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Chapter 1

Introduction

1.1 Holographic principle: the idea

Reductionism lies at the heart of physics. Much of the history of physics
can be understood as striving for reduction in the number of basic prin-
ciples and thus explaining seemingly disparate phenomena starting from
the same core idea. Indeed some of the key scientific revolutions can be
formulated in terms of unifying previously distinct areas of study: New-
tonian mechanics bridges the gap between statics and dynamics, Maxwell
electrodynamics connects electricity and magnetism, Boltzmann’s kinet-
ics unites mechanics and statistical physics. General relativity has unified
gravity with mechanics while quantum field theory brought a unified look
at quantum mechanics, electrodynamics and statistical physics. Finally,
in the last decades we are witnessing the attempts at unifying all of physics
within string theory. Looking for analogies between different systems has
certainly proven to be one of the deepest principles in the search for fun-
damental laws of nature.

The presumed approach of the Theory of Everything through the ad-
vent of string theory (if it indeed turns out to lead to the Theory of
Everything) in parallel with the standing fundamental problems of many-
body and collective physics – such as unconventional superconductivity
and quark confinement – has actualized the problem of emergence versus
reductionism. We are facing the question of how the reduction to the few
fundamental principles might help us with resolving the problems which
obviously come from a complicated interplay of an enormous number of
degrees of freedom. One could even wonder if extremely complex systems
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are within the reach of microscopic models at all – after all, we know that
hydrodynamics is not within the reach of the single-molecule description.
Such a question, in its full generality, is hard to address, and the an-
swer almost certainly varies – systems which do not at all have a single
dominant energy scale might well be out of reach. On the other hand,
successful explanations of collective phenomena such as Mott insulators,
or the energy cascade in turbulence do give a hint that reduction to the
basic principles can be fruitful even if these principles live on the scales
which are many orders of magnitude smaller.

All of the above prompts us to rethink the quest for reduction and
analogies as formulated in the first paragraph. We might look for direct
analogies between fundamental and emergent phenomena. If Maxwell’s
equations connect the two elementary constituents of electromagnetic in-
teraction, are we able to find a theory which connects a fundamental
interaction to an emergent phenomenon? Putting it bluntly, is there an
analogy between the simple and the complicated? This thesis is an at-
tempt to contribute to the answer in a specific setting – strongly correlated
fermions – where the ”complex” side of the duality is likely unreachable
by ”ordinary means”1 and the fundamental side is a string theory through
a mapping known as holography.

Holography is an idea aimed at providing a unified description of quan-
tum mechanics and gravity. It was coined from a disparity between the
thermodynamically calculated black hole entropy and the naive guess from
dimensional analysis. Understood as information content of a physical
system, entropy is expected to be an extensive quantity, proportional to
the volume (measure) of the system. Nevertheless, the famous semiclas-
sical Hawking-Bekenstein result for the entropy of a neutral non-rotating
(Schwarzschild) black hole [9] predicts it as proportional to the surface

1It is known [109] that the problem of interacting fermions is NP complete. At this
place we briefly remind what this means. A problem is said to belong to the NP class
if an algorithm exists which checks a proposed solution in polynomial time, but no
algorithm is known which finds a solution in polynomial time. An example could be
an equation such that plugging in a given candidate solution and checking if it satisfies
the equation can be done in polynomial time, but no polynomial algorithm is known to
compute the solution starting from the equation only. Notice that we do not know if such
an algorithm really does not exist, or we are simply unable to find it yet (this question
is the famous unsolved P = NP problem). NP complete problems are a subclass of
NP problems, such that an algorithm that solves an NP problem polynomially could
be modified in a certain way to solve all NP problems in polynomial time.
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area:

S =
Ac3

4G~
(1.1)

Informally, all information about the black hole is stored on a lower-
dimensional object, suggesting that a complete description of the black
hole in D dimensions can be obtained by looking at the correctly chosen
degrees of freedom on a D− 1-dimensional manifold. This is the logic be-
hind the arguments by ’t Hooft [122] and Susskind [107]. The foundation
of this principle is that it connects the concept of gravity to the quantum-
mechanical concept of entropy as counting the states of the system.

The second, more technical key concept in holography is the idea of
dualities, mathematically equivalent but different descriptions of the same
phenomena – thus providing a bridge between different formalisms or even
altogether different physical systems. The idea of duality can be given a
very precise and familiar meaning. Formally, it is just a canonical trans-
formation of the action. Well-known examples are the vortex duality for
charged scalar fields and electric-magnetic duality in U(1) gauge theory
[71]. In the vortex case, the physical picture is that of changing the view-
point of what is an elementary excitation. If it is the linearly dispersing
plane wave, then the vortices then appear as defects where the phase of
the charged field winds for a full circle. But if we dualize, then vortices
are the elementary excitations and plane waves are complex vortex com-
binations. The duality can be captured by a Legendre transformation of
the action:

S =

∫
d3x∂µΦ∂

µΦ 7→ Sdual =

∫
d3x (aµa

µ − ∂µΦa
µ) . (1.2)

Here, Φ is the charged scalar field which lives in two space dimensions,
while its gradient ∂µΦ maps to the vortex field aµ. We can thus reexpress
the action in terms of aµ: the physics must remain the same but that does
not change the fact that some phenomena are much easier to see in one or
in the other language. Similar is the wisdom behind the electric-magnetic
duality, where the physical observables, i.e. elements of the field strength
tensor, transform into each other, again by adding a bilinear term (linear
in both old and new components) to the action.

As an idea which connects quantum theories with gravity, holography
finds its natural language in the formalism of string theory, where it arises
as a duality transformation of the strings themselves. It is within string
theory and M theory that a precise realization of the abstract holographic
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principle was found. One reason is simply that it offers a coherent frame-
work in which we can study the gravity at various energy scales– from the
low-energy description of general relativity to the nonperturbative regime
where the string effects dominate.

In string theory language, the duality becomes the equivalence of the
open and closed string descriptions. The higher-dimensional, gravita-
tional system is given by the excitations of the closed string. Its lower-
dimensional dual gauge field description is given by the excitations on
the open strings. In the next section we will present a more detailed
explanation of this construction, known as the AdS/CFT correspondence
[81, 38, 114]. However, in this introductory chapter we will not assume
any prior knowledge of string theory on the side of the reader. We will
stay away from extensive use of string-theoretical language and results
and formulate AdS/CFT in terms of gauge theory and general relativ-
ity, with only qualitative discussion of the underlying specifically stringy
constructions (branes, open strings between branes, string dualities, etc).

1.2 Realization: AdS/CFT correspondence

We do not intend to give anything like a comprehensive tutorial on AdS/CFT
in this (or any subsequent) chapter, we will merely wet the reader’s ap-
petite to look for the original references if interested; most of the thesis
can be followed without a detailed understanding of the foundations of
AdS/CFT. The first explicit realization is due to Maldacena [81]. Here we
have a Type IIB superstring theory in a configuration describing a stack
of parallel D3 branes (planar objects extending along three spacetime di-
mensions) at some distance r from each other. The interbrane distance
r also determines the ”elastic energy” of the open strings which stretch
between the branes and carry the gauge fields from a U(N) multiplet: the
energy is proportional to r/α′, where α′ is the string tension. Consider
now the limit of coincident branes, when r → 0 but with r/α′ = const.. In
the closed string description, the metric of a stack of coincident D3 branes
factors out into the product of AdS space and a sphere: AdS5 ⊗ S5. The
open string description is a very special, highly symmetric QFT – a con-
formal field theory (CFT). The idea is that the more restricted and special
the field theory, the easier it is to relate it to gravity. This certainly does
hold for a conformal field theory (CFT), where the very high symmetry
severely constraints behavior of correlation functions. CFT has a central
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place in modern high and low energy physics – allowing exact calculation
of correlation functions in two dimensions and strong results on RG flow
(c-theorem [120]) and scaling [24]. In low energy physics they describe the
quantum critical systems [15] lying at the heart of the description of phase
transitions and strongly competing interactions. The N = 4 supersym-
metric Yang-Mills in four spacetime dimensions is such a CFT – despite
the many fields involved, its behavior is simple due to conformality, and
it has given us the first example of a holographic duality.

This explicit example allows for a quantitative connection between
the gauge theory and the supersymmetric theory in AdS geometry. The
connection is provided by the fact that the radius of AdS space is propor-
tional to (gN)1/4. The supergravity solution can be trusted if gN ≫ 1
and N ≫ 1. Remember that this means that the field theory is strongly
coupled and can be expanded in the inverse number of colors. The
lower-dimensional, field theory side in this and similar (early) setups of
AdS/CFT are generically non-Abelian gauge theories, either Yang-Mills
or its supersymmetric version, motivating another frequently used name
for AdS/CFT: gauge/gravity duality.

To turn the above discussion into a precise duality, one needs a rela-
tion between the partition functions (on-shell actions) of the gauge theory
and supergravity. To this end it is critical to determine the boundary
conditions for the supergravity fields living in AdS – when they reach the
branes, they are coupled to the fields living on them. This was done in the
follow-up work by Gubser, Klebanov and Polyakov [38] as well as Witten
[114].

1.2.1 Warmup: symmetries

Let us study the closed string (gravity) side first. The formulation of a field
theory on AdS spaces is not quite trivial: AdS geometry possesses some
troublesome properties such as closed timelike curves and the existence of
a boundary at infinity. Informally, anti de Sitter (AdS) space is an open
(hyperbolic) equivalent of the perhaps more familiar de Sitter (dS) space.
The latter is the solution to the Einstein equations in the vacuum with
a positive cosmological constant [2]. The latter can be thought of as a
mysterious form of matter with equation of state p = −ρ. It has negative
pressure: it expands as it cools down, just like our universe. It is thus
a cosmological model in the approximation of “empty Universe” where
the presence of matter is negligible and the geometry is dictated by the
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cosmological constant. In AdS space, on the other hand, the cosmological
constant is negative, i.e. it behaves as (positive) pressure of regular matter.
Because the matter is cosmological, it cannot clump and one finds a static
(time-independent) solution. The Einstein-Hilbert action that describes
the anti de Sitter space in D + 1 spacetime dimensions is:2

S =

∫
dD+1x(R− Λ) (1.3)

where R is the scalar curvature while Λ < 0. As the only dimensionful
factor, Λ can be rescaled at will depending on the choice of the unit of
length. By convention, we write Λ = −D(D − 1)/L2 where L has the
meaning of AdS radius. This means that the solution can be embedded
into a D + 2-dimensional flat space as a sphere:

t2 − z2 − yiy
i = L2. (1.4)

A natural coordinate patch covers half of the space:

ds2 =
r2

L2
(−dt2 + dxidx

i) +
L2dr2

r2
. (1.5)

The radial coordinate r stretches from 0, called the interior, to infinity,
called the AdS boundary. AdS is the maximally symmetric solution to
Einstein equations. An extremely useful way to think about AdSD+1 is s
a hyperboloid embedded in a D + 2-dimensional flat spacetime with sig-
nature (+, . . .+,−,−). The embedding in a spacetime with D+2 dimen-
sions helps to see that the total geometric symmetry group of AdS space
is SO(D, 2). The global and local geometry of AdS space are sketched
in Fig. 1.1: what globally looks as the usual double hyperboloid (but in
Minkowskian as opposed to Euclidean spacetime) locally becomes a patch
of isotropic space of ”decreasing size” as we move further and further,
until at infinity all lengths scale to zero.

One can now motivate the correspondence starting from the symmetry
arguments. It is well known that a CFT in D dimensions (one timelike
and D − 1 spacelike dimension) also obeys the SO(D, 2) symmetry [24].
Informally, the conformal symmetry is just the symmetry associated to

2In this thesis, unless specified otherwise the dimensionality of spacetime is always
D + 1, the flat space coordinates in D dimensions are denoted by (t, yi) (i = 1 . . . D)
and the metric signature follows the convention ds2 = −dt2 + dyidy

i.
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Figure 1.1: Sketch of AdS geometry. Globally it looks like a double hyper-
boloid but if we take a small patch it becomes very much like Minkowski
space in which distances decrease as we move toward infinity. Counterin-
tuitively, local AdS is completely isotropic and has spherical symmetry.

length rescaling, i.e. changing the scale combined with rotations. Confor-
mal field theories are thus closely related to the concepts of self-similarity,
fractality and scale-free objects but more general: the scale invariance
is continuous, not discrete as in fractals, and it can be broken due to
quantum effects – anomalies, like any other physical symmetry. A closer
inspection reveals that the exact conformal representation of SO(D, 2) is
already geometrically encoded in AdS in a special limit – its boundary
transforms in the same way. If one would ”extend” the AdS space by
”gluing” some fields on its D-dimensional boundary, these fields ought to
be redefinable as representations of the conformal group.

As a result, the CFT can be understood as the boundary degrees of
freedom of a field theory in AdS. Emphatically, however, this is not enough
for a duality, and does not yet encapsulate the idea of AdS/CFT. We
need more – not just that AdS space in the near-boundary limit becomes
conformal invariant but that the fields in AdS in the near-boundary limit
also encapsulate the behavior of a conformal field.

1.2.2 Enlightenment: the duality relation

This idea finds its precise formulation in the concept of duality introduced
earlier. The quantum theory is dual to gravity, thus the operators in field
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theory are sourced by the fields on the gravity side. More precisely, the gen-
erating functional for the correlation functions in field theory is identified
with the minimum of the supergravity action, satisfying specific bound-
ary conditions at the AdS boundary. The precise boundary conditions and
the crucial point of AdS/CFT, known as the GKPW (Gubser-Klebanov-
Polyakov-Witten) prescription. The prescription addresses the boundary
conditions mentioned at the beginning of this section and was proposed
in [38, 114]. The conformal and the gravity side are connected through
their partition functions as

Zbnd(J) = Zbulk(Φ|∂AdS = J) (1.6)

where Zbnd and Zbulk are the partition functions on each side, and we
have employed Φ as a generic notation for all fields living in the bulk and
J are their boundary values, acting as sources. In the classical gravity
limit, i.e. for a large N strongly coupled field theory, Zbulk is evaluated
simply by plugging in the classical solutions to the equations of motion
into the gravity-matter action (in other words, it is the on-shell action).
Schematically, this looks like

Zbulk = e−S(Φ)|Φ(r→∞)=J = 〈eφJ〉CFT (1.7)

where S is the classical gravity action, and in the second equality we
have expressed the partition function at the boundary as the generating
function of the field theory correlators. The boundary operator φ sees
the boundary values Φ(r → ∞) = J precisely as sources: treating Zbulk
in (1.7) as an effective action for φ, we can apply the textbook rule to
calculate their correlation functions:

〈φ(y1)φ(y2) . . . φ(yn)〉 = lim
r→∞

∂ne−S

∂Φ(r, y1)∂Φ(r, y2) . . . ∂Φ(r, yn)

This is the essence of applying holography in practice: we do not know
how to write Zbnd in terms of boundary fields explicitly, but we can use
it as the generating functional of the correlation functions, and thus gain
qualitative insight into the system.

The precise translation of the bulk physics into the boundary is thus
achieved by analyzing the r → ∞ limit of various bulk quantities. This
is the quantitative basis to constructing the holographic dictionary which
makes possible numerous practical applications of AdS/CFT. In the next
chapter we will introduce dictionary entries such as temperature, chemical
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Figure 1.2: Pictorial resume of AdS/CFT: the duality is rooted in the
notion of open-closed string duality. On the level of coupling constants
it is also a weak-strong duality. Closed string coupling g is related to
the coupling gYM of the Yang-Mills theory on open strings as g2YM = g.
The small parameter in the perturbative expansion for the closed string
interactions is the combination λ ≡ gN . Sending the closed string coupling
to zero (g → 0) at constant λ we get classical strings in AdS5 ⊗ S5 while
the Yang-Mills theory on open strings reaches the large N limit (N → ∞).
Taking also the limit λ→ 0, the classical type IIB string theory becomes
type IIB SUGRA.

potential, electromagnetic field, conformal dimension... It is the main link
between the formalism of holography and more familiar low-energy QFT
physics.

From a more general viewpoint, AdS/CFT was historically important
as a facet of the second superstring revolution, which found numerous
dualities between string theories with different coupling constants or geo-
metric properties. Here, the control parameter is the combination 1/gN of
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the string coupling g = g2YM and the number of colors N . In order to trust
the supergravity limit we need gN ≫ 1, but this is precisely the strongly
coupled regime of the gauge theory. Therefore, AdS/CFT is an example of
a weak-strong duality. Such dualities are known as S-dualities. Formally,
these relate a theory with coupling constant g to a theory with coupling
1/g. While AdS/CFT does not quite follow this pattern, as the control
parameter is not g but gN , it remains a relation between strongly and
weakly coupled systems. Needless to say, this gives it a great deal of prac-
tical utility: when one side becomes intractable due to string interactions,
the other one becomes better and better controlled.

1.2.3 Some general remarks

We will conclude this section with some speculations on broader implica-
tions of holography on string theory and other areas. Even though the
general holographic principle is essentially a gravity/quantum field theory
duality, its full realization in the form of AdS/CFT is a decidedly string-
theoretical result, which follows from the near-brane geometry and the
action of that solution in a specific brane configuration. In other words,
the ’t Hooft-Susskind principle states more than AdS/CFT – it states than
any physical system with gravity is equivalent to a lower-dimensional sys-
tem without gravity. One might now wonder if this is indeed so, if hologra-
phy is in fact a fundamental principle itself, independent of string theory,
and a property of gravity and field theory as we know them. There is
no answer yet on this central question. At the very least, what one can
try is to apply the precise results of AdS/CFT (dictionary entries) to ge-
ometries which do not follow from string theory. As long as the geometry
looks like AdS at long distances, numerous attempts so far give encour-
aging results.3 The non-string AdS spaces give us more freedom: we can
work in any number of dimensions, with any field content. The price to

3It is much less clear and much more complicated to generalize it to non-AdS spaces,
including flat space. This is another important problem to work on. The natural guess
is that the correspondence can be generalized to arbitrary geometries and arbitrary field
theories. Reasons that require an asymptotically AdS geometry and the difficulties in-
volved in constructing a flat space holography are beyond the scope of this Introduction
and indeed this thesis. Roughly speaking, in flat spacetime there seem to be too many
degrees of freedom on the gravity side to match to a lower-dimensional QFT; AdS
asymptotics puts some rather stringent constraints on the dynamics of gravitational
field. The extension beyond AdS is certainly a central fundamental question for the
future of holography.
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pay is, of course, that we cannot at the present be sure about the consis-
tency of such attempts. This approach is known as bottom-up as opposed
to the top-down string approaches. In this thesis we will mostly use the
bottom-up logic, for both practical and conceptual reasons.

In this place it is appropriate to discuss the status of AdS/CFT as a
confirmed result versus a conjecture. Though it is widely accepted (e.g.
[25]), a rigorous proof is lacking. Nevertheless, the evidence in favor of
AdS/CFT is very solid: it has passed numerous non-trivial tests where
observables whose forms do not depend on the coupling constant were
computed on both sides and compared [2].

1.2.4 Holography outside high-energy theory

The manifestation of holography as a duality has given rise to a com-
pletely different research pursuit from the understanding of black holes.
Holography can also be used as a tool to understand systems at strong
coupling, where the conventional perturbative methods of field theory fail.
So far AdS/CFT has established itself as an approach to quantum chro-
modynamics (QCD) and to condensed matter theory (CMT), the corre-
sponding fields being known as AdS/QCD and AdS/CMT. The power of
holography is that it allows us to study previously inaccessible strongly
coupled systems. In AdS/QCD, the focus of most work done so far was
on describing the confinement transition and studying the quark-gluon
plasma at intermediate energies, when neither perturbative QCD nor ef-
fective low-energy theories work well (this regime is primarily tested in
heavy ion collisions). The latter line of research has produced perhaps the
most important result of applied holography so far, the universal viscosity
bound, stating that any isotropic equilibrium fluid has an inherent shear
viscosity to entropy ratio

η

s
≥ 1

4π
(1.8)

The quark-gluon plasma studied in the RHIC accelerator exhibit a viscos-
ity remarkably close to the bound (1.8).

The main approaches exist in AdS/CFT. The first is a top-down ap-
proach which constructs a Yang-Mills theory akin to QCD from brane
intersections, following closely the early ideas of Witten [114, 115] where
the whole endeavor of AdS/CFT is put in the context of specifically
gauge/gravity duality, i.e. understanding the dynamics of Yang-Mills
fields. The second is a bottom-up scheme where the four-dimensional
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QCD is dual an asymptotically AdS5 space where confinement is modeled
by ”thinning out” (suppressing exponentially) the amplitudes of fields in
the IR. This is done using the insight that the extra dimension in AdS
corresponds to the scaling flow in field theory with the near boundary
behavior encoding the UV asymptotics. In this case, the RG flow inter-
pretation is that the confinement of low-energy excitations corresponds to
suppressing the dynamics in deep interior.

The second claim to fame for AdS/CFT is its application to condensed
matter theory. Here, the problems of strong correlations and competing
orders show their best (or rather, worst) side. It is thus extremely exciting
to see how they dualize in gravity. However, since the phenomenology of
condensed matter systems is much richer, and removed even further from
the microscopic Hamiltonian, it becomes important to build the model in
an appropriate way: to start from the solid and robust features (symme-
tries, degrees of freedom, extreme limits when some fields decouple or be-
come exactly soluble) rather than engineer the gravity dual in order to get
this or another specific phenomenon. The field started with a holographic
calculation of transport properties of certain strongly coupled systems
[59] and took off with the crucial work of Hartnoll, Horowitz and Herzog
on holographic superconductors [47]. Despite the by now universally ac-
cepted name, the model in question is not actually a superconductor at
all but a boson at finite density which breaks the global phase symmetry
by condensing, akin to a superfluid. Nevertheless, precisely as it stands
it is a very important proof of concept: this is the simplest possible case
of the Landau-Ginzburg picture of order, and thus the obligatory start-
ing point of any candidate theory for description of many-body systems.
Holographic superconductors have taken the bosonic AdS/CMT to per-
fection and have been the arena in which many of the universal results
and dictionary entries have been obtained.

1.3 The arena: fermions in organized matter

This thesis will focus on AdS/CFT applied to strongly coupled fermion
matter. Experimental condensed matter physics has discovered numer-
ous materials which cannot be understood from the weakly coupled per-
spective. Strongly coupled fermions are thus an experimental reality, and
developing general methods to study them is of central importance for un-
derstanding the observed phenomena in condensed matter. In AdS/CFT,
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precisely the strong coupling regime in field theory is easy to understand on
the gravity side, as it corresponds to classical (super)gravity. We will now
argue that such holographic description of the strongly coupled physics
is especially valuable precisely for fermion systems, as conventional field-
theoretical methods are far less helpful for fermions then for bosons.

We have a number of nearly equivalent ways to describe the simple ob-
servation that fermions and bosons differ in their behavior. Antisymmetry
of fermionic wave functions, the Pauli principle, fermion sign problem and
kinematic correlations (i.e., Slater determinants) are all about the fact
that the antisymmetry of fermionic states reduces the number of avail-
able configurations, acting as a constraint on dynamics and introducing
an effective interaction (or correlation) even in absence of any explicit in-
teracting potential. While a non-interacting Fermi gas can still be solved
by explicitly taking into account the antisymmetry of states when con-
structing thermodynamical potentials, presence of interactions spoils the
picture: antisymmetry acts as a constraint, and solving an interacting
system in the presence of such a constraint becomes a hopeless task. A
common way to phrase the problem is the ”fermion sign” viewpoint, re-
viewed e.g. in [119]: it refers to the negative contributions to the fermionic
partition function, meaning that it cannot be regarded as a sum of prob-
ability amplitudes as for bosons and classical particles.4

The fermion signs are simply the minus signs in the density matrix of
a fermion system. This is a direct consequence of antisymmetry of the
fermionic wave function. For a system of free fermions we can write the
wave function exactly; the outcome is the Slater determinant where the
odd permutations contribute with a minus sign. Antisymmetry, however,
does not depend on interactions in the system and the sign picture will be
exactly the same. A technical way to see the trouble with fermion signs
is analysis of the fermionic path integral. It is enough to remember the
basic rule of constructing the partition function for a system of fermions
in compact Euclidean time with period β, thus accounting for finite tem-

4Besides condensed matter, another area where the sign problem is well-known is
Quantum Chromodynamics (QCD). There, the sign problem arises in a seemingly dif-
ferent but in essence equivalent form: the presence of finite density (and thus chemical
potential) makes the Euclidean Hamiltonian non-Hermitian, and thus the partition
function complex. The negative vs. complex dichotomy is that of real vs. imaginary
time, but in both cases it is the fermionicity of the Hamiltonian which gives rise to
problems at finite density, and both negative and complex partition function give us
the same pain: absence of probabilistic interpretation.
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perature T = 1/β. Remember that partition function equals the integral
of the trace of the density operator:

Z = Tre−βH =

∫
dNDxρ(x,x;β) (1.9)

where the density operator is ρ(x1,x2) and x denotes the set of coordinates
of all particles in a D-dimensional system with N fermions. Now for a
system of indistinguishable particles ρ is a sum over of all permutations Π
of the particles, as any two particles can be exchanged without changing
the system physically. This gives

ρ(x,x;β) =
1

N !

