregated state is long lasting loyalty

to a certain option/market, we can investigate whether under some conditions an agent

develops strong preference towards one of the markets. To enable the trade, the pair of

agents needs to synchronise at a market. Thus, one of the agents will always need to

settle for less. An interesting question is under which conditions the pair of agents will

prefer to randomly decide who will be a winner and the looser, and when will the roles

become fixed. Thus we will focus on the existence of synchronization of traders and inves-

tigate parameters for which both agents develop strong preferences for the same market.

The two player analysis is largely based on the similar work by Hanakiet al. [28] where

as a first step in understanding how agents specialise when searching for parking spots,

the authors studied if similar dynamics can be observed with only two players.

Our model assumptions are the following:

• Two players: player 1 always buys, player 2 always sells.

• Bids/asks are deterministic, i.e. N (µb, 0), N (µa, 0), with µb − µa = 1.

• Trading price is as previously πm = a+ θm(b− a).

• Market biases are symmetric: (θ1, θ−1) = (θ, 1− θ) where θ ∈ [0, 0.5].

We made further simplification to the agent’s trading strategy introduced in the previous

chapter (where σ > 0, while now bids and asks are deterministic) to focus only on the

synchronisation of the market choices. Preserving stochastic nature of order prices would

only correct the average payoff at a market as we need to take into account fraction of

meetings at a market when the bid and the ask do not match. When the order prices are

deterministic the trading price is as well: πm = µa+θm(µb−µa) = µa+θm. Note also that

we denote the second market with −1 for simpler notation in the following calculations.
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As previously, agent’s market choosing strategy is driven by its attractions (Eq. 2.2).

For each player i we introduce the attraction to trade at market m during the trade n+1:

Ai
m(n+ 1) = rSi

m(n) + (1− r)Ai
m(n) ,

where r is forgetting rate as before and Si
m is a return of an agent i at a market m, Si

m is

fully determined by the choice of co-player:

Si
m(n) = prob(m−i(n) = m)







µb − πm = 1− θm, if agent i is a buyer (i = 1)

πm − µa = θm, if agent i is a seller (i = 2)

= prob(m−i(n) = m)Σi
m ,

where m−i(n) denotes the market of choice of the co-player −i during trade n and Σ

simplifies the deterministic part of the score depending only on the type of market and

agent. Agent’s choice of market m is a softmax function with intensity of choice β (as

introduced in Chapter 2, based on e.g. [28, 29, 77]):

P i
m(n) =

exp (βAm(n))
∑

m′ exp (βA′
m(n))

=
1

1 + exp (βm∆i(n))
= σβ(m∆i(n)) ,

where we note that important quantity is only attraction difference ∆i = Ai
1 − Ai

−1 and

we also simplify notation and use σβ(x) to denote sigmoid function we use. Observing

that ∆i is a quantity of interest for agent’s choice of market we proceed with studying its

evolution:

∆i(n+ 1) = Ai
1(n+ 1)−Ai

−1(n+ 1)

= δmi(n),1rS
i
1(n) + (1− r)Ai

1(n)−
[
δmi(n),−1rS

i
−1(n) + (1− r)Ai

−1(n)
]
.

Stochastic variable ∆i(n + 1) depends on choices of agents during trade n (mi(n) and

m−i(n)), which are drawn from the distribution that depends on ∆i(n). We consider the

limit r → 0, as attraction increments are very small thus system adapts very slowly and



Chapter 3. The Large Memory Limit 66

it is reasonable to approximate δmi(n),1 by its expected value σβ
(
∆i(n)

)
. Namely,

∆i(n+ 1) = r
[

σβ
(
∆i(n)

)
σβ
(
∆−i(n)

)
Σi
1(n)− σβ

(
−∆i(n)

)
σβ
(
−∆−i(n)

)
Σi
−1(n)

]

+ (1− r)∆i(n) ,

that can be further simplified into:

∆i(n+ 1)−∆i(n)

r

= −∆i(n) +
[

σβ
(
∆i(n)

)
σβ
(
∆−i(n)

)
Σi
1(n)− σβ

(
−∆i(n)

)
σβ
(
−∆−i(n)

)
Σi
−1(n)

]

.

In the limit of small r, we can analyse previous in the continuous time limit, taking t = nr

(where a unit time step corresponds to 1/r trading periods):

∂t∆
i(t) = −∆i(t) +

[

σβ
(
∆i(t)

)
σβ
(
∆−i(t)

)
Σi
1(t)− σβ

(
−∆i(t)

)
σβ
(
−∆−i(t)

)
Σi
−1(t)

]

.

A convenient change in variables that simplifies the previous system is ∆1(t) = ξ(t)+ρ(t)

and ∆−1(t) = ξ(t) − ρ(t). Applying it, along with some algebraic operations and using

market symmetry θ−1 = 1− θ1 the previous set of equations becomes:

∂tξ(t) = −ξ(t) +
1

2

sinh (βξ(t))

cosh (βξ(t)) + cosh (βρ(t))
,

∂tρ(t) = −ρ(t) +
1− 2θ1

2

cosh (βξ(t))

cosh (βξ(t)) + cosh (βρ(t))
. (3.1)

The evolution of ξ describes the evolution of the mean agents’ attraction differences

(ξ = (∆1 + ∆−1)/2), while ρ describes their distinction (ρ = (∆1 − ∆−1)/2). If previ-

ous dynamical equations have a fixed point it needs to satisfy:

ξ∗ =
1

2

sinh (βξ∗)

cosh (βξ∗) + cosh (βρ∗)
,

ρ∗ =
1− 2θ1

2

cosh (βξ∗)

cosh (βξ∗) + cosh (βρ∗)
. (3.2)

The first of these equations is always satisfied if ξ∗ = 0, and in that case equation for ρ∗

has a unique solution whose sign depends on the sign of (1 − 2θ1). When market 1 is
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favourable towards buyers (θ1 < 0.5), ρ∗ will be positive, which can be interpreted as the

solution when buyers and sellers learn which market is good for them, and thus have

preferences for the opposite markets (as ∆1 is in that case positive meaning that player

1, the buyer, prefers market 1 good for buyers). Even though from the perspective of

attractions, agents seem to recognize option with higher rewards, this solution is stable

only for low intensities of choice where market choice dynamics is random, despite the

difference in attractions. The stability of the solution (ξ∗ = 0, ρ∗) can be studied through

the linearized set of equations (3.1). It can be showed that the fixed point is stable as long

as the following criterion is satisfied:

β

2

1

1 + cosh(βρ∗)
≤ 1 . (3.3)

Or, using the original variables ∆i(t), the solution with ∆1∗ +∆−1∗ = 0 is stable as long

as:

β

2

1

1 + cosh(β(∆1∗ −∆−1∗)/2)
≤ 1 . (3.4)

The stability condition is exactly the same as the one observed in work of Hanaki et al. [28]

as the learning dynamics we follow is the same so the two player models differ only in

the details of deterministic returns. To demonstrate two different possible states, below

and above critical intenisity of choise we show flow diagrams of the equations (3.1) in

Figure 3.1. Left figure is for the domain of low choice intensities (β = 2) where unique

fixed point corresponds to the state in which agents are undecided and are picking mar-

kets largely at random, though there is a slight recognition of a market that is better for

an agent (∆1 > 0,∆−1 < 0). Conversely, for higher intensities of choice (β = 6) two new

fixed points are stable where agent’s attraction differences are of the same sign, i.e. they

prefer going to the same market.

At first, this is an unusual behaviour: For high intensity of choice, one of the agents

decides to settle for less i.e. persistently choose the market where (s)he will be awarded

lower scores. However, making this decision, the number of trades happening is max-

imised. In the low intensity of choice regime, all four states are equally probable:
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FIGURE 3.1: 2 player-dynamics phase portraits (Eqs. 3.1). Left: intensity
of choice β = 2, unique fixed point, undecided agents; Right: β = 6, two
new fixed points appear - synchronized states. Market biases used: θ = 0.3.

For this set of markets, critical intensity of choice is βc = 4.16

(m1,m2) ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)} while just two of them enable trade. On the

other hand, in the high β regime, when agents persistently choose one market, they al-

ways get to trade, although one of the traders always receive a lower return. Especially,

for the market parameters used in Fig. 3.1, (θ1, θ2) = (0.3, 0.7) an agent who settles for

lower score receives persistently score of 0.3 while for the low β expected payoff of both

agents is 1
4(θ1 + θ2) = 1

4 , showing that clearly both agents are earning more in the syn-

chronized regime.

Following the condition of stability Eq.(3.3) we can find the domain of parameters

θ and β where fixed point associated with indecisive agents becomes unstable, conse-

quently the domain of synchronised solution existence, shown in Figure 3.2. It is impor-

tant to note that the synchronisation is not only driven by the market difference. This

is clear when we note that the same markets (θ = 0.5) synchronisation threshold is the

lowest – both agents are happy with synchronising at one of the markets (nobody needs

to settle for less). Previously outlined argument (players earn more if synchronised at a

single market than if they are randomising between them) is correct only when θ > 0.25.

When θ is low, the greater intensities of choice are needed for synchronisation to occur.

Although at high enough β the synchronised state will be preferred, agents will not earn
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equally. Thus their preferences for the market will differ for every finite β, i.e. the less

satisfied agent will revisit the other market more frequently.

FIGURE 3.2: 2 players (θ, β) phase diagram and returns. Left: Critical β
as a function of symmetric market bias θ. Right: Returns for different β for
market bias θ = 0.3. At the critical (βs = 4.16), the return average of the
pair is better than staying at the continuation of low β fixed point, but one

of the agents needs to settle for less.

In the right panel of Figure 3.2 we show how the average agent’s returns vary for

different β for the typical markets (θ1 = 0.3). We compare the agent’s payoffs when they

synchronise at one market to the payoff they would receive by choosing markets based

on the continuation of the low β fixed point, unstable above the critical intensity of choice

βc. When choosing markets based on low β fixed point, agent’s returns decrease when β

is increased. This is due to the mentioned recognition of better market that drives agents

to different markets, decreasing trade possibilities and consequently the payoff.

On the other hand, we note large payoff difference between the players when they

synchronise at a market. We name an agent who earns more at a market return driven,

while the agent who decides to settle for lower returns to enable trades we call volume

driven (the origin of names is more evident in the large trading systems as described in

Chapter 2). Large payoff discrepancy is feasible because agents are unaware of the co-

player’s return, they only keep their own scores and make a decision based on those.

Although no maximisation of the pair average is intended, the synchronised state is

such that the overall benefit of the pair overcomes the decrease in returns they would

experience if they continued choosing markets as when β was low. When θ > 0.25 for

high values of β both agents benefit from the synchronised state, while when θ < 0.25
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the benefits are observed only in the pair average, while the agent who settled for less

always earns less than at the asynchronous state. The player who earns more at a market

develops a strong preference for it, and even though the other player occasionally tries

the other market, (s)he is better off persisting with the desired choice.

Previous results can be generalized to a pair of traders who do not have strict buyer

and seller roles but can decide to buy with some probability pB. We continue with a

symmetric set up and assume p1B = 1− p2B = pB. This way, beside the previous condition,

that agents need to be synchronised at a market for a trade to happen, they need to

assume opposite roles. As pB are not taken as adaptive but fixed agent’s properties, this

only corrects Σi
m to the following:

Σi
m = piB(1− p−i

B )(1− θm) + (1− piB)p−i
B θm . (3.5)

Agent i receives buyer’s payoff 1 − θm when (s)he assumes role of a buyer (with prob

pB) while co-player assumes role of a seller; (s)he can also receives seller’s payoff in the

opposite configuration. Previous calculation can be then repeated and the following fixed

point equations are obtained:

ξ∗ =
p2B + (1− pB)2

2

sinh (βξ∗)

cosh (βξ∗) + cosh (βρ∗)
,

ρ∗ =
(1− 2θ1)(p

2
B − (1− pB)2)
2

cosh (βξ∗)

cosh (βξ∗) + cosh (βρ∗)
. (3.6)

As before ξ∗ = 0 and ρ∗ > 0 are a unique solution pair at low β when pB > 0.5 and

θ < 0.5, with previous interpretation - player one that more often takes a role of a buyer

will prefer a market one while the player two will do the opposite. Similarly, we can find

βc above which this fixed point becomes unstable using the following condition:

β
(
p2B + (1− pB)2

)

2

1

1 + cosh(βρ∗)
≤ 1 .

Figure 3.3 shows critical β contours above which pair of agents (p1B, p
2
B) = (pB, 1 − pB)

prefers to synchronize at one of the markets. We previously observed that the level of

attraction to the preferred market might not be the same for the two players, but for high



Chapter 3. The Large Memory Limit 71

FIGURE 3.3: 2 players synchronisation threshold for system parameters θ
and pB). Synchronisation threshold is finite for all system parameters and

increases with increase agents’ similarity.

intensity of choice β the new fixed points are such that the two players always prefer the

same market. We also note that the region of synchronisation shrinks with increase of pB

which suggests that without strong buy/sell preferences agents need higher intensities

of choice to benefit from the synchronized state. This is expected because agents with

pB = 0.5 do not have as hight benefit from synchronising at a market – there is still

probability of one half that the trade will not occur, as agents need to assume opposite

roles at the market for the trade to happen.

3.1.2 4 players - onset of segregation

The two player system we have analysed showed already an interesting collective phe-

nomenon – synchronisation at a market to enable more trades although that is not always

beneficial for both players individually. To understand more about possible causes of seg-

regation a minimal system where we can expect a similar effect is N = 4. A system with

four agents is small enough so that we can still easily write down deterministic equations

of the evolution of market attractions but large enough for the first signals of segregated

states as agents can split across the markets in pairs. To keep analysis simple, we focus on

four players who have determined buy/sell roles: two buyers and two sellers, with sym-

metrically biased markets θ1 = 1 − θ−1 = θ. As before, we describe an agent by his/her

market attraction difference ∆g,i whose deterministic equation derivation mostly follows
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previously outlined procedure (g index denotes group - buyers or sellers, while index i

counts agents in the group as before). The two methods differ in the return calculation at

a market of choice because Sg,i
m (n) now depends on the configuration of all other players:

Sg,i
m (n) =

Σg
m

2
δmg,−i(n),m

(
δm−g,1(n),m + δm−g,−1(n),m

)

+Σg
m

(
1− δmg,−i(n),m

) (
δm−g,1(n),m + δm−g,−1(n),m − δm−g,1(n),mδm−g,−1(n),m

)
,

Σg
m denotes the deterministic part of the return that is only dependent on the market m

and the agent’s type g, as introduced for two players (see Eq.3.5). With the Kronecker’s

δ we ensure other agents are present at the same market m at the trading period n. The

first term denotes the states where both agents of the same type are at a marketm and the

return is only half of the possible payoff (as with equal probabilities one of the players

will be selected to trade if there is only one trader of the other type). On the other hand,

when the second player of the same type is not in the same market, the player receives

the return if there’s a trader of the opposite group as described by the second term. The

deterministic equations are thus:

∂t∆
g,i(t) = −∆g,i(t) +

1∑

m=−1

mσβ
(
m∆g,i(t)

)
Sg,i
m (t) ,

where values of Kronecker’s deltas in Sg,i
m (t) are exchanged with their expected values

as in the two players derivation. We solve these equations numerically and find that for

low intensity of choice β there is a unique fixed point whose value depends on θ denoting

preference of buyers to the market good for buyers and similarly for the group of sellers,

but as β is small players largely choose markets at random. When β is increased, two new

stable fixed points appear - all four agents synchronise at a single market. These states, as

in the two agents systems, ensure population average is higher than the continuation of

the low β fixed point that leads to asynchronous choices. But, as before one group needs

to settle for a lower return. Interestingly, when β is increased further, four new stable

states appear – the segregated states in which both markets are populated with a pair of

traders, one from each group.

In Figure 3.4 we show the two critical β lines (the synchronisation and the segregation
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FIGURE 3.4: System with four agents (two buyers and two sellers): phase
diagram and returns. Left: Phase diagram of possible states for differ-
ent market parameters θ and intensities of choice β: synchronisation at a
single market (below the violet line), segregation across two markets (be-
low the purple line). The dashed violet line is synchronisation threshold
line for the two agents system for comparison. Right: Returns in differ-
ent groups as function of intensity of choice β when market biases are
(θ1, θ2) = (0.3, 0.7). Dashed lines correspond to synchronised states in
which return and volume driven type correspond to whole groups (e.g.
buyers choosing market good for buyers). Solid lines are single agent av-
erages in the segregated state when one agent from each group is a return
driven (e.g. buyer at market good for buyers) and the other one is volume
driven (e.g. seller at the market good for buyers). Yellow line is return of

the asynchronous low β fixed point.

threshold) for various market configurations and four players with strict buy/sell roles.

We included the two player synchronisation line to the plot for the comparison, and we

note that the two lines are very close and qualitatively follow the same trend of synchro-

nisation region shrinking when marked difference increases. We note the same tendency

with the segregation region, and we note that the segregation region is always smaller

than the synchronisation region.

The right panel of Figure 3.4 shows return lines for different intensities of choice β:

dashed lines correspond to synchronised states, while solid lines are averages in the seg-

regated state. We note that in the large β limit the population averages corresponding to

synchronised and segregated states, are the same. At a state where all agents synchronise

at the same market one group earns more (dark violet line) than the other (orange line),

but as in the two player game, the population average is higher than at the asynchronized

state. In the large β limit, everyone is better off in the synchronised state. However, when

the segregation occurs the solid dark violet and orange lines denote single player’s pay-

off from both groups while the purple line is the group average (consequently also the
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population average). It is interesting that in the large β limit the two types of states lead

to the same population average but while in one a whole group of agents is earning less,

the other does not make the distinction between the groups, but within a group, there are

high achievers and low achievers. As there are more states of the segregated type (four:

(m1,1,m1,−1,m−1,1,m−1,−1) ∈ {(−1, 1,−1, 1), (−1, 1, 1,−1), (1,−1,−1, 1), (1,−1, 1,−1)})

compared to the synchronised type (two), and the difference in the number of states will

increase with number of agents in a group N , we expect in the large N limit the segre-

gated state to dominate.

FIGURE 3.5: Four traders phase diagram when the group buy/sell roles
are probabilistic. We note that both the segregation (purple line) and
the synchronization (dark violet line) region shrink when the difference in
agent’s buy/sell preferences decreases, the trend we have observed in the
two player system as well (dashed line). Below the orange line “partially”
segregated fixed points exist too - one of the four agents have a preference

for the opposite market.

Finally, as when analysing the two players game, we can generalise the results by

allowing agents to assume the role of a buyer or a seller with some group dependent

probability p
(g)
B . Using the deterministic part of returns defined in the Eq. (3.5), now

function of p
(g)
B too, with the same deterministic equations we can investigate how the

synchronisation and segregation thresholds depend on groups’ properties. In Figure 3.5
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we show results for the symmetric markets (θ1, θ2) = (0.3, 0.7) and symmetric groups

p1B = 1− p−1
B = pB.

As in the system with only two agents, when traders’ preferences for buying are sim-

ilar they do not have as strong incentive to synchronise as players with strict buy/sell

roles. The similar trend we observe in the segregation threshold dependence on the pref-

erence for buying pB. Interestingly, in the system consisting of four traders we note one

more type of fixed points that does not exist in the two-trader-systems: “partially seg-

regated” states. Characteristic of these states is a single agent whose market preference

is opposite from the other three players, effectively making only one group segregated.

These fixed points appear for high enough β for all pB, but in a system with four agents,

these states are unstable (proven by methods of linear stability analysis). Their instability

in the small systems is probably due to the smaller number of trades. In the large β limit

of partially segregated fixed point, there is at most one trade per trading period (only

one pair will match at a market) while both segregated and synchronised states lead to

two trades. As we will see in the following sections, partially segregated states exist in

the large population limit too, though in a smaller region of the phase space, where their

stability also changes.

3.2 Population with a fixed preference for buying pB

Studying systems with a small number of agents we have already encountered rich phe-

nomenology - synchronisation of agents at a single market, pairwise segregation across

the markets and even some mixed states where one group segregates, while the other

specialises in a single market. We now seek to generalise these already impressive results

and investigate possible types of steady states in the large population limit. We start this

description with another “toy model”, a population with identical preferences for buying

pB. The assumption of population homogeneity is a very strong one, but these traders

still undergo segregation for a broad range of parameters, while the system is simpler

to analyse. Thus it is a useful prelude to analysis of the population consisting of two or

more subpopulations of this type. We introduce techniques we will use in the rest of the

chapter on this convenient but rich toy model.
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We continue the analysis of the system with only two markets, and as in Chapter 2,

we use an order parameter per market. We have chosen Demand-To-Supply ratios Dm

(ratio of buyers and sellers) as they conveniently translate into the trading probabilities,

but other choices are possible, too. Once the order parameters are known, we can easily

calculate trading probabilities for buying and selling at both markets:

TBm = min

(

1,
QSm

QBmDm

)

TSm = min

(

1,
QBmDm

QSm

)

. (3.7)

When the trading probabilities are known, as introduced in Chapter 2, we can write the

Fokker-Planck description of evolution of the attraction difference distribution (∆ = A1−

A2, it measures attractiveness of market 1 over market 2):

∂tP (∆|pB, Tγ) = −∂∆ [M1(∆|pB, Tγ)P (∆|pB, Tγ)] +
r

2
∂2∆ [M2(∆|pB, Tγ)P (∆|pB, Tγ)] ,

(3.8)

where the jump moments are function of the order parameters, and as explained in the

previous chapter we take a so called adiabatic assumption – we look for the steady states

of agent’s dynamics, assuming the order parameters are not changing. The drift term

is calculated as follows (more details on the derivation and all the explicit functions of

market bias parameters, e.g. Qγ or 〈Sγ〉 are in Appendix A):

M1(∆|pB, Tγ) =
1∑

m=−1

∑

τ∈{B,S}

mpτTτm〈Sτm〉σβ (m∆)−∆ , (3.9)

where the sum over τ (trading actions, buy/sell) is used to simplify the equation, under

assumption that pS = 1 − pB. The term 〈Sγ〉 is used to denote agent’s return average

while playing an action γ assuming that there is always an opportunity to trade (note,

correction that an agent does not always submit a valid order is taken into account).

Similarly, the diffusion term is:

M2(∆|pB, Tγ) =
1∑

m=−1

∑

τ∈{B,S}

[

pτTτm(〈S2
τm〉 − 2m∆〈Sτm〉)

]

σβ (m∆) +∆2 . (3.10)
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The steady state of the system described is (e.g. [90]):

P (∆|pB, Tγ) ∝
1

M2(∆|pB, Tγ)
exp

(
2

r

∫ ∆

0
d∆′M1(∆

′|pB, Tγ)
M2(∆′|pB, Tγ)

)

. (3.11)

The previous procedure shows that for every pair of market parameters we can find

uniquely defined stationary distribution, assuming that the order parameters are not

changed. This is insightful if we want to understand states a population might prefer

when evolving in a system where order parameters are fixed exogenously. For exam-

ple, demand-to-supply ratio can be unaffected if the population with fixed pB is just a very

small fraction of the trading cohort. Bearing this in mind we can ask – for which demand-

to-supply ratios will the population prefer a single market, or, when will population split

across the markets and more. To answer these questions we will first focus on the r → 0

limit and seek for a condition for segregation in this regime, and later we will see how

these results change for the finite r.

Segregation at the r → 0 limit. Following the line of arguments stated above, for any

set of order parameters we can find the steady-state distribution (Eq. 3.11) that can in

principle be a bimodal distribution (multimodal when m > 2). The bimodality we can

check without finding the steady state, by solving M1(∆|pB, Tγ) = 0. Every solution ∆i

corresponds to a peak of a certain weight in the finite r regime. As before we note that

the intensity of choice β is a control parameter and above a certain threshold, the steady

state distribution is bimodal.

In Figure 3.6 we show how the critical intensity of choice depends on market biases

θ1, θ2 for different populations “indecisive” (pB = 0.5) and “decisive” buyers (pB = 0.8).

We see that for every pair of market biases, above some value of the intensity of choice

β, the moment has multiple zeros which in the case of any finite r results in a bimodal

steady state distribution, i.e. segregated state. We note that when agents are indecisive

between buying and selling, the region where the segregation occurs is the greatest when

markets are identical or symmetrically biased. The decisive buyers’ (pB = 0.8) segrega-

tion threshold is the lowest when the markets are identical. Note that the change between

the two diagrams shown in Figure 3.6 is smooth when pB is varied.
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FIGURE 3.6: Critical intensities of choice as function of market bi-
ases.(left) Indecisive population (pB = 0.5); (right) Population of buyers

(pB = 0.8).

Although these results state that the segregation across two markets exists for every

pair of market biases, it is not clear from such analysis if these multimodal states have

the same properties. To investigate whether the segregation always occurs in the same

manner, we show the steady state distributions for two choices of market parameters and

then try to generalise the observations. In Fig. 3.7 we show the steady state distributions

of traders who are "decisive" buyers (pB) when adapting to two fair markets and two

symmetrically biased markets. We intentionally show these steady state distributions for

two different values of forgetting rates r as our goal is to investigate the r → 0 limit and

although two values are not enough to understand the limit, we can try to observe a trend

if it exists. As expected, the peak width decreases with r (from the Eq. (3.11) we see that

the peak width is ≈ √r), but in Figure 3.7(right) we see that the weight ratio depends on

r, too. The question that remains thus is when the segregated solution exists in the limit

r → 0.

To understand if the segregated state exits in the limit r → 0, we assume that in the

limit, the steady state is:

P (∆) = ωδ(∆−∆1) + (1− ω)δ(∆−∆2) .

This is true because the peaks of the multimodal distribution are centred atM1(∆|pB) = 0
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FIGURE 3.7: Steady state distributions of “decisive” buyers at different
markets. In this figure we compare steady states at β = 20 for differ-
ent market set-ups. Left: 2 fair markets - Strongly segregated solution (S);
Right: 2 symmetrically biased markets - Weakly segregated solution (W).
We also look how forgetting rate r affects the solutions: r = 0.1 (blue),
r = 0.05 (orange). Beside expected peak narrowing when r is decreased,
we also see that the weakly segregated solution’s peak weight ratio is

changed.

here marked ∆i, while the peak width decreases as
√
r, thus if it exists the segregated

steady state is a weighted sum of the delta peaks. Using the steady state distribution

Equation (3.11) we can caluculate the peak weight ratio in this limit:

ω

1− ω =
P (∆1|pB)
P (∆2|pB)

= lim
r→0

M2(∆2|pB, Tγ)
M2(∆1|pB, Tγ)

exp

(
2

r

∫ ∆2

∆1

d∆
M1(∆|pB, Tγ)
M2(∆|pB, Tγ)

)

. (3.12)

This equation explains previous observation: for some solutions the peak weight ratio

increases when r is decreased. We realise that when the integral part of the Eq. (3.12) is

positive, ω → 1 as r → 0 and consequently the whole population is centred at ∆1, i.e. the

steady state is unsegregated. Similarly, when the integral factor is negative the steady

state is a delta peak centred at ∆2. From this we see that the peak ratio is finite only when

I =

∫ ∆2

∆1

d∆
M1(∆|pB, Tγ)
M2(∆|pB, Tγ)

= 0 , (3.13)

which is the condition for segregation in the r → 0 limit. Thus at a fixed intensity of

choice, for every pair of order parameters (D1, D2) we can first find the peak positions
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∆1,2 but we can also calculate I and check if preference to a single market predominates,

or there’s preference coexistence, thus segregation persists at r → 0. This segregation

condition is analogous to the Maxwell construction argument [91] originally applied to

find vapour-liquid coexistence curve in the van der Waals model. To distinguish between

possible states, we can also introduce a function, analogous to the free energy function in

thermodynamics, such that the steady state distribution can be rewritten in the following

form:

P (∆) ∝ exp

(

−f(∆)

r

)

.

Comparing this to the steady state distribution in the Eq. (3.11) we define f(∆) as follows:

f(∆) = −2
∫ ∆

0
d∆′M1(∆

′|pB, Dm)

M2(∆′|pB, Dm)
.

With this notation the condition of segregation in the r → 0 limit reads as f(∆2)−f(∆1) =

0. Moreover the steady state classification can now be obtained by analysing the free

energy analogue - when the function has a unique minimum the state is unsegregated, it

is segregated otherwise. Only when the two minima are equal (f(∆1) = f(∆2)) the state

is strongly segregated (e.g. shown in the left panel of Figure 3.7) while otherwise the state

is weakly segregated (as shown in the right panel of Fig. 3.7). For every finite r the two

types of segregated solutions are multimodal distributions, meaning that a finite fraction

of population always visits both markets. However, as we have seen in the r → 0 limit

only the strongly segregated state will have finte peak weight ratio, thus we call this state

strongly segregated opposed to the weakly segregated state which will be a unimodal

distribution in the r → 0 limit.

Now that we have a method to find steady states and classify them we return to the

space of market order parameters and investigate for which order parameters segregation

occurs. In Figure 3.8 we show r → 0 domains of unsegregated (white), weakly segregated

(coloured region) and segregated states (solid line, a subset of the weakly segregated

domain) at a fixed intensity of choice 1/β = 0.12. We compare again “indecisive” (pB =

0.5) and “decisive” buyers (pB = 0.5) with various market demands, but also different
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FIGURE 3.8: Single population steady state types in the space of market
order parameters (D1, D2). Top: population of buyers (pB = 0.8); Bottom:
"indecisive" population (pB = 0.5); Left: symmetrically biased markets
(θ1, θ2) = (0.3, 0.7); Middle: a fair and a biased market (θ1, θ2) = (0.5, 0.7);
Right: two fair markets (θ1, θ2) = (0.5, 0.5). Coloured regions represent
domain of weakly segregated states in the r → 0 limit. Their subsets, do-
mains of strongly segregated states are represented with solid lines. White
regions represent order parameters for which steady states are unsegre-

gated.

market setups: (1) two fair markets (equilibrium trading price θ1 = θ2 = 0.5), (2) a

fair and a biased market ((θ1, θ2) = (0.5, 0.7)) and (3) two symmetrically biased markets

((θ1, θ2) = (0.3, 0.7)).

We first note that the region of existence of weakly segregated states shrinks when the

agents have stronger preferences for buying, the steady state of the indecisive population

is a bimodal distribution for almost all presented demand-to-supply ratios. We see that

when markets are fair and demand-to-supply is the same, both types of agents prefer to

strongly segregate. A rationale for this behaviour might be in the fact that whenever one

of the markets is different in terms of its demand or supply the agent will clearly differ-

entiate them and choose a more convenient option. Interestingly, we see that “decisive”

buyers segregate in a system of symmetric markets only if at least one of the markets
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has higher demand than supply, but notably, the markets are different. Finally, we also

note that the “indecisive” buyer perceives the benefit of segregation when markets are

symmetric in their demand and supply, i.e. D1 ∝ 1/D2.

It is important to note here again that these segregation conditions are drawn upon

the assumption that market order parameters (D1, D2) remain fixed over the period of

agent’s adaptation. As stated before, that is a reasonable assumption if we are interested

in understanding e.g. single agent dynamics as his/her own preferences have a negligi-

ble effect on overall numbers of buyers and sellers at markets. Having this in mind we

see that a single agent prefers settling for a single market for some demand-to-supply

ratios, but sometimes (s)he prefers spending long periods of time at one market and then

changing the preference to another market. This observation comes from knowing that

the steady state distribution we have found in Eq. (3.11) can be interpreted either as a

population density or as a single agent distribution of attraction differences over a long

time. If we are to think about a large group of agents with preference to buy pB then the

assumption of fixed market order parameters might not be sound, and we need to think

about the effects of the group to the order parameters. In this context, we investigate if

the segregation is possible if only the population in question is trading at the markets. To

rephrase – can the segregated population create market conditions needed for its segrega-

tion? This, as we have seen, will usually result in a self-consistent procedure for solving

the Fokker-Planck equation (described in Section 2.3), but when the system consists of

agents with homogeneous preferences for buying this can be avoided.

Market conditions. Here we start by calculating market conditions created by a group

of traders with homogeneous preferences for buying pB if their distribution of market

preferences is P (∆). Number of buyers/sellers at the market m are:

NBm = pB

∫

d∆P (∆)σβ(∆) ,

NSm = (1− pB)
∫

d∆P (∆)σβ(∆) . (3.14)

From these, we see that the demand-to-supply ratio does not depend on the market pref-

erence distribution, but it is completely determined by the input parameter - preference
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for buying:

Dm =
NBm

NSm
=

pBNm

(1− pB)Nm
=

pB
1− pB

. (3.15)

This is true because the population consists of agents of the same type, whose probability

of choosing a market m is the same. Consequently, the demand-to-supply ratio is fully

determined by pB . In our previously sketched space of market order parameters, this

condition corresponds to a single point in the space, marked in black in Figure 3.8. We

see that the population of “indecisive” buyers strongly segregates when markets are fair

or symmetric (these results extend to θ1 = θ2 or θ1 = 1 − θ2, not only for the market

parameters shown in the figure). “Decisive” buyers, on the other hand, strongly seg-

regate only if the markets are equal. In Figure 3.8 we see how the dot of market order

parameters created by decisive traders is in the unsegregated domain for the symmetric

markets, weakly segregated domain for fair/biased market pair and strongly segregated

when both markets are fair.