∑

Π

(±1)|Π|ρ(x,Πx;β) (1.10)

Here, the sum is over all permutations Π of the particles, and |Π| is the par-
ity (symmetry/antisymmetry) of the permutation. For bosons all terms
are positive and one can define a measure based on the density matrix ρ+.
For fermions, however, odd permutations carry a negative contribution.
The partition function is, of course, always positive, but we see that indi-
vidual contributions to the density matrix are not. This in turn means that
fermions are never classical: unlike for bosons, quantum statistics brings
a discontinuity from classical Euclidean field theory and its path integral
formulation. The effective action for bosonic expectation values is just the
celebrated Ginzburg-Landau theory or one of its many derivations. Noth-
ing like it exists for fermionic operators.5 Consequently, despite decades
of research of strongly correlated fermions, the actual methodologically
sound knowledge we have on this topic is very limited. A measure of the
difficulty of the sign problem is the realization of Troyer and Wiese [109]
that it is NP complete.

What, then, are the things we do know?

1. Free Fermi gas. One example is obvious: the free Fermi gas is ex-
actly soluble. It is not really free, as kinematic correlations are
introduced by the statistics, however we know that the Slater deter-
minant accounts for them exactly.

5While the expectation value of a fermionic operator is trivially zero, we typically
want to compute operator products. Density, correlation functions, transport coeffi-
cients etc. are all of this form. However, working with fermion operator products is no
easier than working with single fermions.
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2. Fermi liquid. The second example is the breakthrough of Landau in
understanding normal metals in terms of Fermi gases [73]: the Fermi
liquid paradigm. The logic is well-known: a gas of particles with
infinite lifetimes turns into a gas of quasiparticles with finite but long
lifetimes. Everything remains the same as for a free gas, except that
all parameters undergo renormalization. The crucial requirement
is that the ground state of the interacting system have a nonzero
overlap with the ground state in the non-interacting limit. In other
words, Fermi liquid is so much akin to a Fermi gas simply because it
is adiabatically connected to it. Subsequent, more rigorous studies
of the Fermi liquid have confirmed this basic picture (see [5] and
references therein). The mathematical foundation of Landau’s Fermi
liquid insight is provided by the RG formalism for fermions given in
[88, 100] and has the form of a functional RG which starts from
a weakly interacting theory at intermediate scales and introduces
interactions perturbatively in the effective action. Being a weak
coupling expansion, it does not have sign problems. However the
perturbative treatment does make it hard to treat non-perturbative
phenomena e.g. a superconducting instability within this approach.

3. Fermions in (1 + 1)d. A special case which is in principle com-
pletely known is that of fermions in one spatial dimensions. While
fashionable these days, and certainly capable of displaying very intri-
cate behavior of correlation functions and transport properties (see
e.g. [110]), one-dimensional fermions are completely demystified by
bosonization: in one space dimension, any fermion system can be
bosonized in infinitely many ways (the most typical situation is the
spin-charge separation) and then solved through usual field theory
methods. The reason is that statistics cannot really be defined in
1 + 1 dimension: the manifold of possible Slater determinant states
coincides with the manifold of nodeless wave functions.

4. Miscellanea. Finally, there is a small number of exactly soluble
interacting fermion models in higher dimension, such as exact wave
functions for Fractional Quantum Hall states [74]. These are however
of very little significance for the broader sign problem, being rather
special non-generic.

The inescapable conclusion is that, if we want to avoid the strange
ad hoc models of the point (4), everything we know is either to bosonize
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or to hope that the system studied is adiabatically connected to a non-
interacting Fermi gas, at least in the IR. The vast field of strongly corre-
lated electrons armed with various field-theoretical techniques [34, 110] is
as it stands incapable of constructing (through controlled, justifiable ap-
proximations) novel ground states of fermion matter. The list of celebrated
experimental puzzles, from unconventional superconductors [118, 42] to
heavy fermions [80], all likely novel ground states qualitatively different
from normal Fermi liquids, is therefore in desperate need of a theoretical
paradigm that will not depend on non-interacting or bosonic physics.

We are now able to formulate a sharp question underlying all of strongly
correlated electron systems: Is there a stable state of electrons at finite
density which cannot be adiabatically continued to Fermi gas? This is
perhaps the closest it comes to formulating the motivation for this the-
sis in one sentence. A solution we propose here is to use the power of
holography.6

This is not just an academic question. The importance of strongly cor-
related electron physics is its manifest necessity to explain a multitude of
experimental findings amidst experimental evidence in favor of distinctly
non-Fermi liquid phases of fermionic matter. The most famous are cer-
tainly high temperature superconductors, cuprates and pnictides being
the leading members of this heterogenous group. The superconducting
order at relatively high temperatures is almost the least important of the
many unusual properties. A glance at the phase diagram of cuprates (Fig.
1.3) reveals how the doping of external charge carriers turns the system
from the familiar normal metal, i.e. Fermi liquid phase into a non-Fermi
liquid, universally known in condensed matter physics as strange metal,
continuing on into the pseudogap. The pseudogap region is also myste-
rious, but thought to display some kind of long-range order. Dozens of
exotic order parameters were proposed to explain this novel ground state:
stripes, current loops, exotic spin ordering and others [118]. Many of them

6As a side remark, we refer the reader to [119, 72] for a possible geometric interpreta-
tion of the ”fermionic constraint” which allows one to treat the problem of fermionicity
by looking at certain global (topological) properties of the many-particle wave function
and the path integral. The key result is the proof [13] that the signful path integral
can be turned into ordinary bosonic path integral but with an additional constraint.
For us, it is the morale and not the details which is important: it provides a construc-
tion which explicitly reduces fermion dynamics to boson dynamics with constraints.
While AdS/CFT handles fermions in a somewhat different way, essentially trading the
fermionic physics for curved space, it might be an indication that in the end all fermion-
icity can be bosonized by adding additional constraint structure to dynamics.
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have some degree of experimental support [118]. We also do not under-
stand how the advent of the strange metal is related to superconductivity
itself.

A possible unifying point for these phenomena in unconventional su-
perconductors and heavy fermions (as well as some other materials) is
quantum criticality [95, 15], developed mainly by Sachdev. Its basic idea
is that quantum fluctuations can mimic the effects of temperature on the
order parameter of some ordered phase. The outcome is that the ordered
phase becomes unstable and vanishes at a critical point at zero temper-
ature. In place of temperature, the control parameter is typically some
quantity which governs the competition between two ordered phases at
T = 0, e.g. coupling strength or doping. The phase diagram of a system
with a quantum critical point typically looks as in Fig. 1.3(A), quite sim-
ilar to the phase diagram of real-world cuprates in Fig. 1.3(B) – above the
critical point one has a characteristic quantum critical ”cone”, the regime
in which the quantum critical point influences the physics even at rela-
tively high temperatures. This is an important difference with respect to
finite temperature critical points: in the latter case, the scale invariance
inherent to criticality is only felt in a narrow window around T = Tc,
while quantum critical behavior can be detected even by measurements
significantly above T = 0. Systems with a quantum critical point are
mainly recognized for exhibiting remarkable scaling laws [111]. Of course,
quantum criticality immediately brings associations on CFT and makes a
great starting point for a holographic investigation. Notice the inverted
epistemology of holography compared to conventional methods: normally,
we would start from the Fermi liquid phase and try to build up interac-
tions that drive it to the critical point. In AdS/CFT, we can start from
the quantum critical point where the theory is very strongly coupled and
completely encapsulated in the scaling relations, with particles being non-
existent, and the challenge is to see how the system picks a ground state
away from criticality. This is the essence of AdS/CMT: we know most in
AdS/CFT precisely in the situation when we know least in conventional
CMT.

This in turn makes CFT an important tool for description of such sys-
tems – scale invariance of the quantum critical phase is almost equivalent
to conformal invariance. Therefore, if the universal ingredient in transi-
tions from Fermi liquid non-Fermi liquid systems is quantum criticality,
then the CFT and its gravity dual in AdS present a natural starting point.
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(A) (B)

Figure 1.3: (A) Sketch of the phase diagram of cuprates. Normal metal
phase turns into a non-Fermi liquid at critical doping, which presumably
corresponds to a quantum critical point. The zoo of exotic orderings re-
sides in the strange metal phase, which partially overlaps with the super-
conducting region. The properties of the strange metal remain mystifying,
and might constitute a prime example of a stable non-Fermi liquid ground
state. In (B) (adopted from [95]) we see schematically how the quantum
critical point influences the physics at finite temperature: when the tem-
perature energy scale kBT is larger than some characteristic energy scale
∆ of the system, we are in the quantum critical ”cone” where the physics
is governed by the scaling laws imposed by the quantum critical point.

1.4 Outline

Our first goal will be to find the gravity dual for the Fermi surface which
will be as general as possible and not hinge on existence of quasiparticles.
The minimal ingredients we need are fermions, temperature and chemical
potential. Our holographic dictionary translates this into a charged black
hole plus the Dirac equation for the fermions. This is done in the next
chapter. A Fermi surface should reveal itself in the spectrum of perturba-
tions. We will study in detail the momentum and energy distributions of
the spectral weight and conclude a great deal about the quantum critical
fermions in this way. This chapter is adapted from [17] and includes the
formalism for calculating the spectrum in a separate section (originally the
Supplementary material of the paper). Chapter 4 [18] studies fermionic
instabilities, giving dictionary entries for fermion density and Fermi liquid



1.4 Outline 19

itself, within a model we call black hole with Dirac hair. Chapter 5 [19] is
the beginning of the study of the phase diagram of holographic fermions.
In this chapter, we compare the Dirac hair model to the electron star
model by Hartnoll et al [51] and show how one can interpolate between
the two, corresponding to stable quasiparticles with different properties
in field theory. In chapter 6 [83] we will study the actual phase diagram
of holographic fermions by a full quantum-mechanical formulation of elec-
tron star and Dirac hair. and finally address the question – can we see
novel phases from AdS/CFT? Chapter 7 sums up the conclusions.
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Chapter 2

The holographic dictionary

2.1 The basic entries

We are now ready to consider the theoretical background of our work
and to work out in some detail the results we will use. This essentially
corresponds to constructing the detailed dictionary entries and formulate
rules for the boundary terms in the action. We start with pure AdS space
(we will need more later, to introduce temperature). We will work on
the Poincaré patch of AdS space rather than global AdS. For most of the
calculations it is much more appropriate to use the dimensionless inverse
of the r coordinate:

z ≡ L

r
(2.1)

While the radial distance goes from r = 0 in the interior to infinity, now
z = 0 corresponds to the boundary while z = ∞ is the deep interior.
We might have a situation where there is a lowest bound on r, e.g. the
position of a black hole horizon rh (and there will be, if the temperature is
finite). Then the deep IR is at zh = L/rh instead of infinity. The AdSD+1

metric in z coordinate is

ds2 =
1

z2

(
−dt2 +

D−1∑

i=1

dx2i + dz2

)
. (2.2)

Deformations away from AdS space are allowed as long as the small z
asymptotics (AdS boundary) is unchanged. We will only consider equi-
librium physics in this thesis, which corresponds to stationary and ho-
mogenous geometries. We will also only consider isotropic systems, i.e.
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isotropic geometries in the bulk. This makes all components of the metric
depend only on z and allows at most two free functions parametrizing
deformations from AdS. We can therefore write the most general metric
as

ds2 =
1

z2

(
−f(z)h(z)dt2 +

D−1∑

i=1

dx2i +
dz2

f(z)

)
(2.3)

where we recognize f(z) as the red shift factor (warp function). For AdS
asymptotics we must have f(z) = 1 + O(z) and h(z) = 1 + O(z) for
z → 0. General stability conditions also make both f and h everywhere
non-negative. Finally, f(zh) = 0 indicates the existence of a horizon at
z = zh.

2.1.1 Thermodynamics

Finite temperature

The basis of the dictionary is given by the identification of the partition
functions given in (1.6). The first new dictionary entry we introduce
is temperature, originally proposed by Witten in [115]. It is a direct
consequence of the basic fact that temperature enters kinematics of a field
theory by imposing periodicity of Euclidean time. Consider first an AdS
space in imaginary time. A well-known (but not unique) solution with
periodic Euclidean time τ ≡ it is the Schwarzschild black hole. This
solution corresponds to metric (2.3) with h = 0 and

f(z) = 1− 4πM

DπD/2Γ(D/2 + 1)
zD, (2.4)

where M is the black hole mass. This solution is only defined up to the
horizon at zh, the outermost (smallest z) radial slice where the red shift
function vanishes: f(zh) = 0. It is only smooth if the time is periodic
with the period

1

TBH
≡ β =

zh
2π

(2.5)

where TBH is the Hawking temperature of the black hole. Since the space-
time coordinates (t, x) are directly identified in the dictionary, the com-
pactification of imaginary time retains the same meaning in the boundary
theory: TBH = Tbnd. Notice that the temperature in field theory equals
the temperature of the black hole and not the temperature of the bulk,
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as the latter is always zero. This is of more than academic interest as it
means that the bulk fields live at T = 0 and should be treated by the
usual field theory and not thermal field theory.

Free energy

The next dictionary entry, especially important when dealing with exotic
systems where very few principles are known to hold, is that of free energy
of the field theory, as the laws of thermodynamics are general enough that
they can always be used as the starting point. This directly follows from
the relation of free energy Fbnd to partition function Zbnd as the defining
equality:

e−βFCFT = 〈ZCFT 〉CFT. (2.6)

According to GKPW formula, the right-hand side equals the bulk on-shell
action with appropriate boundary conditions. We thus find:

e−βFCFT = 〈e−
∫
dτLbulk+Sbnd〉AdS (2.7)

where we have included the possibility of boundary interactions on the
gravity side. In classical gravity, i.e. for large N and large gN the bulk
expectation value is obtained simply by plugging in the on-shell solutions
into Sbulk + Sbnd. Taking into account (2.5) we get the factor of β in the
exponent of Zbulk too, so

FCFT = Sbulk(Φon−shell) + Sbnd(Φon−shell). (2.8)

This simple but very important rule was given in [115]. Then we can
follow all the usual thermodynamic identities to find other thermodynamic
potentials, as well as their derivatives. Notice again that we cannot equate
FCFT to any thermodynamic quantity in the bulk, as the latter is at zero
temperature.

2.1.2 Sources and expectation values

Scalar field

The observables of a CFT have correlation functions of their operators
O, carrying certain quantum numbers. These correlation functions are
formally generated in the standard way by taking functional derivatives
of

〈OO . . .O〉 = δn

δnΦ0
〈e

∫
Φ0O〉CFT. (2.9)
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Recalling our duality discussion, we should identify the source Φ0 with a
field in AdS Φ(x) restricted to the boundary where conformal symmetries
are realized, relating limz→0Φ(z) to Φ0. The boundary conditions should
ensure that the source is the leading (non-normalizable) component of the
solution at the boundary. Let us see how such a procedure works for a
scalar field and for a gauge field. The results to follow are mostly from
[114, 115] with some slight refinements summarized in [2, 25]. In this case
the bulk action and the equations of motion are trivially

Sbulk = −
∫
dDx

(
D†
µΦD

µΦ+m2Φ2
)

(2.10)

(
zD−1∂zz

1−D∂z + k2 − m2

z2

)
Φ = 0 (2.11)

We are looking for a solution which remains finite at the boundary z → 0.
Making a power-law ansatz Φ ∼ zα, we find that exponents of the near-
boundary asymptotic of the field Φ are ∆± = D/2 ∓

√
(D/2)2 +m2.

Here, ∆− corresponds to the leading and ∆+ to the subleading branch.
One can actually find the exact solution in the whole AdS space in terms
of modified Bessel functions, giving general solution of the form

Φ(z) = ΦSz
D/2K∆−D/2(kz) + ΦRz

D/2I∆−D/2(kz) (2.12)

where K and I are modified Bessel functions of first and second kind,
respectively and

∆ = ∆+ = D/2 +

√(
D

2

)2

+m2. (2.13)

The normalizable solution is proportional to ΦR while the non-normalizable
one is the ΦS branch. Therefore, according to the dictionary, ΦR is the re-
sponse (expectation value) and ΦS the source. Consider now the one-point
function 〈O〉. The variation of the bulk action for such a configuration is
found by substituting the solution into Sbulk:

δSbulk =

∫ ∞

0
dz

∫
dDx

√−g2δΦ(D†
µD

µ−m2)Φ−2

∫
dDx

√
−hδΦ∂zΦ|z=0

(2.14)
where h is the induced metric on the boundary. The first term vanishes for
the solution of (2.11). For the second term the characteristic AdS/CFT
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steps come. First, we see that the bulk action in general diverges at the
UV boundary z → 0 and needs to be regularized. The last, divergent part
of (2.14) can be removed by the boundary counterterm

Sbnd =

∫
dDx

√
−hΦ2 (2.15)

This is exactly the Dirichlet term familiar from elementary analysis: its
meaning is to fix the boundary data Φ0. So consistency if the bulk theory
requires it to be reconstructible from the boundary.

At second order we find the two-point correlator for the boundary field
O

〈O(x1)O(x2)〉 =
∂2S

∂Φ(x1)∂Φ(x2)
∼ const.

|x1 − x2|2∆
(2.16)

with ∆ defined in (2.13). Therefore, the seemingly arbitrary definition of
∆ in (2.12) is chosen to match the conformal dimension of the boundary
field. We see that the operator O scales in accordance with the predictions
of CFT with conformal dimension ∆. Also if additional terms asuch as
interactions are added in the bulk, it is clear that the UV asympotics will
still be determined by m, or else (if the additional terms are irrelevant at
the boundary) the asymptotic AdS geometry will be unstable. So another
dictionary entry is that conformal dimension in field theory is determined
by the bulk mass of the field.

Gauge fields, field strengths and densities

The procedure above is readily generalized to gauge fields. In this thesis
we will need only the Abelian U(1) field so we focus on that. Let us start
from the well known Maxwell action. By partial integration, bulk action
evaluates to

S = −1

4

∫ ∞

0
dz

∫
dDx

√−gFµνFµν =
1

2
lim
z0→0

∫
dDx

√−gFµνAµnν |z0 +

+

∫ ∞

0
dz

∫
dDx

√−gAν∂µFµν (2.17)

where nν is the unit normal vector to the boundary. To cancel the
boundary contribution we precisely need the von Neumann term Sct =∫
dDx

√
−hFµνAµ that fixes the field strength at the boundary. Now that
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we have the boundary action, we can proceed to find the dictionary en-
tries. The solution to the Maxwell equations near the AdS boundary is a
linear function in z. For the component A0 we can write

A0 = A
(0)
0 +A

(1)
0 z +O(z2), (2.18)

so the leading term, A
(0)
0 , is the source and A

(1)
0 is the response. The

boundary action is Sbnd = −A(0)
0 A

(1)
0 + . . .: the leading and subleading

term are linearly coupled to each other. It becomes clear that A
(1)
0 can

be identified with negative charge density ρ while its source A
(0)
0 has the

meaning of chemical potential µ (i.e. background scalar potential). For a
spatial component of the gauge field, we can write

Ai = A
(0)
i +A

(1)
i z +O(z2) (2.19)

and equate the subleading term A
(1)
i to the current Ji while A

(0)
x is its

source. Therefore, we arrive at the conclusion that the subleading and
leading term of the bulk gauge field encode the current density and its
source, i.e. background U(1) field. We can rephrase this conclusion in
terms of electric and magnetic field strengths in the bulk if we assume
spacetime homogeneity. In this case transverse electric field is simply
Ei = −iωAi and the radial magnetic field is Bi = iǫijkkjAk. We can
now say that the bulk radial electric field stands for the charge density
while the radial magnetic field in the bulk is the magnetic field at the
boundary. For the transverse fields, we get that transverse bulk electric
field encodes for the electric field at the boundary, while transverse bulk
magnetic field stands for spatial current on field theory side.1 Notice that
the fields at the boundary obey global rather than gauge currents. This
is an important property of the dictionary: gauge symmetry in the bulk
becomes a local symmetry at the boundary. Another manifestation of
this principle is the SO(D − 1) rotational invariance in field theory. In
AdS, SO(D − 1) is a gauge symmetry, a consequence of diffeomorphism

1This fails for the component Az. Obviously, since the radial coordinate does not
exist on field theory side, Az cannot be dual to any component of the current. In fact,
it has no physical sense at all and one should put Az = 0 in holographic setups. To see
this, remember that nonzero radial gauge field implies a nonzero radial flux through the
boundary. This would violate the RG flow interpretation of the radial direction – we
do not know how to interpret radial flow of matter along z. For that reason we always
put Az = 0.
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invariance, in the sense that an SO(D−1) rotation transforms AdS space
into itself but in different coordinates.

There is a way to use AdS/CFT in the canonical ensemble using the
method of alternative quantization for the gauge field. From (2.19), we
see that the leading term has the same asymptotics as the derivative of
the subleading term. By a Legendre transform we can thus swap the roles
of Fµν and Aµ in the boundary term and regard Jµ as fixed instead of the
source Eµ. For example, suppose the gauge field has the form A = A0dt.
Then the boundary action is Sct = µρ+. . .: the two coefficients are linearly
coupled to each other, and we can identify a0 7→ µ, b0 7→ ρ: leading and
subleading term in the gauge field component A0 correspond to chemical
potential and charge density in field theory.

2.2 Holographic superconductors: a tutorial

In this subsection we will present a worked-out example where the gen-
eral formalism of holography is applied on perhaps the simplest possible
nontrivial system: a charged scalar boson coupled to the U(1) Maxwell
field and gravity. This is the famous holographic superconductor model,
proposed in 2008 by Hartnoll, Horowitz and Herzog [47, 46], and Gubser
[40]. It is immediately clear that the term superconductor is not quite sat-
isfying: not only are there no fermionic degrees of freedom but the U(1)
symmetry is global and not gauged, thus more akin to the situation in a
superfluid. Nevertheless, it is the most famous application of AdS/CFT
on complex systems, encapsulating all important elements.

Let us first recall the effective Landau-Ginzburg theory of supercon-
ductivity. There, one replaces the microscopic treatment of Cooper pairs
by an effective theory for the charged bosonic order parameter Φ. One then
constructs the free energy in the vicinity of the transition point in accor-
dance with general symmetry requirements. The result is a phenomeno-
logical action which can describe the dependence of the pair density on
temperature near the critical point, as well as the Higgsing phenomenon,
i.e. breaking of the gauge U(1) symmetry by the condensate. Since the
holographic description will take U(1) to be a global rather a local sym-
metry, This last ingredient is missing in the holographic version. The
holographic superconductivity an important breakthrough. Not only does
it give an example on how to treat in principle the condensation of any or-
der parameter holographically, but it does so in a novel way: directly from
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a critical system and this is reflected in non-standard transport properties
which reproduce the experimental results for superconducting materials.

Following the original papers, we specify to the case of D = 3 in this
section. The bulk action is easy to write from the symmetry requirements:

Sbulk =

∫
dz

∫
d3x

[
R+ 6− 1

4
FµνF

µν −D†
µΦD

µΦ−m2Φ2 − Vint(|Φ|)
]

(2.20)
where the covariant derivative is

Dµ = ∂µ − iqAµ (2.21)

and the potential Vint can be an arbitrary function in the bottom-up
setup. We will opt for the simplest case and set it to zero. At finite
temperature nothing changes dramatically upon introducing a finite po-
tential. The ansatz (2.3) can be used for the metric. For simplicity, let us
assume spherical symmetry, isotropy and an electric-only configuration of
the Maxwell field for now, writing

A = A0(z)dt (2.22)

The 00 and zz components of the Einstein equations read:

3f − z∂zf − 3 =
1

2

(
(∂zΦ)

2 − V + (∂zA0)
2 + q2Φ2A2

0

)
(2.23)

3f − z∂zf − 3zf
∂zh

h
− 3 =

1

2

(
(∂zΦ)

2 + V + (∂zA0)
2 + q2Φ2A2

0

)
(2.24)

while the Maxwell equation for F0z reads

∂z

(
1√
h
∂zA0

)
= 2q2

Φ2

z3
√
fh
. (2.25)

The ii component of Einstein equations can be shown to be a linear com-
bination of the remaining two and can be left out. The equations for
this simple system are clearly quite involved. This is typical for the bulk
physics of holographic systems: the full solution has to be obtained nu-
merically, while analytical estimates can be made in the near-horizon and
near-boundary limit. The former is of importance for the phase diagram
and analysis of the condensate formation. We will discuss it after we solve
a more basic question: how to impose the boundary conditions and calcu-
late the quantities on the field theory side? To that end, we can use the
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results obtained earlier for the near-boundary asymptotics of the scalar
field – it turns out that coupling to the gauge field is always a subleading
term for z → 0 and does not change the asymptotics. Schematically, the
near-boundary solution is therefore

Φ(z → 0) = Φ(1)z3−∆ +Φ(2)z∆. (2.26)

The boundary action is important for the calculation of free energy at
the boundary. The scaling dimension is set by the bulk mass; as before,
we have ∆ = D/2 +

√
D2/4 +m2. According to the dictionary, Φ(2)

sources the boundary field while Φ(1) is its VEV. For a solution that
holographically encodes spontaneous symmetry breaking, we must seek
for a spontaneously generated VEV without a source for the scalar and
gauge field:2

S
(1)
bnd−Φ =

∮
d3x

√
−hΦ2|z→0 (2.27)

For completeness we give also the boundary action for the metric and
the gauge field. This is the Hawking-Gibbons term for the metric and
imposing the chemical potential µ = A0(z0) through a Dirichlet boundary
condition for A0. This gives altogether:

Sbnd =

∮
d3x

√
−h
(
−2K + 4 +A0∂zA0 +Φ2

)
. (2.28)

2.2.1 Scalar condensate and phase transitions

In the presence of a nonzero electrostatic potential the scalar has an ef-
fective negative mass: −m2

effΦ
2 ∼ −q2fhA2

0Φ
2/z2. For a large enough

charge q, it is reasonable to expect the scalar order parameter to condense.
This is precisely what happens. Note that this means that the sponta-
neous breaking of the global U(1) invariance in field theory is described by
the spontaneous breaking of a local symmetry in the bulk, i.e. Higgsing in
the bulk. Upon solving the equations of motion (2.23-2.25) with appropri-
ate boundary conditions, one is able to find a solution with non-vanishing
scalar field. On the field theory side, the operator dual to Φ will condense,

2We can also employ the alternative quantization, where the subleading term be-
comes the source. Fixing the subleading term however is not enough to cancel the
divergence, and we need to add an explicit counterterm so the boundary action be-
comes S

(2)
bnd−Φ =

∮
d3x

√
−h(Φ2 + 2Φnz∂

zΦ).
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breaking now the global U(1) symmetry.3 Solving the system (2.23-2.25)
numerically, one obtains the dependence of the condensate value 〈Φ〉 on
temperature. The result is a textbook order-disorder transition with the
mean field scaling of the condensate with temperature:

〈Φ1,2〉 ∝
(
1− T

Tc

)β1,2
. (2.29)

One can then proceed to calculate the free energy which indeed reveals
the existence of a second order phase transition, and with mean field ex-
ponents, thus reproducing the predictions of the Landau-Ginzburg theory.
This finding encapsulates the essential features of holographic supercon-
ductivity – a scalar with arbitrary mass Higsses in the bulk leading to a
global order-disorder transition on the field theory side.

Hartnoll et al have proceeded to compute conductivities [47] and found
excellent qualitative agreement with experiment. In the standard quan-
tization, Φ1 condenses and backreacts on the gauge field. We can then
compute the conductivity of the system as the ration of the current and
the external field – the corresponding bulk quantities are the subleading
and the leading term of a spatial component of the gauge field. The result-
ing curve looks like that of conventional BCS superconductors. Doing the
same in alternative quantization, for Φ2 (see the footnote on this page),
one finds that conductivity mimics the one seen in unconventional super-
conductors. This was the first triumph of AdS/CMT in approaching the
experiment [45].

Remarkably, a neutral scalar can also condense. The above mechanism
clearly cannot be the cause of the formation of neutral hair. What is
the mechanism here? The explanation lies in the generalization of the
tachyonic instability to AdS known as the Breitenlohner-Freedman (BF)
bound [25, 47, 46] and the geometry of the charged black hole. The BF
bound is the value for which the square root in ∆ becomes imaginary. In
D + 1 dimension it reads:

m2 < m2
BF = − D2

4L2
(2.30)

3For low masses, the scalar field has two quantizations with the non-standard al-
ternative quantization similar to the Legendre transform to the canonical ensemble as
described earlier. The two possible choices for the boundary conditions – fixing the VEV
versus fixing the source – lead to two different field theories, with different properties.
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where L is the radius of the space. In AdS4 the BF value is thus −9/4L2.
In the presence of non-zero chemical potential, this system has a different
geometry in deep interior dual to the IR of a CFT. The near-horizon region
of the charged black hole has the geometry AdS2⊗R

2: it is a direct product
of the x−y plane and a two-dimensional AdS space, distinct from the AdS4
where the system as a whole lives. AdS2 has the BF bound m2 < m2

BF .
Dimension is reduced from D + 1 = 4 to D + 1 = 2 but the radius of the
AdS2 is smaller than the radius of AdS4: L2 = L/

√
6. Therefore, the BF

bound in the interior is m2 < −6/4L2. This means that there is a window
of the values of m where m2

AdS4 < m2 < m2
AdS2, so a scalar which is stable

in AdS4 will still condense in AdS2 [47]. The field theory meaning of this
effect is the breaking of the discrete (Ising) Z2 gauge symmetry. This is a
truly novel result of the holographic theory. The fact that the physics on
field theory side can be explained by analyzing near-horizon geometry is
an important lesson we will take from this review section.

2.3 Holographic dictionary for fermions

We now proceed to the object of this thesis: fermions. The essential prob-
lem for fermions is the well-known fact the Dirac fermion is a constrained
system: the equations of motion are of first order, only half of the compo-
nents of Dirac field are independent degrees of freedom while the rest are
uniquely determined by them. The sign problem does not plague holog-
raphy at least at the leading (tree) level. This is because the quasiparticle
picture is preserved in the bulk, in the sense that we will consider weakly
interacting fermions coupled to external fields only. Besides, we know that
two-point correlation functions and expectation values (densities) are dual
to tree-level objects in the bulk, thus one does not need to face the loop
effects where the fermionicity strikes harder.4

4Occasionally, it is laconically claimed that the fermion sign problem is eliminated by
holography as in the limit of classical gravity/large N strongly coupled field theory the
bulk physics is classical. This is not entirely true: while gravity is treated classically in
this limit as the gravitational constant κD+1 → 0, this does not tell us anything about
the matter fields. Indeed, these in general require the same QFT treatment no matter
if we take classical gravity limit, SUGRA limit or neither.
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2.3.1 Equations of motion

While already the original AdS/CFT works include fermions as the field
theory side is supersymmetric, it was not a priori clear how to construct
dictionary entries for a fermionic observable in field theory. This problem
was addressed in [84, 7, 56]. A more systematic rephrasing of the solution,
which takes the viewpoint of holographic regularization, was given in [16].
We will mainly follow the reasoning of the latter reference as it is the
most logically coherent exposition of the problem. Whereas the boundary
action Sbnd needed to be picked by hand in earlier formulations, [16] shows
that it follows logically from the requirement that the theory should be
regular in the UV.

Kinematics and holography

Let us first discuss the kinematics of Dirac fermion; we have already an-
nounced that this will be the main source of trouble. The Dirac algebra
in full AdS space (D + 1-dimensional) is represented by gamma matrices
Γµ, µ = 0, . . . D, and ΓD ≡ Γz. The restriction of this representation to D
dimensions, i.e. on the boundary, we will denote by γµ (µ = 0, . . . D− 1).
Recalling the table of the representations of Dirac algebra in various di-
mensions, we find that in odd number of dimensions D + 1, i.e. for D
even, there is a single spinor representation, whereas for D odd there are
two irreducible representations of the Dirac algebra. We will mainly deal
with this case in the thesis. In this case, Ψ is a bispinor and we can de-
compose it into two spinors Ψ±. The choice of projection operator Π± is
non-unique. In holography there is a natural choice which preserves all
symmetries in the boundary theory: projection on the radial direction.
Thus the projectors are Π± = (1± Γz)/2.

Dynamics

We are now ready to write the Dirac equation. We can always write it as
a pair of coupled equations for Ψ±. As we know, the Dirac equation reads

(/D −m)Ψ = 0. (2.31)

The covariant derivative includes the coupling to any gauge fields present
and to the metric through the spin connection:

/D = eµa

(
∂µ +

1

8
ωbcµ [Γb,Γc]− iqeµaAa

)
. (2.32)
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From now on, we will denote the local tangential coordinates by Latin
indices and the metric coordinates by Greek indices. The inverse vielbein
is eµa . From now on we will study a fermion in the homogenous back-
ground coupled to isotropic A0 gauge field, describing a field theory at
finite density. Taking into account homogeneity and isotropy of the sys-
tem in transverse direction, we can partially Fourier-transform so that
the derivative becomes ∂µ 7→ (−iω, ik, ∂z). The spin connection, given in
general by ωbcµ = ebν∂µe

νc + ebνe
σcΓνσµ, has only two nonzero components,

ω0z
0 and ωizi :

ω0z
0 = e00e

zzΓ0
z0 =

1

2
e00e

zzg00∂zg00 = ezz∂ze
0
0

ωizi = eiie
zzΓizi =

1

2
eiie

zzgii∂zgii = ezz∂ze
i
i, (2.33)

Note that they can be formally written as total derivatives and as a con-
sequence they can be absorbed in the redefinition of the fermion field in
the following way. The equation of the form

Γzezz
[
∂z + ∂z

(
e00 + (D − 1) eii

)]
Ψ+ (. . .)Ψ = 0, (2.34)

where (. . .) denotes all terms containing no radial derivatives, can be
rewritten as Γzezz∂zψ + (. . .)ψ = 0 upon rescaling the Dirac field as

Ψ 7→ ψ ≡ Ψ

√
g00 (gii)

D−1 = Ψ
√−ggzz. (2.35)

This rescaling works generally for single parameter metrics. From now on
throughout this chapter we will use the rescaling (2.35) and work with ψ
and ψ± instead of Ψ and Ψ±.

With the rescaling for the Dirac field, we can write the Dirac equation
for ψ [

ezz∂z − Γz(iqeµ0A
0 +m)

]
ψ = 0. (2.36)

Next we decompose the equation into the equations for ψ±. The result
can be written as:

(∂z + ezzm)ψ± ± /T ψ∓ = 0 (2.37)

where /T is the transverse covariant derivative rescaled by the vielbein ezz:

−i /T = ezze
00γ0(−ω + qA0) + ezze

iiγiki. (2.38)
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Starting from the Dirac equation (2.38), we can eliminate either ψ+ or ψ−
and readily derive a second order equation of motion for ψ±. Using that
/T /T = −T0T 0 + TiT

i ≡ T 2, we can invert /T to rewrite

/T
T 2

(∂z + ezzm)ψ+ = −ψ− (2.39)

and use the ψ− equation to obtain

(∂z −mezz)
/T
T 2

(∂z +mezz)ψ+ = − /T ψ+. (2.40)

This finally brings us to the second-order form of the Dirac equation, for
the spinor ψ+. Denoting it as

(∂zz + P∂z +Q+)ψ+ = 0 (2.41)

we have for the coefficients

P(z) = −[∂z, /T ]
/T
T 2

Q+(q,m, ω, k; z) = −2mezz + (∂zme
z
z)− [∂z, /T ]

/T
T 2
mezz + T 2.(2.42)

For the second component ψ− we get the same equation but with Q− =
Q+(−q,−m,−ω,−k).

Of course, the second order equation implies the Dirac equation but
is not equivalent to it. The necessary and sufficient condition for ψ+, the
solution of (2.41), to be also the solution to (2.37), reads

ψ− =
1

/T (∂z +mezz)ψ+. (2.43)

It is instructive to solve the simplest case: that of pure AdS with no
gauge fields. The field is rescaled as ψ = Ψ/z(D+3)/2, and the second
order equation for ψ+ becomes

(
∂zz −

2m

z
− m

z2

)
Ψ+ = 0 (2.44)

which we readily recognize as the Bessel equation. It yields the following
general solution:

ψ+(z) =
1

z

(
ψ
(1)
0 Km+1/2 (kz) + ψ

(2)
0 Km−1/2 (kz)

)
, (2.45)
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where Km±1/2 are modified Bessel functions of the second kind. The
near boundary asymptotics of the non-rescaled field Ψ+ behaves as Ψ+ =

Ψ
(1)
+ zD/2−m+Ψ

(2)
+ zD/2+m. Clearly, Ψ

(1)
+ is always the leading, source term.

But what is the response? Naively, it can be Ψ
(2)
+ as the subleading term.

In the boundary action (2.48) we have however Ψ− coupled linearly to the

source Ψ+ (which, with appropriate boundary conditions, becomes Ψ
(1)
+ ).

Therefore, the response is Ψ− with appropriate boundary asymptotics.

Dirac equation tells that Ψ
(1)
− ∝ Ψ

(2)
+ so we conclude that the response is

Ψ
(1)
− .

2.3.2 Boundary action

Let us start again from the minimal bulk action for Dirac fermions coupled
to gravity and possibly gauge fields:

Sbulk = Sgrav +

∫
dD+1x

√−gΨ̄(/D −m)Ψ + . . . , (2.46)

where (. . .) stand for any additional fields in the system. It is assumed that
these will not change the UV behavior of fermions nor the AdS asymp-
totics of the background; they might change the background and thus
also the fermionic behavior in IR but we will simply assume a given fixed
IR whatever might be the fields which produce it. The issue is how to
implement the dictionary. The Dirac action is famously proportional to
Dirac equation and thus vanishes on shell. We have seen this also in the
scalar sector however. The resolution is the existence of a boundary ac-
tion, which in fact encodes the full holographic partition function. The
objective is to construct it here for fermions. To do so, let us find the
variation of the bulk part (disregarding again the parts we know: gravity
and bosons). Since we work in a spacetime with a boundary, there will
generically be a boundary contribution. Employing partial integration in
(2.46) and varying with respect to ψ, we get:

δSbulk = δ

∫
dD+1x

√−gψ̄(/D −m)ψ =

=

∫
dDx

√
−hψ̄δψ|zhz0 −

∫
dD+1x

√−g(−/D −m)ψ̄δψ. (2.47)

The second, bulk term vanishes on shell as it is proportional to the equa-
tion of motion. The first, boundary term does not vanish however. It is
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to be evaluated on the boundary of AdS in UV and at zh in IR.5 In terms
of the radial projections, it reads

δS =
1

2

∫
dDx

√
−h
(
ψ̄+δψ− + ψ̄−δψ+

)
. (2.48)

We know from general rules of AdS/CFT that one of the components
of ψ will be the source and the other the response, and in the previous
subsection we have seen that the leading component of ψ+ is larger (i.e.
decays slower) at the boundary than the leading component of ψ−. We
can therefore pick ψ+ to be the source. This means that ψ+ is fixed at
the boundary and its variation is zero: δψ+ = 0. The variation of the
action now reduces to the first term in (2.48). To cancel ad we can add a
counterterm reading

Sct =
1

2

∫
dDx

√
−h(ψ̄+ψ− + ψ̄−ψ+) (2.49)

and the whole action is given by S = Sbulk + Sct, so Sbnd ≡ Sct: the
whole boundary contribution can be understood as the counterterm which
regularizes the action, eliminating UV divergences and making the on-shell
solution satisfy the Dirac equation in the bulk.

For the steps to follow it is convenient to introduce the bulk-to-boundary
propagator G±(z) and to express the solution in terms of G±. The bulk-
to-boundary propagator satisfies the equation of motion [114]:

(/D −m)G(z) = δ(z) (2.50)

i.e. it is a response to a Dirac delta function source at the boundary. We
can now express the solution to Dirac equation in terms of G± and χ±.
The expression for ψ± reads

ψ+ = G−1
+ (z0)G+(z)χ+, ψ− = G−1

+ (z0)G−(z)Sχ− (2.51)

where S = limz→0 T / /T . Namely, at the boundary the energy-momentum
dependence can be shown to drop from the factor T / /T , leaving only a
constant matrix (which of course depends on the representation of gamma
matrices, hence we do not specify it here). The convenience of the above
representation of ψ is that all z dependence of ψ is encoded in the bulk-to-
boundary propagators. Substituting (2.51) into the boundary action, we

5The latter is a single point if zh → ∞ or a slice in the transverse direction if zh is
finite.
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obtain an expression for the full on-shell action in terms of the solutions
G±(z):

Son−shell =
∫

z=z0

dωd2k

(2π)3

√
−hχ̄+G−(z0)G−1

+ (z0)χ+. (2.52)

The two-point correlator in field theory is therefore

G(ω, k) = G−(z0)G−1
+ (z0). (2.53)

What this illustrates is that the subleading component of Ψ− is the re-
sponse to the leading component of Ψ+. This will be the starting point of
the work done in most of Chapter 3 and 4.

2.4 The remainder of the thesis

Having discussed the larger context in the first chapter and the theoretical
foundations and previous work on the topic of our research in this, second
chapter, we have finished introducing the formal framework of our work.
We now outline the work done in this thesis on specific problems with
fermion systems. We will use the power of holography to describe strongly
coupled systems from a new fundamental perspective, to circumvent the
sign problem. We stay exclusively with bottom-up setups. The first reason
is their obvious simplicity as compared to top-down constructions which
become particularly complicated if fermions are included. A deeper reason
is that the conceptual aspects we consider such as the dictionary entry for
a Fermi surface, or for a Fermi liquid state, or pathways through which
Fermi liquids are destroyed – are not expected to depend much on the
exact string action.

Another compromise with consistency that we have to decide about is
the choice between self-consistent calculations, with backreaction, versus
probe limit calculations. We start from the probe limit and afterwards
include backreaction, first on gauge field and then also on geometry. Of
course, probe limit suffices at small fermion density, when the backreaction
is anyway small, but becomes less and less satisfactory as the density
increases. The field theory interpretation is that backreaction probes the
stability of the system – unstable quantum critical matter is described
by the probe limit calculations, but to arrive at stable phases we need
to backreact. In particular, the Fermi-liquid-like phase (which we know
empirically to be very stable) requires backreaction.
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In Chapter 3 we address the critical theory governing the zero tem-
perature quantum phase transition between strongly renormalized Fermi-
liquids as found in heavy fermion intermetallics and possibly high Tc super-
conductors. From the solutions of Dirac equation in the probe limit in the
AdS-RN background, we obtain the spectral functions of fermions in the
field theory. By increasing the fermion density away from the relativistic
quantum critical point, we observe multiple Fermi surfaces, some of them
of distinctly non-Fermi liquid nature while others have some features of
the Fermi liquid. Tuning the scaling dimensions of the critical fermion
fields we find that the quasiparticle disappears at a quantum phase tran-
sition of a purely statistical nature, not involving any symmetry change.
The resulting phase has no Fermi surfaces at all.

In Chapter 4 we extend our work by backreacting on gauge field. We
provide evidence that the bulk dual to a strongly coupled charged Fermi-
liquid-like system has a non-zero fermion density in the bulk. We then
calculate density explicitly in the small density approximation, a model
we call black hole with Dirac hair. Then we show that the pole strength
of the stable quasiparticle characterizing the Fermi surface is encoded in
the spatially averaged AdS probability density of a single normalizable
fermion wave function in AdS. Recalling Migdal’s theorem which relates
the pole strength to the Fermi-Dirac characteristic discontinuity in the
number density at Fermi energy, we conclude that the AdS dual of a Fermi
liquid is described by occupied on-shell fermionic modes in AdS. Encoding
the occupied levels in the total spatially averaged probability density of
the fermion field directly, we show that an AdS Reissner-Nordström black
hole in a theory with charged fermions has a critical temperature, at which
the system undergoes a first-order transition to a black hole with a non-
vanishing profile for the bulk fermion field. Thermodynamics and spectral
analysis support that the solution with non-zero AdS fermion-profile is the
preferred ground state at low temperatures.

In Chapter 5 we continue our study of self-consistent (backreacted)
models and move toward constructing the full phase diagram of the Dirac-
Maxwell-Einstein system and its field theory dual. We compare our Dirac
hair model with the electron star model of Hartnoll et all [51], and argue
that the electron star and the AdS Dirac hair solution are two limits
of the free charged Fermi gas in AdS. Spectral functions of holographic
duals to probe fermions in the background of electron stars have a free
parameter that quantifies the number of constituent fermions that make
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up the charge and energy density characterizing the electron star solution.
The strict electron star limit takes this number to be infinite. The Dirac
hair solution is the limit where this number is unity. This is evident in the
behavior of the distribution of holographically dual Fermi surfaces. As we
decrease the number of constituents in a fixed electron star background
the number of Fermi surfaces also decreases. An improved holographic
Fermi ground state should be a configuration that shares the qualitative
properties of both limits.

We construct such configuration in Chapter 6. We employ a model
which combines the (semiclassical) WKB approximation and its Airy cor-
rection with the quantum corrections based on Dirac equation. At high
temperatures, the system exhibits a first order thermal phase transition
to a charged AdS-RN black hole in the bulk and the emergence of local
quantum criticality on the CFT side. This restores the intuition that the
transition between the critical AdS-RN liquid and the finite density Fermi
system is of van der Waals liquid-gas type. At zero temperature, we find
a Berezhinsky-Kosterlitz-Thouless transition from Fermi-liquid-like finite
density phase with a sharp Fermi surface to zero density AdS-Reissner-
Nordström but in the regime without Fermi surfaces. This suggests that
it is indeed the Fermi surface which drives the instability of the AdS-RN
quantum critical phase. Based on these findings, we construct the three-
dimensional phase diagram, with temperature, conformal dimension and
fermion charge.

Even though we have not answered some of the questions we started
from, in particular the question of what is the holographic dual to a text-
book Landau Fermi liquid and how it is destroyed by strong interactions,
we have obtained a qualitative model of how stable Fermi-liquid-like quasi-
particles become unstable at a quantum critical point and give rise to
novel phenomena. These phenomena could not be obtained in a pertur-
bative approach and they illustrate the power of AdS/CFT and its ability
to make specific predictions on strongly correlated fermions. These pre-
dictions have not been tested experimentally so far. Because of many
simplifying assumptions and the lack of ability to construct a microscopic
Hamiltonian on the boundary, our results are unlikely to be a good quan-
titative description of any realistic system. Nevertheless, they make some
remarkable qualitative predictions which can be expected to hold also in
real-world materials, due to the universality associated to quantum crit-
ical behavior. The coming years will surely determine whether the novel
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physics on display in AdS/CMT is a part of the real world.



Chapter 3

Charged black hole and
critical Fermi surfaces [17]

Quantum many-particle-physics lacks a general mathematical theory to
deal with fermions at finite density. This is known as the “fermion-sign-
problem”: there is no recourse to brute force lattice models as the sta-
tistical path integral methods that work for any bosonic quantum field
theory do not work for finite density fermi-systems. The non-probabilistic
fermion problem is known to be of exponential complexity [109] and in
the absence of a general mathematical framework all that remains is phe-
nomenological guesswork in the form of the Fermi-liquid theory describing
the state of electrons in normal metals and the mean-field theories describ-
ing superconductivity and other manifestations of spontaneous symmetry
breaking. This problem has become particularly manifest in quantum con-
densed matter physics with the discovery of electron systems undergoing
quantum phase transitions that are reminiscent of the bosonic quantum
critical systems [95] but are governed by fermion statistics. Empirically
well documented examples are found in the ’heavy fermion’ intermetallics
where the zero temperature transition occurs between different Fermi-
liquids with quasiparticle masses that diverge at the quantum critical point
[117]. Such fermionic quantum critical states are believed to have a di-
rect bearing on the problem of high Tc superconductivity because of the
observation of quantum critical features in the normal state of optimally
doped cuprate high Tc superconductors [111, 116].

A large part of the “fermion-sign-problem” is to understand this strongly
coupled fermionic quantum critical state. The emergent scale invariance
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and conformal symmetry at critical points is a benefit in isolating deep
questions of principle. The question is how does the system get rid off the
scales of Fermi-energy and Fermi-momentum that are intrinsically rooted
in the workings of Fermi-Dirac statistics [99, 72]? Vice versa, how to con-
struct a renormalization group with a relevant ’operator’ that describes
the emergence of a statistics controlled (heavy) Fermi liquid from the crit-
ical state [117], or perhaps the emergence of a high Tc superconductor?
We will show that a mathematical method developed in string theory has
the capacity to answer at least some of these questions.