With these insights, we consider again Fig. 3.6. It shows the existence of the segrega-

tion threshold intensity of choice for all market biases (and this critical β is obtained as

the point when the drift term has multiple solutions). Analysing the types of segregation

above βs we now conclude that for the majority of the market biases the steady state is

a weakly segregated one. As commented before, for any finite r these states are bimodal

distributions in which a finite fraction of the agents is always choosing to settle in a dif-

ferent market, but in the r → 0 limit one market wins, e.g. the distribution of agents is

unimodal.

3.3 2-subgroup population (p
(1)
B , p

(2)
B )

In the previous section, we showed how for any given pair of market order parameters

(D1, D2) we can determine the type of steady state of a group of traders with homoge-

neous preferences for buying pB. We have identified three possible types of steady states:

unsegregated state (U), weakly segregated state (W) and strongly segregated state (S).

We now generalise the investigation to populations that have more subgroups with fixed
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preferences for buying. We demonstrate the procedures in the case of two subgroups,

but the principles are general and can be extended further. We denote a steady state of

a population consisting of two subgroups with a pair of letters (X,X), X ∈ {U,W, S}

indicating the type steady state for the both subgroups. We note that population with

two different subgroups can find itself in any of the nine possible states.

When the market order parameters are somehow fixed exogenously, for any given

pair (D1, D2) we can find domains of different state types as in Figure 3.8 for both sub-

groups and thus determine what preferred state combination will be the steady state

of the population. Just by a quick look at Figure 3.8 we can characterise a steady state

of a population consisting of the two subgroups whose solution domains are plotted

(p
(1)
B , p

(2)
B ) = (0.8, 0.5). For example, when market order parameters are (D1, D2) = (5, 5)

(the top right corner of all the diagrams), the population’s steady state is (U,W ) when

markets are symmetrically biased or biased/fair (the left and central diagrams in Fig. 3.8)

and (S, S) when both markets are fair (right diagrams in Fig. 3.8). This simple analysis

can be extended to any number of subgroups as we treat every one of them indepen-

dently. However, this only gives us the steady state of such composite population if the

market order parameters are fixed exogenously.

More realistically, we want to investigate the steady states of the population that is

also the only population trading at different markets, thus defining the market order

parameters. In this case, we need to find the steady states self-consistently. We have

outlined such procedure for the finite r in Chapter 2 where starting from some initial

market order parameters (D1, D2) we have been calculating the steady states and updat-

ing (D1, D2) accordingly until finding a self-consistent pair - order parameters created

by the steady state are the ones needed for retrieval of that steady state. Now, instead of

looking at the possible order parameter pairs that we can obtain starting from some ini-

tial conditions, we want to explore the space of order parameters to find and categorise

all the steady states.

In the phase space, we define a locus of points for which one of the order parameters

does not change. The intersection of such loci for all the order parameters (in the case of
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two markets, only two) gives us all possible steady states. To find the loci, we use the def-

inition of the market order parameters (Eqs. 3.14,3.15) extended to two subpopulations:

Dm =
N

(1)
B +N

(2)
B

N
(1)
S +N

(2)
S

Dm =
p
(1)
B

∫
d∆σβ(m∆)P (∆|p(1)B ) + p

(2)
B

∫
d∆σβ(m∆)P (∆|p(2)B )

(1− p(1)B )
∫
d∆σβ(m∆)P (∆|p(1)B ) + (1− p(2)B )

∫
d∆σβ(m∆)P (∆|p(2)B )

.

For every pair (D1, D2) we find steady states P (∆|p(g)B ) for all subgroups for some small

r. Using these steady states we find the locus of points for whichD′
m = Dm. The intersec-

tion of such loci will give us the number and market order parameters of all the steady

states of the population with small but finite r. As we expect the loci to continuously

change with r, finite but small r gives us a good estimate on the number of solutions

and determining in which domain they lie (U, W or S) we can characterise the type of

population steady state. In most of what follows we constrain our analysis to symmetric

set up of markets (taking symmetric biases θ1 = 1 − θ2) and agents’ buying preferences

(p
(1)
B = 1−p(2)B ). We start this section with examples of transitions of population with “de-

cisive” traders ((p
(1)
B , p

(2)
B ) = (0.8, 0.2)) and “indecisive” traders ((p

(1)
B , p

(2)
B ) = (0.55, 0.45))

to demonstrate previously described methods. We continue with remarks on algorithmic

approaches to find and characterise all the steady states when pB is continuously varied,

and conclude with a phase diagram in the r → 0 limit, where number and type of pop-

ulation’s steady states is marked as function of intensity of choice β and preference for

buying pB.

“Decisive” traders. We first analyse the system of agents most commonly discussed

in the previous chapter, these are the “decisive” traders (p
(1)
B , p

(2)
B ) = (0.8, 0.2), dubbed

this way to distinguish from agents we will discuss later whose preferences for buy-

ing/selling are much milder. We continue the investigation on the set of two symmet-

rically biased markets (θ1, θ2) = (0.3, 0.7). To illustrate previously described procedure

of finding and categorizing population steady states, in Figure 3.9 we show series of di-

agrams in the space of order parameters (D1, D2) for different β. In each diagram we

mark the region of weak segregation and its subset, the strong segregation line, for both
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subpopulations (blue for p
(1)
B = 0.8 and orange for p

(1)
B = 0.2), while we leave without

colouring regions where the unsegregated state exists. On top of this, we add loci where

D′
m = Dm for r = 0.001. Intersections of the loci give us the population steady states at

low but finite r. We expect those to move continuously when the r → 0 limit is taken,

thus from figures we can read the number and type of solutions and confirm them further

by numerical methods in r → 0 limit.

FIGURE 3.9: Steady states of the decisive population – (p
(1)
B
, p

(2)
B

) =
(0.8, 0.2) – for different β in the r → 0 limit. Top Row: Left - 1/β = 0.31
(U,U) solution; Middle - 1/β = 0.29 three (U,U) solutions; Right - 1/β =
0.265 (U,U), (S,S), (U,U) solutions. Bottom Row: Left 1/β = 0.245, (U,W),
(S,S), (W,U); Right 1/β = 0.2, (W,W), (S,S), (W,W). U - unsegregated; W -

weakly segregated; S - strongly segregated steady state.

In the first panel of Figure 3.9, we show the low β regime (β = 1/0.31, just before the

transition). We note that at this intensity of choice for all the market order parameters

shown both subpopulations’ steady states are unsegregated. There is a unique intersec-

tion of the D′
m = Dm loci – there is only one population steady state and as it is in the

domain of unsegregated solutions for both subpopulations the steady state is (U,U).

The second panel shows just slightly increased intensity of choice (1/β = 0.29) where
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the majority of order parameters are still in the unsegregated domain, but this time, there

are three loci intersection, and all three (U,U) states. The steady state which is a continu-

ation of the low β solution corresponds to mild preferences between the markets, thought

asymmetric - buyers have a slight preference for market one, good for buyers and vice

versa as explained in the previous chapter. The other two unsegregated solutions corre-

spond to unimodal distributions, synchronisation at one of the two markets.

Increasing the β even further we cross the segregation threshold (1/βc = 0.28 for these

parameters, as reported before, e.g. Fig. 2.8) and we can see in the third panel, that the

continuation of the low β steady state is now in the strongly segregated domain of both

subpopulations, while previously found two unsegregated solutions remain unchanged.

Important to note is that there is an intermediate β, just above βc when the fixed point

is in the domain of weakly segregated solutions, thus the solution is (W,W ). That’s not

clearly visible in this visualisation and we will address the existence of these solutions

when we put together all the steady state information in a joint phase diagram.

We note the growth of the weak segregation and strong segregation domains when

β is increased, thus in the last two diagrams, the two unsegregated solutions (U,U) un-

dergo transitions to (U,W ) and finally (W,W ) state. Although in the presented plots

the initial pitchfork bifurcation from one to tree (U,U) states suggests instability of the

middle solution that will later become the segregated state, we should not make stabil-

ity assumptions based on these diagrams. This is because the analysis presented always

takes an assumption that the agent adapts to the fixed demand to supply order param-

eters. And although with this assumption we can find all the steady states, we can not

assess their stability as in the real systems the order parameters are not slowly varied.

Once we investigate the phase space and identify all the solutions, we will return to the

investigation of dynamics in the finiteN systems to see which of these states are favoured

by the simulated population.

“Indecisive” traders. As opposed to the previously studied agents who are more deter-

mined in their buy/sell role, in the next few paragraphs we present different steady states

of a population consisting of two not so distinctive subgroups (p
(1)
B , p

(2)
B ) = (0.55, 0.45),

keeping all other parameters (e.g. market biases) the same. The choice of subpopulations
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with these buy/sell preferences is motivated by observed change in monotonicity of the

critical intensity of choice e.g. Figure 2.10. Due to their mild buy/sell preferences we

don’t expect as strong preferences for markets that are better for buyers/sellers. These

traders are not as strongly penalized if only a single subgroup populates a market, as

still a large number of trades can be sustained. All this suggests that steady states might

be different for the populations consisting of agents with milder buy/sell preferences.

As for the previously presented case study population with p
(1)
B = 0.8 we will show the

sequence of steady states for different intensity of choice in the space of market order

parameters noting the regions of weak and strong segregation.

FIGURE 3.10: Steady state of the indecisive traders (p
(1)
B
, p

(2)
B

) =
(0.55, 0.45) for different intensities of choice β in the large memory limit
(r → 0). Top row: Left 1/β = 0.31 the unsegregated state; Middle
1/β = 0.295 unsegreaged (U,U) and four partially segregated states (U, S);
Right 1/β = 0.28 weakyly segregated (W,W ) and four partially segregated
states (W,S). Bottom row: Left 1/β = 0.1 strongly segregated (S, S) and
two partially segregated statese (W,S); Right: 1/β = 0.05 strongly segre-
gated (S, S) and two weakly segregated states (W,W ). U - unsegregated;

W - weakly segregated; S - strongly segregated steady state.

We observe several differences in the transitions compared to the decisive traders,
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most notably the number of solutions. Although it is not precisely clear in Figure 3.10,

we realise that crossing the segregation threshold (e.g. crossing the cyan line in Fig. 2.10)

four new partially segregated states appear. (The central and right panel in the top row,

besides the obvious intersection have 4 more solutions – the points where the two loci

first meet; the line overlapping segments are spurious finite r effect in this space of rep-

resentation.)

Partially segregated we label states in which one subpopulation is strongly segregated

(thus stay bimodal even at the r → 0) while the other is unsegregated or weakly segre-

gated, as both of these states are unimodal in the r → 0 limit. A similar state we have seen

in the systems with four agents where one of the fixed points was such that within one

group agents had different market preferences (thus “segregated”) while within the other

the preference were the same. However, in the small system, this state was an unstable

state, which is reasonable because the fourth agent who a had a higher preference for

the opposite market had lower chances to trade, thus effectively decreasing the overall

number of possible trades for the whole system. In the large population limit one segre-

gated and one unsegregated population still leave many possibilities for trading. This is

especially true in the systems with indecisive agents were roughly half of the subgroup

would assume the role of buyers and the other half sellers.

When the intensity of choice is increased, the number of solutions is decreased, and

one strongly segregated state appear. Only for very high intensities of choice, we note

states in which both subgroups are weakly segregated as we have noted in the previously

studied system. As in the previous system, we see that for high intensity of choice these

two states represent synchronisation at a single market.

Algorithmic remarks

The method of finding all solution by identifying loci of invariant market order param-

eters is the best way to exhaust market order parameter space and find all the solutions

for the finite r. Identifying the position in the different domains we also fully character-

ize the solution at the finite r and when it is small enough we can assume the type of

solution will not change in the r → 0 limit. However, this method is also numerically
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very demanding, as for every point in the phase space we need to find a steady state

distribution (its normalisation usually takes most of the processing time) and recalculate

the corresponding order parameters. It is also the method for finite r and we need to

check how these solutions are corrected in the r → 0 limit. To do so, we apply a few

numerically less demanding routines described below.

Population with homogeneous market preferences. We have seen that for various sys-

tem parameters population steady states are unimodal in the r → 0 limit (“U” and “W”

states). These states represent population with subgroups with homogeneous market

preferences. This realisation offers a simple way to find all the states of this type for any

system parameter. The demand to supply order parameters are simpler:

Dm =
p
(1)
B

∫
d∆σβ(m∆)P (∆|p(1)B ) + p

(2)
B

∫
d∆σβ(m∆)P (∆|p(2)B )

(1− p(1)B )
∫
d∆σβ(m∆)P (∆|p(1)B ) + (1− p(2)B )

∫
d∆σβ(m∆)P (∆|p(2)B )

=
p
(1)
B σβ(m∆(1)) + p

(2)
B σβ(m∆(2))

(1− p(1)B )σβ(m∆(1)) + (1− p(2)B )σβ(m∆(2))
, (3.16)

where in the second row we have used 〈σβ(∆)〉 = σβ(〈∆〉), a relation that is exact in the

r → 0 limit where the steady state distribution is a delta distribution centred at ∆(g) (the

solution of M1(∆|pB) = 0). With this simplification, to identify the peak positions of such

distributions, we find zeros of the first jump moment M1 is as defined in Eq. (3.9), but

now we are taking into account Dm dependence on the population attraction differences

∆(g). This means that when searching for the steady state in which both subpopulations

of traders have homogeneous market preferences, we need to solve equations for the two

populations simultaneously:

M
(1)
1 (∆(1)|p(1)B , Dm(∆(1),∆(2))) = 0 ,

M
(2)
1 (∆(2)|p(2)B , Dm(∆(1),∆(2))) = 0 . (3.17)

Every solution pair found this way needs to be checked for consistency with our ini-

tial assumption - homogeneous market preferences, i.e. market order parameters corre-

sponding to every solution pair need to belong to the unsegregated or weakly segregated
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solution domain. For every given fixed point (∆(1)∗,∆(2)∗) of the Eq. (3.17) we can cal-

culate order parameters Dm Eq. (3.16) and find the “free energy” corresponding to these

order parameters. If the free energy minimum (global when it has two) is centred at

∆(g)∗ the solution is consistent with initial assumption and we have found a population’s

steady state. Depending on the signs of ∆∗ we classify these further as either synchro-

nized ∆(1)∗∆(2)∗ > 0 or asynchronized ∆(1)∗∆(2)∗ < 0. For any finite intensity of choice β,

a single agent can chose another market even if the state is categorized as synchronized

at market 1, but the categorization is exact for the β →∞ limit.

Solving Eqs. (3.17) correspond to some population level optimisation as both order

parameters, and population preferences (which are the same for all agents within it) are

changing. Had we only solved the equations and assessed the stability of the fixed points

by using general linear stability methods (e.g. finding the Jacobian at the fixed point

(∆(1)∗∆(2)∗)) we would realize that at the 1/β = 0.29 depicted in the middle panel of the

top row in Figure 3.9 corresponds to two stable (synchronized at different markets) and

an unstable fixed point (continuation of the low β solution). On the other hand, assessing

every of these order parameters from single agent’s perspective (e.g. finding the free en-

ergy) we find that all three solutions are such that the free energy has a unique minimum,

i.e. stable. This discrepancy illustrates well the difference between the “population” and

“single agent’s” approach. In the first, the assumption made is that the population acts

as whole trying to find a fixed point optimising the market preferences and trading prob-

abilities. The second approach, of a single agent, makes no assumption on the ability

to change global order parameters, but we investigate whether at the global parameters

being fixed an agent has an incentive to move or not.

In the second case study, the continuation of the low β fixed point is a solution we

can consistently find by this method for a wide range of intensities of choice, much wider

than when the subpopulations have more pronounced buy/sell preferences. This is due

to the previously stated observation that these agents are not penalised when they recog-

nise the market that slightly more awards them, i.e. even if the subpopulations are asyn-

chronized a large number of trades can occur. We also find that the population fixed
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point (solution of the 3.17 equations) undergoes first order transition for these parame-

ters which might be a reason for the change in monotonicity of the critical intensity of

choice reported in Figure 2.10. Beside the fixed point that is a continuation from the low

β, all new fixed points are inconsistent with the homogeneous population assumption

until very high intensities of choice. This is why we need to employ different techniques

to find the other solutions presented in Figure 3.10. Only when the intensity of choice is

increased further, partially segregated states cease to exist, and solutions consistent with

the homogeneous population assumption arise.

Strongly co-segregated state (S,S). To find if these states exist we apply a procedure

based on Maxwell construction argument outlned for a single subgroup population. For

each subpopulation we define a locus in the space of order parameters (D1, D2) for which

the strong segregation condition Eq.(̃3.8) is satisfied. If there is an intersection (D∗
1, D

∗
2)

between the two loci there are market demand-to-supply ratios in which both subpop-

ulations favour strongly segregated state. We finally need to confirm that the two order

parameters can be created if only the two segregated subpopulations trade on the mar-

kets. If we assume the strongly segregated distributions are of this form:

P (∆|p(g)B ) = ω(g)δ(∆−∆
(g)
1 ) + (1− ω(g))δ(∆−∆

(g)
2 )

and assuming ∆
(g)
1 > 0, the order parameters that correspond to these distributions are:

Dm =
NBm

NSm

Dm =

p
(1)
B (ω(1)σβ(m∆

(1)
1 ) + (1− ω(1))σβ(m∆

(1)
2 )) + p

(2)
B (ω(2)σβ(m∆

(2)
1 ) + (1− ω(2))σβ(m∆

(2)
2 ))

(1− p(1)B )(ω(1)σβ(m∆
(1)
1 ) + (1− ω(1))σβ(m∆

(1)
2 )) + (1− p(2)B )(ω(2)σβ(m∆

(2)
1 ) + (1− ω(2))σβ(m∆

(2)
2 ))

(3.18)

If there are weights ω(g) ∈ [0, 1] corresponding to the intersection point (D∗
1, D

∗
2) the

strongly segregated state exists. These states leave both markets equally active and as we

will show in the discussion below, they entail benefits for the population as a whole, not
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favouring any of the symmetric subpopulations.

Partially segregated states. Finally, we outline a procedure to find a population steady

state that is a combination of bimodal (S) and unimodal (U or W) state in the r → 0 limit.

A starting point for this search can be obtained by solving two homogeneous population

equations (3.17). When one of the subpopulations is consistent with the homogeneous

population assumption, while the other is not, we can investigate whether the strongly

segregated solution for the other population exists. To find these states, we assume that

the subpopulation which is inconsistent with a given homogeneous population solution

is in the segregated state. Thus possible order parameters for this state are on the locus

as defined by the Maxwell construction. For every pair (D1, D2) from the segregated

state locus we investigate the “free energy” of the second subpopulation (whether it is

unsegregated or weakly segregated). We find the peak position and model it as a uni-

modal distribution centred at (global) minima. We only need to examine whether by

peak weight redistribution of the strongly segregated subpopulation we can retrieve the

initial order parameters (D1, D2). When this is possible, the partially segregated state ex-

ists. In the example we show in Figure 3.10, due to mild buy/sell preferences, when one

of the subpopulations is segregated there are two unsegregated options for the second

subpopulation - specialisation to any of the two markets.

(β, pB) Phase Diagram. Observing a variety of possible steady states for different choices

of system parameters we realise we need a detailed phase diagram to investigate do-

mains of existence of the previously described states. We also want to examine which of

our case studies is a more typical scenario, if there are more atypical situations, etc. We

continue the investigation on the symmetric markets (θ1, θ2) = (0.3, 0.7), but the observa-

tions we make are general for symmetric markets. In Figure 3.11 we show phase diagram

in the space of intensity of choice β and subpopulation preference for buying pB. This di-

agram is the large population limit version of the diagram shown in Fig. 3.5 where for

the system with only four players we have identified regions with states resembling un-

segregated indecisive state (low β), unsegregated synchronised states, segregated and

partially segregated states. Phenomenologically, these types of states persist in the large
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population limit, but they have additional structure. Thus the new diagram looks more

complicated.

FIGURE 3.11: Types of steady states of 2 symmetric subpopulation sys-
tem in (β, pB) space. Left: Critical lines in the (β, pB) space. Crossing
each of the lines changes either number or the type of the steady states.
Right: Topologically stretched equivalent diagram to aid phase space un-
derstanding. Dark Violet - change in solution multiplicity; Purple and
Orange line mark changes in the low β fixed point U → W purple, and
W → S orange; Pink, Yellow and Green mark changes in the other two
fixed points, crossing yellow and pink denotes U → W transition in one
of the subpopulation’s states, while green demarcates partially segregated
states - crossing it one of the subpopulation’s states transitionsW → S. U -
unsegregated; W - weakly segregated; S - strongly segregated steady state.

To help perception and understanding of the diagram, besides the critical lines in

the metric (β, pB) space (left panel) we show deformed diagram for clearer visibility and

phase notation (the two panels are topologically equivalent). We also simplify the state

notation: two subgroups in the same state we denote with only one letter (e.g. (U,U) be-

comes U); multiple population state which are the same we mark with a number in front

(e.g. (U,W) and (W,U) we mark with 2WU). Crossing any line in the phase diagram either

changes the number of population solutions or the nature of previously existing states.

We note that due to the system’s symmetry many of the changes for the two subpopula-

tions happen simultaneously. The dark violet line is the line where the multiplicity of the

states changes. This line is an analogue of the same coloured line in the phase diagram

(Fig. 3.5) of the system with N = 4 players. The region of multiple solutions increased

for large N , and the monotonicity of the critical intensity of choice βc has changed. While
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βc was an increasing function of pB in the 4-player system, now it is a slowly increasing

function only up to some pB when the monotonicity changes. Dark purple and orange

lines mark transitions in the state corresponding to the continuation of the unique low β

fixed point, while yellow, green and pink line mark changes in the two new fixed points

that correspond to “synchronisation” at a single market.

The dark purple line is the line below which the continuation of the low β fixed point

becomes weakly segregated. This line was reported in Figure 2.10 where we investigated

when the segregation happens if the intensity of choice is gradually increased. In such

setup, an agent does not have an incentive to deviate from the low β fixed point until a

possibility for segregation emerges. With the orange line, we mark critical intensities of

choice when the same fixed point becomes strongly segregated. We note that for the sys-

tem of our first case study pB = 0.8 the two lines (dark purple and orange) almost over-

lap - the region of the weakly segregated indecisive state is very narrow for this choice of

parameters and in general for pB ≤ 0.3. As previously argued, when preferences for buy-

ing/selling are milder the low β fixed point corresponding to “recognition” of the good

market, although leading to synchronisation remains weakly segregated (thus consistent

with homogeneous in the r → 0 limit) in increasing region of β when pB increases.

Other lines (light pink, yellow and green) mark changes in the type of so-called “syn-

chronised” state. Crossing the pink and yellow lines, one of the subpopulations change

the state from unsegregated to weakly segregated. Similarly, crossing the green line

changes the subpopulation’s state from weakly to strongly segregated one. Thus the

green line demarcates region to the right of which partially segregated states (bimodal

+ unimodal distribution at the r → 0 limit) exist. We note that the partially segregated

states are not only property of the system with subpopulations with pB = 0.55, but the

property is shared within a broader region. We realise that the shape of partial segre-

gation line remained the one we have observed in the small sized system though it ex-

panded. We conjecture that it is due to this region’s expansion that the monotonicity of

the segregation threshold line changes, as for the system with moderate buy/sell pref-

erences we see that when crossing the dark violet line (an increase of multiplicity) it is

the partially segregated states that occur first. Finally, in the small system, we realised
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that partially segregated fixed points are unstable. However here we realised that the

partially segregated solutions appear in pairs thus it is unlikely that when the two new

fixed points appear both of them are unstable. As before, we note that stability needs to

be assessed taking into account the simulated dynamics, and we defer the discussion to

later sections.

We have identified all the lines presented in Fig. 3.11 by varying smoothly pB for the

fixed intensity of choice and by tracking each of the three solution types we previously

discussed - synchronised at market one or two and the continuation of low β solution.

We do solution tracking as it is numerically faster and more reliable than the finite r

procedure (note the noisiness in the two loci in Fig. 3.10). However, when discussing the

system with indecisive subpopulations, e.g. Figure 3.10, we noted region of intensity of

choice β with five steady state solutions.

By returning to the finite r procedure we find partially segregated states and for a

fixed moderate pB we find five solutions. For fixed βs we believe the five solution bound-

ary is defined by the max{porangeB , pgreenB }, as our numerical exploration of the greater pB

in the vicinity of these lines always reveal five steady states. We expect that crossing the

transition line(s) in the phase diagram should change either number of states or their

nature (not both). Consequently, we conjecture that the five solution region line closely

follows a combination of the orange and green line (as described before), but that a sep-

arate three solution region exist. The three solution region might be too narrow which

would explain why we cannot distinguish the two in numerical explorations. We de-

fer further discussion on the five solutions to some future publications. Here, we only

explain observed transition sequence that the low β solution follows (when the β is in-

creased): UU → UU + 4US (two symmetric saddle-node bifurcations) → SS + 2V S

(pitchfork bifurcation on the symmetry line, where also with V denoted an unimodal

solution either U of W depending on pB value).



Chapter 3. The Large Memory Limit 97

Average Population Returns

We have shown in the previous chapter that multiple steady states exist for a range of

forgetting rates r not only in the r → 0 limit (see e.g. Fig 2.13, but also in this chap-

ter: Fig. 3.9 where the loci intersections represent r = 0.001 solutions). Properties of the

strongly segregated states, such as the Binder cumulant and average population returns

for finite r were addressed in the previous chapter, while now we address similar prop-

erties of the other types of states in both finite r and the r → 0 limit. We will conclude

this chapter returning to the finite N numerical simulations to investigate under which

circumstances other types of segregated states occur.

FIGURE 3.12: Average returns of different steady states as function of
forgetting rate r. Intensity of choice β = 5. We note that average return
of the strongly segregated state decays with r thus appearance of weakly
segregated states offer a higher population average return. The two sub-
populations in the weakly segregated state have different average returns,
one always earns more (e.g. buyers at market good for buyers) thus we

call them high/low achievers.

In Figure 3.12 we show how average returns change as a function of the forgetting

rate r at the fixed intensity of choice β = 5 (for this set of parameters β = 5 > βs for all

r). Already in Figure 2.9 we have seen that the average population return of the strongly

segregated state decreases with r when comparing a few values. Looking at a wider

range of r we now note that the strongly segregated state return is a decreasing function.

The appearance of another solution type offers higher population average. Two weakly

segregated states are symmetric, thus we show results for only one of them. In each

weakly segregated state, the majority of both subpopulations develop a strong preference
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for the same market. Consequently, there is a subpopulation that is satisfied with the

choice, e.g. buyers settling for market good for buyers, we name them high achievers,

and a subpopulation that earns less – low achievers. We note that below some forgetting

rate even the low achieving traders earn more at the weakly segregated state.

FIGURE 3.13: Decisive agents’ returns for different steady states in the
r → 0 limit. Top: Strongly Segregated state (S) - returns of the segregated
subgroups, return driven and volume driven agents compared to the envy
free Nash equilibrium (grey line). Bottom: Comparison of different r → 0
states’ returns. Unimodal states synchronisation at a single market is shown
with dark violet (high achieving subpopulation), purple (average) and or-
ange lines (low achieving subpopulation). Its returns are compared against
strongly segregated population average (dashed purple) and low β unseg-

regated state’s average (yellow).

We now focus on the r → 0 limit. First, in this limit, we can find out more about the

strongly segregated state returns as the two groups in the population are now fully spe-

cialised into return driven and volume driven traders (i.e. the peaks are well separated).

Consequently, we can correctly assess benefits of the segregation for every subgroup. We
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kept the same baseline comparison - the envy-free Nash Equilibrium. In the top panel

of Figure 3.13, we note that both return driven and volume driven traders earn more

than at the envy-free Nash Equilibrium for all β > βs. Previously we remarked that the

population average (also single agent long time average) is higher in the strongly segre-

gated state compared to unsegregated alternatives at finite r. Now, we show that both

subgroups are better off even at short time scales.

In the bottom panel of Figure 3.13 we investigate the new steady states’ returns and

compare them to the previously studied ones. In the r → 0 limit, U , UW and W states

are all the same as in the limit they are all unimodal, delta peaked distributions synchro-

nised at one of the markets. We plot the two subgroups average returns along with the

strongly segregated state average and the unsegregated low β state average. We note

that unimodal states appear at lower β (compared to the strongly segregated state), as re-

ported in Fig. 3.9. The returns of the high achieving group and the population average are

substantially higher than at the strongly segregated state. However, the population av-

erage of the weakly segregated state does not have an interpretation of the single agent’s

average as it is the case with the strongly segregated state. Once distinguished into the

high achievers and low achievers, the two subpopulations always have a different return.

Although we can argue that on the level of population average that is a better state, there

is no agent who’s average return correspond to the population’s average.

The average population return in the high β limit of the unsegregated state, when

all players synchronize at the same market, also corresponds to the average population

return when all traders choose random (e.g. β = 0). This is true because when all traders

choose randomly, on average number of agents taking each action is equal, which is also

the case when all agents are synchronized at the same market. Intriguingly, this means

that when learning is introduced, for small intensities of choice, an agent who takes deci-

sions based on previous history is worse than an agent who plays at random. This is only

changed in the large β limit of the weakly segregated state where the population average

return again reaches the value random trader was obtaining. It is important to note that

as opposed to the randomly trading population in the large β limit of the weakly segre-

gated state one subpopulation earns more than the other as shown in the lower panel of
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Fig. 3.13. As indicated in the same panel, population average in the strongly segregated

state does not reach the population average of the randomly trading population. Despite

indications that for a given β strongly segregated state is the best among the states that do

not distinguish between subpopulations in the long run, in terms of average population

return this state is outperformed by β = 0 – the population of traders who do not learn

but play at random.

FIGURE 3.14: Indecisive agents’ returns for different steady states

(p
(1)
B
, p

(2)
B

) = (0.55, 0.45). The dashed lines represent r = 0.01 steady state
whose limit is a partially segregated state for the r → 0. We compare
this state’s subgroup’s returns with the low β state average (that persists
population’s unsegregated solution for larger intensities of choice) and the

strongly segregated state (solid lines).

Finally, we address the returns in the population of indecisive traders pB = 0.55. We

omit to plot an analogue of Fig. 3.12, as the qualitative behaviour is identical with one

quantitative difference - forgetting rate at which new states appear is lower. This trend is

consistently shown across all β, so the region of multiple segregated states in (β, r) space

shrinks with pB
1.

Instead, in Figure 3.14 we compare returns of different steady state types as a function

of the intensity of choice β. As previously, one benchmark value is the return of the

low β fixed points (marked in yellow). Its value quickly decays with the increase of β

and consistently with previous observation, at some βs the strongly segregated state is a

better alternative. We also plot returns of steady states for the r = 0.01 as it is a state that

1The maximum value of r for which three segregated states exist is r = 0.002, compared to r = 0.0055
reported for the pB = 0.8
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in the r → 0 limit converges to a partially segregated state. We note as previously shown

in the phase diagram that the partially segregated states appear first (when β is gradually

increased). Despite the finite r we expect continuous change to the r → 0 limit, so the

finite r can serve as an estimator of the partially segregated state’s properties. We note

that the average returns in the finite r partially segregated states are much higher than at

other states, but also we note that the difference between the two types – high achievers

and low achievers decreases with r that is a phenomenology unseen in the “decisive”

population.

3.3.1 Dynamics

In our initial investigation of the evolution of preferences in the numerically simulated

system with a finite number of agents N , we focused our attention on high values of the

forgetting rate r (e.g. r = 0.1 as in Chapter 2). This is because for large r agent’s relax-

ation times are shorter and consequently, we can more easily study patterns in agents’

persistence. On the other hand, our analytical investigation of the r → 0 limit showed

a variety of possible states above the segregation threshold βs beside the strongly seg-

regated state that was primary focus of the research presented so far. Also in the range

of finite r, more than one steady state exist (e.g. see the (r, β) phase diagram Fig. 2.13),

with rc dependent on system parameters. But so far the forgetting rate we have mostly

analysed was in the regime where the strongly segregated state is unique steady state

above the βs threshold (e.g. Fig. 2.7 and Figs. 2.8, 2.9). This still leaves the question of ex-

istence and stability of other types of states - weakly segregated and partially segregated

ones – in numerical simulations of populations with finite N and r. Our analysis may

suggest that the strongly segregated state becomes unstable when the two weakly segre-

gated states appear, see e.g. Figure 3.9 for pB = 0.8 where in the market order parameter

diagram it looks as if the strongly segregated solution undergoes pitchfork bifurcation,

leaving the low β solution unstable. This might not be the case because when searching

for steady states using the Fokker-Planck routine we have made an assumption that the

adaptation happens adiabatically, i.e. an agent equilibrate in the fixed market order pa-

rameters. This is not true in the simulated system where all agents make simultaneous
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market decisions based on his/her past thus adapting to abruptly changing market order

parameters. That is why we devote the following section to investigations of the strongly

segregated state stability in the numerical simulations.

FIGURE 3.15: Instability of the strongly segregated state and decay to a
weakly segregated state. System parameters: agent’s learning (r, 1/β) =

(0.05, 0.16), preferences for buying (p
(1)
B
, p

(2)
B

) = (0.8, 0.2), markets’ biases
(θ1, θ2) = (0.3, 0.7), system size N = 2000. Left: Evolution of subpopu-
lations’ attraction distributions shown with the Binder cumulant time se-
ries of a single simulation run - subpopulation of buyers (green), sellers
(orange). Dashed lines are theoretical predictions at the strongly segre-
gated state (dark violet) and weakly segregated states (green and orange
for the two subpopulations). Right: Weakly segregated steady state dis-
tribution of attraction differences from theory (solid line) and simulation

(histogram).

In Figure 3.15 we show a single run example of the process of adaptation in a sys-

tem with N = 2000 traders (more details on numerical simulations are in Appendix D).

The parameters of agent’s learning mechanism are (r, 1/β) = (0.05, 0.16), while the buy

sell preference and the market parameters are as usually (p
(1)
B , p

(2)
B ) = (0.8, 0.2) and

(θ1, θ2) = (0.3, 0.7). For these parameters the phase diagram presented in Figure 3.11

predicts the existence of tree steady states, two weakly segregated states (with the major-

ity of both subgroups synchronised at the same market,m = −1 orm = 1) and previously

presented strongly segregated state Fig. 2.7. We demonstrate changes in the system with

plots of Binder cumulant time series. It is chosen as an observable (defined as in Eq. (2.3)

and discussed in more details in Appendix B) because it summarises information about
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the distribution’s shape and thus helps us track system’s evolution over time. In Fig-

ure 3.15, beside values of the simulated distribution’s Binder cumulants, for the two sub-

populations we mark the baseline values from Fokker-Planck analysis for the strongly

segregated state (dashed dark violet line) and the weakly segregated states (orange and

green dashed lines for the two subpopulations as in the weakly segregated state the dis-

tributions are not symmetric). We observe that the system quickly reaches the strongly

segregated state (the discrepancy between the expected and observed value can be at-

tributed to the finite N ). After some time at the symmetrically beneficial strongly segre-

gated state, one of the subpopulations initiates departure to one of the weakly segregated

states. We note in Figure 3.15 that the final Binder cumulants of the two subpopulations

correspond to the theoretical predictions for the weakly segregated state. On the right

panel of the same figure, we show a comparison between the theoretical and simulated

distributions of agents’ attraction differences. We confirm previously documented good

agreement between theory and numerics for the weakly segregated states as well.

FIGURE 3.16: Binder cumulant time series for different forgetting rates
r at the fixed intensity of choice 1/β = 0.15. System parameters as pre-
viously except for the size N = 200. We note strongly segregated state
lifetime increases with r corresponding to theoretical prediction that there
is a critical r above which the lifetime of the strongly segregated state
is infinite. Theoretical prediction obtained in the large N limit suggests
rc = 0.055, while numerics suggests a finite N correction to this value.
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After initial demonstration of the existence of the weakly segregated states in the fi-

nite N simulations, we proceed with more detailed studies of the strongly segregated

state’s lifetime. We investigate different values of learning parameters r but also sys-

tem sizes averaged over multiple simulation runs. These experiments show that within

the learning parameters region documented in Fig. 2.13 the strongly segregated state is

metastable but long-lived.

In Figure 3.16 we show average Binder cumulants for the small system N = 200 for

different r values and fixed 1/β = 0.15 to investigate the threshold value of r for finite N .

It is important to note that the noisiness of the Binder cumulant (although it is averaged

over multiple runs, here 10 and two subpopulations) is due to the random fluctuations

that drive different subpopulations away from the strongly segregated state at a differ-

ent pace and different strengths. First, we note that for all values of r, we observe quick

initial convergence to the strongly segregated state which has different Binder cumulant

values for different r. This has been noted previously, as the distribution width is r de-

pendent, larger r leads to smaller values of Binder cumulants (e.g. Fig. 2.8). We note that

the state lifetime is increasing with r that is consistent with previous observation that

above some β dependent threshold r value, the strongly segregated state is unique, thus

having an infinite lifetime. Interestingly, for this β = 1/0.15, theory predicts threshold r

to be 0.055, but we note the strongly segregated state lifetime is finite even for r = 0.07,

we do not observe decay from the strongly segregated state only for r = 0.08. This should

be attributed to the finite N correction to our theory that is derived for the N → ∞. It is

important to note that we average the Binder cumulants across multiple runs and over

the two subpopulations. Even though we have previously seen that the two subpopula-

tions Binder cumulants converge to different final values in the weakly segregated state

and at different pace, the subgroup Binder cumulant at the strongly segregated state is

the same and as our goal is to measure when at least one of the subpopulations start

converging to another value thus effectively leading to decay of the strongly segregated

state, averaging over the two gives us a good estimate of the state’s lifetime.

To put the lifetime of the strongly segregated state into a perspective, we compare it

with the single agent’s relaxation time (right panel of Figure 3.17). We have previously
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shown that when the system reaches the strongly segregated state relaxation time of an

agent become very long (Fig. 2.6) thus it is interesting to understand whether the state’s

lifetime is comparable with that a single agent’s persistence and also how different sys-

tem parameters such as size influence it. On the right panel of Figure 3.17, we note that

the single agent’s relaxation time when r = 0.05 is t = 100, measured in time steps of

agent’s memory length 1/r (relaxation time is estimated as the time at which correlation

decays below e times compared to its initial value). With this information, we observe

that the orange line in Figure 3.16, corresponding to the same forgetting rate r = 0.05,

shows that the state lifetime is larger than the agents’ relaxation time. Further as we

noted that the state lifetime decays for the smaller r, but we also know that the agent’s

relaxation time increases with r, thus in the small r limit we expect the strongly seg-

regated state lifetime to be only the time an agent needs to explore all options, i.e. its

relaxation time.

To investigate the effects of the system size in Figure 3.17 we show Binder cumu-

lant time series for different system sizes at the fixed learning parameters (r, 1/β) =

(0.05, 0.15). We note that increasing the system’s size the lifetime of the strongly seg-

regated state increases. On the other hand, single agent’s relaxation time showed for the

purpose of comparison on the right panel of the same figure is not affected by the sys-

tem size, as expected. This effectively shows us that in the parameter regions where the

weakly segregated state exists, although the strongly segregated state is unstable, a large

population will be strongly segregated for a very long time.

In principle, we can also analyse the Fokker-Planck equation by methods of linear

stability analysis and determine the state’s stability by analysing Jacobian eigenvalues.

This procedure is outlined in Appendix E as due to numerical difficulties it does seem to

work well only for very low forgetting rate r, while we cannot fully reproduce the critical

r value with it.

Initial conditions. In all of our previous numerical exploration we have always used

P (∆|pB) = δ(∆) for the initial conditions, i.e. we assumed agents do not have any initial

preferences for the markets, they all start with a blank sheet and adapt based on their
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FIGURE 3.17: Strongly segregated lifetime for different system sizes N .
Left: Binder cumulant time series along with the N → ∞ strongly segre-
gated state theoretical prediction (dashed line). Right: Agent’s autocovari-
ance function C = 〈(∆i − ∆)(∆i − ∆)〉P (∆). As expected single agent’s
relaxation time (time at which covariance decays e times its original value)
is not dependent on system size N , though the state lifetime that we can

estimate from the left panel increases with N .

trials and errors. In general, this is a reasonable starting assumption, and for system pa-

rameters where the steady state is unique, the initial conditions do not matter anyway.

However, in the parameter region where multiple states exist, our investigation suggests

that the strongly segregated state is metastable, and it seems that the neutral initial con-

ditions we have used for simulations lie on a stable direction. This conclusion is backed

by the observation that there always exists initial convergence towards the strongly seg-

regated state from which the system departs in the presence of random fluctuations. As

these are smaller for large systems, the strongly segregated state, although metastable,

persists for a long time, as we have observed in Figure 3.17.

To conclude this analysis, we investigate for which initial conditions the metastable

state will be reached. The learning parameters are (r, 1/β) = (0.05, 0.15), in the region

where we expect existence of three different steady states. We now assume that initial at-

traction differences are normally distributed in the population, i.e. P (∆|pB) = N (µ, σ2)

and we vary both the mean µ and the standard deviation σ. When µ = 0, we note that

independent on the width of the distribution the initial decay to the strongly segregated

state always exist and the state lifetime is not affected by initial distribution standard
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FIGURE 3.18: Binder cumulant time series for different initial condi-
tions. Initial market preferences are normally distributed N (µ, 0.1). Vary-
ing the mean of initial market preference distribution we note that increas-
ing fraction of runs never visits the strongly segregated state and even if it
visits it its lifetime is shorter as µ is increased. Other parameters as usual:

pB = 0.8, θ = 0.3, (r, 1/β) = (0.05, 0.15)

deviation, σ. We further fix the distribution width with σ = 0.1 and vary the mean

µ to see if the strongly segregated state will still be reached. We note that already for

µ = 0.1 there is no initial convergence to the strongly segregated state. In Figure 3.18

we show how varying µ below this value affects convergence to the strongly segregated

state. First, we observe that for every µ > 0 the maximal value of the Binder cumulant is

not theoretical prediction obtained for µ = 0 (up to finite N corrections). This is because

we present averaged Binder cumulant time series for different runs and both subpopula-

tions. The fact that these do not reach theoretically predicted maximum tells us that for

every µ > 0 some fraction of runs does not visit the strongly segregated state on the way

to the stable, weakly segregated, steady state. Similarly, looking at the state lifetime, it

seems as if it is shortened as µ is increased. Part of this effect might have been caused by

the Binder cumulant averaging (as many runs do not visit the strongly segregated state

but directly transition to the weakly segregated ones characterised by the large negative

Binder cumulants), but we also note in individual run inspection that even the states that

seemingly reached the strongly segregated states stay there shorter on average. Finally,
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when r > rc the strongly segregated state is unique and independent on µ, σ of the initial

conditions it is always reached by the population.

3.4 Summary

In this chapter, our aim was to investigate the transition between the unsegregated and

segregated state in the long memory limit as only then the transition is sharp. We first

studied two traders who learn how to synchronise at a market and maximise their av-

erage return despite the fact that one of them will necessarily earn less. We build upon

these results by studying a four player system in which beside synchronisation we ob-

serve segregation, too. Interestingly, despite different agent types, synchronised and seg-

regated state lead to the same average population return for high intensity of choice β.

In the synchronised state one of the agent types will always earn less, while in the seg-

regated state both types have the same average, but one agent from each group is less

satisfied. Thus at the segregated state, there is no apparent “type discrimination”. Simi-

lar conclusions we draw by analysing returns of the weakly segregated and the strongly

segregated state in the large population limit, as in the r → 0 limit the weakly segregated

state essentially represents synchronisation at a single market.

Already studying small system sizes, we note that agent’s preference for buying pB is

an important system parameter. Beside the dependency of the critical intensity of choice

β on pB, for N ≥ 4 we realise that the nature of possible fixed points change when pB

is varied. This realisation is valid also in the N → ∞ limit where we realise plethora

of phases in the (β, pB) diagram. The diversity of possible steady states is impressive

as a very simplified description of markets and traders gives us a variety of possible end

states: market coexistence (S, S); a single market dominance (W,W ); market indifference

(U,U) (e.g. low β fixed point); general vs. specialised market (e.g. (U, S) where a single

market attracts both subpopulations, while the other is seemingly specialized for only

one subpopulation).

We speculate that the change in βc monotonicity reported in Fig. 2.10 might be related

to increased region of the partially segregated states. Comparing the same (β, pB) phase

diagram (Fig. 3.5) for N = 4 and the N → ∞ limit, we note that the region of partially
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segregated states increased with N and we conjecture these states might be stable for the

large populations. In Fig. 2.10 we also noted that the region of changed βc monotonicity

increase with increased differentiation between the markets. That might indicate that the

region of partially segregated states is even more prominent when markets are extremely

biased.

Finally, by methods of numerical simulations, we investigate existence and stability

of the other segregated steady states for finite r. We once again focus on the commonly

studied “decisive” traders because we can observe multiple steady states at the reason-

ably high r (see e.g. Fig. 2.13). If the agent starts as “blank canvasses” the adaptation

always leads to the strongly segregated state first. However, this state is a metastable one

and depending on the number of agents its lifetime can be very long, but eventually, the

population settles for one of the weakly segregated states. This is true even if the ini-

tial conditions are not defined by the Dirac delta distribution, but a Gaussian with zero

mean. As soon as the Gaussian mean shows an initial preference to one of the markets,

some fraction of runs never visit the strongly segregated state, but directly depart to the

weakly segregated one. This is insightful as two markets that enter in a competition to

attract on average indifferent traders will always have a period of coexistence (if r > rc

the coexistence, e.g. the strongly segregated state will be indefinite), but if the population

is not entirely indifferent monopoly arise much quicker.

In principle, we can do a similar numerical analysis for the system with indecisive

traders, aiming to identify partially segregated states in the numerical simulations. What

hinders our progress on that end is the observation that the region of multiple segregated

states is narrower for these parameters rc < 0.002. This makes the agent’s relaxation

time very long, and the strongly segregated state is long-lived for all the investigated

simulation lengths (we simulated up to 1000000 trading periods with largest r < rc but

there is no departure from the strongly segregated state).
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Chapter 4

Model Extensions

In the previous chapters, we have introduced and analysed emergence of segregation in a

stylised model consisting of two double auction markets and a large number of rudimen-

tary traders. Despite its simplicity, the model showed very rich phenomenology and not

only did we reproduce the effects of long-lasting loyalty between traders and markets,

but we were able to analyse in great detail why such a state appears and what are its ben-

efits for individual agents and the population. To ensure that results we have obtained

are not a mere consequence of an oversimplified trading mechanism and agents’ strate-

gies we proceed with the analysis of the model with a few extensions we have developed

to test the robustness of our results.

The rest of this chapter is divided into three major parts to address key simplifying

assumptions we have made. In the first section of this chapter we return to definitions of

the reinforcement learning that drive agent’s choice of market and we show that a more

general class of the reinforcement learning rules we have used still leads to segregation.

Notably, the only case when the steady state is not segregated does not always entail

benefits for the population. After the learning extensions, we address systems with more

than two markets to show that the full segregation in which agents from every subgroup

segregate across all the markets is only a property of the two market setup while when

more markets are competing some agents will never develop loyalty for some markets.

In the previous chapters we have realised that agent’s learning mechanism is the key

driver of segregation. Now, we investigate what changes in a well established continu-

ous double auction model if an exact copy of a market is introduced and agents are faced
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with the choice. In the third section, we investigate will the segregation persists if real-

istic features such as budget constraints, more sophisticated trading strategies and the

continuous double auction markets are introduced.

4.1 Reinforcement learning

In Chapter 2 when we introduced agent’s choosing strategy we have argued that agent’s

choices of actions are based on attractions - scores accumulated by taking certain actions

in the past. The form of attraction update rule we have used can be rewritten in the

following way (using the notation as in [77]):

Ai
γ(n+ 1) = (1− r)Ai

γ(n) + rI(ai(n), γ)Si
γ ,

where ai(t) represents an action agent i have taken at the time t, while with γ as before we

denote possible actions, e.g. γ ∈ B1, S1, B2, S2 when we study two markets and agents

with adaptive buy/sell preferences. We have also used I(x, y) as indicator function, equal

to one when x = y, zero otherwise (for the same purposes in the earlier chapters we have

used Kronecker’s delta - δxy, while here we use the indicator function for consistency

with the EWA literature).

This form of attraction update is commonly known as reinforcement learning based

on averaged not accumulated scores (accumulated attractions are a variant where there’s

no r in front of the second term) and it has been used in various games before, see for

example [92] or [93]. It is also a special form of the Experience Weighted Attraction learn-

ing [77, 78] which is a unifying method aiming to join two historically divided routes of

modelling discrete choices - reinforcement learning and belief based models. The first

make an assumption that actions are “reinforced” by their past scores and in general an

agent who uses reinforcement learning does not have information on other players scores

nor strategies but base his/her action only on past trials. On the other hand, in the belief

based models, the assumption is made that an agent kept track of other players actions

and based on that information makes estimates on the possible scores for every action

taken. That way an agent can update attractions to every action at a given time step, the
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one played by an actual score and all the others based on fictitious score - a score (s)he

would receive had (s)he played that action [46, 81].

In evolutionary dynamics, when attractions to possible actions are calculated it is

usually assumed that the agent can estimate the score (s)he would receive had (s)he taken

every action. This might be a reasonable assumption if an agent is choosing between

going to a resource one or resource two where both of these are large enough so agent’s

satisfaction will not be dependent on other players’ choices. We have argued that within

the trading setup an agent does not have sufficient information to make estimates about

the scores (s)he would receive had (s)he played other actions. This is because for the

score estimate an agent needs the order price (s)he would have made, but also the trading

price and fractions of agents whose orders were valid to assess the trading probabilities.

Although one might argue that the first two could be estimated based on the agent’s

attraction data, the last one can not, so we do not consider fictitious scores. Nevertheless,

whether the attractions of unplayed actions should be forgotten when not played is a

question worth pursuing, and we present a simple model to interpolate between the

model studied so far (where everything is forgotten with the same rate) and a case where

unplayed actions are not forgotten.

Let us assume that attractions are updated in the following manner:

Aγ(n+ 1) =







rSγ(n) + (1− r)Aγ(n), if agent played action γ

(1− αr)Aγ(n), if agent played action δ, δ 6= γ

(4.1)

α is a parameter we introduced to interpolate the forgetting rate of unplayed actions

between the two extremes - α = 0 - an agent does not forget scores of the other actions, and

α = 1, everything is forgotten with the same rate, which is the system we have studied so far.

If rewritten this update rule reads as:

Ai
γ(n+ 1) = (1− r)Ai

γ(n) + r
(
I(ai(n), γ)Si

γ + (1− I(ai(n), γ)(1− α)Ai
γ(n)

)
,

This effectively means that instead of fictitious score, unplayed actions are updated with

a fraction of the last attraction which is essentially averaged score received playing that
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action in the past 1/r rounds. We note that in the extreme α = 0 an attraction to unplayed

action is updated with the average score received playing that action in the past, while in

the α = 1 extreme attractions are effectively updated with score of zero.

Following the same procedure as for the initial attraction update rule, we can write

the master equation and the corresponding Fokker-Plack equation. To solve the Fokker-

Planck equation in the general case is a nontrivial task, but to find the segregation thresh-

old, as before we can only analyse the first jump moment and its zeros. As introduced

in Chapters 2 and 3, in the r → 0 limit, we can focus on solutions of the homogeneous

population equations, and at the corresponding market order parameters, find the distri-

bution peak positions as solutions of the first jump moment. The first jump moment for

this system reads as1:

M1(A) =
∑

γ

(eγTγSγ − (1− α)A)P (γ|A)− αA . (4.2)

We note that when α = 0 the Eq. (4.2) has a unique fixed point for every β if the market

order parameters (and consequently the trading probabilities) are fixed. Whenever the

attractions to the unplayed actions are not forgotten (effectively we assume infinite mem-

ory for unplayed actions α = 0) the steady state distribution is unimodal, i.e. segregation

does not occur. For the general value of α we show in Figure 4.1 how the threshold in-

tensity of choice βs is affected by different update rule and we note that only in the case

α = 0 segregated steady state does not exist.

In Figure 4.1 we plot the inverse intensity of choice for visual simplicity (as values of

1/βs are bounded). The main plot shows 1/βs as a function of α in the linear axis plot

from which it is not clear what is the limiting value of βs when α approaches zero. As

we do not assume βs to be a discontinuous function of α and we have already seen that

1/βs = 0 when α = 0, in the insert of Fig. 4.1 we show 1/βs as function of −1/ log(α). In

that plot we see clearer convergence to 0 indicating α ∝ exp(−β) confirming our previous

constatation that for α = 0 there is no finite intensity of choice threshold. Interestingly,

we note that βs is non-monotonic function of α, but the reasons behind the minima for

the value α ≈ 0.45 are not yet understood.

1More details are in Appendix A.
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FIGURE 4.1: Effect of α on the segregation threshold βs in population
with adaptive buy/sell preferences. In the linear axis plot it is not clear if
the βs diverges at α = 0 which is why we add the insert with −1/Log(α)

as an axis (see the text for more details).

The same analysis we can perform for the population consisting of two subgroups

with fixed buy/sell preferences (p
(1)
B , p

(2)
B ). When α 6= 1, the analysis can not be sim-

plified to a unique attraction difference parameter ∆(g) = A
(g)
1 − A

(g)
−1, but we need to

describe each subgroup with attractions to both markets Ag = (A
(g)
1 , A

(g)
−1). We can write

an explicit form for the first jump moment M
(g)
1 :

M1(A
(g)|p(g)B ) =

1∑

m=−1



em

∑

τ∈{B,S}

[

p(g)τ TτmSτm

]

− (1− α)A(g)



σβ(m∆(g))− αA(g).

(4.3)

In these equations, as for the populations of adaptive buy/sell agents, we see that for

α = 0 (when agents do not update scores of for the actions not taken at the particular

time step), the solution of M1
(g)(A(g)) = 0 is unique, thus there is no critical intensity

of choice. However, for all other α values, i.e. when we assume that agents can not

have an extremely long memory of the unplayed actions, we see that there is a critical

value of the intensity of choice above which segregation again emerges, as shown in

Figure 4.2. Agents buy/sell preferences are as usual (p
(1)
B , p

(2)
B ) = (0.8, 0.2) with market

biases θ1 = 1 − θ2 = 0.3. As for the population of adaptive buy/sell agents we plot the
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inverse intensity of choice as function of α, but also as a function of−1/ log(α), following

the same argument.

FIGURE 4.2: Effect of α on the segregation threshold βs in population
with fixed buy/sell preferences pB(1) = 0.8, pB(2) = 0.2. The insert shows

that α ∝ exp(−β) as discussed in the main text.

A tentative explanation why the segregation ceases to exist for α = 0 is the follow-

ing: whenever α is finite, there is a finite period necessary for an agent to forget about

their failures and successes at the other markets, this forces an agent to explore those

options again which makes agents who were return driven to exchange roles with vol-

ume driven agents (and vice versa), effectively enabling the segregated state and allow-

ing both groups to receive a higher long-term average return. On the other hand, when

α = 0, all agents have good information about all available options and thus no incen-

tive to settle for lower returns. In what follows we explore the average returns an agent

receives in this unsegregated state. Solving the deterministic equation stated previously

(Eq. 4.3), we can find the position of the delta peaked distribution which is a steady state

solution in the r → 0 limit. This gives us an opportunity to investigate possible benefits

this unsegregated solution might bring to the population of traders. In Figure 4.3 we plot

average population returns of this state at different intensities of choice and compare it

with returns of the strongly segregated state and the α = 1 unsegregated state.

We compare these returns with the two states discussed previously - unsegregated
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FIGURE 4.3: Return of the unsegregated state α = 0 against intensity of
choice β. We show average population return of the population consist-

ing of decisive traders (p
(1)
B
, p

(2)
B

) = (0.8, 0.2) who don’t forget attractions
of unplayed actions (α = 0). We compare these returns against typically

studied α = 1 strongly segregated state and low β unsegregated state.

low β state and the strongly segregated states, both at α = 1. All the returns are compared

against the baseline introduced in Chapter 2, the envy-free Nash equilibrium (discussed

in more detail in Appendix C).

Interestingly, both unsegregated states are envy-free and enable the population to

have a higher return compared to envy free Nash equilibrium, at least in some ranges

of intensity of choice. On the other hand, we can think of the strongly segregated state

as envy-full in the short terms, but in the long term average, all agents are the same.

Analysing Figure 4.3, we realise that for a wide region of intensities of choice having

an option not to update attractions of unplayed actions raises average returns. Even

above the critical intensity of choice βs for α = 1, where the segregation allowed the

population to earn more compared to its unsegregated counterpart, if an agent keeps

unplayed attractions unchanged (s)he earns more without assuming the role of a volume

or return driven agent. However, at some even higher intensities of choice, the α = 0

unsegregated state return average drops below the return of the strongly segregated state.

This is because the unsegregated α = 0 state converges to the envy-free Nash Equilibrium

(see e.g. [88]), which as previously shown is worse than the strongly segregated state.
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Interestingly, at the high intensities of choice, choosing to temporarily settle for lower

returns enables better returns for an agent and the population as a whole compared to all

other states that maximise returns keeping all individual returns equal.

Finally, besides the choice of attraction updating mechanism, when setting up an ac-

tion choosing strategy we have chosen to use softmax or logit function to translate attrac-

tions into probabilities of taking an action γ. Although some authors use power or probit

functions as well, use of logit function was documented under risk and uncertainty but

also in choosing brands (see e.g. [77, 94, 95]). As argued by Camerer and Ho [77], this

choice should be ultimately driven by empirical findings, and they show that the logit

function fits the empirical data equally well [96, 97] or better [98] than the probit func-

tion.

4.2 Multiple markets

The original model of double auction markets and traders can in principle be extended to

any number of markets, as we have noted in Chapter 2. However, for most of the thesis

we have focused on analysis of the two market system for its simplicity and analytical

tractability, but in the following section we outline results we obtain for the system with

three market and traders with fixed buy/sell preferences and make an argument about

the possible steady states for the general number of markets M . This is of particular in-

terest in analysing possible steady states of a more realistic system that consist of more

than two competing markets. The key questions are related to the possible numbers of

coexisting markets – as we have summarised in the Introduction, some authors argue

that competing double auctions can coexist due to the negative network effect [44], while

others argue that the coexistence is possible only if the markets have distinctive pricing

policies [36]. As we have seen in the previous chapters, strongly segregated states exist

for various market and population parameters and these are the states that guarantee

market coexistence as opposed to the weakly segregated states in which one of the mar-

kets predominates. In this section we want to explore possibilities of coexistence for more

than two markets.
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To proceed with analysis we first realize our previously outlined procedure is still an

adequate description as the system is still Markovian and accordingly the master equa-

tion (Eq. 2.9), as introduced in Chapter 2 is still an exact and complete description of the

evolution of agents in the limit of infinite population N and large memory 1/r. We note

that for the description of a population with fixed buy/sell preferences, we seek for a

steady state distribution P (A|pB) where A is a M -dimensional vector. When a number

of markets is M > 2, changing to attraction differences will not simplify the problem as

much as in the case of two markets when the problem became one dimensional. When we

study more than two markets the distribution is multivariate, though we can introduce

attraction differences and seek for the solution in the space of M − 1 variables.

The dimensionality of the problem (as before for the adaptive population case) makes

finding the steady state a non-trivial task, even if we introduce approximate Fokker-

Planck equation in the small r limit. Although we can’t easily find the steady state so-

lution for the finite r, we can address the problem in the r → 0 limit, as introduced in

Chapter 3 and evaluate the onset of segregation. We do this by analysing the first jump

moment M1(A) defined as follows:

M1(A
(g)) =

M∑

m=1

em

∑

τ∈{B,s}

p(g)τ Tmτ

(

A
(g),A(−g)

)

Smτ

exp
(

βA
(g)
m

)

∑M
m′=1 exp

(

βA
(g)
m′

) −A
(g), (4.4)

where we preserved previous notation, but explicitly stated dependence of trading prob-

abilities Tγ on both studied subpopulation (g) and the other one.

As before, when analysing the single agent’s steady state, we will search for zeros

of the first jump moment assuming the market order parameters fixed (thus the trading

probabilities are not dependent on A). To control for the changes in order parameters, we

follow the algorithmic procedure outlined in Chapter 2. We start by assuming that the

subpopulations have homogeneous preferences for the markets (i.e. P (A(g)|p(g)B ) is delta

peaked distribution), which is the expected solution in the low β limit, when the steady

state is unsegregated. With this assumption, market order parameters are simplified, and

we can proceed by solving the Eqs. (4.4) for the two subpopulations simultaneously. At

any fixed point solution (A(1)∗,A(2)∗) we evaluate the order parameters Dm and check if
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the single agent’s dynamics is consistent with the homogeneous population assumption

(e.g. we solve M
(g)
1 (A|Dm) = 0 expecting only one zero, coinciding with A∗). At an

intensity of choice where we find that the single agent’s dynamics has multiple zeros

when evaluated at the homogeneous population market order parameters, we declare a

segregated steady state.

In Figure 4.4 we show line of critical intensity of choice of the previously studied

system (p
(1)
B , p

(2)
B , θ1, θ2) = (0.2, 0.8, 0.3, 0.7) to which a third market is added and its bias

θ3 is varied. We note that addition of the third market independent of its bias shrinks the

segregation region (segregation threshold without the third market is shown with dashed

line).

FIGURE 4.4: Segregation threshold βs as a function of the third mar-
ket bias, where other parameters are those of a typically studied system

(p
(1)
B
, p

(2)
B
, θ1, θ2) = (0.2, 0.8, 0.3, 0.7). The dashed black line shows segre-

gation threshold of the two market system.

Without a solution of the Fokker-Planck equation, we cannot introduce a “free en-

ergy” analogue and thus can not distinguish between a weakly or strongly segregated

state above the noted threshold. To gain an insight into possible types of segregation (and

analogously outcomes of market competition), we analyse the steady states obtained in

numerical simulations for different values of the forgetting rate r. Motivated by our pre-

vious analysis, we expect to see changes in the peak weights when r is decreased and we

expect the peak weight ratio to remain of the order one for the strongly segregated state
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and to diverge for the weakly segregated state (as we demonstrated in Chapter 3 in the

case of single subpopulation).

In the following figures, we show steady states of the simulated systems for different

choices of the third market bias at the intensity of choice β = 5 (segregated for any choice

of θ3 as shown in Fig. 4.4). The distributions are shown in a two-dimensional projection

(∆i
12,∆

i
13) = (Ai

1 − Ai
2, A

i
1 − Ai

3) for visually clearer representation. Overall preference

for the market one is in the top right quadrant, preference for market two is on the on the

negative part of the “x” axis, while the preference for market three is on the negative part

of the “y” axis.

FIGURE 4.5: Simulated steady states of a system with two symmetrically
biased and a fair market. Left: P (A|pB = 0.2); Right: P (A|pB = 0.8); Top:
r = 0.1; Bottom: r = 0.05. Note that as r is decreased peak at the third

market dominates, suggesting this is a weakly segregated state.

We explore three different systems with the commonly used symmetric system with

the third market: (1) fair (θ3 = 0.5), (2) biased, but same as one of the symmetric markets

(θ3 = 0.7) and (3) more biased than the two already present markets (θ3 = 0.9). Intrigu-

ingly, simulations suggest that in all three different systems in the small r limit only a

subset of markets will remain populated. In Figure 4.5 we show the steady states when
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the third market is “fair”. We compare the two steady states obtained for forgetting rates

r = 0.1 and r = 0.05. For the greater r both subpopulations split into three groups, the

majority chooses the fair market, but the segregation among the two symmetric markets

resembles the one we have observed in the two market scenario - e.g. sellers prefer mar-

ket good for them θ2 = 0.7 (the subpopulation p
(1)
B = 0.2 is shown on the left, note beside

the peak at the third market, the peak at the second market is more populated) and simi-

lar for buyers. However, when r is decreased the majority of both subpopulations prefer

the fair market (see bottom panels of Figure 4.5 where the other two peaks weights de-

cayed). This suggests the steady state is a weakly segregated one - in the r → 0 limit the

distribution will be unimodal centred at ∆12 ≈ 0 and ∆13 < 0 (everyone prefers market

three).

FIGURE 4.6: Simulated steady states of a system with three markets
(θ1, θ2, θ3) = (0.3, 0.7, 0.7). Left: P (A|pB = 0.2); Right: P (A|pB = 0.8);
Top: r = 0.1; Bottom: r = 0.05; Insert: r = 0.03. When r is decreased the

peak weight at the first market (only one good for buyers) decreases.

When no fair market exists, two of the three markets, being biased towards the same

subpopulation, break the symmetry and we note that the steady state distribution be-

comes unimodal, peaked at the fairer of the two markets (e.g. in the system (θ1, θ2, θ3) =
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(0.3, 0.7, 0.9) as r is decreased the increasing peak weight is at the second market). Espe-

cially, when the two markets are the same (θ1, θ2, θ3) = (0.3, 0.7, 0.7), the results suggest

that the steady state distribution is bimodal - both markets favouring sellers will attract

traders, see Figure 4.6. The subpopulation for which that is not the preferred market bias

(buyers, in this case, shown in the right panels) will prefer a state with three peaks even

at the lower r when the population of sellers already mostly settled for the two markets.