3.1 String theory for condensed matter

We refer to the AdS/CFT correspondence: a duality relation between
classical gravitational physics in a d + 1 dimensional ’bulk’ space-time
with an Anti-de-Sitter (AdS) geometry and a strongly coupled conformal
(quantum critical) field theory (CFT) with a large number of degrees of
freedom that occupies a flat or spherical d dimensional ’boundary’ space-
time. Applications of AdS/CFT to quantum critical systems have al-
ready been studied in the context of the quark-gluon plasma [104, 41],
superconductor-insulator transitions [59, 46, 40, 47] and cold atom sys-
tems at the Feshbach resonance [103, 8, 1] but so far the focus has been on
bosonic currents (see [45, 49] and references therein). Although AdS/CFT
is convenient, in principle the groundstate or any response of a bosonic
statistical field theory can also be computed directly by averaging on a
lattice. For fermions statistical averaging is not possible because of the
sign-problem. There are, however, indications that AdS/CFT should be
able to capture finite density fermi systems as well. Ensembles described
through AdS/CFT can exhibit a specific heat that scales linear with the
temperature characteristic of Fermi systems [69], zero sound [69, 65, 70]
and a minimum energy for fermionic excitations [93, 101].

To address the question whether AdS/CFT can describe finite density
fermi-systems and the Fermi liquid in particular, we compute the single
charged fermion propagators and the associated spectral functions that
are measured experimentally by angular resolved photoemission (“AdS-
to-ARPES”) and indirectly by scanning tunneling microscopy. The spec-
tral functions contain the crucial information regarding the nature of the
fermion states. These are computed on the AdS side by solving for the on-
shell (classical) Dirac equation in the curved AdS space-time background
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with sources at the boundary. A temperature T and finite U(1) chemical
potential µ0 for electric charge is imposed in the field theory by studying
the Dirac equation in the background of an AdS Reissner-Nordstrom black
hole. We do so expecting that the U(1) chemical potential induces a finite
density of the charged fermions. The procedure to compute the retarded
CFT propagator from the dual AdS description is then well established
[104, 49]. Compared to the algorithm for computing bosonic responses,
the treatment of Dirac waves in AdS is more delicate, but straightforward;
details are provided in the final section of this chapter. The equations ob-
tained this way are solved numerically and the output is the retarded
single fermion propagator GR(ω, k) at finite T . Its imaginary part is the
single fermion spectral function A(ω, k) = − 1

π ImTr( iγ0GR(ω, k)) that can
be directly compared with ARPES experiments.

The reference point for this comparison is the quantum critical point
described by a zero chemical potential (µ0 = 0), zero temperature (T = 0),
conformal and Lorentz invariant field theory. Here the fermion propaga-
tors 〈Ψ̄Ψ〉 ≡ G(ω, k) are completely fixed by symmetry to be of the form
(we use relativistic notation where c = 1)

GCFT∆Ψ
(ω, k) ∼ 1

(
√
−ω2 + k2)d−2∆Ψ

(3.1)

with ∆Ψ the scaling dimension of the fermion field. Through the AdSd+1/CFTd
dictionary ∆Ψ is related to the mass parameter in the d + 1-dimensional
AdS Dirac equation. Unitarity bounds this mass from below in units of
the AdS radius mL = ∆Ψ − d/2 > −1/2 (we set L = 1 in the remain-
der). The choice of which value to use for m will prove essential to show
the emergence of the Fermi liquid. The lower end of the unitarity bound
m = −1/2 + δ, δ ≪ 1, corresponds to introducing a fermionic confor-
mal operator with weight ∆Ψ = (d − 1)/2 + δ. This equals the scaling
dimension of a nearly free fermion. Despite the fact that the underlying
CFT is strongly coupled, the absence of a large anomalous dimension for
a fermion with mass m = −1/2 + δ argues that such an operator fulfills a
spectator-role and is only weakly coupled to this CFT. We will therefore
use such values in our calculations. Our expectation is that the Fermi
liquid, as a system with well-defined quasiparticle excitations, can be de-
scribed in terms of weakly interacting long-range fields. As we increase
m from m = −1/2 + δ, the interactions increase and we can expect the
quasi-particle description to cease to be valid beyond m = 0. For that
value m = 0, and beyond m > 0, the naive scaling dimension ∆O of the
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fermion-bilinear O∆O = ΨΨ is marginal or irrelevant and it is hard to
see how the ultra-violet conformal theory can flow to a Fermi-liquid state,
assuming that all vacuum state changes are caused by the condensation of
bosonic operators. This intuition will be borne out by our results: when
m ≥ 0 the standard Fermi-liquid disappears. A similar approach to de-
scribing fermionic quantum criticality [79] discusses the special casem = 0
or ∆Ψ = d/2 in detail; other descriptions of the m = 0 system are [76, 91].

3.2 The emergent Fermi liquid

With an eye towards experiment we shall consider the AdS4 dual to a
relativistic CFT3 in d = 2 + 1 dimensions; see the last section of this
chapter. As we argue there, we do not know the detailed microscopic CFT
nor whether a dual AdS with fermions as the sole U(1) charged field exists
as a fully quantum consistent theory for all values of m = ∆Ψ − d/2, but
the behavior of fermion spectral functions at a strongly coupled quantum
critical point can be deduced nonetheless. Aside from ∆Ψ, the spectral
function will depend on the dimensionless ratio µ0/T as well as the U(1)
charge g of the fermion; we shall set g = 1 from here on, as we expect that
only large changes away from g = 1 will change our results qualitatively.
We therefore study the system as a function of µ0/T and ∆Ψ. We have
drawn our approach in Fig. 3.1B: first we shall study the spectral behavior
as a function of µ0/T for fixed ∆Ψ < 3/2; then we study the spectral
behaviour as we vary the scaling dimension ∆Ψ from 1 to 3/2 for fixed
µ0/T coding for an increasingly interacting fermion. Note that our set-up
and numerical calculation necessitate a finite value of µ0/T : all our results
are at non-zero T .

Our analysis starts near the reference point µ0/T → 0 where the long
range behavior of the system is controlled by the quantum critical point
(Fig. 3.1A). Here we expect to recover conformal invariance, as the system
forgets about any well-defined scales, and the spectral function should be
controlled by the branchcut at ω = k in the Green’s function (Eq.1) : (a)
For ω < k it should vanish, (b) At ω = k we expect a sharp peak which for
ω ≫ k scales as ω2∆Ψ−d. Fig. 3.2A shows this expected behavior of spec-
tral function for three different values of the momentum for a fermionic
operator with weight ∆Ψ = 5/4 computed from AdS4.

Turning on µ0/T holding ∆Ψ = 5/4 fixed, shifts the center location
of the two branchcuts to an effective chemical potential ω = µeff ; this
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(A)

T ↑

0 µ0 →
(B)

d

2

Fermi-Liquid

CFT

0
d− 1

2

T

|µ0|
↑

∆Ψ →

Figure 3.1: The phase diagram near a quantum-critical point. Gray lines de-
pict lines of constant µ0/T : the spectral function of fermions is unchanged along
each line if the momenta are appropriately rescaled. As we increase µ0/T we
crossover from the quantum-critical regime to the Fermi-liquid. (B) The trajec-
tories in parameter space (µ0/T,∆Ψ) studied here. We show the crossover from
the quantum critical regime to the Fermi liquid by varying µ0/T keeping ∆Ψ

fixed; we cross back to the critical regime varying ∆Ψ → d/2 for µ0/T fixed. The
boundary region is not an exact curve, but only a qualitative indication.

bears out our expectation that the U(1) chemical potential induces a finite
fermion density. While the peak at the location of the negative branchcut
ω ∼ µeff − k stays broad, the peak at the other branchcut ω ∼ µeff + k
sharpens distinctively as the size of µ0/T is increased (Fig. 3.2B). We
shall identify this peak with the quasiparticle of the Fermi liquid and its
appearance as the crossover between the quantum-critical and the Fermi-
liquid regime. The spectral properties of the Fermi liquid are very well
known and display a number of uniquely identifying characteristics [77,
98]. If this identification is correct, all these characteristics must be present
in our spectra as well.

1. The quasiparticle peak should approach a delta function at the Fermi
momentum k = kF . In Fig. 3.2B we see the peak narrow as we
increase k, peak, and broaden as we pass k ∼ kF (recall that T =
0 is outside our numerical control and the peak always has some
broadening). In addition the spectrum should vanish identically at
the Fermi-energy A(ω = EF , k) = 0, independent of k. This is
shown in Fig. 3.2C.
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Figure 3.2: (A) The spectral function A(ω, k) for µ0/T = 0.01 and m = −1/4.
The spectral function has the asymptotic branch cut behavior of a conformal
field of dimension ∆Ψ = d/2 +m = 5/4: it vanishes for ω < k, save for a finite
T tail, and for large ω scales as ω2∆Ψ−d. (B) The emergence of the quasiparticle
peak as we change the chemical potential to µ0/T = −30.9 for the same value
∆Ψ = 5/4. The three displayed momenta k/T are rescaled by a factor Teff/T for
the most meaningful comparison with those in (A). The insets show the full scales
of the peak heights and the dominance of the quasiparticle peak for k ∼ kF . (C)
Vanishing of the spectral function at EF for ∆Ψ = 1.05 and µ0/T = −30.9. The
deviation of the dip-location from EF is a finite temperature effect. It decreases
with increasing µ0/T .
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2. The quasiparticle should have linear dispersion relation near the
Fermi energy with a renormalized Fermi velocity vF different than
the underlying relativistic speed c = 1. In Fig. 3.3 we plot the
maximum of the peak ωmax as a function of k. At high k we re-
cover the linear dispersion relation ω = |k| underlying the Lorentz
invariant branchcut in Eq.1. Near the Fermi energy/Fermi momen-
tum however, this dispersion relation changes to a slope vF given
by the limit limω→EF ,k→kF (ω − EF )/(k − kF ) clearly less than one.
Importantly, it appears that the Fermi Energy EF is not located at
zero-frequency.1 Recall, however, that the AdS chemical potential
µ0 is the bare U(1) chemical potential in the CFT. This is confirmed
in Fig. 3.3 from the high k behavior: its Dirac point is µ0. On the
other hand, the chemical potential felt by the IR fermionic degrees of
freedom is renormalized to the value µF = µ0−EF . As is standard,
the effective energy ω̃ = ω − EF of the quasiparticle is measured
with respect to EF .

3. At low temperatures Fermi-liquid theory predicts the width of the
quasiparticle peak to grow quadratically with temperature. Fig.
3.4A, 3.4B show this distinctive behavior up to a critical tempera-
ture Tc/µ0 ∼ 0.16. This temperature behavior directly follows from
the fact that imaginary part of the self-energy Σ(ω, k) = ω − k −
(Triγ0G(ω, k))−1 should have no linear term when expanded around
EF : ImΣ(ω, k) ∼ (ω −EF )

2 + .... This is shown in Fig. 3.4C, 3.4D.

These results give us confidence that we have identified the characteristic
quasiparticles at the Fermi surface of the Fermi liquid emerging from the
quantum critical point.

Let us now discuss how this Fermi-liquid evolves when we increase
the bare µ0 (Fig. 3.5). Similar to the fermion chemical potential µF ,
the fundamental control parameter of the Fermi-liquid, the fermion den-
sity ρF , is not directly related to the AdS µ0. We can, however, infer it
from the Fermi-momentum kF that is set by the quasiparticle pole via
Luttinger’s theorem ρF ∼ kd−1

F . The more illustrative figure is there-
fore Fig. 3.5B which shows the quasiparticle characteristics as a function
of kF /T . We find that the quasiparticle velocities decrease slightly with

1In our original paper we misidentified the location of the maximum peak height
with EF . The correct identification is when the pole hit the real axis in the complex
frequency space. We explain this bellow in the last section of this chapter.
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Figure 3.3: Maxima in the spectral function as a function of k/µ0 for ∆Ψ =
1.35 and µ0/T = −30.9. Asymptotically for large k the negative k branch cut
recovers the Lorentz-invariant linear dispersion with unit velocity, but with the
zero shifted to −µ0. The peak location of the positive k branch cut that changes
into the quasiparticle peak changes significantly. It gives the dispersion relation
of the quasiparticle near (EF , kF ). The change of the slope from unity shows
renormalization of the Fermi velocity. This is highlighted in the inset. Note that
the Fermi energy EF is not located at ωAdS = 0. The AdS calculation visualizes
the renormalization of the bare UV chemical potential µ0 = µAdS to the effective
chemical potential µF = µ0 − EF felt by the low-frequency fermions.

increasing kF , rapidly leveling off to a finite constant less than the rela-
tivistic speed. Thus the quasiparticles become increasingly heavy as their
mass mF ≡ kF /vF asymptotes to linear growth with kF . The Fermi en-
ergy EF also shows linear growth. Suppose the heavy Fermi-quasiparticle
system has the underlying canonical non-relativistic dispersion relation
E = k2/(2mF ) = k2F /(2mF )+vF (k−kF )+..., then the observed Fermi en-

ergy EF should equal the renormalized Fermi-energy E
(ren)
F ≡ k2F /(2mF ).

Fig. 3.5B shows that these energies EF and E
(ren)
F track each other re-

markably well. We therefore infer that the true zero of energy of the
Fermi-quasiparticle is set by the renormalized Fermi-energy as deduced
from the Fermi-velocity and -momentum.

Although the true quasiparticle behavior disappears at T > Tc, Fig.
3.5A indicates that in the limit kF /T → 0 the quasiparticle pole strength
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Figure 3.4: (A) Temperature dependence of the quasiparticle peak for ∆Ψ = 5/4
and k/kF ≃ 0.5; all curves have been shifted to a common peak center. (B) The
quasiparticle peak width δ ∼ ReΣ(ω, k = kF ) for ∆Ψ = 5/4 as a function of T 2: it
reflects the expected behavior δ ∼ T 2 up to a critical temperature Tc/µ0, beyond
which the notion of a quasiparticle becomes untenable. (C) The imaginary part
of the self-energy Σ(ω, k) near EF , kF for ∆Ψ = 1.4, µ0/T = −30.9 . The
defining ImΣ(ω, k) ∼ (ω−EF )

2 + . . .-dependence for Fermi-liquid quasiparticles
is faint in panel (C) but obvious in panel (D). It shows that the intercept of
∂ωImΣ(ω, k) vanishes at EF , kF .

vanishes, Zk → 0, while the Fermi-velocity vF remains finite; vF ap-
proaches the bare velocity vF = 1. This is seemingly at odds with the
heavy Fermi liquid wisdom Zk ∼ mmicro/mF = mmicrovF /kF . The reso-
lution is the restoration of Lorentz invariance at zero density. From general
Fermi liquid considerations it follows that vF = Zk(1+ ∂kReΣ|EF ,kF

) and
Zk = 1/(1 − ∂ωReΣ|EF ,kF

) where ∂k,ωReΣ refers to the momentum and
energy derivatives of the real part of the fermion self-energy Σ(ω, k) at
kF , EF . Lorentz invariance imposes ∂ωΣ

′ = −∂kΣ′ which allows for van-
ishing Zk with vF → 1. Interestingly, the case has been made that such a
relativistic fermionic behavior might be underlying the physics of cuprate
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Figure 3.5: The quasiparticle characteristics as a function of µ0/T for ∆Ψ = 5/4.
Panel (A) shows the change of kF , vF ,mF , EF and the pole strength Z (the
total weight between half-maxima) as we change µ0/T . Beyond a critical value
(µ0/T )c we lose the characteristic T 2 broadening of the peak and there is no
longer a real quasiparticle, though the peak is still present. For the Fermi-liquid
kF /T rather than µ0/T is the defining parameter. We can invert this relation
and panel (B) shows the quasiparticle characteristics as a function of kF /T . Note
the linear relationships of mF , EF to kF and that the renormalized Fermi energy
E(ren) ≡ k2F /(2mF ) matches the empirical value EF remarkably well.

high Tc superconductors [90].
Finally, we address the important question what happens when we

vary the conformal dimension ∆Ψ of the fermionic operator. Fig. 3.6
shows that the Fermi momentum kF stays constant as we increase ∆Ψ.
This completes our identification of the new phase as the Fermi-liquid: it
indicates that the AdS dual obeys Luttinger’s theorem, if we can interpret
the conformal dimension of the fermionic operator as a proxy for the inter-
action strength. We find furthermore that the quasiparticle pole strength
vanishes as we approach ∆Ψ = 3/2. This confirms our assumption made
earlier that it is essential to study the system for ∆Ψ < d/2 and that the
point ∆Ψ = d/2 where the naive fermion bilinear becomes marginal sig-
nals the onset of a new regime. Because the fermion bilinear is marginal
at that point this ought to be an interesting regime in its own right and
we refer to the recent article [79] for a discussion thereof. Highly remark-
able is that the pole strength vanishes in an exponential fashion rather
than the anticipated algebraic behavior [99, 72]. This could indicate that
an essential singularity governs the critical point at ∆Ψ = d/2 and we
note that such a type of behavior was identified by Lawler et al. in their
analysis of the Pomeranchuk instability in d = 2+1 dimensions using the
Haldane patching bosonization procedure [75]. Interestingly this finite
µ0/T transition as we vary ∆Ψ has no clear symmetry change, similar to
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[72]. However, this may be an artifact of the fact that our theory is not
quantum mechanically complete. Note also that the quasiparticle velocity
and the renormalized Fermi energy EF = vF (k − kF ) − E stay finite at
the ∆Ψ = 3/2 transition with Z → 0, which could indicate an emergent
Lorentz invariance for the reasons discussed in the previous paragraph.

3.3 Concluding remarks

We have presented evidence that the AdS dual description of strongly
coupled field theories can describe the emergence of the Fermi-liquid from
a quantum critical state — both as a function of density and interaction
strength as encoded in the conformal dimension of the fermionic oper-
ators. From the AdS gravity perspective, it was unclear whether this
would happen. Sharp peaks in the CFT spectral function correspond to
so-called quasinormal modes of black holes [68], but Dirac quasinormal
modes have received little study (see e.g. [14]). It is remarkable that
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the AdS calculation processes the Fermi-Dirac statistics essential to the
Fermi-liquid correctly. This is manifested by the emergent renormalized
Fermi-energy and the validity of Luttinger’s theorem. The AdS gravity
computation, however, is completely classical without explicit quantum
statistics, although we do probe the system with a fermion. It would
therefore be interesting to fully understand the AdS description of what
is happening, in particular how the emergent scales EF and kF feature in
the geometry. An early indication of such scales was seen in [101, 94] in
a variant of the story that geometry is not universal in string theory: the
geometry depends on the probe used and different probes experience dif-
ferent geometric backgrounds. The absence of these scales in the general
relativistic description of the AdS black hole could thus be an artifact of
the Riemannian metric description of spacetime.

Regardless of these questions, AdS/CFT has shown itself to be an pow-
erful tool to describe finite density Fermi systems. The description of the
emergent Fermi liquid presented here argues that AdS/CFT is uniquely
suited as a computational device for field-theory problems suffering from
fermion sign-problems. AdS/CFT represents a rich mathematical environ-
ment and a new approach to investigate qualitatively and quantitatively
important questions in quantum many-body theory at finite fermion den-
sity.

3.4 Formal background for the calculation of the
spectral functions

3.4.1 The AdS set up and AdS/CFT Fermion Green’s func-
tions.

The deviation from the strongly coupled 2+1 dimensional quantum critical
point from which we wish to see the Fermi surface emerge is character-
ized by a temperature and background U(1) chemical potential. The phe-
nomenological AdS dual to such a finite-temperature system with chemical
potential is a charged AdS4 black hole. Including fermionic excitations,
this system is described by the minimal action

Sbulk =
1

2κ24

∫
d4x

√−g
[
R+

6

L2
+ L2

(
−1

4
F 2 − Ψ̄eMA ΓADMΨ−mΨ̄Ψ

)]
.(3.4.1)

Here eMA is the inverse vielbein, ΓA =
{
γa, γ4

}
are 4d Dirac matrices obey-

ing {ΓA,ΓB} = 2ηAB (hermitian except Γ0), and Ψ is a four-component
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Dirac spinor with Ψ̄ = Ψ
†
iΓ0. This spinor is charged under a U(1) gauge

field and the covariant derivative equals

DMΨ =

(
∂M +

1

8
ωABM [ΓA,ΓB] + igAM

)
Ψ . (3.4.2)

On its own this action is not a consistent quantum theory. It must be
embedded in a string dual, e.g. for appropriate choices of m and g it is
a subsector of the N = 8 AdS4 × S7 dual to the conformal fixed point of
large Nc, d = 3 N = 8 SYM and generically such a completion will have
a number of U(1) charged fields in addition to the fermions. For our con-
siderations, specifically the two point function of fermions, the quantum
completion is not relevant. At leading order in the gravitational coupling
constant, the action (5.2.5) will yield the same two-point correlators inde-
pendently of the non-linear supergravity couplings. It does mean, that we
cannot equate the U(1) chemical potential µ0 directly with the density of
fermions µF as we emphasize in the main article.

The charged AdS4 black hole is a solution to the equations of motion
of this action. In a gauge where Az = 0 and A0 is regular at the horizon
the metric and gauge potential are given by [92, 44]

ds2 =
L2α2

z2
(
−f(z)dt2 + dx2 + dy2

)
+
L2

z2
dz2

f(z)
,

A0 = 2qα(z − 1) ,

f(z) = (1− z)(z2 + z + 1− q2z3) . (3.4.3)

For z → 0 the metric asymptotes to AdS4 in Poincaré coordinates with the
boundary at z = 0 and there is a black hole horizon at the first zero, z = 1,
of the function f(z). In this parametrization the black hole temperature
and U(1) chemical potential — equal to the CFT temperature and bare
chemical potential — are

TCFT = TBH =
α

4π
(3− q2) , µ0 = µBH = −2qα . (3.4.4)

The parameter q is bounded between 0 ≤ q2 ≤ 3 interpolating between
AdS-Schwarzschild and the extremal AdS black hole. For the equation of
motion of fermions in this background we shall need the spin connection
belonging to this metric. The nonzero components are

ωab0 = −δ[a0 δb]z αf
(
1

z
− ∂zf

2f

)
, ωabi = −δ[ai δb]z

α
√
f

z
. (3.4.5)



54 Chapter 3. Charged black hole and critical Fermi surfaces [17]

Applying the AdSd+1/CFTd dictionary the CFT fermion-fermion cor-
relation function is computed from the action Sbulk (5.2.5) supplemented
by appropriate boundary terms, Sbdy. One constructs the on-shell action
given an arbitrary set of fermionic boundary conditions and the latter are
then interpreted as sources of fermionic operators in the CFT:

ZCFT (J) = 〈eJO〉CFT = exp
[
i(Sbulk + Sbdy)

on−shell(φ(J))
]∣∣∣
φ|∂AdS=J

.(3.4.6)

The issue of which boundary terms ought to be added to the bulk action
tends to be subtle. For fermionic systems it is critical as the bulk action
(5.2.5) identically vanishes on-shell [57, 84, 56, 16, 66]. Because the field
equations for the fermions are first order and half the components of the
spinor correspond to the conjugate momenta of the other half, we can in
fact only choose a boundary source for half the components of Ψ. Pro-
jecting onto eigenstates of Γz, ΓzΨ± = ±Ψ±, we will choose a boundary
source Ψ0

+ ≡ limz0→0Ψ+(z = z0) (to regulate the theory we impose the
boundary conditions at a small distance z0 away from the formal bound-
ary z = 0 and take z0 → 0 at the end). The boundary value Ψ0

− is not
independent but related to that of Ψ0

+ by the Dirac equation. We should
therefore not include it as an independent degree of freedom when tak-
ing functional derivatives with respect to the source. Adding a boundary
action,

Sbdy =
L2

2κ24

∫

z=z0

d3x
√
−h Ψ̄+Ψ− (3.4.7)

with hµν the induced metric ensures a proper variational principle [16].
The variation of δΨ− from the boundary action,

δSbdy =
L2

2κ24

∫

z=z0

d3x
√
−h Ψ̄+δΨ−

∣∣∣∣
Ψ0

+fixed

, (3.4.8)

now cancels the boundary term from variation of the bulk action

δSbulk =
L2

2κ24

∫ √−g
[
−δΨ̄(/D +m)Ψ+ − ((/D +m)Ψ)δΨ

]

+
L2

2κ24

∫

z=z0

√
−h
[
−Ψ̄+δΨ− − Ψ̄−δΨ+

]∣∣∣∣
Ψ0

+fixed

.(3.4.9)
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3.4.2 The Fermion Green’s function.