That is why in the insert (bottom right) we show simulated steady state for even lower

value of the forgetting rate r = 0.03 where we note that the buyers choose to align with

the preference of sellers and trade mostly at markets two and three.

More generally, our numerical exploration suggests that in the system with three dif-

ferent markets (with no symmetries), at the steady state the population will settle for only

one market (the one closest to the fair market) thus only the weakly segregated states will

exist. Motivated by the observations from two market systems, where we have seen that

when both markets are fair, the equal weight strong segregation exist (see e.g. Fig. 3.7),

we investigate if the same is true in a system with three fair markets. In Figure 4.7 we

show steady state distributions of the two subpopulations when faced the choice between

three fair markets. We note that even for relatively small r = 0.05 all three peaks are equal

weighted suggesting that in this case even in the r → 0 limit the population will persist

segregated across all three markets.

FIGURE 4.7: Simulated steady states of a system with three fair markets.
Left: P (A|pB = 0.2); Right: P (A|pB = 0.8). When all markets are fair the
steady state is a multimodal distribution with equal weights at all three

markets. The forgetting rate is r = 0.05.

In these examples, we have seen two types of weakly segregated states, the ones that
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we conjecture will become unimodal distributions in the r → 0 limit (θ3 = 0.5) and

the ones that suggest equal weighted coexistence of the two markets in the same limit

(θ3 = θ2 = 0.7). We have also seen an example of a full segregation (finite weights at all

three peaks) but only when the three markets are identical. This provokes a question of

the maximal number of segregated groups for the general number of markets M - when

is it possible that both subpopulations segregate across all markets as we have seen in the

systems with M = 2 markets?

We address this questions making a simple counting argument regarding necessary

variables to describe segregated population under given market constraints. In the fol-

lowing argument, we make an assumption that even for the M > 2 there is segregation

threshold βs above which the first moment has multiple zeros (low β - market indiffer-

ence and at most M zeros corresponding to a strong preference for one of the markets).

Even if the drift term has that many zeros, it is not clear if all subpopulations of agents

will develop loyalty groups for all the markets.

To describe a subgroup that is segregated across M markets, in the r → 0 limit, we

need M delta peaks and their corresponding weights. The peak positions we can obtain

by solving the M1(A
(g)|p(g)B ) = 0, but without the Fokker-Planck solution, we can not

obtain the peak weights. We can, however, make a general argument about how many

non-zero peak weights can exist for the general number of subpopulationsG and markets

M . As before, we assume the general shape of the steady state distribution:

P (g)(A) =

M∑

m=1

ω(g)
m δ(A−A

(g)
m ).

Thus, each of the subpopulations is described by peak weights ω
(g)
1 , . . . , ω

(g)
M that satisfy

the normalization condition
∑M

m=1 ω
(g)
m = 1, thus without any symmetry imposed we

haveM−1 variables per subpopulation. On the other hand, for each market we define an

order parameter Dm, thus the system of equations we need to solve to find a segregated

solution is:

Fm(ω
(1)
1 , ω

(1)
2 , . . . , ω

(1)
M , . . . , ω

(G)
M ) = Dm ,
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where Fm denotes the relation between the peak weights and market order parameters,

for the two subpopulations and two markets it is explicitly written in Eq. 3.18. With-

out symmetries, when all the equations and variables are independent, this system of

M equations and G(M − 1) variables has a unique solution only when the number of

equations is equal to the number of variables, i.e. M = G(M − 1). This equation has an

integer solution pair only when both number of marketM and subpopulationsG is equal

to two, (G,M) = (2, 2). For example, our previously studied population that consists of

2 subpopulations would require 2(M − 1) weights for full segregation across M markets.

The solution of 2(M − 1) =M is only previously studied the case of M = 2 markets.

We can also assume that not all subpopulations will segregate across all markets.

Let us suppose there are M markets and two subpopulations, each of them segregating

into η(g) subgroups, thus system of equations to determine weights is determined when

η(1) + η(2)− 2 =M . This shows that if one subpopulation divides into M loyalty groups,

consequently the second subpopulation will segregate only across two markets (but also

other combinations satisfying η(1) + η(2) =M + 2 are possible). Similarly, for the general

number of subpopulations, previous equation reads as η(1) + η(2) + · · · + η(G) − G = M

suggesting that if one subpopulation develops loyalties to allM markets, total number of

subgroups of the other G − 1 subpopulation needs to equal G, consequently giving one

bimodal and G− 2 unimodal steady state distributions.

Interestingly, this shows that when all the markets coexist (which we enforce by as-

suming that at least one subpopulation has loyalty groups for every market), not all mar-

kets will be visited by all traders2. As some markets will have only a subset of the sub-

populations loyal to them, it will appear as if the markets targeted only a subset of the

population although no such intention is implemented. This observation is based on

previously stated assumption that we discuss peaks centred at attractions to only one

market. In principle, we can also think about a possibility that some of the subpopula-

tions that have only one or two peaks remain undetermined between different market

options.

2For any finite β this is not entirely correct as traders will always have a probability to visit the markets to
which they are not “loyal”, but the statement was meant to stress that not all markets will have loyal visitors
from all the subpopulations
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This brief counting argument states that in the r → 0 limit at most G + M loyalty

groups can coexist. In the three market scenario with two subpopulations, this is at most

five loyalty groups, although the three fair market setup showed coexistence of six loyalty

groups. We believe this is because our argument is constructed under the assumption of

independent variables and equations which in the case of equal markets and symmetric

subgroups can not be true.

Similar counting argument can be made for the population of adaptive agents who,

having the adaptive preference for buying, need 2M − 1 weigh parameter description.

With only M order parameters, in the general nonsymmetric setup, the system can be

fully segregated only for M = 1 (emergence of buyer/seller specialisation). On the con-

trary, in the previous chapter we have seen four distinctive peaks in the steady state

distribution obtained in simulations. Again, we believe the reason for that lies in the

symmetry of the system, as not all equations will be independent. As in the case of the

population with fixed buy sell preferences, we can see how many loyalty groups there

can exist when M markets compete in the system.

We make an assumption that whenever a part of population specialises in selling at

a market (i.e. ωmS > 0), there needs to be a part of the population that specialises in

buying at the same market ωmB > 0. We believe this is a reasonable assumption given

that single sided specialisation will always lead to low scores as there will not be enough

trading opportunities. If we note with M number of active markets (those for which a

part of subpopulation specialised, i.e. ωmT > 0), determining the weights is possible

when 2M− 1 = M . Intriguingly, this gives us an argument that in a competition of M

markets in a population of adaptive traders onlyM = M+1
2 of markets will coexist in a

steady state.

Without the assumption on specialisation to buying/selling the number of constraints

M together with the normalisation constraint tells us that a population of adaptive agents

can have at mostM+1 peaks. This tells us that at least at one market the traders specialise

in buyers and sellers (2 peaks) and the otherM−1 peaks could either represent indecisive

agents at different M − 1 markets, or each new specialisation to specific roles cause one

less active market in the steady state.
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It is remarkable how this simple argument gives a variety of new conjectures for the

systems with multiple markets. With the argument, we obtained a minimal number of

loyalty groups, and we have seen that only roughly a half of markets can coexist when

the population is with adaptive buy/sell preferences, while in the population consisting

of a subpopulation with fixed buy/sell preferences, all markets can in principle coexist.

In that case, we also note that markets will unwittingly reach a state where only a subset

of the population will persistently visit them. We propose further ideas to investigate

these interesting results in the last chapter.

4.3 Toth and Scalas model of continuous double auctions

Our previous investigation has shown that the parameters of agent’s reinforcement learn-

ing are the key control parameters that distinguish between different steady states. We

show that the threshold intensity of choice for the segregated state exist for various mar-

ket/population parameters and only if the memory of the unplayed actions is infinite the

segregation will cease the exist, but that will not always lead to better returns of individ-

ual agents, nor entire population. However, these conclusions are based on a model of

two double auction markets and large number of traders, that relies on various simplify-

ing assumptions: (1) markets operate in discrete time with a global trading price mech-

anism; (2) agents are modelled as zero intelligence with respect to their trading strategy,

i.e. the order prices are random; (3) agents do not have budget constraints; (4) agents do

not possess any information, other than their own history they use to choose between the

markets.

In this section, our goal is to investigate whether the segregation might exist if these

simplifying assumptions are relaxed. We do this by focusing on an already existing

model of continuous double auction market developed by Toth and Scalas [99, 100] to

investigate benefits of information. We take this model and upgrade it to examine if by

implementing only the main segregation driver (the choice of market is based on the re-

inforcement learning) will lead to segregation. We start by explaining the original model

and existing variations; we then introduce our extensions and present main results. We
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conclude addressing the original question of information benefits with preliminary re-

sults in the two market system.

Original model and adaptations. We consider a system of market and traders intro-

duced by Tóth and Scalas [99, 100]. The market model is a continuous double auction

with an open limit order book (list of orders to buy or sell at a given price). Mechanism

of continuous double auctions is utilized in many real stock exchanges, e.g. New York

Stock Exchange, currency exchange markets (but also extensively researched [33, 67, 71,

75]), and the main difference compared to our previous model is that traders can submit

their bids and asks in continuous time, when they can either trade immediately or their

order will be stored in the limit order book.

In the simulated system each trading period consists of an open call, during which

every trader submits an order to populate the limit order book, followed by rounds dur-

ing which a random trader is selected to inspect the limit order book and then decides

whether to execute an already existing order (market order) or to submit a new one (limit

order). This decision process is governed by a fundamentalist trading strategy as fol-

lows. To be able to investigate effects of different information levels, the authors define

an underlying dividend process that determines the value of stock to be paid to every

stockholder at the end of the trading period:

D(n) = |D(n− 1) + ǫ| ,

where initial value of the dividend is D(0) = 0.2, while ǫ is normally distributed random

variable with mean zero and standard deviation σ = 0.1.

Different traders have a different number of future dividend values accessible to

them, starting from no information (thus, close to our Zero Intelligence Traders) to in-

formation about L future dividend values. (In previous studies L ranged from 2 to 9 [99,

101, 102]; we use L = 4, giving a total of five different types of agents including the unin-

formed ones). Based on their knowledge of future dividends, agents evaluate their stock
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holding using a dividend discount model, e.g. Gordon’s growth model [103]:

pvj(n) =
Dn+j−1

(1 + re)j−2re
+

n+j−2
∑

i=n

Di

(1 + re)i−n
,

where re is the risk adjusted interest rate (re = 0.005 as in previous works), j is the

information level of the agent while n denotes the trading period as previously. Using

this formula an agent implicitly assumes that the dividend value stays the same below

his/her horizon. Based on the private value (pv) an agent decides whether to buy (when

the best ask is lower than his/her private value), sell (when the best bid is higher than the

private value) or submit a new order3. The details of the trading strategy are the same

as in [99, 100], where the pseudo codes are also given; generally and unless mentioned

otherwise, we follow exactly the existing model.

We previously simulated the trading periods as only the open call followed by the

global price setting after which the buyers and sellers are matched, and the market is

cleared. The continuous double auction mechanism enables more trades as many orders

that would be deemed invalid in our previous market model will now remain in the limit

order book and possibly be executed during the trading period. At the end of the trading

period in this model, too, we clear the limit order book4.

The uninformed trader of the model differs from the Zero Intelligence trader we have

described and modelled previously, (s)he has information about the latest trading price,

but it is uninformed about the dividend values. The uninformed trader’s private value

is a normally distributed random variable centred at the most recent trading price, while

the rest of the trading strategy is as for the informed traders.

Finally, Toth and Scalas’s agents have budget constraints. Everyone starts with equal

endowments in terms of a number of stocks and available cash: in the original studies

each agent had 40 shares and the equivalent value in cash to start with, same endowments

were used in experiments, but other authors used also greater wealth constraints and

showed no phenomenological difference [104]. As we look at much longer simulations,

3When selected to inspect the limit order book, an agent does not have information about their previously
submitted order, e.g. can not recognise it and can in principle trade execute it if it is satisfactory at the
moment.

4In the original work [99, 100], the authors state there is no difference between the two scenarios – all
orders are preserved or cleared at the end of every trading period.
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of 100 to 1000 trading periods as opposed to 10–30, we increase the initial wealth to 100

shares plus the equivalent value in cash to avoid agents running out of possessions.

This market mechanism release all of our simplifying assumptions, the trading mech-

anism resembles more realistic ones (agents discover the price rather than obey one fixed

by the market globally), the agents have budget constraints, and the information driven

trading strategies. To this system, we now add the second identical market. When con-

fronted with the choice of markets, beside the trading strategy agents need a market

choosing strategy which we will assume is independent on their trading strategy, but

only driven by reinforcement learning, as before.

To implement the reinforcement rule, we need to define the scores in each trade Sm.

Because of the existence of a limit order book, it is necessary to differentiate between the

Aggressor (the trader who executes an order from the limit order book) and the Quoter

(the trader whose order was waiting in the limit order book) in assigning scores. When

the Aggressor executes an order from the book, (s)he accepts the price listed; thus the

trading price is the Quoter bidding/asking value. If we assume that the scores are as-

signed as previously (as the difference between asked and executed price value) the quot-

ers will always receive Sm = 0. To avoid that we introduce the quoter’s returns in the

following way:

S(n) =







π(n− 1)− π(n), for buy orders

π(n)− π(n− 1), for sell orders

assuming that the buyers will value price decrease while sellers will value price increase.

On the other hand, the aggressor’s returns are as before, related to his/her private value

and the trading price: S(n) = pv(n) − π(n) if the agent buys (as (s)he values the stock

more) and S(t) = π(t) − pv(t) if the agent sells (as s/he believes the stock is worth less).

The attractions to the markets are updated as defined in the Eq. (4.1) for α = 1, while

the probability of choosing market m is as previously a logit/softmax function pm ∝

exp(βAm).

We ran large systems (N = 2000 as opposed to N = 100 in the original works) and

looked at N rounds per the trading period so that on average every trader is chosen
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once to observe the order book and make a trading decision. This decision was taken

to make the resemblance to our original model as close as possible, where a trader has

at most one trade per the trading period. We also assume that every time an agent is

chosen to make an action (either during the open call or the rounds during the trading

period), (s)he consults its choosing strategy and only when the market is chosen the limit

order book is consulted to decide on the trading action. As agents are chosen randomly

to try to trade, the same agent can in principle be chosen to trade several times during

a trading period. We assume that during a single trading period agent always uses the

same choosing strategy, despite the fact that (s)he might have attempted to trade several

times and consequently updated attractions.

Simulation resuslts We first analyse a system that is the most similar to our model -

a population consisting of only uninformed traders. As noted, these traders are already

improved compared to the ZI traders analysed so far; they have a knowledge of the latest

trading price, and they have budget constraints. We simulate a system of N = 2000 of

uninformed traders with two identical continuous double auctions markets and show

the steady state results in Figure 4.8. The steady state distribution is a distribution at

the end of 20 independent runs each lasting 200 trading periods. Variable number of

trading periods was simulated and for analysed values of r we did not note departure

from the strongly segregated state, thus we didn’t run very long simulations (as before

initial transient to the segregated state is very quick)5.

Intriguingly, we note that despite the budget constraints and different trading mech-

anism, the segregation still emerges. In the right panel of Figure 4.8 we show Binder

cumulant values for different intensities of choice that show same trend as in originally

analysed model - the steady state for low β is a Gaussian distribution (characterised by

B = 0), while the high β steady state is a bimodal distribution6, e.g. segregated state.

We should stress that this system is very close to the equilibrium price setting (θ = 0.5)

we have used previously. This observation is supported by experiments of Gode and

5As previously, the observable we use to follow the changes in the system over time is the Binder cu-
mulant, and we note quick initial convergence, within order 1/r trading periods and small fluctuations
thereafter.

6 B ≈ 0.5, which is a finite r correction to a distribution consisting of two equally weighted delta peaks
with B = 2/3.
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FIGURE 4.8: Segregation of uninformed traders in the Toth model. Left:
Steady state distribution of uninformed traders with the forgetting rate
r = 0.05 and intensity of choice β = 5. Right: Binder cumulant of the
steady state distribution for different values of intensity of choice β while

r = 0.05.

Sunder [76] that show that random bidding agents in the continuous double auction re-

trieve the equilibrium trading price. Additionally, authors of the paper [105] argue that

this is because of Marshallian price dynamics where extreme crossing orders are exe-

cuted in alternating order until the equilibrium price is reached. See e.g. bids and asks

in Fig. 2.1, but now all agents start with a Gaussian bids/asks centred around the same

initial price (initially it is communicated to everyone that the stock value is 40, thus in

previous parameters µa = µb). The first trader who observes the bids and asks will be

happy to execute either the highest bid or the smallest ask (as his price will still be in

the vicinity of the mean of the Gaussian), as both of those will lead to large returns. Let’s

assume (s)he executes the bid; that means that the next trader’s private value will be very

large (random variable centred at past largest bid) so the lowest ask will be the most sat-

isfactory, etc. This dynamics repeats until all the valid orders (in our previous notation)

are traded and afterwards the traders either submit new orders or trade at prices close

to the equilibrium trading price. That is why this system is the closest to our previously

studied system with µa = µb and two equal, fair markets. The steady state and the Binder

cumulant values for different β confirm this similarity.

Continuing the analysis of the Toth model, in Figure 4.9 we show the analogue of
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Fig. 4.8 for a system with five subpopulations – from just analysed uninformed ones to

those who know the future four dividend values. Remarkably we still observe qualita-

tively the same behaviour. In the left panel, we observe the bimodal steady state, with

a half of population developing loyalty for both markets. In the right panel, we see a

noisier variant of the plot we have observed before, but a tentative explanation is the

following. Given that all the subpopulations have different private value, means of their

Gaussian distributions are non-overlapping so the overall score distribution will not be

just a simple truncated Gaussian distribution as previously. This will have its impact

on attraction distribution and obviously on the Binder cumulants. Additionally, given

that there is now a big influence of the dividend time series, the numerical runs should

probably be averaged over many more independent runs. However, up to possible im-

provement of numerical results, the qualitative implications are clear already – even with

more sophisticated trading strategies, agents still prefer to segregate, i.e. to trade at same

markets for long periods of time before changing their loyalty.

FIGURE 4.9: Segregation of informed traders in the Toth model. Left:
Steady state distribution of informed traders with the forgetting rate r =
0.05 and intensity of choice β = 20. Right: Binder cumulant of the steady
state distribution for different values of intensity of choice β while r = 0.05.
The population consists of 400 traders of each information level L = 0 to
L = 4. We do not note different steady states of the subpopulations with
different information levels that is why the overall attraction distribution

is shown.

Finally, we comment the original problem the Toth model was addressing. Namely,
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Huber and Kirchler [101, 106] run several experiments where participants were trying to

trade at a continuous double auction markets and were given different future dividends.

The authors showed, contrary to previously believed, that the more information is not

always the better. It was noted that the wealth does not grow monotonically with infor-

mation, instead a “J curve” of wealth was reported. Only the most informed traders were

able to outperform the market, while below average informed traders were worse off then

the uninformed traders. Although the experiment participants were given the Gordon

formula next to their information, it was not clear what drove this phenomenon in those

experiments which is why Toth et al. [99, 100] developed a numerical model to help them

reproduce the phenomena. Following the experiments, numerical simulations confirmed

FIGURE 4.10: Steady state distribution and wealth averages for differ-
ent information levels at different markets. Top: Steady state distribu-
tion of a 2000-traders population with five different information levels
(uninformed, plus up to four future dividends) with learning parameters
r = 0.05 and β = 20; Bottom: Average relative wealth for agents of each
group is presented. We note that despite segregation into two distinguish-
able groups based on market preferences, the J curve in agents’ wealth

persists.

these effects in various scenarios, with different information cost functions [107] (fixed or

linear information pricing preserves “J curve”, but quadratic does not), noise [107] (ex-

ponential noise damages the structure, but fixed or linear do not affect the finding more

than spreading the wealth distributions for each level). Other studies looked at the dif-

ferent distribution of informed traders (original study assumes a uniform distribution
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of agents with different information level), both power law ( the majority of traders are

uninformed or poorly informed) and normally distributed information levels within the

population still lead to the “J curve” [102]. However, Kalimullina et al. [104] report that

there is a critical frequency threshold of uninformed traders above which the effect dis-

appears.

None of the studies investigated whether the effect persists when agents are given a

choice of markets. If the agents with low information levels are exploited by the highly

informed agents, so that they can outperform the market, it is unclear whether the agents

with low information levels will still prefer to trade with informed agents if such choice

exists. To investigate whether there is additional information structure in the segregated

subgroups in Figure 4.10, beside already shown steady state, we show the relative wealth

of agents with different information level who have preferences for the different markets.

Intriguingly, we note that among agents of both markets, the same wealth distribution

structure persists, showing that the reinforcement mechanism that leads the population

to segregation did not perturb the information structures. We also note that there is no

statistically significant difference in the number of agents of each information group in

their preference for the market one or two. Probable reason for the persistence of “J

curve” might be in the fact that agents do not base their market choice on their relative

wealth, but still on their perceived scores, and as in our simplified model, with segrega-

tion they just might maximise their trading possibilities and thus perceived scores. On

the other hand, if agents posses information about their relative wealth in the market

(whether they are below or above average), the influence on the “J curve” phenomena

might be different. As this is beyond the scope of this thesis, we discuss it in the last

chapter, together with some more ideas on how to extend this model and investigate the

phenomena.

4.4 Summary

The goal of this chapter was to investigate the robustness of the segregation phenomena

by relaxing some of the simplifying assumptions and obtain a deeper understanding of

the driving forces behind the segregation. We aimed to understand if the segregation
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is only a mere consequence of the oversimplified model we have introduced, or beside

its analytical tractability it provides fundamental insights. The results of the last section

reassured us, as even in the more realistic double auction markets, with agents who have

budget constraints and more sophisticated trading strategy, the segregation still occurs.

This leads us to conclude that the key enabler of segregation is the reinforcement learning.

This on its own is an interesting result as the reinforcement rule is although simple, a

widely used one.

We discussed the learning rule in the first section and realised that only if agents

are allowed not to update attractions to the unplayed actions (that effectively means up-

dating them with the average return from the previous 1/r trades) the segregation is

diminished. Additionally, we study this new unsegregated state and realise that for a

wide range of intensities of choice it is better for the population (as compared to previ-

ously studied unsegregated state and strongly segregated one), but at high intensities of

choice, segregation offers more benefits. This is mainly because the α = 0 state in the high

β limit leads to the Nash Equilibrium that, as we already discussed, does not outperform

strongly segregated state.

Finally, in this chapter, we also studied systems with multiple markets and realised

that market coexistence is not always possible. For example, when agents are adaptive

already for M > 1 when no symmetries are imposed our simple counting argument

suggests that some of the markets will lose the competition. In a population with fixed

buy/sell preferences, we note that full market coexistence leads to seemingly specialised

markets, not all subpopulation visit all the markets. This is not a consequence of a mar-

ket’s targeting toward some subset of the population, but, as subpopulations will de-

velop loyalty to only some markets, it will necessarily appear as if the market become

specialised.
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Chapter 5

Evolutionary Auctions

Competition for resources in biological context bears a resemblance to auction mecha-

nisms, many agents compete but only a few (or only one) get the reward. Contrary to

the well-studied auction models in the economy, a reasonable assumption in this con-

text is that everybody (not only the winner) pays their bid, e.g. time/energy invested

to endure a conflict or foraging food. Here we look at dynamics of the k-player all-pay

auctions searching for the states evolution might favour. We analyse these systems with

an associated birth-death process governed by agent’s strategy success in the repeated

interactions modelled as k-player all-pay auctions. Intriguingly, when more than one re-

ward is available in competition, the specialisation arise. In the following chapter, we

investigate under which conditions that happens (e.g. how many players interact, how

large the second reward needs to be, etc.) and whether such states are stable.

5.1 Introduction

Pioneering works of Maynard Smith & Price [56] recognise that some animal conflicts re-

semble auctions. They introduce the game War of attrition, modelling non-violent interac-

tion, an endurance contest between two individuals. The players’ strategies are the times

they are willing to spend in the contest; the longest enduring player will take the reward,

and costs are evaluated based on the conflict duration, i.e. second player’s endurance

time. This game is a biological formalisation of the second-price sealed bid auction or

Vickrey auction [108] in economic theory, with a single difference - not only the winner

will pay the cost of enduring the competition.
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In an evolutionary context, Haigh & Rose [59] generalise two player conflicts that

could be modelled by auction theory and coin the phrase evolutionary auctions. They

study variety of games smoothly varied from Scotch auctions, in which all participants

pay their own bid (e.g. tree growth competition, where every player has an energy in-

vestment, but only the tallest tree wins the reward - most of the sunlight) to the other

extreme, War of attrition in which the winner pays the co-player’s bid. Early studies fo-

cused on the static description of the games, namely the evolutionary stable strategies

(ESS - a strategy such that if employed by the population as a whole is resistant under

a small number of invading mutant strategies, see [56] and Appendix G). Haigh & Rose

showed that evolutionary auctions have a mixed strategy (a probability distribution over

the domain of available actions, in the case of War of Attrition times t) ESS, except for the

Scotch auction [58].

Evolutionary stable strategies for the War of Attrition game were found for the gener-

alised number of players (see e.g. Bishop & Cannings [109], Haigh & Cannings [110] and

more recently Chatterjee et al. [111]). A general number of participants in the Scotch auc-

tion was studied by Chatterjee et al. [111], and it was shown that the evolutionary stable

strategy exists whenever the number of participants is greater than two. Chatterjee et al.

also introduced convenient names for the two types of evolutionary auctions that we will

use in this chapter - all-pay biological auctions, short APA, k participant extension of Scotch

auctions and second-price all-pay biological auction, SAPA, k participant generalisation of

the War of attrition game.

As previous authors noted [59, 111] evolutionary auctions with k participants, repre-

sent a simple model for a variety of interactions in biological context, from competition

for resources, e.g. treescape growth to maximise access to the sunshine, evolution of male

traits that increase their sexual attractiveness (tail [112], ornaments [113]) but also their

dominance over other males (weapon size [114]) to territory contests [115]. This moti-

vates us to contribute to an investigation of the evolutionary dynamics of these games.

As opposed to other games studied to the great extents such as prisoner’s dilemma

or hawk-dove game, the evolutionary auction games have continuous strategy space,

that makes them a convenient evolutionary model for various phenotypic features in the
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living world, but also makes their analysis slightly more difficult.

Games with discrete strategy space are widely studied using evolutionary dynamics.

From a set of microscopic rules, a birth-death process, macroscopic description is usually

derived, in the form of replicator equation (and stochastic replicator equation, but also

replicator-mutator equation, see e.g. Bladon et al. [116]). We also know that if it exists,

an evolutionary stable strategy (ESS) is an asymptotically stable fixed point of the repli-

cator dynamics (see e.g. Taylor & Jonker [117], Hofbauer & Schuster & Sigmund [118],

Zeeman [119]). The reverse is not true, thus an interesting question is the stability of the

mixed strategy fixed points in the parameter regions where an ESS does not exist, e.g.

2-player APA game.

The works of Chatterjee et al. [111] and Reiter et al. [55] suggest that an evolutionary

dynamics of the APA and SAPA games studied in the form of the Fisher-Wright evolution

converge to the ESS distributions. This motivated us to develop a theoretical framework

analogous to the one previously known for the games with discrete strategy space. Sim-

ilarly to the works of Taylor et al. [63] and Traulsen et al. [61, 62], we study frequency

dependent Moran model – a birth-death process driven by the fitness obtained by re-

peated interactions described by the evolutionary auction games.

In the continuous strategy space, this work is motivated by Rogers et al. [64] who

studied the evolution of continuously distributed phenomenological traits and effects of

demographic noise to spontaneous speciation. Our work is a continuation in the same

direction, formalising the methodology for the k player evolutionary auctions with con-

tinuous strategies. This framework enables us to develop the replicator equation and

confirms that the fixed points of this population dynamics corresponds to the evolu-

tionary stable strategies. Furthermore, we can study the effects of demographic noise

analysing the stochastic replicator equation and consequently analysing existence of cy-

cles reported by Chatterjee et al. [111].

Finally, it is important to note that we will study population dynamics in the contin-

uous time as Traulsen et al. [61, 62] did, rather than the discrete time dynamics of the

Fisher-Wright type whose results are reported in Chatterjee et al. [111]. It has been shown

that in the large population limit the diffusion approximation of the Fisher-Wright model
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holds and the replicator and the stochastic replicator equation can be derived, see for ex-

ample Chalub et al. [120]. These equations are equivalent to the replicator equations that

can be derived from the continuous time Moran process up to time rescaling, i.e. Moran

model is twice as fast as the analogue Fisher-Wright model [121–123].

5.2 Evolutionary dynamics for games with continuous strategy

space

In this section, we develop a formalism for studying evolutionary dynamics of games

with continuous strategy space. The goal is to derive the macroscopic replicator-like

equation starting from the microscopic dynamics, a birth-death process governed by the

fitness obtained by repeatedly playing a game. Having this description, we will be able

to find the fixed points of the dynamics and analyse their stability, but also how the

finite size effects (diffusion approximation) lead to deviation from the replicator limit.

This has already been done for the games with discrete strategy space [61, 62]. In the

space of continuous phenotypic traits, Rogers et al. [64] derive macroscopic stochastic

dynamics for the co-evolution of species. Our works build upon these with an application

to games with continuous strategy space such as all-pay auctions biological auctions, as

introduced [55, 111] based on previous works [60, 110] and others.

We start with a population of N individuals, each of which can play a pure strategy

s, a real number corresponding to a waiting time in a conflict (like in the war of attrition

game) or energy investment (foraging resources) or bidding value in the economic con-

text. We assume well-mixed population with random interactions. In such a set up the

state of the population at any given time is fully described by n(s), a number of players

of each type s:

n(s) =

N∑

i=1

δ(s− si).
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We can also introduce a density:

ψ(s) =
1

N

N∑

i=1

δ(s− si) , (5.1)

as in the case of games with discrete strategy space, Ψ can be interpreted as a mixed

strategy of a single player, or the strategy density distribution in the population of indi-

viduals playing a pure strategy (e.g. population playing a pure strategy always bid s∗ is

represented as ψ(s) = δ(s− s∗)).

We look at the frequency-dependent generalized Moran process in which an individ-

ual is randomly selected for reproduction with probability proportional to its fitness. The

identical offspring then replaces an individual that is randomly selected to die, keeping

the population size constant. We consider this dynamics in a continuous time. We con-

sider general form of transition rates without mutations defined as follows:

Rs1→s2(n) = N
n(s1)

N

n(s2)

N
g(π(s1), π(s2)). (5.2)

The factor n(s1)
N

n(s2)
N broadly represents rate with which an individual of the type s1 meets

an individual of the type s2, while the factor g(π(s1), π(s2)) encodes selection pressure to

replace less successful with a more successful strategy. Many choices exists in the litera-

ture (see e.g. Bladon et al. [116]), we restrict ourselves to the so-called local process [61]

defined by:

g(π(s1), π(s2)) =
1

2

(

1 +
π(s2)− π(s1)

∆πmax

)

, (5.3)

where the ∆πmax represents the maximal difference between any two strategy’s fitness

and thus normalize the transition rates. The overall pre-factor N in the transition rates

R is there to ensure that the rate with which the event of the type s1 → s2 occurs in the

system in a state n is proportional to the number of individuals in the population. The

typical time between events scales as 1/N, while a unit of time corresponds to an O(N)

number of events, so the time is measured on the level of generations. We will also use

Ts1→s2(n) = Rs1→s2(n)/N . The quantity π(s) is a fitness function fully defined by the
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game or another type of interaction we might consider. In the general case, we might

assume that the interaction includes k individuals so, the most general form of π is:

π(s) =

∫

ds1...dsk−1a(s, s1, ...sk−1)ψ(s1)...ψ(sk−1), (5.4)

where a encodes the interaction (game or another type of k-player interaction). In the

case of two-player game with a discrete number of strategies, a is a payoff matrix, but in

the general case, it is a payoff a player playing strategy s gets when confronted with k−1

players taking actions s1 · · · sk−1.

5.2.1 Functional system-size expansion

To follow the evolution of a population in the previously described process the quantity

of interest is the functional P on the space of functions ψ and it is the evolution of P (ψ, t)

that we want to understand. Similarly to the formalism for games with discrete strategy

space [61–63], we derive the master equation that describes the evolution of P (ψ, t) and

its diffusion limit, the Fokker-Planck equation. We introduce creation/annihilation oper-

ators (see for example van Kampen [90]) that correspond to a single birth/death events:

Ê±
s′P [ψ] = P

[

ψ ± 1

N
δs′

]

,

where δs′(s) = δ(s− s′), i.e.