To compute the fermion Green’s function, we thus solve the field-equation
for Ψ(z) with Ψ0

+ ≡ limz0→0Ψ+(z = z0) as the boundary condition, sub-
stitute this solution back into the combined action Sbulk + Sbdy and func-
tionally differentiate twice. As Ψsol(Ψ

0
+) obeys the field-equation — the

Dirac Equation —

(/D +m)Ψsol(Ψ0
+) = 0 , (3.4.10)

the contribution to the on-shell action is solely due to the boundary action
Sbdy in eq. (3.4.7). To solve the Dirac equation, we Fourier transform
along the boundary,

Ψ(z, xi, t) =

∫
dωd2k

(2π)3
Ψ(z, ki, ω)e

ikix
i−iωt , (3.4.11)

and project onto the eigenstates of Γz, ΓzΨ± = ±Ψ±. Choosing the basis
of Dirac matrices

Γz = σ3 ⊗ 11 , Γi = σ1 ⊗ σi , Γt = σ1 ⊗ σt = σ1 ⊗ iσ3,(3.4.12)

we can consider Ψ± to be two-component Dirac spinors appropriate for
d = 3 from here on. In the charged AdS black hole background with non-
zero gauge field from eq. (6.3.43), the Dirac equation decomposes into the
two equations

(∂z +A±)Ψ± = ∓ /T Ψ∓ , (3.4.13)

with

A± = − 1

2z

(
3− z∂zf

2f

)
± Lm

z
√
f
,

/T =
i

αf

[
(−ω + 2gqα(z − 1))σt +

√
fkiσ

i
]
. (3.4.14)

We can eliminate either Ψ+ or Ψ− and readily derive a second order
dynamical equation for Ψ±. Using that

/T /T = −TtTt + T1T1 + T2T2 ≡ T 2 , (3.4.15)

we can invert /T to rewrite

/T
T 2

(
∂z +A+

)
Ψ+ = −Ψ− (3.4.16)
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and use the Ψ− equation to obtain

(∂z +A−)
/T
T 2

(∂z +A+)Ψ+ = − /T Ψ+ . (3.4.17)

Using the identity eq. (5.2.4) repeatedly, this is equivalent to
(
∂2z + P (z)∂z +Q(z)

)
Ψ+ = 0 (3.4.18)

with

P (z) = (A− +A+)− [∂z, /T ]
/T
T 2

,

Q(z) = A−A+ + (∂zA+)− [∂z, /T ]
/T
T 2

A+ + T 2 . (3.4.19)

Note that both P (z) and Q(z) are two-by-two matrices. The equation
for Ψ− is simply obtained by switching A+ with A− and /T with − /T ;
it is the CPT conjugate obtained by sending m → −m and {ω, ki, q} →
{−ω,−ki,−q}.

We can now derive a formal expression for the propagator in terms
of the solutions to the second-order equation. We write the on-shell bulk
field as

Ψsol
+ (z) = F+(z)F

−1
+ (z0)Ψ

0
+(z0) (3.4.20)

where F±(u) is the two-by-two matrix satisfying the second order equation
(4.2.11) [16] subject to a boundary condition in the interior of AdS. We will
discuss the appropriate interior boundary condition below. There are two

independent solutions Ψ
(1)
+ (z), Ψ

(2)
+ (z) that obey the interior boundary

condition, one for each component of the spinor. In terms of this solution
the matrix F+(z) equals

F+(z) =
(
Ψ

(1)
+ (z) , Ψ

(2)
+ (z)

)
. (3.4.21)

Similarly for Ψsol
− (z) we write

Ψsol
− (z) = F−(z)F

−1
− (z0)Ψ

0
−(z0) . (3.4.22)

However, Ψ0
− is not independent as we emphasized earlier. It is related

to Ψ0
+ through the Dirac equation in its projected form (4.3.13). Acting

with ∂z +A+ on both sides of (5.2.11) we see that [16]

(∂z +A+)Ψsol
+ = (∂z +A+)F+(z)F

−1
+ (z0)Ψ

0
+

⇔ − /T Ψsol
− = − /T F−(z)F

−1
+ (z0)Ψ

0
+ . (3.4.23)
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We have used that all the z dependence of Ψsol
± (z) is encoded in the matri-

ces F±(z) and therefore F±(z) obey the same projected Dirac equations.
Thus we find that Ψ0

− equals

Ψ0
− = F−(z0)F

−1
+ (z0)Ψ

0
+ . (3.4.24)

Substituting this constraint into the boundary action, we obtain an ex-
pression for the full on-shell action in terms of the solutions F±(z):

Son−shell =
L2

2κ24

∫

z=z0

dωd2k

(2π)3

√
−h Ψ̄0

+ F−(z0)F
−1
+ (z0)Ψ

0
+ . (3.4.25)

Up to a normalization N the two-point function is therefore

G(ω, k) =
1

N F−(z0)F
−1
+ (z0) . (3.4.26)

This is the time-ordered two-point function. For the spectral function we
shall need the imaginary part of the retarded propagator. At finite tem-
perature the AdS background is no longer regular in the interior but has a
horizon. In principle one should also consider its boundary contribution.
The retarded propagator prescription of [105] — verified in [58]— is to
ignore this contribution and to impose infalling boundary conditions at
the horizon instead of regularity at the center of AdS. This is what we
shall do.

The retarded Green’s function for fermions is still a matrix. Parity
and rotational invariance dictate that it can be decomposed as

GR(ω, k) = Πs + σtΠt + σiΠi . (3.4.27)

Our main interest, the spectral function, proportional to Im〈Ψ†Ψ〉, is the
imaginary part of Πt. Specifically

A(ω, k) = − 1

π
Im(Tr iσtGR(ω, k)) . (3.4.28)

As a consequence of the underlying conformal symmetry both the Green’s
function and the spectral function possess a scaling symmetry. Eq. (5.2.14)
shows that the frequency ω and momenta k are naturally expressed in
units of an effective temperature Teff (µ0) ≡ 3α/4π which depends on the
chemical potential µ0

Teff (µ0) = T


1

2
+

1

2

√

1 +
(µ0

√
3)2

(4πT )2


 .
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The spectral function computed from AdS is therefore naturally of the
form

A
µ0
T
∆Ψ

(ω, k) =
1

T d−2∆Ψ
f̃

(
ω

Teff (µ0)
,

k

Teff (µ0)
;∆Ψ,

µ0
T

)
.

Any rescaling of Teff can be compensated by a rescaling of the frequencies
and momenta and µ0/T is the single independent parameter determining
the characteristics of the fermion spectral function. The results in the
main text have been converted to units of k/T or k/µ0 for clarity of the
presentation.

3.4.3 Masses and Dimensions.

A final crucial step is the establish the aforementioned relation between the
mass of the AdS fermion and the scaling dimension of the dual fermionic
operator in the CFT. For generality we shall work in d dimensions in this
subsection. This subsection recapitulates [16].

The scaling behavior can be read off from the asymptotic behavior
of the solution near the boundary z = 0. In this limit the second order
equation (4.2.11) diagonalizes: (setting L = 1)

(
∂2z −

d

z
∂z +

d(d+ 2)− 4m(1 +m)

4z2

)
Ψ+ = 0 + . . . (3.4.29)

Clearly the temperature or chemical potential of the black-hole is imma-
terial to the asymptotic scaling behaviour at z = 0; in terms of the CFT
z = 0 is the UV of the theory and it should be insensitive to the in-
frared physics at the horizon. The leading powers of the two independent
solutions to this equation are

Ψ+(z) = z
d+1
2

−|m+ 1
2
|(ψ+ + . . .) + z

d+1
2

+|m+ 1
2
|(A+ + . . .) . (3.4.30)

(we may drop the absolute value signs in principle, but as it emphasizes
the special value m = −1/2 it will be instructive to keep them.) Similarly
for Ψ−(z) the leading singularities are obtained by sending m→ −m

Ψ−(z) = z
d+1
2

−|m− 1
2
|(ψ− + . . .) + z

d+1
2

+|m− 1
2
|(A− + . . .). (3.4.31)

However, recall that the Dirac equation relates the two asymptotic be-
haviors and that the boundary value of Ψ− is not independent. Near
z = 0

(∂z −
d/2−m

z
)Ψ+ = − /T |z=0Ψ− + . . . (3.4.32)
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Thus ψ− ∝ ψ+ and A− ∝ A+.
Because the equation diagonalizes, each component of Ψ±(z) can be

considered independently and the matrices F±(z) diagonalize in the limit
z → 0. The scaling behavior of the Green’s function is then readily read
off from its definition

G(ω, k) =
1

N F−F
−1
+ ∼ z

d+1
2

−|m− 1
2
|(ψ− + . . .) + z

d+1
2

+|m− 1
2
|(A− + . . .)

z
d+1
2

−|m+ 1
2
|(ψ+ + . . .) + z

d+1
2

+|m+ 1
2
|(A+ + . . .)

(3.4.33)

The dominant scaling behavior depends on the value of m and there are
three different regimes (I): m > 1

2 , (II): 1
2 > m > −1

2 , and (III):
−1

2 > m. In these regimes the Green’s function behaves as

G(ω, k) ∼





z
(
ψ−
ψ+

+ . . .
)
+ z2m

(
A−
ψ+

+ . . .
)

m > 1
2

z2m
(
ψ−
ψ+

+ . . .
)
+ z

(
A−
ψ+

+ . . .
)

1
2 > m > −1

2

1
z

(
ψ−
ψ+

+ . . .
)
+ 1

z2m

(
A−
ψ+

+ . . .
)

−1
2 > m.

(3.4.34)

In regime (I) the contribution proportional to z yields a contact term [16].
Recall that at zero-temperature and chemical potential each power of z
is accompanied by a power of momentum: the dimensionless arguments
of the solutions Ψsol

± (z) are kz and ωz. Discarding the term analytic in z
and thus analytic in momenta, the second term proportional to z2m yields
a Green’s function

G(ω, k) ∼ (z0ω)
2m (3.4.35)

corresponding to the two-point function of a conformal operator of weight
∆Ψ = d

2 +m. In regime (II) there is no contact term and one immediately
finds the same relation between the AdS fermion mass and the scaling
dimension of the conformal operator. In regime (III), however, one finds
an explicit pole (ωz)−1 independent of the AdS fermion mass or the space-
time dimension. It signals an inconsistency in the theory and one cannot
consider this regime as physical [16]. This is reminiscent of the situation
for scalars where for m2

scalar > −d2/4 + 1 one finds analytic terms in the
two-point correlator; for −d2/4 + 1 > m2

scalar > −d2/4 both solutions
are normalizable; and for −d2/4 > m2

scalar the theory is inconsistent. The
analogy with scalars may appear strange since a negative mass-squared for
scalars clearly can be problematic, whereas the sign of the fermion-mass
term does not have any physical consequences normally. Recall, however,
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that the same AdS bulk action can describe several CFTs depending on
the boundary terms added to the action [67]. We have chosen a very spe-
cific boundary action such that Ψ+(z) is the independent variable which
breaks the degeneracy between (bulk) theories with m > 0 and m < 0. In
this theorym is bounded below by −1/2. We could have chosen a different
theory with Ψ−(z) the independent variable. One would find then that m
is bounded from above by 1/2. The regime 1/2 > m > −1/2 is present in
both theories; it is the range where both solutions are normalizable and
choosing either Ψ+(z) or Ψ−(z) as the independent variable corresponds
to switching the “sources” and “expectation values” in the usual way (see
also [62]).

This analysis also teaches us that the normalization N should go as
z2m0 to obtain a finite answer in the limit z0 → 0.2

3.4.4 The retarded propagator boundary conditions at the
horizon.

The final component of our set-up will be the boundary conditions at the
horizon of the the black hole. To compute the retarded propagator in
thermal settings/black hole the appropriate b.c. are those infalling into
the horizon. Near the horizon at z = 1, the second order equation for Ψ±
becomes the same for both Ψ+ and Ψ− and moreover diagonalizes:

(
∂2z −

3

2(1− z)
∂z +

ω̃2 + 1
16

(1− z)2

)
Ψ± +O((z − 1)) = 0. (3.4.36)

with ω̃ ≡ ω
a(3−q2) =

ω
4πT . This equation has solutions of the form

Ψ± = (1− z)iω̃−
1
4 (cr + ...) + (1− z)−iω̃−

1
4 (ci + ...) (3.4.37)

The second solution has the incoming boundary condition we seek.3

2Note that the factor L2/2κ2
4 in the on-shell action (5.2.10) follows from an un-

conventional normalization of the fields in the action (5.2.5). It would be absent for
conventional normalization.

3A technical detail is that due to the factors
√
f in the field equation, there is no

standard Frobenius solution Ψ± = (1−z)±iω̃− 1

4

∑∞
n=0 a

(±)
n (1−z)n. Rather half-integer

powers of (1− z) appear as well. We need the Frobenius method for the numerics: we
use it to construct a second b.c. for the derivative of Ψ+ — see e.g. [12]. Changing
coordinates to z = 1− s2 solves this problem.
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3.5 Finite temperature and the position of the

Fermi surface

With some hindsight from the chapters to follow, as well as in the light
of the detailed analysis performed in [79, 27] we will now comment on our
finding that at finite temperature the zero of energy in field theory, i.e.
the position of the Fermi surface lies at finite ω, i.e. differs from the AdS
zero of energy ω = 0. In our original paper reproduced in the previous
sections, we identified the zero of energy at finite temperature with the
maximum of the peak height. Our assumption was clearly that the peak
maximum closely corresponds to the definition of zero energy: a pole for
real ω at T = 0. For small T/µ thus the pole should not move much
as the temperature is changed, and therefore neither should the position
of the maximum peak height. We can test this hypothesis by plotting
the position of the maximum of the spectral function A(ω, k = kF ) for
three different temperatures (Figure 3.7A). Surprisingly, we see that the
position of the maximum EF (T ) drastically depends on T and moves
toward ω = 0 as the temperature is lowered. This suggests (in agreement
with the arguments given in [79, 27]) that the sharp Fermi surface, which
only exists at T = 0, is indeed at zero energy. This strong dependence
of the peak position on temperature is not known in field theory models,
and in the following chapter we will see that it suggests an inconsistency
in the probe limit calculations presented in this section. The changing
position EF (T ) is due to the instability of the black hole background in
the presence of Fermi surface (in the next chapter we will see that gravity
dual of a Fermi surface always has finite fermion density, which backreacts
on the gauge field and the metric).
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Figure 3.7: Spectral weight at its maximum, i.e. at the position of the peak for
three different values of temperature and ∆Ψ = 5/4. We see that the maximum
moves toward zero energy as the temperature is lowered. This suggests that the
true zero temperature ground state is indeed at ω = 0. However, the fact that
the ”Fermi energy” is strongly temperature-dependent is in fact a signal that
we are looking at the false vacuum, i.e. that a self-consistent calculation with
backreaction would yield a background different from the Reissner-Nordström
black hole. (B) The relation between the linearly dispersing quasiparticle peak
and the ω = 0 peak with slow (sublinear) dispersion as ∆Ψ → 3/2 for k/µ0 = 0.35
and µ0/T = −30.9.
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Chapter 4

AdS dual of a Fermi liquid:
Dirac hair [18]

4.1 Introduction

Fermionic quantum criticality is thought to be an essential ingredient in
the full theory of high Tc superconductivity [112, 102]. The cleanest exper-
imental examples of quantum criticality occur in heavy-fermion systems
rather than high Tc cuprates, but the experimental measurements in heavy
fermions raise equally confounding theoretical puzzles [80]. Most tellingly,
the resistivity scales linearly with the temperature from the onset of su-
perconductivity up to the crystal melting temperature [42] and this linear
scaling is in conflict with single correlation length scaling at criticality
[86]. The failure of standard perturbative theoretical methods to describe
such behavior is thought to indicate that the underlying quantum critical
system is strongly coupled [117, 78].

The combination of strong coupling and scale-invariant critical dynam-
ics makes these systems an ideal arena for the application of the AdS/CFT
correspondence: the well-established relation between strongly coupled
conformal field theories (CFT) and gravitational theories in anti-de Sit-
ter (AdS) spacetimes. An AdS/CFT computation of single-fermion spec-
tral functions — which are directly experimentally accessible via Angle-
Resolved Photoemission Spectroscopy [11, 21, 121] — bears out this promise
of addressing fermionic quantum criticality [79, 17, 27, 28] (see also [76,
91]). The AdS/CFT single fermion spectral function exhibits distinct
sharp quasiparticle peaks, associated with the formation of a Fermi sur-
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face, emerging from a scale-free state. The fermion liquid which this Fermi
surface captures is generically singular: it has either a non-linear disper-
sion or non-quadratic pole strength [79, 27]. The precise details depend
on the parameters of the AdS model.

From the AdS gravity perspective, peaks with linear dispersion cor-
respond to the existence of a stable charged fermionic quasinormal mode
in the spectrum of a charged AdS black hole. The existence of a sta-
ble charged bosonic quasinormal mode is known to signal the onset of
an instability towards a new ground state with a pervading Bose con-
densate extending from the charged black hole horizon to the boundary of
AdS. The dual CFT description of this charged condensate is spontaneous
symmetry breaking as in a superfluid and a conventional superconductor
[40, 47, 49]. For fermionic systems empirically the equivalent robust T = 0
groundstate is the Landau Fermi Liquid — the quantum groundstate of
a system with a finite number of fermions. The existence of a stable
fermionic quasinormal mode suggests that an AdS dual of a finite fermion
density state exists.

Here we shall make a step towards the set of AdS/CFT rules for CFTs
with a finite fermion density. The essential ingredient will be Migdal’s the-
orem, which relates the characteristic jump in fermion occupation number
at the energy ωF of the highest occupied state to the pole strength of the
quasiparticle. The latter we know from the spectral function analysis and
its AdS formulation is therefore known. Using this, we can show that the
fermion number discontinuity is encoded in the probability density of the
normalizable wavefunction of the dual AdS fermion field.

This shows that the AdS dual of a Fermi liquid is given by a system
with occupied fermionic states in the bulk. The Fermi liquid is clearly
not a scale invariant state, but any such states will have energy, momen-
tum/pressure and charge and will change the interior geometry from AdS
to something else. Which particular (set of) state(s) is the right one, it
does not yet tell us, as this conclusion relies only on the asymptotic be-
havior of fermion fields near the AdS boundary. Here we shall take the
simplest such state: a single fermion.1 Constructing first a set of equa-
tions in terms of the spatially averaged density, we find the associated
backreacted asymptotically AdS solution. This approximate solution is
already good enough to solve several problems of principle:

• A charged AdS black hole in the presence of charged fermionic modes

1These solutions are therefore the AdS extensions of [30–33].
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has a critical temperature below which fermionic Dirac “hair” forms.
For our effective single fermion solution, the derivative of the free en-
ergy has the characteristic discontinuity of a first order transition. In
AdS/CFT this has to be the case: In contrast to bosonic quasinormal
modes, a fermionic quasinormal mode can never cause a linear in-
stability indicative of a continuous phase transition. In the language
of spectral functions, the pole of the retarded Green’s function can
never cross to the upper-half plane [27].2 The absence of a pertur-
bative instability between this conjectured Dirac ”black hole hair”
solution and the “bald” charged AdS black hole can be explained if
the transition is a first order gas-liquid transition. The existence of
first order transition follows from a thermodynamic analysis of the
free energy rather than a spectral analysis of small fluctuations.

• This solution with finite fermion profile is the preferred ground state
at low temperatures compared to the bare charged AdS black hole.
The latter is therefore a false vacuum in a theory with charged
fermions. Confusing a false vacuum with the true ground state can
lead to anomalous results. Indeed the finite temperature behavior
of fermion spectral functions in AdS Reissner-Nordström, exhibited
in the combination of the results of [79, 27] and [17], shows strange
behavior. The former [79, 27] found sharp quasiparticle peaks at a
frequency ωF = 0 in natural AdS units, whereas the latter [17] found
sharp quasiparticle peaks at finite Fermi energy ωF 6= 0. As we will
show, both peaks in fact describe the same physics: the ωF 6= 0 peak
is a finite temperature manifestation of (one of the) ω = 0 peaks
in [27]. Its shift in location at finite temperature is explained by
the existence of the nearby true finite fermion density ground state,
separated by a potential barrier from the AdS Reissner-Nordström
solution.

• The solution we construct here only considers the backreaction on
the electrostatic potential. We show, however, that the gravitational
energy density diverges at the horizon. This ought to be, as one ex-
pects the infrared geometry to change due to fermion profile. The
charged AdS-black hole solution corresponds to a CFT system in
a state with large ground state entropy. This is the area of the
extremal black-hole horizon at T = 0. Systems with large ground-

2Ref. [10] argues that the instability can be second order.
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state entropy are notoriously unstable to collapse to a low-entropy
state, usually by spontaneous symmetry breaking. In a fermionic
system it should be the collapse to the Fermi liquid. The final state
will generically be a geometry that asymptotes to Lifschitz type,
i.e. the background breaks Lorentz-invariance and has a double-
pole horizon with vanishing area, as expounded in [50]. Indeed the
gravitational energy density diverges at the horizon in a similar way
as other systems that are known to gravitationally backreact to a
Lifshitz solution. The fully backreacted geometry includes impor-
tant separate physical aspects — it is relevant to the stability and
scaling properties of the Fermi liquid — and will be considered in a
companion article.

The Dirac hair solution thus captures the physics one expects of the
dual of a Fermi liquid. We have based its construction on a derived set
of AdS/CFT rules to describe systems at finite fermion density. Qualita-
tively the result is as expected: one also needs occupied fermionic states
in the bulk. Next to our effective single fermion approximation, another
simple candidate is the backreacted AdS-Fermi-gas [50]/electron star [51]
which appeared during the course of this work.3 The difference between
the two approaches are the assumptions used to reduce the interacting
Fermi system to a tractable solution. Ideally, one should carefully track
all the fermion wavefunctions as in the recent article [96]. As explained in
[19] the Fermi-gas and the single Dirac field are the two “local” approx-
imations to the generic non-local multiple fermion system in the bulk,
in very different regimes of applicability. The electron-star/Fermi-gas is
considered in the Thomas-Fermi limit where the microscopic charge of
the constituent fermions is sent to zero keeping the overall charge fixed,
whereas the single Dirac field clearly is the ’limit’ where the microscopic
charge equals the total charge in the system. This is directly evident in the
spectral functions of both systems. The results presented here show that
each pole in the CFT spectral function corresponds to a unique occupied
Fermi state in the bulk; the electron star spectra show a parametrically
large number of poles [53, 63, 19], whereas the Dirac hair state has a single
quasiparticle pole by construction. The AdS-Dirac-hair black hole derived
here therefore has the benefit of a direct connection with a unique Fermi
liquid state in the CFT. This is in fact the starting point of our derivation.

3See also [23, 6]. An alternative approach to back-reacting fermions is [64].
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In the broader context, the existence of both the Dirac hair and backre-
acted Fermi gas solution is not a surprise. It is a manifestation of universal
physics in the presence of charged AdS black holes. The results here, and
those of [79, 27, 50, 51], together with the by now extensive literature
on holographic superconductors, i.e. Bose condensates, show that at suf-
ficiently low temperature in units of the black-hole charge, the electric
field stretching to AdS-infinity causes a spontaneous discharge of the bulk
vacuum outside of the horizon into the charged fields of the theory —
whatever their nature. The positively charged excitations are repelled by
the black hole, but cannot escape to infinity in AdS and they form a charge
cloud hovering over the horizon. The negatively charged excitations fall
into the black-hole and neutralize the charge, until one is left with an un-
charged black hole with a condensate at finite T or a pure asymptotically
AdS-condensate solution at T = 0. As [50, 51] and we show, the statistics
of the charged particle do not matter for this condensate formation, ex-
cept in the way it forms: bosons superradiate and fermions nucleate. The
dual CFT perspective of this process is “entropy collapse”. The final state
therefore has negligible ground state entropy and is stable. The study of
charged black holes in AdS/CFT is therefore a novel way to understand
the stability of charged interacting matter which holds much promise.

4.2 From Green’s function to AdS/CFT rules for
a Fermi Liquid

We wish to show how a solution with finite fermion number — a Fermi liq-
uid — is encoded in AdS. The exact connection and derivation will require
a review of what we have learned of Dirac field dynamics in AdS/CFT
through Green’s functions analysis. The defining signature of a Fermi
liquid is a quasi-particle pole in the (retarded) fermion propagator,

GR =
Z

ω − µR − vF (k − kF )
+ regular (4.2.1)

Phenomenologically a non-zero residue at the pole, Z, also known as the
pole strength, is the indicator of a Fermi liquid state. Migdal famously
related the pole strength to the occupation number discontinuity at the
pole ω = 0.

Z = lim
ǫ→0

[nF (ω − ǫ)− nF (ω + ǫ)] (4.2.2)
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where

nF (ω) =

∫
d2kfFD

(ω
T

)
ImGR(ω, k).

with fFD the Fermi-Dirac distribution function. Vice versa, a Fermi liq-
uid with a Fermi-Dirac jump in occupation number at the Fermi energy
ωF = 0 has a low-lying quasiparticle excitation. Using our knowledge of
fermionic spectral functions in AdS/CFT we shall first relate the pole-
strength Z to known AdS quantities. Then using Migdal’s relation, the
dual of a Fermi liquid is characterized by an asymptotically AdS solution
with non-zero value for these very objects.

The Green’s functions derived in AdS/CFT are those of charged fermionic
operators with scaling dimension ∆, dual to an AdS Dirac field with mass
m = ∆− d

2 . We shall focus on d = 2+1 dimensional CFTs. In its gravita-
tional description this Dirac field is minimally coupled to 3+1 dimensional
gravity and electromagnetism with action

S =

∫
d4x

√−g
[

1

2κ2

(
R+

6

L2

)
− 1

4
F 2
MN − Ψ̄(/D +m)Ψ

]
. (4.2.3)

For zero background fermions, Ψ = 0, a spherically symmetric solution is
a charged AdS4 black-hole background

ds2 =
L2α2

z2
(
−f(z)dt2 + dx2 + dy2

)
+
L2

z2
dz2

f(z)
,

f(z) = (1− z)(1 + z + z2 − q2z3) ,

A
(bg)
0 = 2qα(z − 1) . (4.2.4)

Here A
(bg)
0 is the time-component of the U(1)-vector-potential, L is the

AdS radius and the temperature and chemical potential of the black hole
equal

T =
α

4π
(3− q2) , µ0 = −2qα, (4.2.5)

where q is the black hole charge.

To compute the Green’s functions we need to solve the Dirac equation
in the background of this charged black hole:

eMA ΓA(DM + iegAM )Ψ +mΨ = 0 , (4.2.6)
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where the vielbein eMA , covariant derivative DM and connection AM cor-
respond to the fixed charged AdS black-hole metric and electrostatic po-
tential (6.2.4)Denoting A0 = Φ and taking the standard AdS-fermion
projection onto Ψ± = 1

2(1± ΓZ)Ψ, the Dirac equation reduces to

(∂z +A±)Ψ± = ∓ /T Ψ∓ (4.2.7)

with

A± = − 1

2z

(
3− zf ′

2f

)
± mL

z
√
f
,

/T =
i(−ω + gΦ)

αf
γ0 +

i

α
√
f
kiγ

i . (4.2.8)

Here γµ are the 2+1-dimensional Dirac matrices, obtained after decom-
posing the 3+1 dimensional Γµ-matrices.

Explicitly the Green’s function is extracted from the behavior of the
solution to the Dirac equation at the AdS-boundary. The boundary be-
havior of the bulk fermions is

Ψ+(ω, k; z) = A+z
3
2
−m +B+z

5
2
+m + . . . ,

Ψ−(ω, k; z) = A−z
5
2
−m +B−z

3
2
+m + . . . , (4.2.9)

where A±(ω, k), B±(ω, k) are not all independent but related by the Dirac
equation at the boundary

A− = − iµ

(2m− 1)
γ0A+ , B+ = − iµ

(2m+ 1)
γ0B− . (4.2.10)

The CFT Green’s function then equals [17, 62, 79]

GR = lim
z→0

z−2mΨ−(z)
Ψ+(z)

− singular =
B−
A+

. (4.2.11)

In other words B− is the CFT response to the (infinitesimal) source A+.
Since in the Green’s function the fermion is a fluctuation, the functions
Ψ±(z) are now probe solutions to the Dirac equation in a fixed grav-
itational and electrostatic background (for ease of presentation we are
considering Ψ±(z) as numbers instead of two-component vectors). The
boundary conditions at the horizon/AdS interior determine which Green’s
function one considers, e.g. infalling horizon boundary conditions yield the
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retarded Green’s function. For non-zero chemical potential this fermionic
Green’s function can have a pole signalling the presence of a Fermi sur-
face. This pole occurs precisely for a (quasi-)normalizable mode, i.e. a
specific energy ωF and momentum kF where the external source A+(ω, k)
vanishes (for infalling boundary conditions at the horizon).

Knowing that the energy of the quasinormal mode is always ωF = 0
[79] and following [27], we expand GR around ω = 0 as:

GR(ω) =
B(0) + ωB(1) + . . .

A
(0)
+ + ωA

(1)
+ + . . .

. (4.2.12)

A crucial point is that in this expansion we are assuming that the pole will
correspond to a stable quasiparticle, i.e. there are no fractional powers
of ω less than unity in the expansion around ωF = 0 [27]. Fermions in
AdS/CFT are of course famous for allowing more general pole-structures
corresponding to Fermi-surfaces without stable quasiparticles [27], but
those Green’s functions are not of the type (4.2.1) and we shall therefore
not consider them here. The specific Fermi momentum kF associated with
the Fermi surface is the momentum value for which the first ω-independent

term in the denominator vanishes A
(0)
+ (kF ) = 0 — for this value of k = kF

the presence of a pole in the Green’s functions at ω = 0 is manifest.

Writing A
(0)
+ = a+(k − kF ) + . . . and comparing with the standard quasi-

particle propagator,

GR =
Z

ω − µR − vF (k − kF )
+ regular (4.2.13)

we read off that the pole-strength equals

Z = B
(0)
− (kF )/A

(1)
+ (kF ).

We thus see that a non-zero pole-strength is ensured by a non-zero
value ofB−(ω = 0, k = kF ) — the “response” without corresponding source
as A(0)(kF ) ≡ 0. Quantitatively the pole-strength also depends on the

value of A
(1)
+ (kF ) ≡ ∂ωA+(kF )|ω=0, which is always finite. This is not a

truly independent parameter, however. The size of the pole-strength has
only a relative meaning w.r.t. to the integrated spectral density. This nor-
malization of the pole strength is a global parameter rather than an AdS

boundary issue. We now show this by proving that A
(1)
+ (kF ) is inversely

proportional to B
(0)
− (kF ) and hence Z is completely set by B

(0)
− (kF ), i.e.
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Z ∼ |B(0)
− (kF )|2. Consider a transform W̃ (Ψ+,A,Ψ+,B) of the Wronskian

W (Ψ+,A,Ψ+,B) = Ψ+,A∂zΨ+,B − (∂zΨ+,A)Ψ+,B for two solutions to the
second order equivalent of the Dirac equation for the field Ψ+

(
∂2z + P (z)∂z +Q+(z)

)
Ψ+ = 0 (4.2.14)

that is conserved (detailed expressions for P (z) and Q+(z) will be given
later):

W̃ (Ψ+,A(z),Ψ+,B(z), z; z0) = exp

(∫ z

z0

P (z)

)
W (Ψ+,A(z),Ψ+,B(z)),(4.2.15)

For this quantity it holds ∂zW̃ = 0. Here z−1
0 is the infinitesimal distance

away from the boundary at z = 0 which is equivalent to the UV -cutoff in
the CFT. Setting k = kF and choosing for Ψ+,A = A+z

3/2−m∑∞
n=0 anz

n

and Ψ+,B = B+z
5/2+m

∑∞
n=0 bnz

nr the real solutions which asymptote to
solutions with B+(ω, kF ) = 0 and A+(ω, kF ) = 0 respectively, but for a

value of ω infinitesimally away from ωF = 0, we can evaluate W̃ at the
boundary to find,4

W̃ = z30(1 + 2m)A+B+ = µz30A+B− (4.2.16)

The last step follows from the constraint (5.2.2) where the reduction from
two-component spinors to functions means that γ0 is replaced by one of
its eigenvalues ±i. Taking the derivative of W̃ at ω = 0 for k = kF
and expanding A+(ω, kF ) and B−(ω, kF ) as in (4.2.12), we can solve for

A
(1)
+ (kF ) in terms of B

(0)
− (kF ) and arrive at the expression for the pole

strength Z in terms of |B(0)
− (kF )|2:

Z =
µz30

∂ωW̃ |ω=0,k=kF

|B(0)
− (kF )|2 . (4.2.17)

Because ∂ωW̃ , as W̃ , is a number that is independent of z, this expression

emphasizes that it is truly the nonvanishing subleading term B
(0)
− (ωF , kF )

which sets the pole strength, up to a normalization ∂ωW̃ which is set
by the fully integrated spectral density. This integration is always UV-
cut-off dependent and the explicit z0 dependence should therefore not

4P (z) = −3/z + . . . near z = 0
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surprise us.5 We should note that, unlike perturbative Fermi liquid theory,
Z is a dimensionful quantity of mass dimension 2m+ 1 = 2∆− 2, which
illustrates more directly its scaling dependence on the UV-energy scale z0.
At the same time Z is real, as it can be shown that both ∂ωW̃ |ω=0,k=kF =

µz30A
(1)
+ B

(0)
− and B

(0)
− are real [27].

4.2.1 The AdS dual of a stable Fermi Liquid: Applying
Migdal’s relation holographically

We have thus seen that a solution with nonzero B−(ωF , kF ) whose corre-
sponding external source vanishes (by definition of ωF , kF ), is related to
the presence of a quasiparticle pole in the CFT. Through Migdal’s theo-
rem its pole strength is related to the presence of a discontinuity of the
occupation number, and this discontinuity is normally taken as the char-
acteristic signature of the presence of a Fermi Liquid. Qualitatively we can
already infer that an AdS gravity solution with non-vanishing B−(ωF , kF )
corresponds to a Fermi Liquid in the CFT. We thus seek solutions to the
Dirac equation with vanishing external source A+ but non-vanishing re-
sponse B− coupled to electromagnetism (and gravity). The construction
of the AdS black hole solution with a finite single fermion wavefunction is
thus analogous to the construction of a holographic superconductor [47]
with the role of the scalar field now taken by a Dirac field of mass m.

This route is complicated, however, by the spinor representation of
the Dirac fields, and the related fermion doubling in AdS. Moreover, rela-
tivistically the fermion Green’s function is a matrix and the pole strength
Z appears in the time-component of the vector projection TriγiG. As
we take this and the equivalent jump in occupation number to be the
signifying characteristic of a Fermi liquid state in the CFT, it would be

5Using that W̃ is conserved, one can e.g. compute it at the horizon. There each solu-
tion Ψ+,A(ω, kF ; z), Ψ+,B(ω, kF ; z) is a linear combination of the infalling and outgoing
solution

Ψ+,A(z) = ᾱ (1− z)−1/4+ıω/4πT + α (1− z)−1/4−ıω/4πT + . . .

Ψ+,B(z) = β̄ (1− z)−1/4+ıω/4πT + β (1− z)−1/4−ıω/4πT + . . . (4.2.18)

yielding a value of ∂ωW̃ equal to (P (z) = 1/2(1− z) + . . . near z = 1)

∂ωW̃ =
i

2πT
N (z0)(ᾱβ − β̄α) (4.2.19)

with N (z0) = exp
∫ z

z0
dz

[
P (z)− 1

2(1−z)

]
.
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much more direct if we can derive an AdS radial evolution equation for
the vector-projected Green’s function and hence the occupation number
discontinuity directly. From the AdS perspective is also more convenient
to work with bilinears such as Green’s functions, since the Dirac fields
always couple pairwise to bosonic fields.

To do so, we start again with the two decoupled second order equations
equivalent to the Dirac equation (4.2.7)

(
∂2z + P (z)∂z +Q±(z)

)
Ψ± = 0 (4.2.20)

with

P (z) = (A− +A+)− [∂z, /T ]
/T
T 2

,

Q±(z) = A−A+ + (∂zA±)− [∂z, /T ]
/T
T 2

A± + T 2 . (4.2.21)

Note that both P (z) and Q±(z) are matrices in spinor space. The gen-
eral solution to this second order equation — with the behavior at the
horizon/interior appropriate for the Green’s function one desires — is a
matrix valued function (M±(z))αβ and the field Ψ±(z) equals Ψ±(z) =

M±(z)Ψ
(hor)
± . Due to the first order nature of the Dirac equation the

horizon values Ψ
(hor)
± are not independent but related by a z-independent

matrix SΨ
(hor)
+ = Ψ

(hor)
− , which can be deduced from the near-horizon

behavior of (5.2.2); specifically S = γ0. One then obtains the Green’s
function from the on-shell boundary action (see e.g. [16, 17])

Sbnd =

∮

z=z0

ddxΨ̄+Ψ− (4.2.22)

as follows: Given a boundary source ζ+ for Ψ+(z), i.e. Ψ+(z0) ≡ ζ+, one

concludes that Ψ
(hor)
+ =M−1

+ (z0)ζ+ and thus Ψ+(z) =M+(z)M
−1
+ (z0)ζ+,

Ψ−(z) =M−(z)SM
−1
+ (z0)ζ+. Substituting these solutions into the action

gives

Sbnd =

∮

z=z0

ddx ζ̄+M−(z0)SM
−1
+ (z0)ζ+ (4.2.23)

The Green’s function is obtained by differentiating w.r.t. ζ̄+ and ζ+ and
discarding the conformal factor z2m0 with m the AdS mass of the Dirac
field (one has to be careful for mL > 1/2 with analytic terms [16])

G = lim
z0→0

z−2m
0 M−(z0)SM

−1
+ (z0) . (4.2.24)
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SinceM±(z) are determined by evolution equations in z, it is clear that
the Green’s function itself is also determined by an evolution equation in
z, i.e. there is some function G(z) which reduces in the limit z → 0 to
z2m0 G. One obvious candidate is the function

G(0)(z) =M−(z)SM
−1
+ (z) . (4.2.25)

Using the original Dirac equations one can see that this function obeys
the non-linear evolution equation

∂zG
(0)(z) = −A−G

(0)(z)− /TM+SM
−1
+ +A+G

(0)(z) +G(0)(z) /T G(0)(z) .(4.2.26)

This is the approach used in [79], where a specific choice of momenta is
chosen such that M+ commutes with S. For a generic choice of momenta,
consistency requires that one also considers the evolution equation for
M+(z)SM

−1
+ (z).

There is, however, another candidate for the extension G(z) which
is based on the underlying boundary action. Rather than extending the
kernelM−(z0)M

−1
+ (z0) of the boundary action we extend the constituents

of the action itself, based on the individual fermion wavefunctions Ψ±(z) =

M±(z)S
1
2
∓ 1

2M−1
+ (z0). We define an extension of the matrixG(z) including

an expansion in the complete set ΓI = {11, γi, γij , . . . , γi1,id} (with γ4 =
iγ0)

GI(z) = M̄−1
+ (z0)M̄+(z)Γ

IM−(z)SM
−1
+ (z0)

GI(z0) = ΓIG(z0) (4.2.27)

where M̄ = iγ0M †iγ0. Using again the original Dirac equations, this
function obeys the evolution equation

∂zG
I(z) = −(Ā+ +A−)G

I(z)− M̄−1
+,0M̄−(z) /̄T ΓIM−(z)SM

−1
+,0 +

+M̄−1
+,0M̄+(z)Γ

I /TM+(z)SM
−1
+,0 (4.2.28)

Recall that /T γi1...ip = T [i1γ...ip] + Tjγji1...ip . It is then straightforward to
see that for consistency, we also need to consider the evolution equations
of

J I
+ = M̄−1

+,0M̄+(z)Γ
IM+(z)SM

−1
+,0 , J I

− = M̄−1
+,0M̄−(z)Γ

IM−(z)SM
−1
+,0

and
ḠI = M̄−1

+,0M̄−(z)Γ
IM+(z)SM

−1
+,0.
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The significant advantage of these functions GI , ḠI , J I
± is that the evo-

lution equations are now linear. This approach may seem overly com-
plicated. However, if the vector T i happens to only have a single com-
ponent nonzero, then the system reduces drastically to the four fields
J i
±, G

11, Ḡ11.We shall see below that a similar drastic reduction occurs,
when we consider only spatially and temporally averaged functions JI =∫
dtd2xJ I

±.
Now the two extra currents J I

± have a clear meaning in the CFT. The
current GI(z) reduces by construction to ΓI times the Green’s function
G11(z0) on the boundary, and clearly ḠI(z) is its hermitian conjugate. The
current J I

+ reduces at the boundary to J I
+ = ΓIM+,0SM

−1
+,0. Thus J I

+

sets the normalization of our linear system. The interesting current is the
current J I

−. Using that S̄ = S̄−1, it can be seen to reduce on the boundary

to the combination J̄ 11
+ Ḡ

11ΓIG11. Thus,
(
J̄ 11
+

)−1 J 11
− is the norm squared of

the Green’s function, i.e. the probability density of the off-shell process.

For an off-shell process or a correlation function the norm-squared has
no real functional meaning. However, we are specifically interested in so-
lutions in the absence of an external source, i.e. the on-shell correlation
functions. In that case the analysis is quite different. The on-shell condi-
tion is equivalent to choosing momenta to saturate the pole in the Green’s
function, i.e. it is precisely choosing dual AdS solutions whose leading
external source A± vanishes. Then M+ and M− are no longer indepen-

dent, but M+,0 = δB+/δΨ
(hor)
+ = − iµγ0

2m+1M−,0S. As a consequence all

boundary values of J I
−(z0), G

I(z0), Ḡ
I(z0) become proportional; specifi-

cally using S = γ0 one has that

J 0
−(z0)|on−shell =

(2m+ 1)

µ
γ0G11(z0)|on−shell (4.2.29)

is the “on-shell” Green’s function. Now, the meaning of the on-shell cor-
relation function is most evident in thermal backgrounds. It equals the
density of states ρ(ω(k)) = − 1

π ImGR times the Fermi-Dirac distribution
[77]

Triγ0GtF (ωbare, k)
∣∣
on−shell

= 2πfFD

(
ωbare − µ

T

)
ρ(ωbare) (4.2.30)

For a Fermi liquid with the defining off-shell Green’s function (4.2.1)
ωbare(kF ) − µ ≡ ω = 0 and ρ(ωbare(k)) = Zz0δ

2(k − kF )δ(ω) + . . .. Thus
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we see that the boundary value of J (0)
− (z0)|on−shell = ZfFD(0)δ

3(0) in-
deed captures the pole strength directly times a product of distributions.
This product of distributions can be absorbed in setting the normaliza-
tion. An indication that this is correct is that the determining equations
for GI , ḠI , J I

± remain unchanged if we multiply GI , ḠI , J I
± on both

sides with M+,0. If M+,0 is unitary it is just a similarity transformation.
However, from the definition of the Green’s function, one can see that this
transformation precisely removes the pole. This ensures that we obtain
finite values for GI , ḠI , J I

± at the specific pole-values ωF , kF where the
distributions would naively blow up.

Boundary conditions and normalizability

We have shown that a normalizable solution to J 0
− correctly captures the

pole strength directly. However, ’normalizable’ is still defined in terms of
an absence of a source for the fundamental Dirac field Ψ± rather than
the composite fields J I

± and GI . One would prefer to determine normaliz-
ability directly from the boundary behavior of the composite fields. This
can be done. Under the assumption that the electrostatic potential Φ is
regular, i.e.

Φ = µ− ρz + . . . (4.2.31)

the “connection” T I is subleading to the connection A near z = 0. Thus
the equations of motion near z = 0 do not mix the various J I

±, G
I and

the composite fields behave as

J I
+ = jI3−2mz

3−2m + jI4+z
4 + jI5+2mz

5+2m + . . . ,

J I
− = jI5−2mz

5−2m + jI4−z
4 + jI3+2mz

3+2m + . . . ,

GI = II4−2mz
4−2m + II3z

3 + II4+2mz
4+2m + II5z

5 + . . . , (4.2.32)

with the identification

jI3−2m = Ā+Γ
IA+, jI4+ = Ā+Γ

IB+ + B̄+Γ
IA+, jI5+2m = B̄+Γ

IB+ ,

jI3+2m = Ā−Γ
IA−, jI4− = Ā−ΓIB− + B̄−ΓIA−, jI5−2m = B̄−Γ

IB− ,

II4−2m = Ā+Γ
IA−, II3 = Ā+Γ

IB−, I4+2m = B̄+Γ
IB−,

II5 = B̄+Γ
IA− . (4.2.33)

A ’normalizable’ solution in J I
− and thus J 0

− is therefore defined by the
vanishing of both the leading and the subleading term.
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4.3 An AdS Black hole with Dirac Hair

Having determined a set of AdS evolution equations and boundary con-
ditions that compute the pole strength Z directly through the currents

J (0)
− (z) and GI(z), we can now try to construct the AdS dual of a system

with finite fermion density, including backreaction. As we remarked in the
beginning of section 4.2.1, the demand that the solutions be normalizable
means that the construction of the AdS black hole solution with a finite
single fermion wavefunction is analogous to the construction of a holo-
graphic superconductor [47] with the role of the scalar field now taken by
the Dirac field. The starting point therefore is the charged AdS4 black-
hole background (6.2.4) and we should show that at low temperatures this
AdS Reissner-Nordström black hole is unstable towards a solution with
a finite Dirac profile. We shall do so in a simplified “large charge” limit
where we ignore the gravitational dynamics, but as is well known from
holographic superconductor studies (see e.g. [47, 49]) this limit already
captures much of the essential physics. In a companion article [20] we
will construct the full backreacted groundstate including the gravitational
dynamics.

In this large charge non-gravitational limit the equations of motion for
the action (4.2.3) reduce to those of U(1)-electrodynamics coupled to a
fermion with charge g in the background of this black hole:

DMF
MN = igeNA Ψ̄ΓAΨ ,

0 = eMA ΓA(DM + iegAM )Ψ +mΨ . (4.3.1)

Thus the vielbein eMA and and covariant derivative DM remain those of the
fixed charged AdS black hole metric (6.2.4), but the vector-potential now

contains a background piece A
(bg)
0 plus a first-order piece AM = A

(bg)
M +

A
(1)
M , which captures the effect of the charge carried by the fermions.
Following our argument set out in previous section that it is more con-

venient to work with the currents J I
±(z), G

I(z) instead of trying to solve
the Dirac equation directly, we shall first rewrite this coupled non-trivial
set of equations of motion in terms of the currents while at the same time
using symmetries to reduce the complexity. Although a system at finite
fermion density need not be homogeneous, the Fermi liquid ground state
is. It therefore natural to make the ansatz that the final AdS solution is
static and preserves translation and rotation along the boundary. As the
Dirac field transforms non-trivially under rotations and boosts, we cannot
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make this ansatz in the strictest sense. However, in some average sense
which we will make precise, the solution should be static and translation-
ally invariant. Then translational and rotational invariance allow us to set
Ai = 0, Az = 0, whose equations of motions will turn into contraints for
the remaining degrees of freedom. Again denoting A0 = Φ, the equations
reduce to the following after the projection onto Ψ± = 1

2(1± ΓZ)Ψ.

∂2zΦ =
−gL3α

z3
√
f

(
Ψ̄+iγ

0Ψ+ + Ψ̄−iγ
0Ψ−

)
,

(∂z +A±)Ψ± = ∓ /T Ψ∓ (4.3.2)

with

A± = − 1

2z

(
3− zf ′

2f

)
± mL

z
√
f
,

/T =
i(−ω + gΦ)

αf
γ0 +

i

α
√
f
kiγ

i . (4.3.3)

as before.
The difficult part is to “impose” staticity and rotational invariance for

the non-invariant spinor. This can be done by rephrasing the dynamics in
terms of fermion current bilinears, rather than the fermions themselves.
We shall first do so rather heuristically, and then show that the equations
obtained this way are in fact the flow equations for the Green’s functions
and composites J I(z), GI(z) constructed in the previous section. In terms
of the local vector currents6

Jµ+(x, z) = Ψ̄+(x, z)iγ
µΨ+(x, z) , Jµ−(x, z) = Ψ̄−(x, z)iγ

µΨ−(x, z) ,
(4.3.4)

or equivalently

Jµ+(p, z) =

∫
d3kΨ̄+(−k, z)iγµΨ+(p+ k, z),

Jµ−(p, z) =
∫
d3kΨ̄−(−k, z)iγµΨ−(p+ k, z) . (4.3.5)

rotational invariance means that spatial components J i± should vanish on
the solution — this solves the constraint from the Ai equation of motion,
and the equations can be rewritten in terms of J0

± only. Staticity and

6In our conventions Ψ̄ = Ψ
†

iγ0.
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rotational invariance in addition demand that the bilinear momentum pµ
vanish. In other words, we are only considering temporally and spatially
averaged densities: Jµ±(z) =

∫
dtd2xΨ̄(t, x, z)iγµΨ(t, x, z). Analogous to

the bilinear flow equations for the Green’s function, we can act with the
Dirac operator on the currents to obtain an effective equation of motion,
and this averaging over the relative frequencies ω and momenta ki will
set all terms with explicit ki-dependence to zero.7 Restricting to such
averaged currents and absorbing a factor of g/α in Φ and a factor of g

√
L3

in Ψ±, we obtain effective equations of motion for the bilinears directly

(∂z + 2A±) J
0
± = ∓Φ

f
I ,

(∂z +A+ +A−) I =
2Φ

f
(J0

+ − J0
−) ,

∂2zΦ = − 1

z3
√
f
(J0

+ + J0
−) , (4.3.8)

with I = Ψ̄−Ψ++Ψ̄+Ψ−, and all fields are real. The remaining constraint
from the Az equation of motion decouples. It demands Im(Ψ̄+Ψ−) =
i
2(Ψ̄−Ψ+ − Ψ̄+Ψ−) = 0. What the equations (4.3.8) tell us is that for
nonzero J0

± there is a charged electrostatic source for the vector potential
Φ in the bulk.