(

ψ +
1

N
δs′

)

(s) = ψ(s) +
1

N
δ(s− s′).

The functional master equation describing the previously introduced evolutionary dy-

namics is:

∂tP [ψ] =

∫

dsds′
(

Ê−
s Ês′ − 1

)

{Rs→s′ [ψ]P [ψ]} , (5.5)
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where the transition rates are introduced as before Rs→s′ [ψ] = Nψ(s)ψ(s′)g(π(s), π(s′)).

We use the following expansion (a functional variant of the Kramers-Moyal expansion [90]):

Ê±
s Q[ψ] = Q

[

ψ ± 1

N
δs

]

= Q[ψ]± 1

N

δ

δψ(s)
Q[ψ] +

1

2N2

δ2

δψ(s)2
Q[ψ] +O(N−3),

where δ/δψ denotes functional differentiation. Master equation then becomes the func-

tional Fokker-Planck equation:

∂tP [ψ] =−
∫

dsds′
δ

δψ(s)

{
A[Ψ, s, s′]P [Ψ]

}

+
1

2N

∫

dsds′
δ

δΨ(s)

δ

δΨ(s′)

{
B[Ψ, s, s′]P [Ψ]

}
+O(N−3), (5.6)

where A is the drift term:

A[Ψ, s, s′] = Rs→s′ [Ψ]−Rs′→s[Ψ]

N
,

and B is the diffusion term:

B[Ψ, s, s′] = Rs→s′ [Ψ] +Rs′→s[Ψ]

N
.

We can also write a stochastic equation that corresponds to the Fokker-Placnk Eq. (5.6)

(where we already simplified the drift term by explicitly writing transition ratesRs→s′ [Ψ]):

∂tψ(s) = ψ(s)

∫

ds′ψ(s)[g(π(s′), π(s))− g(π(s), π(s′))] + 1√
N
η(s, t).

Accordingly, the noise covariance is given by:

〈η(s, t)η(s′, t′)〉 = δ(t− t′)
[

δ(s− s′)
∫

ds′′
(

ψ(s)ψ(s′′)[g(π(s′′), π(s)) + g(π(s), π(s′′))]
)

− ψ(s)ψ(s′)(g(π(s), π(s′)) + g(π(s′), π(s))
]

.
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We can further simplify these equations using the expression for g (Eq. 5.3) which leads

to a stochastic replicator equation:

∂tψ(s) =
ψ(s)

∆πmax

(

π(s)− π
)

+
1√
N
η(s, t), (5.7)

with noise covariance matrix:

〈η(s, t)η(s′, t′)〉 = δ(t− t′)
[

δ(s− s′)ψ(s)− ψ(s)ψ(s′)
]

, (5.8)

where we also used the following property of the pairwise comparison rule g(a, b) +

g(b, a) = 1 and π is used to denote the average fitness π =
∫
dsπ(s)ψ(s). The stochas-

tic replicator equation given by the Eqs. (5.7) was not previously derived for the games

with continuous strategy space, while we demonstrated that following an analogous path

from the birth-death process, a macroscopic equation can be derived. The existence of

such a dynamical equation gives us a possibility to study steady states of the evolution-

ary dynamics in games such as evolutionary auctions. We can also analyse fixed point

stability by methods of linear noise analysis, but also effects of finite population size that

we demonstrate in the following sections.

5.2.2 Replicator limit

In this section, we study evolutionary auctions in the replicator limit (i.e. the limit of large

populations N →∞). In this limit, the stochasticity in the Eq. (5.7) can be neglected, and

we focus only on the deterministic equation and study the fixed points of the dynamics:

∂tψ(s) =
ψ(s)

∆πmax

(

π(s)− π
)

.

Specially we study dynamics of evolutionary auctions whose evolutionary stable strate-

gies were studied previously [55, 56, 59, 109, 111]: (1) APA - all-pay biological auction

(generalisation of the scotch auction); (2) APA with two rewards; (3) SAPA - second-price

all-pay biological auction (generalization of the war of attrition).
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All-pay auctions (APA). In APA games we study k players competing for a single re-

ward V . Every player has a strategy s ∈ [0, V ], a player with the highest strategy wins the

reward V , but everyone pays the cost of playing the strategy s. Examples of these types

of interactions in natural world include competition for resources (e.g. s can correspond

to the energy a tree invests in growing a tall scape to reach the reward - sunlight) and

evolution of ornament and weapon traits in males to attract females or defend territory.

There is a cost associated with producing and bearing a larger weapon, such as horn, but

it might lead to rewards without battle as often its purpose is to demonstrate the power

rather than to practice it [124].

Strategy space is continuous and bounded by the reward value (i.e. s ∈ [0, V ]) as

investing more than the reward V would lead to negative fitness1. The payoff function

for k players - the fitness a player bidding s receives, assuming that other k − 1 players

bid s1, s2, ...sk−1) is:

aAPA(s, s1, ...sk−1) =







V − s, ∏k−1
i=1 θ(s− si) = 1

V
m − s,

∑k−1
i=1 δs,si = m− 1 6= 0 ∧∏k−1

i=1,si 6=s θ(s− si) = 1

−s, ∏k−1
i=1 θ(s− si) = 0

(5.9)

where θ(x) is the Heaviside step function (θ(x) = 1, ∀x > 0 and θ(x) = 0, ∀x < 0).

The middle term in the payoff function represents the reward splitting which takes place

when the highest bid is not unique and the reward is divided among the winners. In case

of continuous strategy space, this can be neglected as the set of such events has measure

0, so the payoff function can be simplified to:

aAPA(s, s1, ...sk−1) = V
k−1∏

i=1

θ(s− si)− s.

1Bidding values that lead to negative returns even when the reward is obtained, i.e. s > V is not con-
sidered, as not playing, i.e. s = 0 is allowed in the game, so an agent should always favour nonegative
return.
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When taking an action s, the expected fitness in a population where every agent plays

the same strategy ψ(s) is:

πAPA(s) =

∫

ds1...dsk−1aAPA(s, s1, ..sk−1)ψ(s1)...ψ(sk−1)

=

∫

ds1...dsk−1(V
k−1∏

i=1

θ(s− si)− s)ψ(s1)...ψ(sk−1)

= V (

∫ s

0
ds′ψ(s′))k−1 − s

= V φk−1(s)− s. (5.10)

Where φ(s) is φ(s) =
∫ s
0 ds

′ψ(s′). Interpretation of this fitness is clear - only if k − 1

players invest lower amounts of energy, a player with strategy swins the reward V, while

(s)he pays own investment s in any case. To find a non-trivial fixed point2 we require

π(s) = c, c = const for all s where ψ(s) > 03. Consequently φ(s) is:

φ(s) =

(
c+ s

V

) 1
k−1

. (5.11)

Using the normalisation condition (i.e. φ(V ) = 1) we obtain c = 0. Interestingly, at

the fixed point fitness for playing any pure strategy s is 0, and consequently any player

receives the fitness (s)he would receive even if (s)he was not playing the game. The fixed

point distribution of strategies is:

ψ(s) =
1

(k − 1)V

( s

V

) 2−k
k−1

. (5.12)

These are the mixed strategy solutions previously reported by Chatterjee et al. [120] and

specially for k = 2 where the distribution is uniform ψ(s) = 1/V by Haigh and Rose [59].

In Figure 5.1 we show fixed point distributions of the replicator dynamics for different

number of game participants k. We note that the fixed point of the replicator dynamics

are the evolutionary stable strategies (ESS) previously reported in [111] and [59] when

2Any pure strategy, i.e. ψ(s) = δ(s−S∗) would be a solution of the replicator equation, as ψ(s) = 0, ∀s 6=
S∗, while for S∗ fitness related to it is equal to the population average. However, we denote this fixed point
as trivial and search for the nontrivial (mixed), defined on the full domain s ∈ [0, V ].

3This is because in that case, also the population average fitness is constant π =
∫
dsπ(s)ψ(s) = c and

we note that for the fixed point distribution defined on the whole domain the replicator equation will lead
to ∂tψ(s) = 0,∀s ∈ [0, V ].
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FIGURE 5.1: Fixed point mixed strategy distributions of evolutionary
auction games with different number of players k. Left: all-pay biologi-
cal auctions (APA); Right: Second-price all-pay biological auctions (SAPA).
The reward value is V = 1, note domain of APA games is [0, V ], while the
strategy domain of SAPA games is [0,∞), only the [0, V ] interval is shown

for comparison with APA games.

k > 2. This is is because π(s) = const, ∀s is a necessary condition for an ESS, although

not sufficient (see e.g. Bishop-Canings theorem [60]). This tells us that introduced dy-

namics, fitness dependent birth-death process, has a unique mixed strategy fixed point

that is also an ESS, except for the k = 2 as proved previously [59, 111]. The all-pay bio-

logical auction with 2 players will be additionally discussed in further sections as there

are various dynamical features that distinguish this game from the others.

Second highest bid all-pay auctions (SAPA). These games are a k player extension of

the famous War of attrition game [56, 57, 109, 110] (k = 2) that model animal conflict -

whoever waits for longer wins but pays only in time spent in the game, i.e. the second

highest bid. As before, we introduce generalised fitness function and find the fixed point

of the Eq. (5.7). The payoff function for the Second Price all-pay Auctions is:

a(s, s1, ...sk−1) =







V −max(s1, ...sk−1),
∏k−1

i=1 θ(s− si) = 1

V
m − s,

∑k−1
i=1 δs,si = m− 1 6= 0 ∧∏k−1

i=1,si 6=s θ(s− si) = 1

−s, ∏k−1
i=1 θ(s− si) = 0

(5.13)
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that as before we can simplify to:

aSAPA(s, s1, ...sk−1) = (V + s−max(s1, ...sk−1))
k−1∏

i=1

θ(s− si)− s,

neglecting reward-splitting terms as argued previously. We see that it differs from the

APA payoff function in the maximum term to account for the second highest bid that is

the cost the winner pays. We proceed to calculate the average payoff of a strategy s:

πSAPA(s) =

∫

ds1...dsk−1

(

(V + s−max(s1, ...sk−1))
k−1∏

i=1

θ(s− si)− s
)

ψ(s1)...ψ(sk−1)

= (V + s)φk−1(s)−
∫

ds1...dsk−1max(s1, ...sk−1)
k−1∏

i=1

θ(s− si)ψ(s1)...ψ(sk−1)− s

= (V + s)φk−1(s)− (k − 1)

∫

ds1...dsk−1s1θ(s− s1)
k−1∏

i=2

θ(s1 − si)ψ(s1)...ψ(sk−1)− s

= (V + s)φk−1(s)− (k − 1)

∫ s

0
ds′s′ψ(s′)φk−2(s′)− s

= (V + s)φk−1(s)− s− (k − 1)
(

s
φk−1(s)

k − 1
−
∫ s
0 ds

′φk−1(s′)

k − 1

)

= V φk−1(s)− s+
∫ s

0
ds′φk−1(s′). (5.14)

We can note that the last term in the fitness is a correction to the APA game due to the

fact that the winner does not pay his/her bid but the second highest one. Requiring again

that the π(s) = const for all s for which ψ(s) > 0, we obtain the cumulative distribution

φ(s) and the fixed point distribution ψ(s):

φ(s) =
(

1− exp(− s
V
)
) 1

k−1
,

ψ(s) =
1

V (k − 1)

(

1− exp(− s
V
)
) 2−k

k−1
exp(− s

V
).

These fixed points are previously reported evolutionary stable strategies, and for the 2-

player game we retrieve famous Maynard Smith & Price’s result [56] - the evolutionary

stable strategy of the War of attrition game: ψ(s) = 1
V exp (−s/V ). SAPA game has a

mixed strategy ESS for all k which is why we expect to find that the fixed points are
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asymptotically stable. In Figure 5.1 we show these fixed point mixed strategy distribu-

tions next to the corresponding strategies of APA games. Note that we only plot a part of

the SAPA fixed point distributions as these are defined on [0,∞) domain.

Specially, when the strategy space is not s ∈ [0,∞) but there is a maximal bidding

value A, Bishop and Cannings [109] prove that the mixed strategy distribution is an ESS

only if the maximal strategy is attainable, i.e if the domain is s ∈ [0, A]. They also prove

that the ESS distribution is not a continuous function but there is a gap in the strategy

support - playing the highest strategy is always beneficial, so there will always be a delta

peak at s = A, however bidding slightly below will lead to worse results which is why

these strategies are avoided. We demonstrate this by finding the fixed point of the SAPA

game in the domain [0, A] in Appendix I and realize that the strategies that are less than

the reward value V smaller than the highest bidding value A are not played by the pop-

ulation at the fixed point, i.e. the fixed point distribution is previously found continuous

distribution on [0, A− V ] with a delta peak at s = A that takes care of the normalization.

Interestingly, when A = V + ǫ (ǫ being any small positive number) that leads to the spe-

cialised population, a fraction of population bids s = 0 effectively not playing, while the

other group bids s = V , we discuss this in more detail in Appendix I.

All-pay auctions with multiple rewards. Although already early works of Maynard

Smith& Price [56, 57] and Haigh & Rose [59] pointed out that many animal interactions

have the structure of the auctions, recent works added an important extension when

auctions are applied in ecological context - multiple rewards [55]. In previously described

metaphor of growing trees competing for the sunshine or large flowers attracting insects,

it is difficult to argue that the player with the second highest strategy is left without any

reward, similarly the third, etc.

Accordingly, we follow the game extension suggested by Reiter et al. [55] and study

the all-pay biological auction with r rewards available, we assume r ≤ k and the fol-

lowing order V1 ≥ V2 ≥ · · · ≥ Vr. As in the single reward case, when the space of

available strategies is continuous we can neglect reward splitting, i.e. the probability of

non-unique highest bid is zero. In analogy with previously studied games, the fitness of
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an individual playing strategy s is:

π(s) =

r∑

i=1

Vi

(
k − 1

i− 1

)

(1− φ(s))i−1φk−i(s)− s,

i.e. the player receives reward Vi if i − 1 players were playing higher strategy - invested

more, (with probability (1−φ(s))) while other k−i players invested less (with prob φ(s)).

We also need to take into account selection of i − 1 higher bidders out of k − 1 available

players, thus binomial coefficient.

To find the interior fixed point of the replicator dynamics, again we find ψ(s) from

π(s) = const for all s in the support of ψ(s). Enforcing conditions on φ to ensure it is a

properly defined cumulative distribution (i.e. φ(0) = 0 and φ(V1) = 1) we find that π(s) =

0 for all s, i.e. at the fixed point average fitness of any pure strategy against the population

is zero. Finally, we note that φ(s) is a root of the k − 1-th order polynomial that does not

have a closed form expression but we can find solutions numerically. As reported by

Reiter et al. [55] we realize that for some values of rewards and k > 2 participants in the

auctions the fixed point mixed strategies differ drastically from the single reward game.

Specially, we note that the distributions become bimodal - population splits into low

bidders and high bidders for k > 3 participants in an auction. To analyse this further we

focus the rest of multiple reward APA analysis to the simplest case – only two rewards.

This game already offers variety of interesting fixed points, while still being simpler to

analyse. We assume V1 = V and V2 = αV , thus the fitness when playing s becomes:

π(s) = V φk−1(s) + αV (k − 1)(1− φ(s))φk−2(s)− s

= V (1− α(k − 1))φk−1(s) + αV (k − 1)φk−2(s)− s.

In line with our main question of specialization (segregation-like phenomenna), we are

interested to find for which game parameters, i.e. pairs of (k, α), fixed point distribution

ψ(s) =
dφ(s)

ds
becomes bimodal. To be a bimodal distribution, ψ(s) has to have an interior

minimum, i.e. ψ′(sm) = 0 and ψ′′(sm) > 0. Starting from the relation π(s) = 0 and its
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derivatives, we obtain:

φ(sm) =
(3− k)α

1− (k − 1)α
.

As long as φ(sm) ∈ (0, 1), there is unique sm and the distribution is bimodal, and this

requirement gives us relation between α and k that enables specialization. As our nu-

merical exploration already showed us that fixed points of k = 3 are always unimodal,

monotonically decreasing for α < 0.5, constant for α = 0.5 and increasing for α > 0.5, we

look only at k > 3:

(3− k)α
1− (k − 1)α

> 0 ⇐⇒ α >
1

k − 1

(3− k)α
1− (k − 1)α

< 1 ⇐⇒ α >
1

2
.

As the second constraint is stronger for all k > 3 we realize that the critical reward ratio

is independent of k - when the second reward is higher than a half of the first reward the

population fixed point includes a fraction of high bidders.

In Figure 5.2 we show fixed point distributions for k ≥ 3 and α = 1. We note that

for all k > 3 the fixed point distributions are bimodal, but we also note that the fraction

of high bidders decreases with k. To quantify this observation in the right panel of Fig-

ure 5.2, we plot the fraction of players at the s = V peak (if sm is the minimum of ψ(s),

fraction of high bidders is 1−φ(sm)) as a function of α for various k. We note that with an

increase of game participants k fraction of high bidders decreases as a number of rewards

become small compared to the group size making the game effectively comparable to a

single reward game with a large number of participants.

Finally, Reiter et al. [55] proved that for k = 3 the evolutionary stable state exists

only when α < 0.5, corresponding to the region of reward ratios when the fixed point

distribution is a monotonically decreasing function (as for α = 0). This is interesting

because in the 3-player game the population does not undergo specialisation, but for

α > 0.5 the distribution is an increasing function, with a majority of the population

making big energy investments (for α = 0.5 the distribution is uniform). This prompts

the question whether the bimodal fixed point distributions we find for k > 3 and α > 0.5
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FIGURE 5.2: Fixed point distributions for the APA evolutionary game
with two rewards and variable number of players k. Left: Fixed point
distributions for α = 1; Right: Fraction of players at the high bidding peak
as function of reward ratio α. Circles in the right panel show αc above
which the bimodal fixed point distribution is not an evolutionary stable

strategy.

are evolutionary stable strategies (they are nevertheless unique interior fixed points of

the evolutionary dynamics we have introduced). Following the procedure outlined by

Chatterjee et al. [111] and Reiter et al. [55], based on general formalism introduced by

Maynard Smith [57], we prove that for k > 3 the bimodal fixed point distribution are

evolutionary stable but only in some regime of α with αc increasing with k. In Figure 5.2

with coloured circles in the right panel we mark αc above which an ESS does not exist

(details of numerical calculations are in Appendix G). As the mixed strategy fixed point,

we have found is unique and defined for all α, we will address in the following sections

whether some of its properties change for α > αc.

We note that in the replicator limit, we retrieve previously reported evolutionary sta-

ble strategies for the single reward games. Based on the previous results [117–119] we

expect that the fixed points we have found are asymptotically stable. However, the APA

game with two players is known not to have an evolutionary stable strategy. Thus it is

curious to investigate its stability under the evolutionary dynamics that we have intro-

duced. Similarly, we have extended the results of Reiter et al. [55] in the domain of two

reward games and proved that when a number of players is greater than three bimodal
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distributions (specialised populations) are evolutionary stable, but only in part of the do-

main of reward ratios. As the mixed strategy fixed point is unique for all the reward

rations, we ask if there is an associated loss of stability under the evolutionary dynamics

once the strategy stops being an evolutionary stable one. As previously remarked, the

relation between stability and the ESS is not equivalent, i.e. an ESS is an asymptotically

stable fixed point, but the converse is not true.

Similarly as in chapters that preceded, our foremost interests are in the states that are

selected by an adaptive population in a dynamical process (previously it was adaptive

learning, while now it is natural selection). We compare our results with the states found

by static analysis (such as the Nash equilibrium or the evolutionary stable strategies)

as those are known to have remarkable properties, but our goal is to investigate which

states the population selects and if those might even be better (e.g. strongly segregated

state vs. envy-free Nash equilibrium). That is why we investigate the stability of the

fixed points, rather than focus on the evolutionary stable strategies. We utilise methods

of linear stability, but also we investigate effects of finite population. We will analyse

if the stochasticity that the finite population brings (demographic noise) might induce

cycles that were reported by Chatterjee et al. [111].

Linear Noise Approximation

Previously, we have found unique mixed strategy fixed point distributions for various

evolutionary auction games, to know something about their stability would evidently be

useful. Specially, in some cases previous results reported that the fixed points are the

evolutionary stable strategies, so their asymptotic stability should be expected [117–119].

In some other cases e.g. 2 player APA game, there is no evolutionary stable strategy so

it would be interesting if we can understand stability of the fixed point we have found.

To answer these questions we use methods of linear stability. Starting from the replicator
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equation (5.7):

ψ̇(s) =
ψ(s)

∆πmax

(

π(s)−
∫

ds′π(s′)ψ(s′)

)

=
ψ(s)

∆πmax

(∫

ds1...dsk−1a(s, s1, ..sk−1)ψ(s1)...ψ(sk−1)

−
∫

ds′ds1...dsk−1a(s
′, s1, ..sk−1)ψ(s

′)ψ(s1)...ψ(sk−1)

)

, (5.15)

we perform functional linearisation around the fixed point ψ∗(s). When ψ(s) is in the

vicinity of the fixed point (i.e. ψ∗(s) + δψ(s)) and keeping only the terms linear in δψ(s)

the following equation is obtained:

∂tδψ(s) =

∫

ds′J(s, s′)δψ(s′),

where the functional Jacobian for the fixed point of the replicator equation is:

J(s, s′) =
ψ∗(s)

∆πmax

(

(k − 1)M(s, s′)− π∗(s′)− (k − 1)

∫

drM(r, s′)ψ∗(r)
)

. (5.16)

With ∗ we denote all the evaluations at the fixed point of the replicator Equation (5.7),

while the ∆πmax is the maximal difference between the payoffs of players with different

bidding strategies which is equal to V . We also note that for the evolutionary auction

games we have proved the fitness at the fixed point is zero (π∗(s) = 0). To simplify the

equation in the Jacobian we have introduced M(s, s′):

M(s, s′) =

∫

ds2...dsk−1a(s, s
′, s2, ...sk−1)ψ

∗(s2)...ψ
∗(sk−1),

it is an effective two player payoff function in the k-player game, i.e. M denotes payoff a

player playing s obtains against s′ averaged over the remaining k − 2 agents.

In the most general case, for a specific game, we can calculate M(s, s′) and conse-

quently the integral operator J(s, s′) and sometimes its spectra will be known in the most

general case. We leave explicit forms of these operators for Appendix F where we also

prove that for APA games with k = 2 players there is only a single eigenvalue – zero,

whose corresponding eigenfunction is a constant (as also the fixed point distribution is,
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i.e. ψ(s) = 1/V ). For the general k evolutionary auction game the spectrum of the con-

tinuous operator is not easily attainable, so we only leave our preliminary results in the

supplementary material.

Another route we can take analysing the stability of the previously found fixed points

is to look at the system with discrete strategies where the spectra could be numerically

analysed. When the spectra of the operator is not easily analysed in the continuous case,

instead of discretizing the continuous operator (5.16) and analysing the spectra of a ma-

trix obtained that way, we propose to reintroduce the problem in the discrete strategy

set up and observe how the results behave when the discretization becomes finer to help

us conjecture something about the fixed point stability in the continuous strategy space.

We propose this approach as a potentially more careful way to analyse the spectra (it is

known that the discretisation of continuous operators sometimes leads to spurious spec-

tral results, see e.g. section 5.4 of Wing [125]). For a small number of available discrete

strategiesL, we will note that the discrete problem is clearly different from the discretised

continuous problem, but we expect these differences to decay as L increases.

5.3 Evolutionary auctions with discrete strategy space

In this section, we address the dynamics of the biological all-pay auctions when the bid-

ding strategies are available only in the discrete steps. We consider this simplification

as the discrete strategy space is easily accessible in numerical simulations and the linear

noise analysis becomes numerically accessible. Additionally, numerical results of evo-

lutionary dynamics in discrete strategy space reported by Chatterjee et al. [111] showed

interesting dynamical features - ESS present only as a long time average and an existence

of cycles. To reproduce and study these effects closely we will reintroduce the problem

of k-player evolutionary auctions in the system with discrete strategy space.

We will assume that the strategy space is discretized with steps ∆, i.e. strategy Si cor-

respond to bidding the value i∆, with i = 1 . . . L spanning strategy space equidistantly.

Previously it has been shown (e.g. Traulsen et al. [61]) how from the generalized Moran
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process the stochastic replicator equation can be derived, we thus only state it below:

ψ̇i =
ψi

∆πmax

(

πi − π
)

+
1√
N
ηi(t), (5.17)

with the following noise covariance matrix:

〈ηi(t)ηj(t)〉 = δ(t− t′)
(

δijψi − ψiψj

)

.

Here it is worth noting that the stochastic replicator equation itself is not different from

the discretized Eq. (5.7). What makes the following analysis different from the discretized

version of the previous results is encoded in the payoff πi and comes from the treatment

of situations when the highest bidding strategy is not unique. As we argued when the

space of strategies is continuous the probability of such events is 0, but that is not the case

when the strategy space is discrete. Below we show and discuss the fitness associated

with playing a strategy Si in evolutionary auction games. The fitness of an individual

playing strategy Si in the All-Pay Auction is:

πAPA
i =

k∑

m=1

V

m

(
k − 1

m− 1

)

ψm−1
i





i−1∑

j=1

ψj





k−m

− Si. (5.18)

In the Eq. (5.18), all the terms for m ≥ 2 are payoff contributions in situations of non-

unique highest bid when the reward is only partially obtained, either by randomly se-

lecting a winner that earns the whole reward V or all the winners receiving an equal part

of the reward. Specially, playing the lowest strategy S1 leads to the reward only if all

other k − 1 players do the same, i.e. π1 = (V/k)ψk−1
1 − S1. On the other hand, we can

introduce a game in the space of discrete strategies that will lead to the same fitness and

fixed point as the discretized Eq. (5.12) in the following way - nobody wins the reward if

the highest strategy is not unique. Some details on this game we discuss in Appendix H,

but if APA game is used as a metaphor for previously described biological interactions,

we believe splitting the reward is a more reasonable assumption. We also extend the
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fitness to the two reward APA game:

π2APA
i = V





i−1∑

j=1

ψj





k−1

+

k∑

m=2

V (1 + α)

m

(
k − 1

m− 1

)

ψm−1
i





i−1∑

j=1

ψj





k−m

+ (k − 1)



1−
i∑

j=1

ψj





k−1∑

m=1

V α

m

(
k − 2

m− 1

)

ψm−1
i





i−1∑

j=1

ψj





k−1−m

− Si, (5.19)

where we assumed as before that the second reward is α times smaller than the first

one (α ∈ [0, 1]). Here we also introduce non-unique highest bidding strategy corrections

(the second and third term): (1) if the highest strategy is not unique, players split both

rewards; (2) if the second highest strategy is not unique players split the second reward.

Similarly, the fitness when playing the strategy Si in the SAPA game is:

πSAPA
i =(V + Si)





i−1∑

j=1

ψj





k−1

+
k∑

m=2

V

m

(
k − 1

m− 1

)

ψm−1
i





i−1∑

j=1

ψj





k−m

−
i−1∑

j=1

Sj

(
( j
∑

l=1

ψl

)k−1
−
( j−1
∑

l=1

ψl

)k−1
)

− Si. (5.20)

It is worth noting that whenever the highest bid is not unique there is no difference be-

tween APA and SAPA games as in both cases the reward will be split and everyone will

pay their own bid. However, when in the SAPA game the highest bid is unique the pay-

ment is smaller, described by the second to last term in Eq. (5.20). As argued before,

the domain of APA game strategies is S ∈ [0, V ], while for the SAPA games S ∈ [0,∞)

and consequently when discretising SAPA games beside the strategy density we need to

decide the cut off. The set up of the game with the discrete strategy space enables us to

study more directly fixed points of the dynamics, their stability and the possible existence

of the noise induced cycles. Following the same line of arguments as in the continuous

space of strategies we can introduce a Jacobian of the system in the following way:

Jij =
ψ∗
i

∆πmax
(k − 1)

(

Mij −
L∑

l=1

ψ∗
lMlj

)

, (5.21)

where as beforeMij is an effective payoff matrix for two players i and j in the field of k−2
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players (explicit form for Mij of all evolutionary auction games are in Appendix H). At

this stage we can analyse the spectra of the Jacobian matrix and based on its eigenvalues

we can say more about the fixed point’s stability, these we will present in the following

sections for the APA and SAPA games.

Previously, we only focused on the replicator limit where we assume infinite popu-

lation size and consequently that all the fitnesses can be well estimated and the dynam-

ics follow the replicator equation. In the case of finite populations, due to the random

nature of the microscopic interaction, the dynamics follows stochastic replicator equa-

tions (5.17). For populations of a finite size, we would like to investigate the effects of

the noise. When many strategies are available, it is not improbable that some number

of eigenvalues will be complex numbers. In the limit of infinite population, these eigen-

values would correspond to spiralling trajectories towards the fixed point, i.e. damped

oscillations. However, in the finite system regime, persistent random fluctuations drive

the system away from the fixed point. Sometimes, the combination of these two effects

results in a coherently maintained cyclic patterns [116, 126]. To look for the existence of

these effects, we take a Fourier transform of the stochastic replicator equation and from

there we derive the noise induced power spectra (the method is also described here [116,

126]). In the linear noise approximation the stochastic replicator equation can be approx-

imated to:

∂tψi =
∑

j

Jijψj + ηi. (5.22)

The Fourier transform of this equation in the matrix form is:

(iωI− J)ψ̃ = η̃.

Finally, the power spectra that we can measure in the numerical simulations as well as

analytically is:

P(ω) = 〈ψ̃T ψ̃〉 = (iωI− J)−1 〈ηT η〉
(
−iωI− J

T
)−1

. (5.23)
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We can either look at the oscillations in the number of agents playing the same strategy

Si and that corresponds to the P(ω)ii, but often it is useful to look at the overall noise

effects on all the strategies together i.e. P (ω) = Tr[P(ω)]. We will look for amplification

induced by the demographic noise that we should be able to detect as peaks in the power

spectra at positive frequencies. In the following sections, we show how this analysis can

be implemented in the case of specific games All-Pay Auctions (APA) and Second highest

bid All-Pay Auctions (SAPA).

5.3.1 All-pay biological auctions APA

In this section, we present the results of evolutionary dynamics of a population playing

APA game with discrete strategies. We initially only analyse the games with more than

two players (k > 2) previously reported to have an evolutionary stable strategy and ad-

dress the dynamics of 2-player game at the end of the section. We start our investigation

with games with only a few available strategies followed by a general finite L number of

strategies and finish with conjectures about the L→∞ limit.

Small number of available strategies. Firstly, we analyse 3-player games with L = 3, 4

available strategies because of simplicity and instructiveness of these games where the

evolution of the population is still easy to follow in a simplex. The dynamics of such

a system can be described by a small set of stochastic replicator equations, introduced

previously. Using the replicator limit approximation (i.e. just the first term on the right

side of Eq. (5.17)) we find the fixed point of the dynamics (the fitness is described by

Eq. (5.18) for k = 3).

In Figure 5.3, we show results of a game with 3 available strategies, e.g. tree levels

of energy investments in a competition. We show the vector field of the corresponding

replicator equations together with a single realisation of a numerically simulated birth-

death process. We note that the numerically simulated population dynamics converges to

the analytically predicted fixed point. In the phase portrait, we only present the first part

of the trajectory, the initial convergence to the fixed point, while the further dynamics

we depict with a single time series of the number of players bidding the lowest value

in the top panel of the same Figure 5.3. Analysing the vector field we realise that the
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FIGURE 5.3: 3-player All-Pay Auction with 3 available strategies. Bottom
left: Phase portrait of the corresponding replicator equations (pink) with a
single realisation of the simulated birth-death process of N = 1000 play-
ers (cyan). Top: Time series of the number of players playing S1, we note
noisy oscillations around the fixed point of the deterministic limit, pink
line correspond to the fixed point present in the Bottom left panel. Bottom
right: Power spectra of the numerically simulated system (cyan) and an-
alytical prediction (pink), both showing a resonant frequency ωr ≈ 0.145

corresponding to the oscillations of a period ≈ 43 generations.

fixed point is a stable focus. We confirm this by analysing eigenvalues of the Jacobian

that in this case has 2 complex conjugated eigenvalues with negative real part (besides

the trivial zero eigenvalue). Thus, there is a chance for an oscillatory behaviour induced

by the demographic noise.

The time series we present suggests a noisy oscillatory behaviour around the expected

number of players calculated in the replicator limit, but to characterise the dynamics

further, we employ previously described power spectra analysis. In the bottom right

panel of Figure 5.3, we compare the power spectra P (ω) obtained both numerically (cyan)

and analytically (pink) and realise that there is a resonant frequency that corresponds to

the noisy cyclic behaviour documented in the top panel. We note that there is a peak in

the power spectra at the frequency ω ≈ 0.145 corresponding roughly to the oscillations

with the period of 43 generations which also qualitatively agree with the observation that

can be made based on the time series plot.
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FIGURE 5.4: 3-player All-Pay Auction with 4 available strategies. We note
the existence of resonant frequency with roughly the same value as in the
case of 4 strategy game. However, existence of additional strategy adds a
stable direction making the oscillations less prominent, as we also illustrate
by the insert with a time series of number of players playing strategy S1.