Momentarily we will motivate the effective equations (4.3.8) at a more
fundamental level. Before that there are several remarks to be made

• These equations contain more information than just current conser-
vation ∂µJ

µ = 0. In an isotropic and static background current con-
servation is trivially true as ∂µJ

µ = ∂0J
0 = −i

∫
dωe−iωtωJ0(ω) = 0

as J0(ω 6= 0) = 0.

7To see this consider

(∂ + 2A±)Ψ
†
±(−k)Ψ±(k) = ∓Φ

f

(
Ψ†

−iγ
0Ψ+ +Ψ†

+iγ
0Ψ−

)
+
iki√
f

(
Ψ†

−γ
iΨ+ −Ψ†

+γ
iΨ−

)
.(4.3.6)

The term proportional to Φ is relevant for the solution. The dynamics of the term
proportional to ki is

(∂ +A+ +A−)(Ψ
†
−γ

iΨ+ −Ψ†
+γ

iΨ−) = −2i
ki√
f
(Ψ†

+γ
0Ψ+ +Ψ†

−γ
0Ψ−) . (4.3.7)

The integral of the RHS over ki vanishes by the assumption of translational and ro-
tational invariance. Therefore the LHS of (5.2.14) and thus the second term in eq.
(5.2.13) does so as well.
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• We have scaled out the electromagnetic coupling. AdS4/CFT3 duals
for which the underlying string theory is known generically have
g = κ/L with κ the gravitational coupling constant as defined in
(4.2.3). Thus, using standard AdS4/CFT3 scaling, a finite charge in
the new units translates to a macroscopic original charge of order
L/κ ∝ N1/3. This large charge demands that backreaction of the
fermions in terms of its bilinear is taken into account as a source for
Φ.

• The equations are local. From the fundamental point of view, that
one considers finite density in the bulk, this is strange to say the
least. Generic multi-fermion configurations are non-local, see e.g.
[96]. These equations can therefore never capture the full bulk
fermion dynamics. Our starting point has been a single fermion per-
spective, where the Pauli blocking induced non-locality is absent. In
that context local equations are fine. We have also explicitly aver-
aged over all directions parallel to the boundary and, as we have
shown in the previous section (see also footnote 7), it is this aver-
aging that tremendously simplifies the equations. The most curious
part may be that this unaveraged set of equations — and therefore
also eqs (4.3.8) — are all local in the radial direction z. From the
AdS perspective a many-fermion system should be non-local demo-
cratically and thus also exhibit non-locality in z, yet from the CFT
perspective where z-dynamics encode RG-flow, it is eminently nat-
ural. We leave the resolution of this paradox to future work.

The justification of using (4.3.8) to construct the AdS dual of a regular
Fermi liquid is the connection between local fermion bilinears and the CFT
Green’s function. The complicated flow equations reduce precisely to the
first two equations in (4.3.8) upon performing the spacetime averaging and
the trace, i.e. J0

± =
∫
d3kTrJ 0

± and I =
∫
d3kTr

(
G11 + Ḡ11

)
. Combined

with the demand that we only consider normalizable solutions and the
proof that J 0

− is proportional to the pole-strength, the radial evolution
equations (4.3.8) are the (complicated) AdS recasting of the RG-flow for
the pole-strength. This novel interpretation ought to dispel some of the a
priori worries about our unconventional treatment of the fermions through
their semi-classical bilinears. There is also support from the gravity side,
however. Recall that for conventional many-body systems and fermions
in particular one first populates a certain set of states and then tries to
compute the macroscopic properties of the collective. In a certain sense the
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equations (4.3.8) formulate the same program but in opposite order: one
computes the generic wavefunction charge density with and by imposing
the right boundary conditions, i.e normalizability, one selects only the
correct set of states. This follows directly from the equivalence between
normalizable AdS modes and quasiparticle poles that are characterized by
well defined distinct momenta kF (for ω = ωF ≡ 0). The demand that
any non-trivial Dirac hair black hole is constructed from normalizable
solutions of the composite operators (i.e. their leading and subleading
asymptotes vanish8) thus means that one imposes a superselection rule on
the spatial averaging in the definition of JI±:

J0
±(z)|norm ≡

∫
d3kΨ̄±(−k)iγ0Ψ±(k)|norm

=

∫
d3k δ2(|k| − |kF |)|B(0)

± (k)|2z4+2m±1 + . . .(4.3.9)

We see that the constraint of normalizability from the bulk point of the
view, implies that one selects precisely the on-shell bulk fermion modes as
the building blocks of the density J0

±.
In turn this means that the true system that eqs. (4.3.8) describe is

somewhat obscured by the spatial averaging. Clearly even a single fermion
wavefunction is in truth the full set of two-dimensional wavefunctions
whose momentum ki has length kF . However, the averaging could just
as well be counting more, as long as there is another set of normalizable
states once the isotropic momentum surface |k| = |kF | is filled. Pushing
this thought to the extreme, one could even speculate that the system
(4.3.8) gives the correct quantum-mechanical description of the many-
body Fermi system: the system which gravitational reasoning suggests
is the true groundstate of the charged AdS black hole in the presence of
fermions.

To remind us of the ambiguity introduced by spatial averaging, we
shall give the boundary coefficient of normalizable solution for J0

− =∫
d3kJ 0

− a separate name. The quantity J 0
−(z0) is proportional to the

8One can verify that the discussion in section 4.2.1 holds also for fully backreacted
solutions. The derivation there builds on the assumption that the boundary behavior of
the electrostatic potential is regular. It is straightforward to check in (4.3.8) that indeed
precisely for normalizable solutions, i.e. in the absence of explicit fermion-sources, when
both the leading and subleading terms in J0

± and I vanish, the boundary behavior the
scalar potential remains regular, as required.
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pole strength, which via Migdal’s relation quantifies the characteristic oc-
cupation number discontinuity at ωF ≡ 0. We shall therefore call the
coefficient

∫
d3k|B−|2|normalizable = ∆nF .

Thermodynamics

At a very qualitative level the identification J0
−|norm(z) ≡ ∆nF z

3+2m+ . . .
can be argued to follow from thermodynamics as well. From the free
energy for an AdS dual solution to a Fermi liquid, one finds that the
charge density directly due to the fermions is

ρtotal = −2
∂

∂µ
F =

−3

2m+ 1

∆nF

z−1−2m
0

+ ρ+ . . . , (4.3.10)

with z−1
0 the UV-cutoff as before. The cut-off dependence is a consequence

of the fact that the system is interacting, and one cannot truly separate
out the fermions as free particles. Were one to substitute the naive free
fermion scaling dimension ∆ = m+3/2 = 1, the cutoff dependence would
vanish and the identification would be exact.

We can thus state that in the interacting system there is a contribution
to the charge density from a finite number of fermions proportional to

ρF =
−3

2∆− 2

∆nF

z2−2∆
0

+ . . . , (4.3.11)

although this contribution formally vanishes in the limit where we send
the UV-cutoff z−1

0 to infinity.
To derive eq. (5.2.16), recall that the free energy is equal to minus the

on-shell action of the AdS dual theory. Since we disregard the gravitational
backreaction, the Einstein term in the AdS theory will not contain any
relevant information and we consider the Maxwell and Dirac term only.
We write the action as,

S =

∫ 1

z0

√−g
[
1

2
ANDMF

MN − Ψ̄/DΨ−mΨ̄Ψ

]
+

+

∮

z=z0

√
−h
(
Ψ̄+Ψ− +

1

2
AµnαF

αµ

)
, (4.3.12)

where we have included an explicit fermionic boundary term that fol-
lows from the AdS/CFT dictionary [17] and nα is a normal vector to the
boundary. The boundary action is not manifestly real, but its on-shell
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value which contributes to the free energy is real. Recall that the imag-
inary part of Ψ̄+Ψ− decouples from eqs. (4.3.8). The boundary Dirac
term in (5.2.10) is therefore equal to I = 2Re(Ψ̄+Ψ−).

To write the free energy in terms of the quantities µ, ρ and ∆nF ,
note that the on-shell bulk Dirac action vanishes. Importantly the bulk
Maxwell action does contribute to the free energy. Its contribution is

Fbulk = lim
z0→0

∫ 1

z0

dzd3x

[
1

2
Φ∂zzΦ

]

on−shell

= − lim
z0→0

∫ 1

z0

dzd3x

[
1

2z3
√
f
Φ(J0

+ + J0
−)

]

on−shell
,(4.3.13)

where we have used the equation of motion (4.3.8). This contribution
should be expected, since the free energy should be dominated by in-
frared, i.e. near horizon physics. Due to the logarithmic singularity in the
electrostatic potential (Eq. (4.3.17) this bulk contribution diverges, but
this divergence should be compensated by gravitational backreaction. At
the same time the singularity is so mild, however, that the free energy, the
integral of the Maxwell term, remains finite in the absence of the Einstein
contribution.

Formally, i.e. in the limit z0 → 0, the full free energy arises from
this bulk contribution (4.3.13). The relation (5.2.16) between the charge
density and ∆nF follows only from the regularized free energy, and is
therefore only a qualitative guideline. Empirically, as we will show, it is
however, a very good one (see Fig 4.1 in the next section). Splitting the
regularized bulk integral in two

Fbulk =

∫ 1

z∗
dzd3x

[
1

2z3
√
f
Φ(J0

+ + J0
−)

]

on−shell
+

+ lim
z0→0

∫ z∗

z0

dzd3x

[
1

2z3
√
f
Φ(J0

+ + J0
−)

]

on−shell
, (4.3.14)

we substitute the normalizable boundary behavior of Ψ+ = B+z
5/2+m +

. . ., Ψ− = B−z3/2+m + . . . and Φ = µ − ρz + . . ., and obtain for the
regularized free energy

F = Fhorizon(z∗) + lim
z0→0

∫ z∗

z0

d3xdz

[−1

2z3
µ|B−|2z3+2m + . . .

]
+

+

∮
d3x

z30

[
−B̄+B−z

4+2m
0 +

1

2
µρz30

]
. (4.3.15)
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Using that B+ = −iµγ0B−/(2m+ 1) (eq. (5.2.2)), the second bulk term
and boundary contribution are proportional, and the free energy schemat-
ically equals

F = F horizon + lim
z0→0

∫
d3x

[
3µ

2(2m+ 1)
B̄−iγ

0B−z
1+2m
0 − 1

2
µρ

]
.(4.3.16)

With the UV-regulator z−1
0 finite, this yields the charge density in Eq.

(5.2.16) after one recalls that B̄− = B†
−iγ

0.
With the derived rule that the AdS dual to a Fermi liquid has a nonzero

normalizable component in the current J0
−, we will now construct an AdS

solution that has this property: an AdS black hole with Dirac hair. Ig-
noring backreaction, these are solutions to the density equations (4.3.8).
In its simplest form the interpretation is that of the backreaction due to
a single fermion wavefunction, but as explained the spatial averaging of
the density combined with the selection rule of normalizability could be
capturing a more general solution.

4.3.1 At the horizon: Entropy collapse to a Lifshitz solu-
tion

Before we can proceed with the construction of non-trivial Dirac hair
solutions to Eqs. (4.3.8), we must consider the boundary conditions at
the horizon necessary to solve the system. Insisting that the right-hand-
side of the dynamical equations (4.3.8) is subleading at the horizon, the
near-horizon behavior of J0

±, I, Φ is:

J0
± = Jhor,±(1− z)−1/2 + . . . ,

I = Ihor(1− z)−1/2 + . . . ,

Φ = Φ
(1)
hor(1− z) ln(1− z) + (Φ

(2)
hor − Φ

(1)
hor)(1− z) + . . . .(4.3.17)

If we insist that Φ is regular at the horizon z = 1, i.e. Φ
(1)
hor = 0, so that

the electric field is finite, the leading term in J0
± must vanish as well, i.e.

Jhor,± = 0, and the system reduces to a free Maxwell field in the pres-
ence of an AdS black hole and there is no fermion density profile in the
bulk. Thus in order to achieve a nonzero fermion profile in the bulk, we
must have an explicit source for the electric-field on the horizon. Strictly
speaking, this invalidates our neglect of backreaction as the electric field
and its energy density at the location of the source will be infinite. As
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we argued above, this backreaction is in fact expected to resolve the finite
ground-state entropy problem associated with the presence of a horizon.
The backreaction should remove the horizon completely, and the back-
ground should resemble the horizonless metrics found in [50, 37, 51]; the
same horizon logarithmic behavior in the electrostatic potential was noted
there. Nevertheless, as the divergence in the electric field only increases
logarithmically as we approach the horizon, and our results shall hinge on
the properties of the equations at the opposite end near the boundary, we
shall continue to ignore it here. We shall take the sensibility of our result
after the fact, as proof that the logarithmic divergence at the horizon is
indeed mild enough to be ignored.

The identification of the boundary value of J0
− with the Fermi liq-

uid characteristic occupation number jump ∆nF rested on the insistence
that the currents are built out of AdS Dirac fields. This deconstruction
also determines a relation between the horizon boundary conditions of the
composite fields J0

±, I. If Ψ±(z) = C±(1− z)−1/4 + . . . then Jhor,± = C2
±

and Ihor = C+C−. As the solution Φ
(1)
hor is independent of the solution

Φ
(2)
hor which is regular at the horizon, we match the latter to the vector-

potential of the charged AdS black hole: Φ
(2)
hor = −2gq ≡ gµ0/α. Re-

calling that Φ
(1)
hor = −(Jhor,+ + Jhor,−), we see that the three-parameter

family of solutions at the horizon in terms of C±, Φ
(2)
hor corresponds to

the three-parameter space of boundary values A+, B− and µ encoding a
fermion-source, the fermion-response/expectation value and the chemical
potential.

We can now search whether within this three-parameter family a finite
normalizable fermion density solution with vanishing source A+ = 0 exists
for a given temperature T of the black hole.

4.3.2 A BH with Dirac hair

The equations are readily solved numerically with a shooting method from
the horizon. We consider both an uncharged AdS-Schwarzschild solution
and the charged AdS Reissner-Nordström solution. Studies of bosonic con-
densates in AdS/CFT without backreaction have mostly been done in the
AdS-Schwarzschild (AdSS) background ([46, 47] and references therein).
An exception is [3], which also considers the charged RN black hole. As
is explained in [3], they correspond to two different limits of the exact
solution: the AdSS case requires that ∆nF & µ that is, the total charge



88 Chapter 4. AdS dual of a Fermi liquid: Dirac hair [18]

of the matter fields should be dominant compared to the charge of the
black hole. On the other hand, the RN limit is appropriate if ∆nF ≪ µ.
It ignores the effect of the energy density of the charged matter sector on
the charged black hole geometry. The AdS Schwarzschild background is
only reliable near Tc, as at low temperatures the finite charged fermion
density is comparable to µ. The RN case is under better control for low
temperatures, because near T = 0 the chemical potential can be tuned to
stay larger than fermion density.

We shall therefore focus primarily on the solution in the background
of an AdS RN black hole, i.e. the system with a heat bath with chemical

potential µ — non-linearly determined by the value of Φ
(2)
hor = µ0 at the

horizon — which for low T/µ should show the characteristic ∆nF of a
Fermi liquid. The limit in which we may confidently ignore backreaction

is Φ
(1)
hor ≪ µ0 for T . µ0 — for AdSS the appropriate limit is Φ

(1)
hor ≪ T

for µ0 ≪ T .

Finite fermion density solutions in AdS-RN

Fig. 4.1 shows the behavior of the occupation number discontinuity
nF ≡ |B−|2 and the fermion free-energy contribution I as a function of
temperature in a search for normalizable solutions to Eqs (4.3.8) with the
aforementioned boundary conditions. We clearly see a first order transi-
tion to a finite fermion density, as expected. The underlying Dirac field
dynamics can be recognized in that the normalizable solution for J0

−(z)
which has no leading component near the boundary by construction, also
has its subleading component vanishing (Fig. 4.2).9

Analyzing the transition in more detail in Fig. 4.3, we find:

1. The dimensionless number discontinuity ∆nF /µ
2∆ scales as T−δ in

a certain temperature range TF < T < Tc, with δ > 0 depending on
g and ∆, and TF typically very small. At T = Tc > TF it drops to
zero discontinuously, characteristic of a first order phase transition.

2. At low temperatures, 0 < T < TF , the power-law growth comes to a
halt and ends with a plateau where ∆nF /µ

2∆ ∼ const. (Fig. 4.3A).

9Although the Dirac hair solution has charged matter in the bulk, there is no Higgs ef-
fect for the bulk gauge field, and thus there is no direct spontaneous symmetry breaking
in the boundary. Indeed one would not expect it for the Fermi liquid groundstate. There
will be indirect effect on the conductivity similar to [51]. We thank Andy O’Bannon
for his persistent inquiries to this point.
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It is natural to interpret this temperature as the Fermi temperature
of the boundary Fermi liquid.

3. The fermion free energy contribution I/µ2∆+1 scales as T 1/ν with
ν > 1 for 0 < T < Tc, and drops to zero discontinuously at Tc. As
I empirically equals minus the free energy per particle, it is natural
that I(T = 0) = 0, and this in turn supports the identification of
∆nF (T = 0) as the step in number density at the Fermi energy.

(A)
! !"!# !"!$ !"!% !"!& !"'! !"'#

#

$

%

()!

!
!*
")
!
#
#
+
'

!

#

,

$

#
-
.
)!
#
#

(B)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

T/µ

 

 

F = F
Max

bulk
 + F

Max

bnd

F
Max

bulk

F
Max

bnd

F
f

!
tot

 = ! + !
f

Figure 4.1: (A) Temperature dependence of the Fermi liquid occupation number
discontinuity ∆nF and operator I for a fermionic field of mass m = −1/4 dual
to an operator of dimension ∆ = 5/4. We see a large density for T/µ small and
discontinuously drop to zero at T ≈ 0.05µ. At this same temperature, the proxy
free energy contribution per particle (the negative of I) vanishes. (B) The free
energy F = F fermion + FMaxwell (Eq. (5.2.10)) as a function of T/µ ignoring
the contribution from the gravitational sector. The blue curve shows the total
free energy F = FMaxwell, which is the sum of a bulk and a boundary term.
The explicit fermion contribution Ffermion vanishes, but the effect of a non-
zero fermion density is directly encoded in a non-zero FMaxwell

bulk . The figure also
shows this bulk FMaxwell

bulk and the boundary contribution FMaxwell
bulk separately

and how they sum to a continuous Ftotal. Although formally the explicit fermion
contribution Ff ∼ I in equation (5.2.11) vanishes, the bulk Maxwell contribution
is captured remarkably well by its value when the cut-off is kept finite. The light-
green curve in the figure shows Ff for a finite z0 ∼ 10−6. For completeness we
also show the total charge density, Eq. (5.2.16). The dimension of the fermionic
operator used in this figure is ∆ = 1.1.

One expects that the exponents δ, ν are controlled by the conformal
dimension ∆.10 The dependence of the exponent δ on the conformal di-

10The charge g of the underlying conformal fermionic operator scales out of the so-
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Figure 4.2: The boundary behavior of J−(0) in for a generic solution (blue)
to Eqs. (4.3.8) and a normalizable Dirac-hair solution (red) for m = −1/4
in the background of an AdS-RN black hole with µ/T = 128.8. The dotted
lines show the scaling z11/2 and z4 of the leading and subleading terms in an
expansion of J0

−(z) near z = 0; the dashed line shows the scaling z5/2 of the
subsubleading expansion whose coefficient is |B−(ωF , kF )|2. That the Dirac hair
solution (red) scales as the subsubleading solution indicates that the current J0

−
faithfully captures the density of the underlying normalizable Dirac field.

mension is shown in Fig. 4.3A. While a correlation clearly exists, the data
are not conclusive enough to determine the relation δ = δ(∆). The clean
power law T−δ scaling regime is actually somewhat puzzling. These values
of the temperature, TF < T < Tc, correspond to a crossover between the
true Fermi liquid regime for T < TF and the conformal phase for T > Tc,
hence there is no clear ground for a universal scaling relation for δ, which
seems to be corroborated by the data (Fig. 4.3B). At the same time, the
scaling exponent ν appears to obey ν = 2 with great precision (Fig. 4.3B,
inset) independent of ∆ and g.

A final consideration, needed to verify the existence of a finite fermion
density AdS solution dual to a Fermi liquid, is to show that the ignored
backreaction stays small. In particular, the divergence of the electric field
at the horizon should not affect the result. The total bulk electric field
Ez = −∂zΦ is shown in Fig. 4.4A, normalized by its value at z = 1/2. The
logarithmic singularity at the horizon is clearly visible. At the same time,
the contribution to the total electric field from the charged fermions is

lution.
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Figure 4.3: (A) Approximate power-law scaling of the Fermi liquid characteristic
occupation number discontinuity ∆nF /µ

2∆ ∼ T−δ as a function of T/µ for ∆ =
5/4. This figure clearly shows the saturation of the density at very low T/µ. The
saturation effect is naturally interpreted as the influence of the characteristic
Fermi energy. (B) The scaling exponent δ for different values of the conformal
dimension ∆. There is a clear correlation, but the precise relation cannot be
determined numerically. The scaling exponent of the current I/µ2∆+1 ∼ T−1/ν

obeys ν = 2 with great accuracy, on the other hand (Inset).

negligible even very close to the horizon.11 This suggests that our results
are robust with respect to the details of the IR divergence of the electric
field.

The diverging backreaction at the horizon is in fact the gravity inter-
pretation of the first order transition at Tc: an arbitrarily small non-zero
density leads to an abrupt change in the on shell bulk action. As the latter
is the free energy in the CFT, it must reflect the discontinuity of a first
order transition. A full account of the singular behavior at the horizon
requires self-consistent treatment including the Einstein equations. At
this level, we can conclude that the divergent energy density at the hori-
zon implies that the near-horizon physics becomes substantially different

11It is of the order 10−4, starting from z = 0.9999. We have run our numerics using
values between 1− 10−6 and 1− 10−2 and found no detectable difference in quantities
at the boundary.
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from the AdS2 limit of the RN metric. It is natural to guess that the RN
horizon disappears completely, corresponding to a ground state with zero
entropy, as hypothesized in [50]. This matches the expectation that the
finite fermi-density solution in the bulk describes the Fermi-liquid. The
underlying assumption in the above reasoning is that the total charge is
conserved.
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Figure 4.4: (A) The radial electric field −Ez = ∂Φ/∂z, normalized to the
midpoint value Ez(z)/Ez(1/2) for whole interior of the finite fermion density
AdS-RN solution (upper) and near the horizon (lower). One clearly sees the soft,
log-singularity at the horizon. The colors correspond to increasing temperatures
from T = 0.04µ (lighter) to T = 0.18µ (darker), all with ∆ = 1.1. (B) The
occupation number jump ∆nF and free energy contribution I as a function of
temperature in AdS-Schwarzschild. We see the jump ∆nF saturate at low tem-
peratures and fall off at high T . An exponential fit to the data (red curve) shows
that in the critical region the fall-off is stronger than exponential, indicating that
the transition is first order. The conformal dimension of the fermionic opera-
tor is ∆ = 1.1. (C) The radial electric field −Ez = ∂Φ/∂z, normalized to the
midpoint value (Ez(z)/Ez(1/2)) for the finite fermion density AdS-Schwarzschild
background. The divergence of the electric field Ez is again only noticeable near
the horizon and can be neglected in most of the bulk region.
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Finite fermion density in AdSS

For completeness, we will describe the finite fermion-density solutions in
the AdS Schwarzschild geometry as well. In these solutions the charge
density is set by the density of fermions alone. They are therefore not
reliable at very low temperatures T ≪ Tc when gravitational backreaction
becomes important. The purpose of this section is to show the existence
of finite density solutions does not depend on the presence of a charged

black-hole set by the horizon value Φ
(2)
hor = µ0, but that the transition to a

finite fermion density can be driven by the charged fermions themselves.
Fig. 4.4B shows the nearly instantaneous development of a non-

vanishing expectation value for the occupation number discontinuity ∆nF
and I in the AdS Schwarzschild background. The rise is not as sharp as in
the RN background. It is, however, steeper than exponential, and we may
conclude that the system undergoes a discontinuous first order transition
to a AdS Dirac hair solution. The constant limit reached by the fermion
density as T → 0 has no meaning as we cannot trust the solution far away
from Tc.