Good correspondence between the theoretical and numerical power spectra moti-

vates us to explore further this phenomena even for the parameter values that would

be more difficult to simulate (systems with large number of strategies L require large

number of players as we need to keep number of agents per strategy reasonably high for

the stochastic replicator equation to be applicable).

It is worth noting that when the strategy space is finite, some of its properties are

affected by the parity of the number of available strategies L, but we expect that the

difference to disappear as L increases leading to a unique continuous limit, as we will

argue below. The parity of L affects the number of real eigenvalues of the Jacobian.

Beside the 0 eigenvalue, Jacobian of the system does not have additional real eigenvalues

when L is odd, while it has an additional real eigenvalue when L is even. This results

in a qualitative difference between the power spectra for the even and odd number of

strategies - in the case of the even number of strategies, there is no global maximum.

We present this in the case of the 3-player APA game with L = 4 available strategies in

Figure 5.4. We note that the value of P (ω) is greater for small ω, as expected, while the

relative position and the amplitude of the peak stayed in a similar position as they are

determined by the complex eigenvalues that have similar amplitudes in both cases.
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FIGURE 5.5: Fixed point distribution of the 3-player All-Pay Auction
game with L = 21 strategies in the unit interval (V=1). Cyan: Discretized
fixed point distribution obtained in the game with continuous strategies;
Pink: Fixed point distribution of the game with discrete strategies. We
note that the fixed point of the discrete strategy game is not a monotonic

function as its continuous strategy counterpart.

General number of strategies L. Before proceeding to discuss stability results and the

existence of cycles for a general number of discrete strategies L, we note that there is the

structural difference between the fixed point mixed strategy of the discrete strategy game

and the continuous strategy game. As we have seen, the continuous game has a fixed

point that is a strictly decreasing function (except for the k = 2 which will be discussed

separately). On the other hand, the fixed point distribution of the discrete game is not

monotonic but has a zig-zag structure. As an example of the difference between the fixed

point distributions, we show the results for the 3-player all-pay auction with L = 21

strategies. We also, observe the zig-zag structure of the distribution in the numerical

simulations when they are run without mutations4. In Appendix H we show how this

difference emerges out of the corrected fitness function.

In the All-Pay Auction games with a small number of strategies we have seen the

4When running simulations with a large number of strategies, to ensure that all the strategies will persist
in the fixed point we usually introduce a small mutation rate, this, however, seem to smoothen the zig-
zag structure. However, the deviation between the discretized distribution and fixed point of the game
with discrete strategies is already clear with small number of strategies L = 3 presented earlier, though the
difference decreases with increase in L.
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noise-induced cycles in Figs. 5.3 and 5.4, and we have shown that the theory and simula-

tions agree both at the level of fixed point prediction and the existence and quantitative

properties of the cycles. Here we proceed with the analysis to understand how these phe-

nomena depend on the density of the strategy space (or equivalently number of strategies

L as all the strategies are confined to the [0, V ] interval) and the number of players partic-

ipating in the game k. We will present the results always for the same parity of strategy

number (L odd) for the sake of plot clarity, while in Appendix H we show how the two

differ for finite L.

We continue the analysis of the 3-player games. As before we solve the replicator

equation in the deterministic limit (Eq.5.17), evaluate the Jacobian at the fixed point

(Eq.5.21) and finally find the power spectra (Eq.5.23). We note that for all L beside the

trivial zero eigenvalue all eigenvalues have negative real parts, i.e. the fixed points are

stable focuses. In Figure 5.6 we show power spectra for a different number of strategies

L = 5 . . . 101. As indicated before, the number of peaks in power spectra increases with

L, as the number of complex conjugated pairs of eigenvalues is (L − 1)/2. We also note

that beside the increase in the number of resonant frequencies, their relative amplitude

decreases as L increases. Additionally, we see that small period cycles disappear when

L is increased, note specially the peak at the greatest value of ω. We see that in the high

ω regime, as L is increased the power spectra tends to ω−2 behaviour (Brownian noise

spectra). Looking at the plateau value in the low ω regime, we can see that its value

quickly increases when L is increased leading us to conjecture that in the L → ∞ and

ω → 0 P (ω) diverges. It is not clear whether in such a spectra there is more structure,

or it is fully described by ω−2. Another reason for the conjecture in the L → ∞ limit

lies in the spectral theory of compact operators. Namely, when defined in the continuous

space, the Jacobian is a compact operator and as such has discrete spectra with zero as

the accumulation point [127], leading to P (ω) divergence as ω → 0.

Chatterjee et al. [111] report cyclic behaviour for the 3-player All-Pay Auction with 21

strategies. The cycles were observed in a numerical evolutionary dynamics of the Fisher-

Wright type, but as we mentioned before and was documented elsewhere [120–123], in

the limit of large populations Moran birth-death process and the Fisher-Wright evolution
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FIGURE 5.6: Power Spectra in 3-player APA game with variable number
of strategies. The number of resonant frequencies (peaks in the power
spectra) increases with number of available strategies, but the amplitude
of some nose induced cycles decays with L, note specially amplitudes of

the peaks at the largest ω.

lead to the same Fokker-Planck equation or stochastic replicator equation, thus the power

spectra presented in Figure 5.6 in orange should describe observed cycles. Based on the

snapshots of the evolution provided in the paper, we believe that the second smallest ω

correspond to the reported cycles.

How the number of players competing in an auction influence the fixed point sta-

bility? When we analysed All-Pay Auction games with continuous strategies, we have

seen that the fixed point distribution becomes sharply peaked at S = 0 when k is in-

creased. However, it is not clear whether that distribution is more stable than the broader

distributions for smaller numbers of participants in an auction. Here we try to answer

this question in the case of fixed number of strategies.

We repeat our analysis for the L = 21 strategies Si ∈ [0, V ], looking for the fixed

points distributions and their stability and power spectra. The Jacobian analysis shows

that the mixed strategy fixed points are as before unique, stable focuses. If we analyse

only the shape of the Jacobian spectra, we would not see any major difference between

these different games. However, if we investigate whether there are noise induced cycles

and how their existence depends on the number of participants in an auction, the results
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FIGURE 5.7: Power Spectra in a k-player APA game with L = 21 dif-
ferent strategies. Here we investigate how the number and amplitude of
resonant frequencies of the noise induced cycles depend on the number
of game players. We note that with increased number of players the fixed

point becomes more stable against demographic noise.

are different. In Figure 5.7 we show power spectra for games with k = 3, 4, 5, 10, 21

participants, we note that as a number of players is increased the amplitudes of the noise-

induced cycles decrease. Already for k > 5, it is hard to argue that there are any noise-

induced cycles at all. Consequently, the greater number of participants in an auction

makes the deterministic fixed point more robust and the finite population effects such

as noise induce cycles to appear only when the number of participants in an auction is

small.

2-player APA games. As reported previously, this game is special because it does not

have an evolutionary stable strategy [59, 111]. Additionally, we have proven that when

the strategy space is continuous, the stability of unique non-trivial fixed point (the uni-

form distribution) can not be assessed by methods of linear stability, i.e. the Jacobian

does not have non-zero eigenvalues. Here we investigate whether these results change

when the game is analysed in the discrete strategy set up.

Interestingly, the fixed point distribution depends on the parity of L the total number

of available strategies. When the odd number of strategies is available, the fixed point
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distribution is uniform, i.e. the reward splitting did not affect the fixed point distribu-

tion as for the k > 2 APA games. On the contrary, when the even number of strategies

is available, there is a family of fixed point distributions (for details see Appendix H),

one of which is the uniform distribution. When we evaluate the Jacobian at the uniform

distribution, we realise it is an antisymmetric operator (J(s, s′) = −J(s′, s), also called

skew-symmetric). These operators have only imaginary eigenvalues (complex conju-

gated pairs, see for example Robert [128]). Consequently, the Jacobian has one or two

zeros (depending on parity, two zeros for L even), but all the eigenvalues have zero real

parts, and thus their stability can not be assessed by methods of linear stability. The

second zero eigenvalue when L is even corresponds to direction of changes in the distri-

bution within the family of consistent fixed point distributions as defined in Appendix H.

FIGURE 5.8: 2-player APA game with 3 available strategies. Left: Phase
portrait of the corresponding replicator equations (pink) with a single sim-
ulated trajectory (cyan); Top right: Number of agents playing the lowest
available strategy time evolution from simulation (cyan) and deterministic
fixed point expectation (pink); Bottom right: Power spectra obtain analyt-
ically (pink) and numerically (cyan) both showing existence of a resonant
frequency (at ω ≈ 0.14) as demonstarted by a single time series in the Top

right panel.

Similarly to 3-player APA game, in Figure 5.8 we show phase portrait of the replicator

equations for the 2-player APA game with 3 available strategies with a single simulated
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trajectory (details of numerical simulations in Appendix D). As expected from the lin-

ear noise analysis (e.g. eigenvalues are imaginary) we note cycles in the phase portrait

corresponding to the population’s replicator equations. Consequently, when a finite pop-

ulation evolves according to the fitnesses of this game, there is no pressure to return to

the fixed point when the random fluctuations drive the system away. This is why these

systems are always simulated with small mutation rate to maximise survival time of all

the strategy types. Furthermore, when L is even, there is an additional zero eigenvalue,

i.e. there is a direction along which the system only diffuses in the finite N regime. Even

though this case is particular and it cannot be assessed by linear analysis method, we

note that the agreement between the theoretical and simulated data is very good, and

the power spectra analysis correctly identifies the period of oscillations for the simulated

finite size system.

We realise that except for the case of 2-player APA games where the cycles always ex-

ist for the finite number of strategies, the fixed point of the k-player game is stable against

demographic noise effects as long as the number of available strategies is large. Addi-

tionally, for the small number of available discrete bidding strategies, increased number

of participants in the game offers stabilisation against the noise induced cycles.

5.3.2 All-pay auctions with 2 rewards

We now investigate if the introduction of the second reward changes the fixed point dis-

tribution and its stability in the APA game with a finite number of bidding strategies.

For these games, spectral analysis of Jacobian of the continuous game is non-trivial (this

case is made more difficult by the absence of an explicit formula for the fixed point dis-

tribution), so we rely on numerical methods in analysing the spectra of the game with

discrete strategy space. When strategies are continuous, we have seen that for k > 3

and α > 0.5 the fixed point distribution is bimodal. Especially, it is also an evolutionary

stable strategy as long as α < αc where αc is dependent on a number of players k (as

shown in Fig. 5.2 with more details in Appendix G). As the fixed point distribution of

the evolutionary dynamics exists for any α ∈ [0, 1] we want to use numerically accessible
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FIGURE 5.9: Fixed point distribution of the 5-player APA game with two
equal rewards. We compare the fixed-point distribution of a numerically
simulated system with N = 1000 players who have L = 11 bidding strate-
gies (cyan) to the theoretical prediction (pink). The insert shows a time
series of number of players bidding the highest value V and compare it

with the numerically integrated solution of the replicator equation.

discrete strategy space to analyse whether the fixed point distribution stability changes

as α is increased.

Firstly, we consider if the fixed point distributions change when the reward splitting

corrections are introduced. As we have seen in Eq. (5.19) there are two reward splitting

contributions when the highest bid is not unique, and both rewards are divided among

the highest bidders, but there’s also a possibility that only the second reward is divided.

Based on the experience with single reward game, we expect these payoff corrections to

have an effect on the monotonicity of the fixed point distribution. If these expectations

are correct, we may ask a question whether V1/V2 = α = 0.5 is still the critical reward

ratio above which the specialisation occurs and the fraction of high bidders increases.

In Figure 5.9 we show an example of a fixed point distribution for a 5-player game

with L = 11 bidding strategies and two equal rewards. We note that the fixed point

distribution is again a nonmonotonic function with a zig-zag structure. We show that

the zig-zag structure persists in the numerical simulations although they are run with

small mutation rate to ensure the existence of all strategies (we believe the combined

effect of mutations and finite population size are responsible for the difference between

theoretical prediction and simulated results for the low bidding strategies).
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FIGURE 5.10: Fraction of players bidding the highest value (s = V ) as
function of α in the 5-player APA game with two rewards. To compare
fraction of agents bidding the highest value for different L = 10, 20, 30 we
plot ψV − 1/L. Fraction of agents bidding V becomes higher than random

for α = 0.5 for all compared L.

The non-monotonicity of the fixed point distribution makes it slightly more difficult

to estimate the bimodality condition when the strategy space is discrete, but as we can

observe in Fig. 5.9 there is clearly a large fraction of agents bidding the highest value. To

address specialisation in the discrete strategy space, we investigate how the fraction of

population bidding the highest value S = V changes when α is varied between single

reward and two equal rewards extremes. In Figure 5.10 we show a fraction of agents

bidding V in the 5-player APA game. To enable comparison between systems with a dif-

ferent number of strategies L we look at a fraction of bidders relative to 1/L, the fraction

of players who would bid S = V had they make the choice at random. We note that

games with tree different sizes of strategy space all show increase in high bidders com-

pared to the uniform distribution as α > 0.5. The observation that this increase in high

bidders is independent of L, i.e. all different L curves intersect at α = 0.5 suggests that it

is also the bimodality condition for finite strategy space.

What about the fixed point’s stability, especially when the specialisation within the

population occurs? To answer this question we derive Jacobian matrix evaluated at the

fixed point and as before analyse its spectra. As for the APA games with the single re-

ward, the fixed point distribution we have discussed is a stable focus. For some values

of α close to 1, the Jacobian’s spectra have a second zero eigenvalue, but this is due to

the absence of players playing second highest strategy in the fixed point strategy (see e.g.
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FIGURE 5.11: Effect of α on the power spectra in the 4-player 2 rewards
APA game with L = 20 strategies. Critical α above which there is no
evolutionary stable strategy for this set of parameters is α = 0.6, we note

increase in the amplitude of noise-induced cycles gradually across α.

Fig 5.9). Having not observed difference in stability of the fixed point as a function of α by

mere analysis of Jacobian eigenvalues, we investigate whether the effects of demographic

noise are somehow correlated with α and other system’s parameters.

In Figure 5.11 we show power spectra corresponding to the fraction of highest bid-

ding agents for different values of reward ratios α. We note that mildly pronounced peak

that exists even for α < 0.5 becomes a global maximum for large values of α. Especially

we note that the higher the α, the greater the amplitude of the noise-induced cycles. This

trend does not continue for α = 1 where the peak height is close to the one for α = 0.8, but

we omit plotting it for clarity of the range presented. We show analysis of the oscillations

in the fraction of agents bidding the highest value V because the effects of demographic

noise seem to be the most pronounced on this strategy, but we see the same effects of α

increased even if we look at the trace of the power spectra we have analysed in the single

reward game. It is interesting that we do not note a different behaviour as a function of

αc (above which the ESS does not exist, for the 4-players game shown in Figure 5.11 it is

αc = 0.6), rather the effect of demographic noise becomes stronger with α gradually.

Finally as when analysing the single reward APA game, we investigate how the num-

ber of available strategies L and a number of players participating in the game k affect the
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FIGURE 5.12: Power spectra of APA game with 2 equal rewards. Left:
4-player game with variable number of strategies in the s ∈ [0, V ] domain;
Right: Various k-player games with L = 20 available strategies. Both pan-
els show power spectra of the fluctuations of the highest bidding strategy

SL as the effect on those strategies is the strongest.

fixed point’s stability. To our surprise, two reward game is again substantially different

from its single reward counterpart.

In Figure 5.12 we show power spectra analysis of the APA game with two equal re-

wards (α = 1) with a varied number of available strategies (left in a 4-player game) and

a varied number of players (right, while the number of available strategies is L = 20).

As we can observe the strategy space refinement increases the amplitude of the noise-

induced oscillation while the frequency stays unchanged. Similarly, increased number

of game participants promotes cycles. We see that as k is increased the peak becomes

global maxima (when k > 4) and its amplitude keeps increasing. There is also a shift in

the resonant frequency, i.e. the cycles’ period increases. We realise that introducing the

second reward in the APA game adds more instability. The fixed point distribution be-

comes more interesting as the specialisation in the population occurs, but the population

also becomes more sensitive to demographic noise. Even more intriguing is the fact that

a large number of available strategies L and increased number of game participants k

that stabilised the fixed point in the single reward case (decreasing the amplitude of the

noise-induced cycles) have an opposite effect when the second reward is introduced.
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5.3.3 Second price all-pay auctions

Finally, we look how the SAPA game dynamics is changed when the strategies are dis-

crete. Due to extensive study of the generalised War of Attrition game, the existence of

evolutionarily stable strategy has been proven for all k in both continuous and discrete

strategy space (see e.g. [109–111]). Specially, Bishop and Cannings [109] note that when

the strategy space is constrained from above it is important if the maximum bid is at-

tainable, i.e. if strategy domain is s ∈ [0, A) there is no evolutionary stable strategy (both

when bids are continuous or discrete). We here briefly show that our simulated dynamics

converges well to the theoretical predictions even for relatively small populations and a

small number of strategies (N = 1000, L = 21). In Figure 5.13 we show the fixed point of

the dynamics (corresponding to the evolutionary stable strategy previously found) ob-

tained in the simulated population evolution and numerical integration of the replicator

equations. Contrary to the APA game, we note no (or very small) deviations from the

distribution monotonicity and in general the fixed point distributions of the SAPA game

are well described by the discretized fixed points of the continuous game fixed point.

FIGURE 5.13: 3-player SAPA auction with discrete strategies from the
[0, 5V ] domain. Fixed point distribution of the 3 player SAPA game as
predicted by the replicator equations in the discrete strategy space with
L = 21 and as obtained by numerically simulated evolution of 1000 agents.
The insert shows power spectra for different number of available strategies

for the same 3-player SAPA game on [0, 5V ] domain.
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Beside the number of bidding strategy, the question of strategy cut off is an important

one in modelling SAPA game. As proven by Bishop and Cannings [109] and extended in

Appendix I, when the domain is bounded, there is always a delta peak at the maximum

available bid, but also there is a gap in the strategy distribution, i.e. some fraction of high

bidding strategies just below the maximum one are always less favourable than bidding

the highest one, so they are not played in the evolutionary stable state. We address the

question of a gap in the strategy space in Appendix I for the continuous strategy space,

but the rationale for its existence is valid here as well, and it is confirmed by our numer-

ical investigation. Analysing the spectra of Jacobian, we realise that all the eigenvalues

have non-postitive real parts with an increasing number of zeros when the strategy space

is refined. Refinement of strategy space leads to more discrete strategies being offered

from the region of strategies that are not in the support of the fixed point. Thus the fre-

quency of agents playing them is 0 at the fixed point, consequently, more eigenvalues

are zero. These 0 eigenvalues thus do not tell us anything new about the dynamics of

the system. However, simulating the system with large cut-off values means that even if

the strategy space was unbounded probability of playing strategies from the gap range

would be very small (due to fast exponential decay of the fixed point distribution), thus

the difference between the unbounded and the bounded strategy domain fixed point be-

comes small.

Knowing that the fixed point distribution is a stable focus, we once more look for the

effects of demographic noise. In the insert of Figure 5.13 we show the power spectra for

various number of strategies L keeping the cut off fixed. We do not note pronounced

peaks in the spectra, and similar as for the APA games we note that the plateau level in

the small ω regime increases. Although as discussed the different cut off might induce a

slightly different fixed point distribution, i.e. with a more pronounced peak at the highest

bidding value, the power spectra do not show more structure in those cases either. Thus

we can conclude that the SAPA games are more resistant to the effects of finite population

size.
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5.4 Summary

In this chapter, we derived a macroscopic, replicator equation starting from an associated

birth-death process in a population of agents who interact via games with continuous

strategy spaces. The method has been known for games with discrete strategy space, and

it is now extended to include an understanding of evolutionary dynamics of phenotypic

and other continuous features. We applied the method to evolutionary auction games,

and we note that the fixed points of the introduced dynamics are the previously reported

evolutionary stable strategies (when such exist).

Particularly interesting is the all-pay auction game when more than one reward is of-

fered in the competition, as in that case, we note that the population specialise. We realise

that whenever the second reward is at least a half of the first reward value, and the num-

ber of participants in an auction is greater than three, the evolutionary dynamics leads to

a bimodal fixed point distribution. Some agents specialise in bidding low (as in the single

reward case), but a fraction of agents also bids high values. The portion of high bidders

increases with α, but as it might be expected decreases with k (as the game effectively

becomes more similar to the single reward game). As opposed to the segregated state we

have studied in the context of double auctions and where we noted that different popu-

lation subgroups earn a different average score, the evolutionary dynamics leads to the

fixed point such that both subgroups have zero fitness on average. However, it is inter-

esting to note that a population needs to specialise into low bidders and high bidders to

make equal fitness possible. We also prove that not all bimodal fixed point distributions

are evolutionary stable strategies – they are evolutionary stable strategy only when the

reward ratio is lower than some k-dependent threshold, i.e. α = V2/V1 < αc(k).

With the evolutionary dynamics, not only did we identify one microscopic mecha-

nism that leads to the previously found evolutionary stable strategies, but now we can

also study the stability of the already determined fixed points. As stability assessment

is not trivial in the continuous strategy space, instead of discretising distributions and

operators obtained for continuous strategy space, we suggest a more cautious route – to

reintroduce the problem in the discrete strategy space and analyse how the properties

change when the strategy space is refined. We realise that fixed point distributions are
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stable focuses, independent on evolutionary stability, except for the 2-player APA game.

This game was known not to have an evolutionary stable strategy, while now we showed

that it does not have eigenvalues with non-zero real part. Besides the stability of the fixed

point in the replicator limit (the infinite population size) we also assessed finite system

size corrections and investigated possibility of the noise induced cycles. We realise that

those are properties of the all-pay auctions (APA) games whereas the second-price all-

pay auctions show remarkable stability despite the system size. We note that the cycles

induced by the demographic noise decay in intensity when either the number of partic-

ipants or number of available strategies is increased, in the single reward game. While

when the two rewards are offered the cycles, especially in the number of risk-taking play-

ers are even more pronounced with increased L or k. We also realise that the cycles are

not related to the loss of evolutionary stability (e.g. there’s no difference in cyclic be-

haviour before and after αc), but rather they seem to be linked with the bimodality (e.g.

their effects become more pronounced when α > 0.5).
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Chapter 6

Concluding Remarks

6.1 Summary of results

This thesis addresses the question of the possible emergence of spontaneous segregation

in a population of adaptive agents. The introduction contains an overview of empiri-

cally and numerically observed segregation-like phenomena in the socio-economic and

ecological context that motivated the research. Being always a composition of various

aspects and intricate agents and interactions, examining and studying directly these re-

alistic models is not straightforward and not always informative. That is why, to test the

hypothesis that the segregation can emerge spontaneously, a stylised model of a popula-

tion of adaptive agents who choose between two double auction markets is devised. The

model, together with reproduced segregation effects is presented in Chapter 2. When the

two markets are fair, e.g. equilibrium price-setting markets, the emergence of four dis-

tinctive groups (agents specialised in buying and selling at different markets) is noted.

Specialisation into buyers and sellers is justifiable as that way maximisation of trading

opportunities is achieved. However, segregation between the markets can be explained

entropically - synchronisation at the same market will lead everyone to the same return,

but the number of different states where the population is divided among the markets

is much greater making the segregated state more probable. More intriguing and over-

all more analysed in this thesis is the case of symmetrically biased markets, where we

realise that the segregation is a collective effort to maximise the number of trades and re-

turns. The population specialise into return-driven and volume-driven agents, who stay

in a role for extended periods of time and in this way everyone achieves higher returns
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compared to alternative states. We realise that the segregation is signalled by time scale

separation – short decorrelation time within a single loyalty group (described by agent’s

memory length) and a long time until the full decorrelation, i.e. changing the loyalty

group. The modelled population was also described analytically, and the remarkable

level of agreement between theory and simulation motivated further theoretical research

into causes and benefits of segregation.

We have identified the reinforcement learning as the key driver of segregation. In par-

ticular, for all system parameters, we find finite values of the intensity of choice β above

which the segregation occurs. Having in mind that one way to interpret β is a scale of

possible returns (e.g. keeping β fixed we can achieve the same effect by increasing the

average of return distribution) suggests that one possible way to suppress or promote

segregation can be achieved by regulating returns per transaction, e.g. not allowing or-

ders higher than some value. Agent’s memory is another control parameter as depending

on its value, above the segregation threshold we distinguish between strongly segregated

states – market coexistence, and weakly segregated states – single market dominance.

In Chapter 3 the analytical description of the model is continued in the large mem-

ory limit. The small systems with two and four agents are analysed, as in their long-run

adaptation we can also identify synchronisation and segregation. Agents’ preferences for

buying are noted as a major system parameter that distinguishes between different types

of steady states above the threshold intensity of choice. With this realisation, we returned

to the large systems and in the space of intensities of choice and buy/sell preferences we

identified a variety of steady states for a population consisting of two subpopulations.

Finally, we returned to numerical simulations to test the stability of different segregated

states and concluded that populations with large memory limit prefer weakly segregated

states, in the long run, i.e. one market acquire the majority of shares. Intriguingly, it is

the agents’ learning parameters that determine the possibility of market coexistence vs.

market monopoly, but the larger the system is, the longer the lifetime of the strongly seg-

regated state (a.k.a market coexistence) – even though single market dominance would

be preferred, the time necessary to reach monopoly might not be reachable.

To test the robustness of the findings presented in Chapters 2 and 3, in Chapter 4 we
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discuss how the simplifying assumptions we have initially taken can be relaxed. We first

address possible extensions to the reinforcement learning, the key driver of segregation.

We realise that for an extended range of learning rules the segregation phenomena per-

sists. In a single exception, when an agent does not forget scores of unplayed actions, or

effectively update his/her attractions by the past attraction (which is an average score in

the last 1/r periods), the segregation cease to exist. We investigate this state more care-

fully and conclude that for a broad range of intensities of choice the strongly segregated

state still ensures higher returns for a single agent and the population overall.

Further, we introduce more than two markets in the system and observe that full seg-

regation, e.g. when all subpopulations develop loyalty groups for all the markets, is not

typical for systems with more markets. Instead, many systems are such that only a subset

of markets persists in the competition, or not all agent types visit all the markets. Finally,

we show that the segregation persists even when more realistic features are implemented

– budget constraints, fundamentalist trading strategies, continuous double auctions with

open limit order books. This strengthens our observation that the segregation is a conse-

quence of agent’s adaptation rather than simplified rules and markets we have initially

used.

In the end, we have considered a different type of auctions (single sided evolutionary

auctions) and agents (adaptation not based on learning but the natural selection). When

agents compete in an evolutionary auction with multiple rewards, an effect similar to

segregation occurs – some agents specialise into bidding low, while others are bidding

high, ensuring this way that the average fitness in the population is equal. We build

on existing works by developing macroscopic dynamics of the replicator type starting

from a microscopic birth-death process. With the evolutionary dynamics, we reproduce

previously obtained evolutionary stable strategies but also investigate stochastic effects

present in the finite populations, especially occurrence of cycles. We note that the Second

price all-pay auctions (SAPA) offers more stability, i.e. the fixed points of the dynamics

(that are also evolutionary stable strategies) are stable focuses and robust under the finite

size stochasticity. On the contrary, in populations interacting via All-pay auctions (APA),

we note noise-induced cycles, both in single and multiple reward case.
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6.2 Future work

The research presented in this thesis was initiated by an observation of segregation phe-

nomena in real (e.g. market segmentation reported in [38, 41]) and in silico (CAT [33–35])

financial systems. Upon construction of a minimal model to reproduce the phenomena

under controlled conditions of numerical simulations, we identified an agent’s reinforce-

ment learning as the key driver of segregation. Although the reinforcement rule we have

used is fairly generic – it has been used in other studies, confirmed empirically and ex-

perimentally tested [28, 29, 46, 77, 78, 95] – the existing body of work does not offer

clear demarcation between different existing update mechanisms, nor about learning pa-

rameter variability across games and within a population. As this question is ultimately

answered by empirical and experimental studies, we would like to encourage more re-

search into this field. The work of Cheung et al. [129] draws on evidence from Behavioural

Game Theory and suggests that values of β are consistent across games but increase in

more informative environments. The authors argue that a parameter closely analogous

to r also increases with the trustworthiness of information in the system. Bearing in mind

the results shown in Fig. 2.13, where for large r and large β the only steady state is the

segregated one, this suggests that more informative environments, or ones where infor-

mation is more trustworthy because e.g. of stability over long timescales, might naturally

lead to segregated states. It would be exciting to study this effect explicitly in a suitably

extended model, or possibly in experiments with market games.

Another direction worth investigating would be a persistence of segregation in sys-

tems where agents are allowed to abstain from a trade. Related to the Minority Game,

an extension with agents who can choose to be inactive - the grand canonical game - was

also studied and the phase transitions in the game persist. It is precisely the introduction

of speculators (agents who can decide whether to participate in the game – they play only

if will lead to higher return than some threshold ǫ) that enabled investigation of market

stylised facts in the game [25, 130]. Critical parameters in such a setup were a fraction of

producers - agents who can’t abstain from the game, but also the threshold gain ǫ. It is not

entirely clear how such an extension might change segregation. The threshold ǫ should

be treated as a permanent attraction to abstain, and if it is small enough compared to the
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possible returns in any of the markets its effect should not be felt. However, when the

state is segregated while changing, the loyalty agent’s attractions usually pass through

a vicinity of the zero attraction state. Thus, even if ǫ is small for high enough intensity

of choice, there would be a chance for long inactive periods. Especially, this might be

expected if the forgetting was imposed on attractions while an agent is inactive.

There is clearly also scope for capturing more complex trading strategies in models

like ours, something we have postponed as we were motivated by the simplicity of high-

frequency trading algorithms and more broadly by the aim to develop a baseline model

on which further extensions could be built. Our initial steps in this direction, presented in

Chapter 4, show that the results are robust against the introduction of more sophisticated

trading strategies, e.g. fundamentalists with different information levels. In Section 4.3,

we have used the Toth model due to its simplicity yet numerical and experimental stud-

ies, but we did not expect that its original phenomenology – the “J curve” in the wealth

against information level data - will persist across the two markets. Naively, one might

expect that the segregation is correlated with the traders’ level of information. As re-

marked in Section 4.3, the absence of such correlation is due to the fact that each agent

chooses among markets based only on his/her score and the notion of earning less than

the market is not known to them. This leaves an interesting question for further studies

– will the “J curve” persist if agents base their market choices on the information about

their wealth related to the other players. More broadly, it is an interesting question how

the observed phenomenon depends on the properties of the dividend process.

Further directions for investigation might include agents with heterogeneous learn-

ing parameters, a feature that will clearly be present in markets that are used both by

individual investors and e.g. large funds. An initial step toward these investigations was

taken in the following study [88] where it was shown that even if agents have different

forgetting rates, the segregation persists.

We could also consider adaptive markets, after all as in the original CAT games; in

reality, market specialists aim to increase market share and profit. It is not entirely clear if

the competition between the markets would suppress or promote segregation. When dis-

cussing systems with multiple markets, we addressed a question of market competition
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in a very general way as the segregated state corresponds to market coexistence, while

weakly segregated and unsegregated but synchronised states correspond to a single mar-

ket dominance. In the analysed system markets do not have the intention to compete, but

we have realised that even unwillingly some steady states correspond to the more bal-

anced market share division. In this domain it would be especially interesting to build

upon the findings of Shi et al. [36] that with a slightly different trading strategies1 and

using the evolutionary dynamics shows that the monopoly always emerges (e.g. one

market wins) if the market fee charging strategies are the same type2. Based on our re-

sults it is possible to argue that the market fee-charging strategy of the profit type (e.g.

market charges agents only if they manage to trade requiring a fraction of their earn-

ing) would still allow for the existence of the segregated steady state, as that would only

affect the return distribution. Interestingly, the coexistence of markets with same profit

charging strategies was not observed in studies by Shi et al. [36], while our results leave

that possibility as long as agent’s learning parameters are in the domain where only a

single strongly segregated steady state exist. We might argue that the profit charging

strategy will only affect the return distribution, not necessarily existence of segregation

(as we note in previous chapters, the only requirement on the return distributions is a

finite mean and variance), but it is not clear how the market strategies would adapt in

such a system and whether that adaptation could affect otherwise possible segregation.

On the other hand, if there is a fixed participation fee, it might lead to negative scores for

agents when they do not manage to trade, and consequently, this could affect the segre-

gated phenomena. This is because there would be a clear difference between not trying to

trade and not succeeding to trade. In this case, the possibility of abstaining would make

more sense and could result in a fraction of inactive traders.

As we have only scratched the surface of the segregation related phenomena in an

ecological context, we envision a few directions for possible investigations and extensions

1The authors [36] use ray bidding strategies – buyers/sellers have a private value and a parameter so that
they can bid truthfully or “shade” their private value, meaning that agents bid a fraction of their private
value, or ask for a multiple of their private value.

2Authors report market coexistence only in the case when one market charges profit fee while the other
charges fixed participation fee [36].
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of our results. The most general question we seek to address is related to the generaliza-

tion of the results we have observed. Namely, under the specific buyer-seller interaction

via market, we have seen that populations of buyers and sellers specialise and develop

preferences for one of the two markets. The interaction we have studied is a relevant

one in the context of the financial exchange. However, it is not clear how much of these

observations are general and extend beyond the financial model. Suppose a member of

a group needs to decide about one of the possible resources (s)he can utilise. Further,

we assume the agent’s fitness when exploiting a resource is a function of the total num-

ber of other users who try to utilise the same resource. The question we are interested

in answering is related to the generic fitness function that leads to segregation within a

population. This relates back to the positive and negative size effects, e.g. it is unclear

whether segregation requires the fitness function to be such that an agent receives higher

fitness when more agents are already there (e.g. a resource that requires collaborative

effort for exploitation), or such that an agent receives higher fitness if (s)he is in minority

(e.g. a scarce resource), or as in the double auctions, agent prefers high number of agents

of different type, but small number of agents of his type (e.g. plant-pollinator interaction,

where the pollinator’s fitness increases with number of available plants, but decreases

with number of pollinators in competition).

Our initial efforts to answer these questions start again simple. We consider two pop-

ulations choosing between two available resources. First, we inspect the fitness functions

of a very general type, based on the logistic growth [131]:

f (g)m = r(g)m (1− Nm

Km
) ,

i.e. an individual has a population dependent and resource dependent fitness – r
(g)
m , but

the fraction of it (s)he will be able to obtain will depend on the total number of other

agents trying to exploit the same resource Nm and the carrying capacity of that resource

Km. Interestingly, even this very simple fitness function where r and K are taken to be

the same across populations and resources lead to specialisation if we still model agent’s

adaptation by reinforcement learning, i.e. attraction to the resource is updated by these
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returns. However, in this context, it is probably more meaningful to abandon the rein-

forcement learning and consider natural selection, e.g. adaptation described by evolu-

tionary dynamics and investigate how that might affect the possibility of segregation.

Finally, the evolutionary auctions, we introduced in Chapter 5, are anticipated as a

model of interactions between animals. Particularly, some of the example interactions

include competitions of males for a reward – a female. In that context, it is not enough

to consider a contest between males whose bidding strategies (e.g. ornament traits) are

adapting via natural selection, but assuming that the reward values are not changing.

This raises a question – can we model an All-pay biological auction where the reward

values are adaptive as well. The initial idea is to consider a simple reward updating

mechanism based on their actualisation, e.g. if the purpose of the high reward trait is to

select the highest bidding individuals, but it regularly selects one that bids far below the

reward value, then it is not necessary for the reward to be as high (e.g. reward fitness

is V − max bid). We conceive a study with a pool of rewards whose values are updated

between the generations at the same time when the bidding strategies are updated. For

example in the setting of the Fisher-Wright type with discrete generations, we noted that

previous authors [55, 111] studied N agents participating in N evolutionary auctions

during a single generation. We find it curious to think if the fixed point distribution of

bidding strategies might change if along withN bidding agents there are alsoN adaptive

rewards. It is not entirely clear if the distribution of rewards, in the long run, aligns

with the distribution of bids and that is something we believe worth investigating, even

more so in the multiple reward case when the distribution of bids is bimodal. More

sensible way to address reward adaptation is to consider a population of females next to

the population of males but to construct a minimal model of sexual reproduction using

which we can consider how the reward and bid traits evolve in a population. One goal

of such a model would be to investigate the emergence of assortative mating (pattern

in mating that deviates from random mating, usually denoting a preference for mating

between individuals with similar traits, see e.g. [132]).

With suggestions to extend our results in the direction of ecological systems, by no

means, we wish to simply relabel results applicable in one field and claim their relevance
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in another. We do not intend to make a dubious ecological assumption for the sake of

convenient mathematical exercise. However, we recognise that even the main results in

this thesis are obtained with minimal assumptions to allow more generality and ana-

lytical tractability, but hoping that some of the insights will be valid in the vast field of

their intended application. Still aiming to validate the results against more specific mar-

ket/trader mechanisms and finally experimentally test, the first simplified mathematical

model was a necessity. In a similar vein, our simplifying assumptions in the ecological

modelling, being general enough but still offering insights in a fascinating segregation-

like phenomenon, prompted us to think that with a sensible ecological adjusting they

might be relevant in the wider community.



184

Appendix A

Details of the Fokker-Planck

description

In this appendix we provide explicit functions necessary for the Fokker-Planck descrip-

tion of models discussed in Chapter 2. As previously explained, the return distributions

for the choice of market m and a trading action B or S are:

P (S|m,B) = QBmTBm
1

QBmσb
√
2π

exp

(

−(S − πm)2

2σ2b

)

θ(S) + δ(S)(1−QBmTBm),

P (S|m,S) = QSmTSm
︸ ︷︷ ︸

agent trades

1

QSmσa
√
2π

exp

(

−(S − πm)2

2σ2a

)

θ(S)

︸ ︷︷ ︸

non-negative return

+δ(S) (1−QSmTSm)
︸ ︷︷ ︸

agent does not trade

.

These functions describe the returns for all the analytical models we use. With the only

difference that when agents have fixed buy sell preferences, their return is only market

dependent, so:

P (S|m) = pBP (S|m,B) + (1− pB)P (S|m,S).

We first derive explicit formulas for the market related functions Qγ - probability of a

valid order, and the moment of the return distributions (the truncated Gaussian part, the

return of a validated order with existing pair for trade). The probabilities that an order is
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valid, Qγ , are calculated from:

QBm =
1

σb
√
2π

∫ ∞

πm

db exp

(

−(b− µb)2
2σ2b

)

,

QSm =
1

σa
√
2π

∫ πm

−∞
da exp

(

−(a− µa)2
2σ2a

)

.

The two integrals are related to the error function, so the order validity can be stated in

the following form:

QBm =
1

2

(

1 + erf
(µb − πm

σb
√
2

))

=
1

2

(

1 + erf
((µb − µa)(1− θm)

σb
√
2

))

,

QSm =
1

2

(

1 + erf
(πm − µa

σa
√
2

))

=
1

2

(

1 + erf
((µb − µa)θm

σa
√
2

))

.

where in the second equalities we used the fact that in the N →∞ limit trading price can

be expressed in terms of input means of bids and asks πm = µa + θm(µb − µa). Usually,

we have used σa = σb = σ and µb − µa = σ so that the previous expressions are only

functions of the market biases θm. For the drift and diffusion term 〈ST m〉 and 〈S2
T m〉 are

also needed, thus we calculate them below:

〈SBm〉 =
1

σb
√
2π

∫ ∞

0
dSS exp

(

−(S − (µb − πm))2

2σ2b

)

=
σb√
2π

exp

(

−(µb − πm)2

2σ2b

)

+
µb − πm

2

(

1 + erf
(µb − πm

σb
√
2

))

,

〈SSm〉 =
1

σa
√
2π

∫ ∞

0
dSS exp

(

−(S − (πm − µa))2
2σ2a

)

=
σa√
2π

exp

(

−(πm − µa)2
2σ2a

)

+
πm − µa

2

(

1 + erf
(πm − µa

σa
√
2

))

.

These can again be further simplified when the expression for πm in the N → ∞ limit is

introduced and our typical values for variance and means of bids and asks are used, but

we leave the expressions in the most general form. The second moments of the returns
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〈S2
T m〉 are:

〈S2
Bm〉 =

1

σb
√
2π

∫ ∞

0
dSS2 exp

(

−(S − (µb − πm))2

2σ2b

)

=
σb(µb − πm)√

2π
exp

(

−(µb − πm)2

2σ2b

)

+
(µb − πm)2 + σ2b

2

(

1 + erf
(µb − πm

σb
√
2

))

,

〈S2
Sm〉 =

1

σa
√
2π

∫ ∞

0
dSS2 exp

(

−(S − (πm − µa))2
2σ2a

)

=
σa(πm − µa)√

2π
exp

(

−(πm − µa)2
2σ2a

)

+
(πm − µa)2 + σ2a

2

(

1 + erf
(πm − µa

σa
√
2

))

.

We proceed with calculation of the drift and the diffusion terms for different models

previously introduced. The l-th jump moment is:

Mℓ(A) =
1

rℓ

∫

dA′(A′ −A)ℓK(A′|A).

As the kernel is model dependent, what follows is grouped in subsections devoted to

different models we have used in the thesis.

Adaptive agents

As introduced in Chapter 2 the transition kernel for the fully adaptive model is:

K(A′|A) =

∫

dS
∑

γ

P (S|γ)P (γ|A)δ(A′ − eγrS − (1− r)A). (A.1)

Accordingly the drift term is:

M1(A) =
1

r

∫

dA′(A′ −A)K(A′|A)

=

∫

dS
∑

γ

(Seγ −A)P (S|γ)P (γ|A)

=
∑

γ

Tγ〈Sγ〉eγP (γ|A)−A ,
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while the β component of the diffusion term is:

M2β(A) =

∫

dS
∑

γ

(Sδγβ −Aβ)
2P (S|γ)P (γ|A)

=

∫

dS
∑

γ

(S2δγβ − 2SAβδγβ +A2
β)P (S|γ)P (γ|A)

=
∑

γ

(Tγ〈S2
γ〉δγβ − 2Tγ〈Sγ〉δγβAβ +A2

β)P (γ|A),

M2(A) =
∑

γ

Tγ(〈S2
γ〉 − 2〈Sγ〉Aγ)eγP (γ|A) +A

2.

For the reinforcement learning rule we have introduced in Chapter 4, the delta function

term in the kernel changes into δ(A′ − eγr(S + (α − 1)Aγ) − (1 − αr)A) (to enforce the

new update rule), and accordingly new jump moments are:

M1(A) =

∫

dS
∑

γ

((S − (1− α)Aγ)eγ − αA)P (S|γ)P (γ|A)

=
∑

γ

(Tγ〈Sγ〉eγ − (1− α)A)P (γ|A)− αA.

Agents with fixed preferences for buying pB

In the Chapter 2 we have also introduced the population of agents with fixed buy-sell

preference whose only choice is market. When all unplayed actions are forgotten with

the same rate r and agents choose between two markets, we realized that we need a single

parameter per agent - difference between attractions to different markets ∆ = A1 − A2.

The transition kernel between two states ∆ and ∆′ of an agent with a preference for

buying pB is:

K(∆′|∆, pB) =
∫

dS

1∑

m=−1

[P (S|B,m)pB + P (S|S,m)(1− pB)]P (m|∆)δ(∆′ −mrS − (1− r)∆).

(A.2)
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Corresponding drift term is calculated as follows:

M1(∆, pB) =
1

r

∫

d∆′(∆′ −∆)K(∆′|∆, pB)

=

∫

dS

1∑

m=−1

(mS −∆) [pBP (S|m,B) + (1− pB)P (S|m,S)] pm(∆)

=
1∑

m=−1

m [pBTBm〈SBm〉+ (1− pB)TSm〈SSm〉]σβ (m∆)−∆.

Similarly, the diffusion term is:

M2(∆, pB) =
1

r2

∫

d∆′(∆′ −∆)2K(∆′|∆, pB)

=

∫

dS
1∑

m=−1

(mS −∆)2 [pBP (S|m,B) + (1− pB)P (S|m,S)] pm(∆)

=

∫

dS

1∑

m=−1

(m2S2 − 2mS∆+∆2) [pBP (S|m,B) + (1− pB)P (S|m,S)] pm(∆)

=

1∑

m=−1

{
[

pBTBm(〈S2
Bm〉 − 2m∆〈SBm〉)

+ (1− pB)TSm(〈S2
Sm〉 − 2m∆〈SSm〉)

]

σβ (m∆)

}

+∆2.
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Appendix B

Binder cumulant

In this Appendix we provide details on the Binder cumulant. Namely, we mentioned the

threshold values B = 0 (Gaussian distribution) and B = 2/3 (equal weighted sum of two

delta peaks), while below we derive the Binder cumulant for the generic weighted sum

of two delta peaks that appears more frequently in the r → 0 limit.

As defined previously, the Binder cumulant is:

B = 1−
〈(x− 〈x〉)4〉P (x)

3〈(x− 〈x〉)2〉2P (x)

.

Let’s denote the two peaked distribution in the following way:

P (x) = ωδ(x− x1) + (1− ω)δ(x− x2).

The mean of the distribution is:

〈x〉 = ωx1 + (1− ω)x2.

The n-th central moment is:

〈(x− 〈x〉)n〉P (x) =

=

∫

dx(ω(x− x1) + (1− ω)(x− x2))nP (x)

=

∫

dx
n∑

k=0

(
n

k

)

(ω(x− x1))k ((1− ω)(x− x2))n−k P (ω)

= ω(1− ω)n(x1 − x2)n + (1− ω)ωn(x2 − x1)n.
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All other terms in the binomial expansions given that they have a term (x − x1)(x − x2)

lead to zero when averaged with P (x). Especially, the second central moment is:

〈(x− 〈x〉)2〉P (x) = ω(1− ω)2(x1 − x2)2 + (1− ω)ω2(x2 − x1)2

= ω(1− ω)(x1 − x2)2,

while the fourth is:

〈(x− 〈x〉)4〉P (x) = ω(1− ω)4(x1 − x2)4 + (1− ω)ω4(x2 − x1)4

= ω(1− ω)
(
ω3 + (1− ω)3

)
(x1 − x2)4.

Consequently, the Binder cumulant is:

B = 1− 1− 3ω + 3ω2

3ω(1− ω) = 2− 1

3ω(1− ω) ,

that leads to B = 2/3 for ω = 1/2 as stated before. In Figure 2.8 we show Binder cumu-

lants for the strongly segregated states for different β where ω is not half where we have

used previously derived formula.

Similarly, below we calculate the central moments of Gaussian distribution and its

associated Binder cumulant. The n-th central moment is:

〈(x− µ)n〉 = 1√
2πσ2

∫ ∞

−∞
dx(x− µ)n exp

(

−(x− µ)2
2σ2

)

=
1√
2π
σn
∫ ∞

−∞
duun exp

(

−u
2

2

)

.



Appendix B. Binder cumulant 191

For n odd the moment 〈(x−µ)n〉 is zero as the odd function is integrated on the symmetric

domain. Accordingly, even moments are:

〈(x− µ)n〉 =

=
2√
2π
σn
∫ ∞

0
dt

1√
2t
(
√
2t)n exp (−t)

=
σn2n/2√

π

∫ ∞

0
dttn/2−1/2 exp(−t)

=
σn2n/2√

π
Γ

(
n+ 1

2

)

.

Especially, the second moment:

〈(x− µ)2〉 = 2σ2√
π

√
π

2
= σ2,

where we used properties of Gamma funtion Γ(n + 1) = nΓ(n) and Γ(1/2) =
√
π. Simi-

larly the fourth central moment is:

〈(x− µ)2〉 = 4σ4√
π

3
√
π

4
= 3σ4,

Finally, the Binder cumulant of the Gaussian distribution is:

B = 1− 3σ4

3(σ2)2
= 0.
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Appendix C

Envy-free Nash Equilibrium

Many interactions between agents can be formulated in terms of games. A game in a

broad sense is defined by a list of actions that can be taken by players and scores assigned

to all combinations of actions. In this setup agent’s strategy is a prescription describing

how actions are to be taken, e.g. a probability vector assigning probability with which

any of the action is taken. When an interaction is defined in this way, Nash equilibrium

can be defined as a set of strategies played by each player such that no player can increase

his/her score by unilaterally changing his/her strategy.

Populations with a large number of agents with complicated interactions, could in

principle have many Nash equilibria. For example, in the choice of market interaction

we described, when all agents synchronise at a single market, there is no incentive for an

individual player to change his/her preference, thus that state represents a Nash equilib-

rium. In the thesis, we focus on another type of Nash equilibrium, the one at which ev-

eryone earns the same (as opposed to synchronization at a single market where if markets

are biased and subpopulations have buy/sell roles there would be score discrepancy) -

envy-free Nash equilibrium. For example in a simple game Battle of sexes, where a female

and a male player have only two actions - to go to a ballet or a football match (where the

female prefers ballet, while the male prefers football, but both prefer to be together), there

are three Nash equilibria. Two of them are envious - going to the ballet or the match are

Nash equilibria as being at that state none of the players would benefit by going to the

different choice alone, but at the venue one of the players is always happier. However,

there is also a third Nash equilibrium, the mixed strategy where players decide between

the ballet and the match randomly so, in the long run, they are both equally happy. The
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similar state we can define for the two subpopulations choosing between two markets

– if on average all choices lead to same return no one has the incentive to deviate, and

everyone earns the same.

The goal is to search if there is such a division between markets in two subpopulations

that would lead to equal payoff at both markets. We denote with:

f
(1)
1 - fraction of agents with p

(1)
B who trade at market 1,

f
(2)
1 - fraction of agents with p

(2)
B who trade at market 1.

Average numbers of valid bids/asks (T ∈ {B,S}) at market m is therefore:

NT m = QT m(p
(1)
T f (1)m + p

(2)
T f (2)m ).

While the trading probabilities are calculated as usually:

TBm = min

(

1,
NSm

NBm

)

, TSm = min

(

1,
NBm

NSm

)

.

Following previous definition, it is clear that at least one of the trading probabilities at

market m needs to be equal to 1. The condition of an envy-free Nash equilibrium is the

following:

S
(i)
1 = S

(i)
2 ,

p
(i)
B TB1〈SB1〉+ (1− p(i)B )TS1〈SS1〉 = p

(i)
B TB2〈SB2〉+ (1− p(i)B )TS2〈SS2〉, (C.1)

i.e. an agent with preference for buying p
(i)
B does not perceive the difference between

trading at market 1 or 2. If there is such a pair of f
(1)
1 , f

(2)
1 to provide that the equality

C.1 holds, than that is indeed a Nash Equilibrium because an agent does not benefit from

unilaterally changing his strategy profile. This equilibrium is an envy-free one, as both

groups are equally satisfied. For more details on the Nash equilibrium for this game and

its link to our dynamical model see Nicole et al. [88]. For the Nash equilibrium lines we

have ploted in the thesis earlier we also proved as stated below that the average return

value is not pB dependent as long as the system is symmetric. We do so by rewritting the



Appendix C. Envy-free Nash Equilibrium 194

condition C.1 in the following form:

p
(1)
B (TB1〈SB1〉 − TB2〈SB2〉) + (1− p(1)B )(TS1〈SS1〉 − TS2〈SS2〉) = 0,

p
(2)
B (TB1〈SB1〉 − TB2〈SB2〉) + (1− p(2)B )(TS1〈SS1〉 − TS2〈SS2〉) = 0.

Although Tγ depends on the value of pB (as pB will influence f and thus Tγ), for spe-

cific choice of p
(1)
B , p

(2)
B we can ask if previous condition has solution in terms of ∆T =

TT 1〈ST 1〉 − TT 2〈ST 2〉 (these are difference in buyer’s/seller’s returns at two markets

∆B/∆S). Using this notation, the NE condition becomes:

p
(1)
B ∆B + (1− p(1)B )∆S = 0,

p
(2)
B ∆B + (1− p(2)B )∆S = 0.

These equations have unique solution (∆B,∆S) = (0, 0) whenever p
(1)
B 6= p

(2)
B . The solu-

tion (∆B,∆S) = (0, 0) translates our NE condition into:

TB1〈SB1〉 = TB2〈SB2〉,

TS1〈SS1〉 = TS2〈SS2〉.

When markets are symmetric, condition θ1 = 1 − θ2 the following average returns (as

proven in Appendix A) are equal:

〈SB1〉 = 〈SS2〉 and 〈SS1〉 = 〈SB2〉.

Under the symmetry condition depending on the order between the two returns (either

〈SB1〉 > 〈SB2〉 or the other way around), the trading probabilities are fixed. If for example

〈SB1〉 > 〈SB2〉 that leads to TB2 = TS1 = 1 and TB1 = TS2 = 〈SB2〉/〈SB1〉.
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Finally, in the case of the symmetric markets, we observe:

TB1〈SB1〉 = TS2〈SB1〉 as we shown in previous argument

= TS2〈SS2〉market symmetry

= TS1〈SS1〉 NE condition

Thus in the case of symmetric markets S∗ – average return obtained at Nash equilibrium

is:

S∗ = p
(1)
B TB1〈SB1〉+ (1− p(1)B )TS1〈SS1〉

= TB1〈SB1〉 = TS1〈SS1〉 = 〈SS1〉.

which in the case of symmetric markets is equal to the lower of the two possible average

market returns. Remarkably, we have shown that as long as markets and subpopulations

are symmetric, the average return obtained by an agent at the Nash equilibrium is not

dependent on the subpopulation buy/sell preferences pB. This result holds for general

choice of (p
(1)
B , p

(2)
B ) provided that they are not equal and that there exists pair (f

(1)
1 , f

(2)
1 )

such that the trading probabilities are as calculated before.
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Appendix D

Numerical simulations

In this appendix, we provide details of numerical simulations used for the results pre-

sented in the thesis. The comments and instructions are organised in three different sec-

tions to follow three different models we analysed.

Discrete double auctions

In Chapters 2, 3 and 4 we presented results of the numerically simulated adaptation of

agents who choose between two or more discrete time double auctions. The defining

parameters of the system are summarised in Table D.1 with their explanations and the

standard values that are used in the main text unless otherwise specified. The pseudo

code of the simulated system is shown in the Algorithm 1. The algorithm addresses

agents with adaptive buy/sell preferences, but the agents with fixed preferences are sim-

ulated similarly (one more set of input parameters, p
(g)
B and the chooseAction step of the

algorithm is independent of β).

We usually initialised numerical simulations with zero attractions (e.g. Aγ = 0 ∀γ ∈

{B1,S1,B2,S2} and A
(g)
1,2 = 0), but in Chapter 3 we also address normally distributed

attractions. The time required to reach a steady state was highly dependent on the chosen

parameters (longer for low r and high β). Initial convergence to the strongly segregated

state is usually within 10-100 memory lengths (1/r). However, the agent’s relaxation

times become very long (see Fig. 2.6) in the segregated regime so the simulation length is

decided by confirming stability and relaxation times by probe runs and then automatized

so that the simulation lasts at least couple of times longer than the agent’s relaxation time.
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System definition in terms of parameters

Parameter Description Typical Value
M Number of markets 2
(θ1, θ2) Market biases - usually symmetric, θ1 = 1− θ2 (0.3, 0.7)
N Number of traders 200
(µa, σa) Mean and standard deviation of the ask distribution (9.5, 1)
(µb, σb) Mean and standard deviation of the bid distribution (10.5, 1)
r Forgetting rate; range r ∈ [0, 1] r = 0.1
α Forgetting rate of unplayed actions; range α ∈ [0, 1] α = 1
β Intensity of choice; simulation range β ∈ [1, 50] –

(p
(1)
B , p

(2)
B ) Preferences for buying of the two subpopulations (0.8,0.2)

TABLE D.1: List of parameters defining the system; unless otherwise
stated, the typical values are used.

To be sure that the system reached the steady state we measured average returns, at-

tractions and higher cumulants of the attraction distributions; when the averages of these

observables became independent of time, we assumed stationarity and started collecting

the data for the analysis. Statistics presented in the thesis are gathered for each parameter

setting from 100 independent runs (in Chapter 2, while 20 in the following chapters) of

the stochastic dynamics. Time averages are usually taken over 10/r trading periods at

the end of each simulation run.

Algorithm 1: Discrete double auctions

Data: A,β,r,N ,M ,SimLen
Result: Attraction A time series.
begin

Initialize agent’s attractions A =
(
Ai

mτ

)i=1...N

m=1...Mτ∈{B,S}
←− A

for n=1 to SimLen do

for i=1 to N do

mi = chooseMarket(Ai, β) agent’s choice of market
τi = chooseAction(Ai, β) agent’s choice of buy/sell action
AppendToMarketOrderList(i, τi,mi)

for m=1 to M do

am = mean(MarketOrderList(S,m)) average bid at market m
bm = mean(MarketOrderList(B,m)) average ask at market m
πm = am + θm(bm − am) trading price at market m
S←− RemoveInvalidBids(MarketOrderList(B,m), πm)
S←− RemoveInvalidAsks(MarketOrderList(S,m), πm)
S←− Trade(MarketOrderList(:,m), πm)

A = (1− r)A+ rS
print A
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Continuous double auctions

In Chapter 4 we analysed a more detailed market mechanism – continuous double auc-

tions with an open limit order book and adaptive traders with fundamentalist trading

strategies. There we closely follow algorithmic suggestions of previous authors (e.g. in

the Toth et al. [99] there are strategy and simulation codes). At this moment we discuss

the list of parameters, especially the ones we have changed compared to the original

model.

Continuous double auction parameters

Parameter Description Typical Value
M Number of markets 2
R Number of rounds within a trading period N
π Initial trading price 40
N Number of traders 2000
r Forgetting rate; range r ∈ [0, 1] r = 0.1
β Intensity of choice; simulation range β ∈ [1, 50] –
ns Initial stock endowment of an agent (previously 40) 100
c Initial cash endowment of an agent nsπ 4000

TABLE D.2: List of parameters defining the system; unless otherwise
stated, the typical values are used.

The dividend process is simulated using the same parameters as in the original model

D0 = 0.2 while ǫ ∈ N (0, 0.01). To allow more time for agent’s learning and adaptation

our simulation lasts longer than in previous works (e.g. 30 trading periods [99, 100])

between 10 and 100 memory lengths (e.g. 100 to 1000 trading periods for the typically

used r = 0.1). As in the discrete auction model we track the Binder cumulant and similar

macroscopic quantities to assess stability in the attraction distributions. We also increase

the number of agents as opposed to previous models that usually studied systems with

only one representative agent from each group. In a system with 10 types of agents,

previous authors would usually consider the trading period which lasts 100 rounds. As

we look at larger populations e.g. N = 2000 traders, the trading period lasts N rounds

so that each trader has on average one chance to be in the role of aggressor.

As in the original model we track agent’s wealth that is changed at the end of each

trading period (the dividend is paid for all stocks an agent possesses and the risk-free

interest rate r = 0.1 is paid on cash) although the market choosing strategies are not
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based on this information.

Evolutionary auctions

Finally in Chapter 5 we look at the evolutionary auctions. As opposed to previous works

we do not simulate agents perpetually participating in the game. Instead, we make an

assumption that the population is large and well mixed so knowing the total number of

agents with any available strategy we can calculate all the fitnesses πi and accordingly

the transition rates. Thus we simulate the continuous time adaptation based on Gillespie

algorithm [133]. As the evolution is in continuous time and at each instance of time (of

variable length) a single agent is updated, to measure time in generations we always

simulate TN time steps (where T is desired simulation time). The analytical framework,

especially the power spectra analysis suggests that majority of dynamically interesting

events should happen within periods of 100 generations (see e.g. peak frequencies in

Figs. 5.6, 5.11). Similarly, the initial convergence to the steady state can be calculated and

used as an estimator of the necessary simulation time.

A large number of discrete strategies, require large populations for comparison with

our analysis, thus large L needs very long simulation times so for most of our simulation

work we focused on up to 20 different strategies. Additionally, when a large number of

strategies is available but the population is not too large we introduce small mutation

rates u = 0.005 to ensure the presence of all strategy types in the population.
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Appendix E

Linear stability analysis of the

Fokker-Planck equation

In Chapter 2 and Appendix A we have introduced the Fokker-Planck description for

the adaptation of a system with traders with fixed buy-sell preferences. We noted in a

restricted region of the space of agent’s learning parameters (high β and low r), there are

three steady state solutions of the Fokker-Planck equation (see e.g. Figure 2.13). Further,

in Chapter 4 we realise that in that region of parameters the simulated system converges

to one of the two new solutions we named weakly segregated states. In this appendix,

we introduce the linear stability analysis method for the Fokker-Planck equation using

which we should in principle be able to understand the state’s stability. Unfortunately,

numerical implementation of the description below provides us with spurious results,

but we still provide the description for the interested reader who might be able to utilise

it properly.

In the previous chapters we have realised that with an order parameter per market,

the Fokker-Planck equations for different subpopulations decouple and we can find the

steady states of the system. We have used market Demand to Supply ratio as an order

parameter as it has a clear interpretation and it conveniently translates into trading prob-

abilities. In a system with two subpopulations and two markets, fractions of players at

the market one for both subpopulations can also be used as order parameters as they eas-

ily translate into demand to supply ratios. For the simplicity of the following analysis,

we use f (1), f (2), the population averages of the preferences for the market one, as order
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parameters:

f (1)(t) =

∫

σβ(x)P
(1)(x, t|p(1)B )dx,

f (2)(t) =

∫

σβ(x)P
(2)(x, t|p(2)B )dx,

where x stands for ∆(g) in previous notation, introduced to simplify the notation below.

Additionally instead of P (x, t|p(g)B ) only P (g)(x, t) will be used. The average preferences

for the market one f (g) translate into previously used demand to supply ratios in the

following way:

D1 =
p
(1)
B f (1) + p

(2)
B f (2)

(1− p(1)B )f (1) + (1− p(2)B )f (2)
,

D2 =
f (1)p

(1)
B + f (2)p

(2)
B

f (1)(1− p(1)B ) + f (2)(1− p(2)B )
.

The coupled Fokker-Planck equations for the two subpopulations are as previously (with

a slightly simplified notation):

∂tP
(1)(x, t) =− ∂x(M (1)

1 (x, f1, f2)P
(1)(x, t)) +

r

2
∂2x(M

(1)
2 (x, f1, f2)P

(1)(x, t)),

∂tP
(2)(x, t) =− ∂x(M (2)

1 (x, f1, f2)P
(2)(x, t)) +

r

2
∂2x(M

(2)
2 (x, f1, f2)P

(2)(x, t)).

The jump moments, when expressed in terms of new order parameters are:

M
(g)
1 (x, f1, f2) =

∑

m∈{−1,1}

∑

τ∈{B,S}

mσβ(mx)p
(g)
τ Tmτ (f

(1), f (2))〈Smτ 〉 − x

M
(g)
2 (x, f1, f2) =

∑

m∈{−1,1}

∑

τ∈{B,S}

σβ(mx)p
(g)
τ Tmτ (f

(1), f (2))(〈S2
mτ 〉 − 2mx〈Smτ 〉) + x2

where the notation is as before: m for the choice of market (with m = −1 denoting the

second market); τ ∈ {B,S} for the choice of trade, buy or sell; p
(g)
S = 1 − p(g)B . Trading

probabilities that contain the dependence on the order parameters f (1), f (2) can be written
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in the following way:

Tm=1,τ (f
(1), f (2)) =

min
(
∑

g p
(g)
B f (g),

∑

g p
(g)
S f (g)

)

∑

g p
(g)
τ f (g)

,

Tm=−1,τ (f
(1), f (2)) =

min
(
∑

g p
(g)
B (1− f (g)),∑g p

(g)
S (1− f (g))

)

∑

g p
(g)
τ (1− f (g))

.

To investigate stability of segregated solutions, we linearise the Fokker-Planck equations

around the steady state solution we have previously found:

P (g)(x, t) = P (g)
ss (x) + δP (g)(x, t).

The linearised Fokker-Planck equation, keeping only the terms linear in δP (g)(x, t) is:

∂t

(

P (g)
ss (x) + δP (g)(x, t)

)

=

= −∂x
(

M
(g)
1 (x, f (1), f (2))(P (g)

ss (x) + δP (g)(x, t))
)

+
r

2
∂2x

(

M
(g)
2 (x, f (1), f (2))(P (g)

ss (x) + δP (g)(x, t))
)

= −∂x
(

M
(g)
1ssP

(g)
ss (x)

)

− ∂x
(

M
(g)
1ssδP

(g)(x, t)
)

− ∂x
(

(∂f (1)M
(g)
1 )ssP

(g)
ss (x)

)

δf (1) − ∂x
(

(∂f (2)M
(g)
1 )ssP

(g)
ss (x)

)

δf (2)

+
r

2
∂2x

(

M
(g)
2ssP

(g)
ss (x)

)

+
r

2
∂2x

(

M
(g)
2ssδP

(g)(x, t)
)

+
r

2
∂2x

(

(∂f (1)M
(g)
2 )ssP

(g)
ss (x)

)

δf (1) +
r

2
∂2x

(

(∂f (2)M
(g)
2 )ssP

(g)
ss (x)

)

δf (2),

where δf (g) is defined as:

δf (g) =

∫

dxσβ(x)δP
(g)(x, t).

With subscript ss we denote all the evaluations at the steady state. When we cancel the

terms corresponding to the Fokker-Planck at the steady state, the time evolution of the
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variation from the steady state becomes:

∂t

(

δP (g)(x, t)
)

= L
(g)
FP δP

(g)(x, t)

+
(

−∂x
(

(∂f (1)M
(g)
1 )ssP

(g)
ss (x)

)

+
r

2
∂2x

(

(∂f (1)M
(g)
2 )ssP

(g)
ss (x)

))

δf (1)

+
(

−∂x
(

(∂f (2)M
(g)
1 )ssP

(g)
ss (x)

)

+
r

2
∂2x

(

(∂f (2)M
(g)
2 )ssP

(g)
ss (x)

))

δf (2),

where L
(g)
FP represents the Fokker-Planck operator evaluated at the steady state order

parameters. Previous two equations for the subpopulations can be summarized in the

following way:

∂t






δP (1)(x, t)

δP (2)(x, t)




 =






L
(1)
FP + L11 L12

L21 L
(2)
FP + L22











δP (1)(x, t)

δP (2)(x, t)






where Lij is introduced to shorten the following notation:

Lij [P (x
′)] =

(

−∂x
(

(∂f (j)M
(i)
1 )ssP

(i)
ss (x)

)

+
r

2
∂2x

(

(∂f (j)M
(i)
2 )ssP

(i)
ss (x)

))∫

dx′σβ(x
′)P (x′).

Stability analysis. The procedure for assessing segregated state stability is the follow-

ing:

1. Self-consistently solve Fokker-Planck equations for the two subpopulations, iterat-

ing in the space of order parameters until these are stable→ P
(1)
ss (x), P

(2)
ss (x), f

(1)
ss , f

(2)
ss .

2. Construct L
(g)
FP and Lij and the effective operator accordingly.

3. Find eigenvalues of the effective operator.

Zero eigenvalues of the effective operator should retrieve the steady states correspond-

ing to order parameters used on input (there are two zeros, one for each subpopulation,

though the eigenvectors might be a linear combination of the steady state distributions).

Other eigenvalues should tell us more about the state’s stability and based on numerical

evidence acquired so far, we expect the weakly segregated state to have all eigenvalues

with negative real parts (i.e. stable) while the strongly segregated states should have

a positive real eigenvalue too (i.e. marginally stable). Our numerical implementation of
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the previously described procedure is consistent with our expectation only for very small

values of forgetting rate r. When r is increased, but still below the critical threshold (so

there are still three solutions based on which we can construct the effective operators),

the procedure does not differentiate between the solutions, i.e. all eigenvalues are nega-

tive. Given that the method seems to retrieve our intuition for small r we believe there

is a numerical mistake whose effect is reduced at small r (possibly it is in terms that are

multiplied with r), but we were not able to identify it so far.
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Appendix F

Linear noise analysis for

evolutionary auction games

In this Appendix we provide further details on the linear noise analysis for the evolution-

ary games, with the proof that 2-player APA games do not have a non-zero eigenvalues.

Jacobian In this section we show derivation of functional Jacobian, check its basic prop-

erties, and when possible analyse its spectra. We derive functional Jacobian starting from

the Replicator equation F.1, we perform functional linearisation around the fixed point

ψ∗(s):

ψ̇(s) =
ψ(s)

∆πmax

(

π(s)−
∫

ds′π(s′)ψ(s′)

)

=
ψ(s)

∆πmax

(∫

ds1...dsk−1a(s, s1, ..sk−1)ψ(s1)...ψ(sk−1)

−
∫

ds′ds1...dsk−1a(s
′, s1, ..sk−1)ψ(s

′)ψ(s1)...ψ(sk−1)

)

. (F.1)

When ψ(s) is rewritten as ψ∗(s) + δψ(s) keeping only the terms linear in δψ(s) the fol-

lowing equation is obtained:

δψ̇(s) =
ψ∗(s)

∆πmax

(

(k − 1)

∫

ds1...dsk−1a(s, s1, ...sk−1)δψ(s1)ψ
∗(s2)...ψ

∗(sk−1)

−
∫

ds′ds1...dsk−1a(s
′, s1, ...sk−1)

(

δψ(s′)ψ∗(s1)...ψ
∗(sk−1)

− (k − 1)ψ∗(s′)δψ(s1)ψ
∗(s2)...ψ

∗(sk−1)
)
)

.
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Where with ∗ we denote all the evaluations at the fixed point of the replicator equation

F.1, while the ∆πmax is the maximal difference between the payoffs of players with dif-

ferent biding strategies which is equal to V . In previous we also used the fact that the

payoff function is symmetric in the second to last argument, e.g. a(s, s1, s2, ...sk−1) =

a(s,P(s1, s2, ...sk−1)), where P denote permutation. As noted in Chapter 5, we have in-

troduced effective two player payoff function:

M(s, s′) =

∫

ds2...dsk−1a(s, s
′, s2, ...sk−1)ψ

∗(s2)...ψ
∗(sk−1),

to simplify the notation, accordingly:

∂tδψ(s) = (k − 1)
ψ∗(s)

∆πmax

(
∫

ds1δψ(s1)M(s, s1)−
1

k − 1

∫

ds1δψ(s1)π
∗(s1)

−
∫

ds′ds1ψ
∗(s′)δψ(s1)M(s′, s1)

)

= (k − 1)
ψ∗(s)

∆πmax

∫

ds′δψ(s′)

(

M(s, s′)− 1

k − 1
π∗(s′)−

∫

drM(r, s′)ψ∗(r)

)

.

The Jacobian for the fixed point of the replicator equation is then:

J(s, s′) = (k − 1)
ψ∗(s)

∆πmax

(

M(s, s′)−
∫

drM(r, s′)ψ∗(r)
)

, (F.2)

where we used π∗(s) = 0 at the fixed point as shown in the main text. We proceed with

calculations of two player effective payoff functions M for different games.

MAPA(s, s
′) =

∫ V

0
ds2...dsk−1aAPA(s, s

′, s2, ...sk−1)ψ
∗(s2)...ψ

∗(sk−1)

=

∫ V

0
ds2...dsk−1

(

V
k−1∏

i=2

θ(s− si)θ(s− s′)− s
)

ψ∗(s2)...ψ
∗(sk−1)

= V θ(s− s′)
(∫ s

0
drψ∗(r)

)k−2
− s
(∫ V

0
drψ∗(r)

)k−2

= V θ(s− s′)φk−2(s)− s.



Appendix F. Linear noise analysis for evolutionary auction games 207

For k = 2 this simplifies to V θ(s − s′) − s, i.e. the payoff function a(s, s′) as expected.

Similarly the effective 2-player payoff of the SAPA game is:

MSAPA(s, s
′) =

=

∫

ds2...dsk−1aSAPA(s, s
′, s2, ...sk−1)ψ

∗(s2)...ψ
∗(sk−1)

=

∫

ds2...dsk−1

(

(V + s−max(s′, s2...sk−1))θ(s− s′)
k−1∏

i=2

θ(s− si)− s
)

ψ∗(s2)...ψ
∗(sk−1)

= θ(s− s′)
(

(V + s)φk−2(s)

−
∫

ds2...dsk−1max(s′, s2...sk−1)
k−1∏

i=2

θ(s− si)ψ∗(s2)...ψ
∗(sk−1)

)

− s

= θ(s− s′)
(

(V + s)φk−2(s)− s′φk−2(s′)− (k − 2)

∫ s

0
ds2s2φ

k−3(s2)ψ(s2)

)

− s

= θ(s− s′)
(

(V + s)φk−2(s)− s′φk−2(s′)− (k − 2)
(

s
φk−2(s)

k − 2
−
∫ s
0 drφ

k−2(r)

k − 2

)
)

− s

= θ(s− s′)
(

V φk−2(s)− s′φk−2(s′) +

∫ s

0
drφk−2(r)

)

− s.

To find M(s, s′) for the two reward APA, we use the interpretation of M as effective

two player payoff rather than averaging a(s, s′, s1 . . . sk−2).

M2APA(s, s
′) =







V φk−2(s) + αV (k − 2)(1− φ(s))φk−3(s)− s, s > s′

(1+α)V
2 φk−2(s) + αV

2 (k − 2)(1− φ(s))φk−3(s)− s, s = s′

αV φk−2(s), s < s′

Spectra of k-player APA jacobian. The right eigenvalue problem is:

∫

ds′J(s, s′)U(s′) = λU(s)

∫

ds′
ψ∗(s)

∆πmax

(

(k − 1)M(s, s′)− π∗(s′)− (k − 1)

∫

drM(r, s′)ψ∗(r)
)

U(s′) = λU(s)

(k − 1)ψ∗(s)

∫

ds′
(

M(s, s′)−
∫

drM(r, s′)ψ∗(r)
)

U(s′),

where in the last line we have fixed V = 1 and realized ∆πmax = V , similarly we used

previous result that π(s) = 0 at the fixed point. We know that there is at least one solution
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λ = 0 and U(s) = ψ∗(s):

∫

ds′J(s, s′)ψ∗(s′) =

= (k − 1)ψ∗(s)

∫

ds′
(

M(s, s′)−
∫

drM(r, s′)ψ∗(r)
)

ψ∗(s′)

= (k − 1)ψ∗(s)
(∫

ds′M(s, s′)ψ∗(s′)−
∫

ds′
∫

drM(r, s′)ψ∗(r)ψ∗(s′)
)

,

we realize that the first term in the bracket is π(s) while the second is an average pop-

ulation payoff π, evaluated at the fixed point these two terms are equal, thus ψ∗ is right

eigenfunction of 0 eigenvalue. Below we instead search for non zero eigenvalues if they

exist to try to say something about the fixed point stability. For the jacobian we also need

to find
∫ 1
0 drMAPA(r, s

′):

∫ 1

0
drM(r, s′)ψ∗(r) =

∫ 1

0
dr
(

θ(r − s′)φk−2(r)− r
)

ψ∗(r)

=

(∫ 1

s′
drφk−2(r)ψ∗(r)−

∫ 1

0
drrψ∗(r)

)

=

(
1

k − 1

(

1− φk−1(s′)
)

− 1

k

)

=
1

k − 1

(

−φk−1(s′) +
1

k

)

.

In previous we used:

〈s〉 =
∫ V

0
dssψ∗(s) =

V

k
.

Returning to the eigenvalue problem:

ψ(s)

∫ 1

0
ds′U(s′)

(

(k − 1)θ(s− s′)φ(s)k−2 − (k − 1)s+ φ(s′)k−1 − 1

k

)

=

ψ(s)

(

(k − 1)φ(s)k−2

∫ s

0
ds′U(s′) +

∫ 1

0
ds′φ(s′)k−1U(s′)− (

1

k
+ (k − 1)s)

∫ 1

0
ds′U(s′)

)

,
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defining V (s) =
∫ s
0 ds

′U(s′) and noting the following constants (that will be selfconsis-

tently calculated later):

∫ 1

0
ds′U(s′) = A,

∫ 1

0
ds′φ(s′)k−1U(s′) = B,

previous eigenvalue equation becomes:

ψ(s)

(

(k − 1)φ(s)k−2V (s) +B −
(1

k
+ (k − 1)s

)

A

)

= λ
dV (s)

ds
.

We now realize this differential equation can be solved by the integrating factor method,

as it can be rewritten in the following way:

dV (s)

ds
− k − 1

λ
ψ(s)φ(s)k−2V (s) =

ψ(s)

λ

(

B − A

k
− (k − 1)As

)

dV (s)

ds
+ g(s)V (s) = h(s),

where we have divided everything with λ as our goal is to find if there is any eigenvalue

λ 6= 0. The solution can be written in this form (see, e.g. [134]):

V (s) =

∫
dsµ(s)h(s) + C

µ(s)
where the integrating factor µ is

µ(s) = exp

(∫

dsg(s)

)

.

Let us first calculate the integrating factor:

µ(s) = exp

(

−k − 1

λ

∫

dsψ(s)φ(s)k−2

)

= exp

(

− 1

λ
φk−1(s)

)

= exp
(

− s
λ

)

,
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where we used the fact that
dφ

ds
= ψ(s) and the explicit form of φ(s) = s1/(k−1) for APA

auctions with V = 1. To obtain the full solution we still need to calculate
∫
dsµ(s)h(s):

∫

ds exp(− s
λ
)

(

B − A
k

λ
ψ(s)− (k − 1)A

λ
sψ(s)

)

=

∫

ds exp(− s
λ
)

(

B − A
k

λ(k − 1)
s

2−k
k−1 − A

λ
s

1
k−1

)

.

The two integrals in s can be cast in the form of incomplete Gamma function, defined

as γ(α, x) =
∫ x
0 dt exp(−t)tα−1 (see e.g. Polyanin et al. [135]). However, carrying out

calculations to determine constants A and B was not entirely successful, so we carry out

the rest of the calculation for the special case k = 2. This case is also of particular interest

as the fixed point found, constant ψ(s) = 1/V is not an evolutionary stable strategy. The

previous integral becomes simpler in this case:

∫

dsµ(s)h(s) =

∫

ds exp(− s
λ
)

(

B − A
2

λ
− A

λ
s

)

=
B − A

2

λ

(

−λ exp(− s
λ
)
)

− A

λ

(

−λ(s+ λ) exp(− s
λ
)
)

=exp(−s/λ)
(

−B +
A

2
+A(s+ λ)

)

.

Consequently, the solution V (s) is:

V (s) =
exp(−s/λ)

(
−B + A

2 +A(s+ λ)
)
+ C

exp(−s/λ)

= −B +
A

2
+A(s+ λ) + C exp(s/λ),

while U(s) is:

U(s) =
dV (s)

ds
= A+

C

λ
exp(s/λ).

Finally we need to determine constants A and C to fulfil our initial simplification:

A =

∫ 1

0
ds′U(s′) = A+ C(exp(1/λ)− 1).
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From this constraint it follows that C = 0 which as a consequence has U(s) = const.

Remembering that ψ(s) = const for k = 2 and having in mind
∫
ds′J(s, s′)ψ(s′) = 0 it

follows that there are no non zero eigenvalues of the k = 2 APA Jacobian.



212

Appendix G

Evolutionary stable strategies in two

reward APA games

In this Appendix we address the question of evolutionary stable strategies for k > 3

two reward APA games. Reiter et al. [55] proved that 2-player game does not have an

evolutionary stable strategy, while 3-player game has one but only when α < 0.5, i.e. in

the case when the distribution is monotonically decreasing as for α = 0. Games with

k > 3 players were particularly impressive as associated fixed points and also mixed

strategy candidates for evolutionary stable strategies are bimodal for α > 0.5, thus it

is intriguing to investigate whether such specialised populations could be evolutionary

stable. The condition we need to check is introduced by Maynard Smith[57], and it is

stated below. We will keep the same notation Reiter et al.[55] used for the sake of clarity

– e.g. E(I, (Ik−2, J1)) represents fitness of strategy I (that can be mixed or pure strategy)

when playing against k−2 players who play the same strategy and one player who plays

strategy J (denoting strategy of possible intruder).

1. E(I, (Ik−1, J0)) ≥ E(J, (Ik−1, J0))

2. If E(I, (Ik−1, J0)) = E(J, (Ik−1, J0)) then E(I, (Ik−2, J)) > E(J, (Ik−2, J))

if I satisfies previous conditions for all J marking pure strategy from the strategy domain,

then I is an evolutionary stable strategy.

We check if the two conditions hold for I , the fixed point mixed strategy we have

derived from π(s) = 0. Note I is just a notation for ψ(s) which as we stated previously

need to satisfy the following (with φ(s) =
∫ s
0 ds

′ψ(s′)): (1 − (k − 1)α)φk−1(s) + (k −
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1)αφk−1(s) = s. Below are important payoff calculations necessary to investigate ESS

condition.

• E(J, (Ik−1, J0)) corresponds to the π(s) in our previous notation, it is a fitness of

any pure strategy when confronted with k − 1 players who play mixed strategy ψ.

We know that for ψ∗ this fitness is zero.

• Similarly, E(I, (Ik−1, J0)) corresponds to the π in our previous notation. It is a

payoff of a player who plays a mixed strategy ψ, thus it is
∫
dsπ(s)ψ(s) which is

also zero at the fixed point.

• These two results show that the (2) condition should be checked, i.e. as this condi-

tion holds E(I, (Ik−1, J0)) = E(J, (Ik−1, J0)) we need to see for which α the second

condition will hold E(I, (Ik−2, J)) > E(J, (Ik−2, J)) and thus prove ψ is invasion

resistant.

• E(J, (Ik−2, J)) corresponds to the following payoff:

∫

ds1 . . . dsk−2a(s, s, s1, . . . sk−2)ψ(s1) . . . ψ(sk−1).

We realize that rewards will always be split and we can distinguish between two

scenarios - when s is the highest strategy, thus both V and αV are divided, or one

of k − 2 other players is a winner and the second reward is split. In previously

introduced notation this corresponds to M(s, s).

E(J, (Ik−2, J)) =
1 + α

2
φk−2(s) + (k − 2)

α

2
(1− φ(s))φk−3(s)− s
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• Finally, E(I, (Ik−2, J)) corresponds to the
∫
drM(r, s)ψ(r) and we calculate it be-

low:

E(I, (Ik−2, J)) =

∫ 1

0
drψ(r)

(

θ(r − s)
(

φk−2(r) + α(k − 2)(φk−3(r)− φk−2(r))
)

+ θ(s− r)αφk−2(r)− r
)

=
1− φk−1(s)

k − 1
+ α(k − 2)

(
1− φk−2(s)

k − 2
− 1− φk−1(s)

k − 1

)

+ α
φk−1(s)

k − 1
− 1 + α

k

Where in finding the last term
∫
drrψ(r), we have used a relation coming from the

E(I, (Ik−1)) = 0. From one side, we can realize that the expected reward for any

of the k pariticipants is (1 + α)/k as every of k participants have equal chance of

winning first or second reward given they all play the same mixed strategy. The

cost, on the other hand is
∫
drrψ(r), knowing that the difference between the two

is zero, we can calculate that the average bidding strategy is (1 + α)/k.

Introducing a function f(s, α, k) = E(I, (Ik−2, J1))−E(J, (Ik−2, J1)), after some algebraic

manipulation and using mixed strategy relation on φ we have previously derived we

obtain:

f(s, α, k) = s
k − 2

k − 1
+

1 + α

k(k − 1)
+

(k − 3)α− 1

2
φk−2(s)− (k − 2)α

2
φk−3(s)

Now, using numerical solutions for φ(s), we can find α and k for which f(s, α, k) > 0 for

all s ∈ [0, 1]. In Figure G.1 we show contour plots of the function f for k = 3 and k = 4

from which we see that 3-player game does not have an evolutionary stable strategy for

α > 0.5 (as f is negative), while the 4-player game does not have an ESS for α > 0.6. In

the same Figure we also show how αc depends on k. It is important to note that although

an evolutionary stable strategy does not exist for all α there is a stable fixed point for all

α (as discussed in Chapter 5) while here we showed that there is an evolutionary stable

bimodal distribution for some range of α for every k > 3.
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FIGURE G.1: Existence of the Evolutionary Stable Strategy. Top panels
show contours of the f(s, α, k) for k = 3 (left) and k = 4 (right) demon-
strating that the sign of the function becomes negative for some s ∈ [0, V ]
when α = 0.5 for k = 3 and α = 0.6 for k = 4, marking the inexistence
of ESS for α greater than those values. (Black line in both contour plots
marks f(s, α, k) = 0 contour.) Bottom panel shows αc dependence on k,

for α < αc there exist unique evolutionary stable strategy.
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Appendix H

Discrete evolutionary auction games

This Appendix has further details on the discrete evolutionary auction games. Firstly

we address the difference between the fixed point in the discretized and discrete game,

illustrating it with an example of 3-player APA games with 3 available strategies. We

then show that there is no such difference in the 2-player APA games. We proceed with

explicit two player effective payoff matrices for all games Mij (necessary for the spectral

data shown in Chapter 5). Finally, we address a discrete game that will lead to same fixed

points as the discretized one.

APA discrete strategy Fixed point mixed strategy

In this section we address the zig-zag structure of the mixed strategy fixed point in the

all-pay auction with discrete number of bidding strategies. As argued in Chapter 5, there

is a different fitness associated with playing a bidding strategy si when it is a bid from

the continuous or discrete range. The difference comes from the treatment of the non

unique winning bids which in the discrete strategy set up have non zero probability of

occurrence. The two payoff functions are listed below for the k player auction. It is

assumed that in the continuous case strategy si ∈ [0, V ] while in the discrete case si =

iV/L:

πi = V

(∫ si

0
dsψ(s)

)k−1

− si
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As argued before, setting πi = const leads to the solution φ(s) = (s/V )1/(k−1) and the

discrete strategy corresponding to this solution is thus:

ψi = φ(si)− φ(si−1)

On the other hand, the payoff in the discrete strategy game is:

πi = V





i−1∑

j

ψj





k−1

+

k∑

m=2

V

m

(
k − 1

m− 1

)

ψm−1
i





i−1∑

j

ψj





k−m

− si

In a special case k = 2 these two methods lead to the same ψi = const strategy, below is

derivation of that result from the discrete game side:

πi = V (
i−1∑

j=1

ψj) +
V

2
ψi − si = c

From these equation we find:

ψi =







2
V (s1 + c), i = 2l + 1

−2c
V , i = 2l

where we used the fact that si = iV/L. Using the constraing
∑L

i=1 ψi = 1 for L odd we

obtain c = − V
2L . Using this constant in the previous formula we obtain ψi = 1/L, for all

i. However, when L is even the
∑L

i=1 ψi = 1 condition is satisfied for any c (though we

note that be needs to be −V/L ≤ c ≤ 0 for ψi to be greater or equal to zero). This means

that for L even there is a family of distributions that are the fixed point of the replicator

equation. The uniform distribution we obtain for L odd is one of the solutions, but also a

family of zig-zag distributions. As these different distributions lead to different average

fitness c, we note that it is maximised for c = 0 when only the odd bidding strategies are

played.

For k > 2 the discretized continuous fixed point is not any more equivalent to the

fixed point in the discrete game. This is due to the fact that in the discrete game ψi is a

non trivial k−1st root which we illustrate below in a simple example for 3 player auction.
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The discretized fixed point of cont. game leads to the mixed strategy:

ψ1 =

√
s1
V

ψi =

√
si
V
−
√
si−1

V

On the other hand, the fixed point of the discrete game with L = 3 strategies (solving

πi = c, ∀i ∈ {1, 2, 3}:

ψ1 =

√

3(c+ s1)

V

ψ2 = −
3

2
ψ1

(

1−
√

1− 4

3

(
1− c+ s2

V

)

)

ψ3 =
3

2

(

1−
√

1− 4

3

(
1 +

c+ s3
V

)

)

We find that c 6= 0 when strategy number is finite, but we note that its absolute value

decays to zero in the L→ 0 limit. We observe that the three ψ values reported can not be

matched with the discretized solution despite the freedom of varying c (note for example

to set ψ1 equal we need c = −2s1/3 which would lead to undefined ψ2). This example

illustrates the difference in fixed point distributions coming from the reward splitting

contributions.

Effective 2 player payoff matrices for the games with discrete strategies. Here we

present effective 2 player payoff matrices (Mij) for the (S)APA games with discrete strate-

gies. We write again the fitness for playing a pure strategy s for every game for the com-

parison. As it will be clear below, when i > j (as then Si > Sj), Mij is a fitness of the

player i in the k − 1 game, as the second player can at most play the role in the SAPA

game if (s)he is the second highest bidder thus cost of player i is Sj . If i = j Mij becomes

the fitness of the player i in a k − 1 game with the reward value always being split in

m + 1 pieces (for m ∈ {1, . . . , k − 1}). Finally when i < j, the player i can not win and

Mij is the cost of playing the game - Si, except in the two reward APA when the player i
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might still receive the second reward.

πAPA
i =

k∑

m=1

V

m

(
k − 1

m− 1

)

ψm−1
i





i−1∑

j=1

ψj





k−m

− Si (H.1)

MAPA
ij =







∑k−1
m=1

V
m

(
k−2
m−1

)
ψm−1
i

(
∑i−1

j=1 ψj

)k−1−m
− Si, i > j

∑k−1
m=1

V
m+1

(
k−2
m−1

)
ψm−1
i

(
∑i−1

j=1 ψj

)k−1−m
− Si, i = j

−si, i < j

πSAPA
i =(V + Si)





i−1∑

j=1

ψj





k−1

+
k∑

m=2

V

m

(
k − 1

m− 1

)

ψm−1
i





i−1∑

j=1

ψj





k−m

−
i−1∑

j=1

Sj

(
( j
∑

l=1

ψl

)k−1
−
( j−1
∑

l=1

ψl

)k−1
)

− Si (H.2)

MSAPA
ij =







∑k−1
m=1

V
m

(
k−2
m−1

)
ψm−1
i

(
∑i−1

j=1 ψj

)k−1−m

−∑i−1
j=1 Sj

((
∑j

l=1 ψl

)k−1
−
(
∑j−1

l=1 ψl

)k−1
)

, i > j

∑k−2
m=0

V
m+2

(
k−2
m

)
ψm
i

(
∑i−1

j=1 ψj

)k−2−m
− Si, i = j

−Si, i < j

π2APA
i = V





i−1∑

j=1

ψj





k−1

+
k∑

m=2

V (1 + α)

m

(
k − 1

m− 1

)

ψm−1
i





i−1∑

j=1

ψj





k−m

+ (k − 1)



1−
i∑

j=1

ψj





k−1∑

m=1

V α

m

(
k − 2

m− 1

)

ψm−1
i





i−1∑

j=1

ψj





k−1−m

− Si (H.3)
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M2APA
ij =







V
(
∑i−1

j=1 ψj

)k−1
+
∑k

m=2
V (1+α)

m

(
k−1
m−1

)
ψm−1
i

(
∑i−1

j=1 ψj

)k−m

+(k − 1)
(

1−∑i
j=1 ψj

)
∑k−1

m=1
V α
m

(
k−2
m−1

)
ψm−1
i

(
∑i−1

j=1 ψj

)k−1−m
− Si, i > j

∑k
m=2

V (1+α)
m

(
k−2
m−2

)
ψm−2
i

(
∑i−1

j=1 ψj

)k−m

+(k − 2)
(

1−∑i
j=1 ψj

)
∑k−2

m=2
V α
m

(
k−2
m−2

)
ψm−2
i

(
∑i−1

j=1 ψj

)k−2−m
− Si, i = j

∑k−1
m=1

V α
m

(
k−1
m

)
ψm−1
i

(
∑i−1

j=1 ψj

)k−1−m
− Si, i < j

Finally, as discussed in Chapter 5, the parity of L affects the spectra of Jacobian and

consequently the power spectra we use to describe the effects of demographic noise.

That is the clearest in the 2-player APA game, where, as shown in Chapter 5, Jacobian

has antisymmetric structure Jij = −Jji and consequently has purely imaginary spectra

coming in conjugated pairs. Being Jacobian of the system with a constraint
∑

i ψi = 0, it

needs to have a zero eigenvalue, thus when L is odd, all other eigenvalues are imaginary,

conjugated pairs, but when L is even, there are two zero eigenvalues. For k > 2 the effect

of L parity is in the number of real non-zero eigenvalues – when L is even there is an

additional negative real eigenvalue. This results in a higher value of the plateau in the

low ω power spectra. However, we expect a unique L → ∞ limit. In both parity cases

present in Fig H.1, we see agreement with our previous conclusions, the plateau for small

ω increases with L so we expect that the power spectra is 1/ω2 in the large L limit.

FIGURE H.1: 3-player APA power spectra for different strategy number
parity.
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APA without reward splitting. Another possibility to study the discrete APA game

that would be insightful for the L → ∞ limit is to look at a discrete game in which there

is no reward splitting when the highest bid is not unique. This game has the fitness

that is the discretized version of the continuous fitness function and thus the fixed point

distribution is identical to the discretized fixed point distribution of the continuous game.

An example of the two fixed point distributions we see in Figure H.2 along with the

power spectra analysis for different strategy number. We note that the power spectra do

not have any resonant frequencies (i.e. no pronounced peaks in the power spectra). But,

we note that the plateau value for small ω increases with L suggesting P (ω) divergence

at ω = 0 in the L → ∞ limit, as for other games shown in Chapter 5. This observation

is consistent with the expectation that the spectra of the continuous operator have an

accumulation point at 0 as previously remarked.

FIGURE H.2: 3-player APA game with no reward splitting. We compare
fixed-point distribution of the game with discrete strategy space (orange)
and the discretised fixed point fo the game with continuous strategy space
(blue) for L = 21 strategies between 0 and V. In the insert we present the

power spectra for different strategy number of this 3-player game.
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Appendix I

SAPA game on finite domain

Here we address the fixed point distribution of Second-price All Pay Auctions on finite

domain [0, A]. The two player game, e.g. War of Attrition, was analysed by Bishop

and Cannings [109] and it has been proven that only if A is attainable, i.e. the domain

includes the maximal bidding value, the evolutionary stable strategy exist, but not all

pure strategies from the domain are played in the evolutionary stable population. Below,

we investigate whether this is also true for the fixed point of the introduced evolutionary

dynamics and extend the results to the k-player game. The fitness of playing a strategy s

against k − 1 players with mixed strategy ψ(s) is:

π(s) = V φk−1(s)− s+
∫ s

0
ds′φk−1(s′),

where for simplicity we’ll use y(s) = φk−1(s). Repeating the requirement π(s) = 0 (as

again assuming constant c and enforcing normalisation condtions on φ(s), e.g. φ(0) = 0

leads to conclusion that c = 0) for all s ∈ [0, A] we obtain:

y(s) = 1−K exp
(

− s
V

)

the conditions y(0) = 0 and y(A) = 1 lead to two different values of the constant K thus

we realize that a continuous function y(s) can not be a solution on the [0, A] domain. Thus

we first assume that y(s) is discontinuous atA (we practically assume there’s a delta peak
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at A in the distribution ψ(s) that takes care of the normalization on the finite domain):

y(s) =







1− exp
(
− s

V

)
, s < A

1, s = A

To check it this assignment is consistent, we calculate the fitness of playing the strategy

A, as playing any other startegy s < A leads to zero fitness by y(s) construction.

π(A) = V y(A)−A+

∫ A

0
dsy(s)

= V −A+

∫ A

0
ds

(

1− exp
(

− s
V

)
)

= V −A+A+ V

(

exp
(

− A

V

)

− 1

)

= V exp
(

− A

V

)

We realize that bidding A would then always lead to a positive fitness as opposed to

bidding any other value A − ǫ that leads to fitness zero. This means that agents would

not have incentives to play strategies just below the highest bidding value. We thus

investigate if a gap in the strategy space (B,A) would resolve this and lead to a fixed

point ψ(s) such that π(s) = 0 for every s in domain (where ψ(s) > 0) as required. We

then assume the y(s) is:

y(s) =







1− exp
(
− s

V

)
, s ≤ B

1− exp
(
−B

V

)
, s ∈ (B,A)

1, s = A
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As before, playing strategy s ∈ [0, B] leads to zero fitness by construction. Also as we

assume there are no players bidding values between B and A, we only proceed by calcu-

lating π(A):

π(A) = V −A+

∫ B

0
ds

(

1− exp
(

− s
V

)
)

+

∫ A

B
ds

(

1− exp

(

−B
V

))

= V −A+B + V

(

exp
(

− B

V

)

− 1

)

+

(

1− exp

(

−B
V

))

(A−B)

= (V +B −A) exp
(

− B

V

)

Requiring π(s) = 0 leads to conclusion that B = A − V , or that strategies that are less

than V smaller than the maximal bidding strategy are not favoured in the SAPA game.

We finish by ensuring that playing a strategy s ∈ (B,A) is not useful for an agent.

π(s) = V

(

1− exp

(

−B
V

))

− s+
∫ B

0
ds

(

1− exp
(

− s
V

)
)

+

∫ s

B
ds

(

1− exp

(

−B
V

))

= V

(

1− exp

(

−B
V

))

− s+B + V

(

exp

(

−B
V

)

− 1

)

+ (s−B)

(

1− exp

(

−B
V

))

= (B − s) exp
(

−B
V

)

that leads always to negative fitness thus agents prefer playing s ≤ B or s = A. Finally,

the fixed point distribution is:

ψ(s) = θ(A− V − s) 1

V (k − 1)

(

1− exp
(

− s

V

)) 2−k
k−1

exp
(

− s
V

)

+ ωδ(s−A)

where the fraction of agents bidding the highest value ω is calculated to ensure that ψ(s)

is normalized:

ω = 1−
(

1− exp
(

− A− V
V

))
1

k−1

When A ≤ V and k = 2 this results in an unimodal fixed point distribution centred at

A, while for A > V fraction of agents bidding highest value A monotonically decreases,

decreasing faster for higher number of participants k.
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