The backreaction due to the electric field divergence at the horizon
can be neglected, for the same reason as before (Fig. 4.4C).

4.3.3 Confirmation from fermion spectral functions

If, as we surmised, the finite fermion density phase is the true Fermi-liquid-
like ground state, the change in the fermion spectral functions should be
minimal as the characteristic quasi-particle peaks are already present in
the probe limit, i.e. pure AdS Reissner-Nordström [79, 17]. Fig. 4.5 shows
that quasiparticle poles near ω = 0 with similar analytic properties can
be identified in both the probe pure AdS-RN case and the AdS-RN Dirac-
hair solution. The explanation for this similarity is that the electrostatic
potential Φ almost completely determines the spectrum, and the change
in Φ due to the presence of a finite fermion density is quite small. Still,
one expects that the finite fermion density system is a more favorable
state. This indeed follows from a detailed comparison between the spectral
functions A(ω; k) in the probe limit and the fermion-liquid phase (Fig.
4.5). We see that:

1. All quasiparticle poles present in the probe limit are also present in
the Dirac hair phase, at a slightly shifted value of kF . This shift
is a consequence of the change in the bulk electrostatic potential Φ
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Figure 4.5: The single-fermion spectral function in the probe limit of pure
AdS Reissner-Nordström (red/yellow) minus the spectrum in the finite density
system (blue). The conformal dimension is ∆ = 5/4, the probe charge g = 2, and
µ/T = 135. We can see two quasiparticle poles near ω = 0, a non-FL pole with

kprobeF ≃ 0.11µ and k∆nF

F ≃ 0.08µ respectively and a FL-pole with kprobeF ≃ 0.18µ

and k∆nF

F ≃ 0.17µ. The dispersion of both poles is visibly similar between the
probe and the finite density background. At the same time, the non-FL pole has
about 8 times less weight in the finite density background, whereas the FL-pole
has gained about 6.5 times more weight.

due to the presence of the charged matter. For a Fermi-liquid-like
quasiparticle corresponding to the second pole in the operator with
∆ = 5/4 and g = 2 we find kprobeF − k∆nF

F = 0.07µ. The non-Fermi-
liquid pole, i.e. the first pole for the same conformal operator, has
kprobeF − k∆nF

F = 0.03µ.

2. The dispersion exponents ν defined through (ω−EF )2 ∼ (k−kF )2/ν ,
also maintain roughly the same values as both solutions. This is
visually evident in the near similar slopes of the ridges in Fig. 4.5. In
the AdS Reissner-Nordström background, the dispersion coefficients
are known analytically as a function of the Fermi momentum: νkF =√

2
k2F
µ2

− 1
3 + 1

6 (∆− 3/2)2 [27]. The Fermi-liquid-like quasiparticle

corresponding to the second pole in the operator with ∆ = 5/4 and
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Figure 4.6: (A) Single fermion spectral functions near ω = 0 in pure AdS
Reissner-Nordström (blue) and in the finite fermion density background (red).
In the former the position of the maximum approaches ω = 0 as T is lowered
whereas in the latter the position of the maximum stays close to T = 0 for all
values of T . (B) Position of the maximum of the quasiparticle peak in k-ω plane,
for different temperatures and ∆ = 5/4. The probe limit around a AdS-RN
black hole (blue) carries a strong temperature dependence of the ωmax value,
with ωmax,T 6=0 6= 0. In the finite fermion density background, the position of the
maximum (red) is nearly independent of temperature and stays at ω = 0.

g = 2 has νprobekF
= 1.02 vs. ν∆nF = 1.01. The non-Fermi-liquid pole

corresponding to the first pole for the same conformal operator, has
νprobekF

≈ 0.10, and ν∆nF = 0.12.

3. The most distinct property of the finite density phase is the redis-
tributed spectral weight of the poles. The non-Fermi liquid pole
reaches its maximum height about 104, an order of magnitude less
than in the probe limit, whereas the second, Fermi liquid-like pole,
increases by an order of magnitude. This suggests that the finite
density state corresponds to the Fermi-liquid like state, rather than
a non-Fermi liquid.
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4. As we mentioned in the introduction, part of the reason to suspect
the existence of an AdS-RN Dirac-hair solution is that a detailed
study of spectral functions in AdS-RN reveals that the quasiparti-
cle peak is anomalously sensitive to changes in T . This anomalous
temperature dependence disappears in the finite density solution.
Specifically in pure AdS-RN the position ωmax where the peak height
is maximum, denoted EF in [17], does not agree with the value ωpole,
where the pole touches the real axis in the complex ω-plane, for any
finite value of T , and is exponentially sensitive to changes in T (Fig
4.6). In the AdS-RN Dirac hair solution the location ωmax and the
location ωpole do become the same. Fig. 4.6B shows that the maxi-
mum of the quasiparticle peak always sits at ω ≃ 0 in finite density
Dirac hair solution, while it only reaches this as T → 0 in the probe
AdS-RN case.

4.4 Discussion and Conclusion

Empirically we know that the Fermi liquid phase of real matter systems
is remarkably robust and generic. This is corroborated by analyzing
effective field theory around the Fermi surface, but as it assumes the
ground state it cannot explain its genericity. If the Fermi liquid ground
state is so robust, this must also be a feature of the recent holographic
approaches to strongly interacting fermionic systems. Our results here
indicate that this is so. We have used Migdal’s relation to construct
AdS/CFT rules for the holographic dual of a Fermi liquid: the charac-
teristic occupation number discontinuity ∆nF is encoded in the normal-
izable subsubleading component of the spatially averaged fermion density
J0
−(z) ≡

∫
d3kΨ̄(ω = 0,−k, z)iγ0Ψ(ω = 0, k, z) near the AdS boundary.

This density has its own set of evolution equations, based on the underly-
ing Dirac field, and insisting on normalizability automatically selects the
on-shell wavefunctions of the underlying Dirac-field.

The simplest AdS solution that has a non-vanishing expectation value
for the occupation number discontinuity ∆nF is that of a single fermion
wavefunction. Using the density approach — which through the averaging
appears to describe a class of solutions rather than one specific solution —
we have constructed the limit of this solution where gravitational back-
reaction is ignored. At low black hole temperatures this solution with
fermionic “Dirac hair” is the preferred ground state. Through an analysis
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of the free-energy, we argue that this gravitational solution with a non-
zero fermion profile precisely corresponds to a system with a finite density
of fermions. A spectral analysis still reveals a zoo of Fermi-surfaces in
this ground state, but there are indications that in the full gravitationally
backreacted solution only a Landau Fermi-liquid type Fermi surface sur-
vives. This follows in part from the relation between the spectral density
and the Fermi momentum of a particular Landau liquid-like Fermi surface;
it also agrees with the prediction from Luttinger’s theorem. Furthermore,
the spectral analysis in the finite density state shows no anomalous tem-
perature dependence present in the pure charged black-hole single spec-
tral functions. This also indicates that the finite density state is the true
ground state.

The discovery of this state reveals a new essential component in the
study of strongly coupled fermionic systems through gravitational duals,
where one should take into account the expectation values of fermion bilin-
ears. Technically the construction of the full gravitationally backreacted
solution is a first point that is needed to complete our finding. A complete
approach to this problem will have to take into account the many-body
physics in the bulk. Within the approach presented in this paper, it means
the inclusion of additional fermion wavefunctions, filling the bulk Fermi
surface. The realization, however, that expectation values of fermion bi-
linears can be captured in holographic duals and naturally encode phase
separations in strongly coupled fermion systems should find a large set of
applications in the near future.
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Chapter 5

From the Dirac hair to the
electron star [19]

5.1 Introduction

The insight provided by the application of the AdS/CFT correspondence
to finite density Fermi systems has given brand new perspectives on the
theoretical robustness of non-Fermi liquids [79, 17, 27]; on an understand-
ing of the non-perturbative stability of the regular Fermi liquid equivalent
to order parameter universality for bosons [18, 20], and most importantly
on the notion of fermionic criticality: Fermi systems with no scale. In
essence strongly coupled conformally invariant fermi systems are one an-
swer to the grand theoretical question of fermionic condensed matter: Are
there finite density Fermi systems that do not refer at any stage to an
underlying perturbative Fermi gas?

It is natural to ask to what extent AdS/CFT can provide a more
complete answer to this question. Assuming, almost tautologically, that
the underlying system is strongly coupled and there is in addition some
notion of a large N limit, the Fermi system is dual to classical general rel-
ativity with a negative cosmological constant coupled to charged fermions
and electromagnetism. As AdS/CFT maps quantum numbers to quan-
tum numbers, finite density configurations of the strongly coupled large N
system correspond to solutions of this Einstein-Maxwell-Dirac theory with
finite charge density. Since the AdS fermions are the only object carrying
charge, and the gravity system is weakly coupled, one is immediately in-
clined to infer that the generic solution is a weakly coupled charged Fermi
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gas coupled to AdS gravity: in other words an AdS electron star [50, 51],
the charged equivalent of a neutron star in asymptotically anti-de Sitter
space [23, 6].

Nothing can seem more straightforward. Given the total charge den-
sity Q of interest, one constructs the free fermionic wavefunctions in this
system, and fills them one by one in increasing energy until the total
charge equals Q. For macroscopic values of Q these fermions themselves
will backreact on the geometry. One can compute this backreaction; it
changes the potential for the free fermions at subleading order. Correct-
ing the wavefunctions at this subleading order, one converges on the true
solution order by order in the gravitational strength κ2E2

full system. Here

Efull system is the energy carried by the Fermi system and κ2 is the grav-
itational coupling constant κ2 = 8πGNewton in the AdS gravity system.
Perturbation theory in κ is dual to the 1/N expansion in the associated
condensed matter system.

The starting point of the backreaction computation is to follow Tolman-
Oppenheimer-Volkov (TOV) and use a Thomas-Fermi (TF) approxima-
tion for the lowest order one-loop contribution [23, 50, 51, 6]. The Thomas-
Fermi approximation applies when the number of constituent fermions
making up the Fermi gas is infinite. For neutral fermions this equates
to the statement that the energy-spacing between the levels is neglible
compared to the chemical potential associated with Q, ∆E/µ → 0. For
charged fermions the Thomas-Fermi limit is more direct: it is the limit
q/Q→ 0 where q is the charge of each constituent fermion. 1

This has been the guiding principle behind the approaches [23, 50, 6,
51, 89, 52] and the recent papers [53, 63], with the natural assumption
that all corrections beyond Thomas-Fermi are small quantitative changes
rather than qualitative ones. On closer inspection, however, this com-
pletely natural TF-electron star poses a number of puzzles. The most
prominent perhaps arises from the AdS/CFT correspondence finding that
every normalizable fermionic wavefunction in the gravitational bulk cor-
responds to a fermionic quasiparticle excitation in the dual condensed
matter system. In particular occupying a particular wavefunction is dual
to having a particular Fermi-liquid state [18]. In the Thomas Fermi limit
the gravity dual thus describes an infinity of Fermi liquids, whereas the
generic condensed matter expectation would have been that a been that

1For a fermion in an harmonic oscillator potential En = ~(n − 1/2)ω: thus
∆E/Etotal = 1/

∑N
1 (n− 1/2) = 2/N2.
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a single(/few) liquid(s) would be the generic groundstate away from the
strongly coupled fermionic quantum critical point at zero charge density.
This zoo of Fermi surfaces is already present in the grand canonical ap-
proaches at fixed µ (extremal AdS-Reissner-Nordström (AdS-RN) black
holes) [27] and a natural explanation would be that this is a large N effect.
This idea, that the gravity theory is dual to a condensed matter system
with N species of fermions, and increasing the charge density “populates”
more and more of the distinct species of Fermi liquids, is very surpris-
ing from the condensed matter perspective. Away from criticality one
would expect the generic groundstate to be a single Fermi-liquid or some
broken state due to pairing. To pose the puzzle sharply, once one has a
fermionic quasiparticle one should be able to adiabatically continue it to
a free Fermi gas, which would imply that the free limit of the strongly
coupled fermionic CFT is not a single but a system of order N fermions
with an ordered distribution of fermi-momenta. A possible explanation
of the multitude of Fermi surfaces that is consistent with a single Fermi
surface at weak coupling is that AdS/CFT describes so-called “deconfined
and/or fractionalized Fermi-liquids” where the number of Fermi surfaces
is directly tied to the coupling strength [54, 97, 55, 53, 63]. It would argue
that fermionic quantum criticality goes hand in hand with fractionaliza-
tion for which there is currently scant experimental evidence.

The second puzzle is more technical. Since quantum numbers in the
gravity system equal the quantum numbers in the dual condensed mat-
ter system, one is inclined to infer that each subsequent AdS fermion
wavefunction has incrementally higher energy than the previous one. Yet
analyticity of the Dirac equation implies that all normalizable wavefunc-
tions must have strictly vanishing energy [27]. It poses the question how
the order in which the fermions populate the Fermi gas is determined.

The third puzzle is that in the Thomas Fermi limit the Fermi gas is
gravitationally strictly confined to a bounded region: famously, the TOV-
neutron star has an edge. In AdS/CFT, however, all information about
the dual condensed matter system is read off at asymptotic AdS infinity.
Qualitatively, one can think of AdS/CFT as an “experiment” analogous
to probing a spatially confined Fermi gas with a tunneling microscope
held to the exterior of the trap. Extracting the information of the dual
condensed matter system is probing the AdS Dirac system confined by
a gravitoelectric trap instead of a magneto-optical trap for cold atoms.
Although the Thomas-Fermi limit should reliably capture the charge and
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energy densities in the system, its abrupt non-analytic change at the edge
(in a trapped system) and effective absence of a density far away from the
center are well known to cause qualitative deficiencies in the description
of the system. Specifically Friedel oscillations — quantum interference in
the outside tails of the charged fermion density, controlled by the ratio
q/Q and measured by a tunneling microscope — are absent. Analogously,
there could be qualitative features in the AdS asymptotics of both the
gravito-electric background and the Dirac wavefunctions in that adjusted
background that are missed by the TF-approximation. The AdS asymp-
totics in turn specify the physics of the dual condensed matter system and
since our main interest is to use AdS/CFT to understand quantum critical
fermion systems where q/Q is finite, the possibility of a qualitative change
inherent in the Thomas Fermi limit should be considered.

There is another candidate AdS description of the dual of a strongly
coupled finite density Fermi system: the AdS black hole with Dirac hair
[18, 20]. One arrives at this solution when one starts one’s reasoning from
the dual condensed matter system, rather than the Dirac fields in AdS
gravity. Insisting that the system collapses to a generic single species
Fermi-liquid ground state, the dual gravity description is that of an AdS
Einstein-Dirac-Maxwell system with a single nonzero normalizable Dirac
wavefunction. To have a macroscopic backreaction the charge of this sin-
gle Dirac field must be macroscopic. The intuitive way to view this solu-
tion is as the other simplest approximation to free Fermi gas coupled to
gravity. What we mean is that the full gravito-electric response is in all
cases controlled by the total charge Q of the solution: as charge is con-
served it is proportional to the constituent charge q times the number of
fermions nFAdS

and the two simple limits correspond to nF → ∞, q → 0
with Q = qnF fixed or nF → 1, q → Q. The former is the Thomas-Fermi
electron star, the latter is the AdS Dirac hair solution. In the context
of AdS/CFT there is a significant difference between the two solutions in
that the Dirac Hair solution clearly does not give rise to the puzzles 1,
2 and 3: there is by construction no zoo of Fermi-surfaces and therefore
no ordering. Moreover since the wavefunction is demanded to be nor-
malizable, it manifestly encodes the properties of the system at the AdS
boundary. On the other hand the AdS Dirac hair solution does pose the
puzzle that under normal conditions the total charge Q is much larger
than the constituent charge q both from the gravity/string theory point
of view and the condensed matter perspective. Generically one would
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expect a Fermi gas electron star rather than Dirac hair.
In this article we shall provide evidence for this point of view that the

AdS electron star and the AdS Dirac hair solution are two limits of the
same underlying system. Specifically we shall show that (1) the electron
star solution indeed has the constituent charge as a free parameter which
is formally sent to zero to obtain the Thomas-Fermi approximation. (2)
The number of normalizable wavefunctions in the electron star depend
on the value of the constituent charge q. We show this by computing
the electron star spectral functions. They depend in similar way on q
as the first AdS/CFT Fermi system studies in an AdS-RN background.
In the formal limit where q → Q, only one normalizable mode remains
and the spectral function wavefunction resembles the Dirac Hair solution,
underlining their underlying equivalence. Since both approximations have
qualitative differences as a description of the AdS dual to strongly coupled
fermionic systems, it argues that an improved approximation which has
characteristics of both is called for.

The results here are complimentary to and share an analysis of elec-
tron star spectral functions with the two recent articles [53] and [63] that
appeared in the course of this work (see also [61] for fermion spectral
functions in general Lifshitz backgrounds). Our motivation to probe the
system away from the direct electron star limit differs: we have therefore
been more precise in defining this limit and in the analysis of the Dirac
equation in the electron star background.

5.2 Einstein-Maxwell theory coupled to charged

fermions

The Lagrangian that describes both the electron star and Dirac Hair ap-
proximation is Einstein-Maxwell theory coupled to charged matter

S =

∫
d4x

√−g
[

1

2κ2
(
R+

6

L2

)
− 1

4q2
F 2 + Lmat(e

A
µ , Aµ)

]
,(5.2.1)

where L is the AdS radius, q is the electric charge and κ is the gravitational
coupling constant. It is useful to scale the electromagnetic interaction
to be of the same order as the gravitational interaction and measure all
lengths in terms of the AdS radius L:

gµν → L2gµν , Aµ → qL

κ
Aµ. (5.2.2)
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The system then becomes

S =

∫
d4x

√−g
[
L2

2κ2

(
R+ 6− 1

2
F 2

)
+ L4Lmat(Le

A
µ ,
qL

κ
Aµ)

]
.(5.2.3)

Note that in the rescaled variables the effective charge of charged matter
now depends on the ratio of the electromagnetic to gravitational coupling
constant: qeff = qL/κ. For the case of interest, charged fermions, the
Lagrangian in these variables is

L4Lf(Le
A
µ ,
qL

κ
Aµ) = −L

2

κ2
Ψ̄

[
eµAΓ

A
(
∂µ +

1

4
ωBCµ ΓBC − i

qL

κ
Aµ
)
−mL

]
Ψ ,(5.2.4)

where Ψ̄ is defined as Ψ̄ = iΨ†Γ0. Compared to the conventional normal-
ization the Dirac field has been made dimensionless Ψ = κ

√
Lψconventional.

With this normalization all terms in the action have a factor L2/κ2 and
it will therefore scale out of the equations of motion

Rµν −
1

2
gµνR− 3gµν =

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ + T f
µν

)
,

DµF
µν = −qeffJνf (5.2.5)

with

T f
µν =

1

2
Ψ̄eA(µΓ

A

[
∂ν) +

1

4
ωBCν) ΓBC − i

qL

κ
Aν)

]
Ψ− κ2L2

2
gµνLf ,(5.2.6)

Jνf = iΨ̄eνAΓ
AΨ, (5.2.7)

where the symmetrization is defined as B(µCν) = BµCν + BνCµ and the
Dirac equation

[
eµAΓ

A
(
∂µ +

1

4
ωBCµ ΓBC − i

qL

κ
Aµ
)
−mL

]
Ψ = 0. (5.2.8)

The stress-tensor and current are to be evaluated in the specific state
of the system. For a single excited wavefunction, obeying (5.2.8), this
gives the AdS Dirac hair solution constructed in [18]. (More specifically,
the Dirac hair solution consists of a radially isotropic set of wavefunc-

tions with identical momentum size |~k| =
√
k2x + k2y, such that the Pauli

principle plays no role.) For multiple occupied fermion states, even with-
out backreaction due to gravity, adding the contributions of each separate
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solution to (5.2.8) rapidly becomes very involved. In such a many-body-
system, the collective effect of the multiple occupied fermion states is
better captured in a “fluid” approximation

T fluid
µν = (ρ+ p)uµuν + pgµν , N fluid

µ = nuµ (5.2.9)

with

ρ = 〈uµTµνuν〉matter only , n = −〈uµJµ〉matter only. (5.2.10)

In the center-of-mass rest frame of the multiple fermion system (uµ =
(et0, 0, 0, 0)), the expressions for the stress-tensor and charge density are
given by the one-loop equal-time expectation values (as opposed to time-
ordered correlation functions)

ρ = 〈Ψ̄(t)et0Γ
0(∂t +

1

4
ωABt ΓAB − iqeffAt)Ψ(t)〉. (5.2.11)

By the optical theorem the expectation value is equal to twice imaginary
part of the Feynman propagator2

ρ = lim
t→t′

2ImTr

[
et0Γ

0(∂t +
1

4
ωABt ΓAB − iqeffAt)G

AdS
F (t′, t)

]
. (5.2.12)

In all situations of interest, all background fields will only have depen-
dence on the radial AdS direction; in that case the spin connection can
be absorbed in the normalization of the spinor wavefunction.3 In an adi-
abatic approximation for the radial dependence of et0 and At — where
µloc(r) = qeffe

t
0(r)At(r) and ω(r) = −iet0(r)∂t; — this yields the known

expression for a many-body-fermion system at finite chemical potential

ρ(r) = lim
β→∞

2

∫
d3kdω

(2π)4
[ω(r)− µloc(r)] ImTr iΓ0GβF (ω, k)

=
1

π2
κ2

L2

∫ µloc

mL
dEE2

√
E2 − (mL)2 . (5.2.13)

2From unitarity for the S matrix S†S = 1 one obtains the optical theorem T †T =
2ImT for the transition matrix T defined as S ≡ 1 + iT .

3i.e. one can redefine spinors χ(r) = f(r)Ψ(r) such that the connection term is no
longer present in the equation of motion.
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The normalization κ2/L2 follows from the unconventional normaliza-
tion of the Dirac field in eq. (5.2.4).4 Similarly

n =
1

π2
κ2

L2

∫ µloc

mL
dEE

√
E2 − (mL)2 =

1

3π2
κ2

L2
(µloc

2 − (mL)2)3/2 .(5.2.14)

The adiabatic approximation is valid for highly localized wavefunc-
tions, i.e. the expression must be dominated by high momenta (especially
in the radial direction). The exact expression on the other hand will not
have a continuum of solutions to the harmonic condition −Γ0ω + Γiki +
Γzkz − Γ0µloc − imL = 0. Normalizable solutions to the AdS Dirac equa-
tions only occur at discrete momenta — one can think of the gravitational
background as a potential well. The adiabatic approximation is therefore
equivalent to the Thomas-Fermi approximation for a Fermi-gas in a box.

To get an estimate for the parameter range where the adiabatic ap-
proximation holds, consider the adiabatic bound ∂rµloc(r) ≪ µloc(r)

2.
Using the field equation for A0 = µloc/qeff:

∂2rµloc ∼ q2effn, (5.2.15)

this bound is equivalent to requiring

∂2rµloc ≪ ∂rµ
2
loc ⇒ (

qL

κ
)2n≪ 2µloc∂rµloc ⇒ (

qL

κ
)2n≪ µ3loc (5.2.16)

where in the last line we used the original bound again. If the chemical
potential scale is considerably higher than the mass of the fermion, we
may use (5.2.14) to approximate n ∼ κ2

L2µ
3
loc. Thus the adiabatic bound

is equivalent to,

q =
qeffκ

L
≪ 1 (5.2.17)

the statement that the constituent charge of the fermions is infinitesimal.
Note that in the rescaled action (6.3.43, 5.2.4), L/κ plays the role of 1/~,

4One can see this readily by converting the dimensionless definition of ρ, eq (5.2.11),
to the standard dimension. Using capitals for dimensionless quantities and lower-case
for dimensionful ones

ρ ∼ 〈Ψ∂TΨ〉 ∼ κ2L2〈ψ∂tψ〉 ∼ κ2L2

∫ µ

m

dǫǫ2
√
ǫ2 −m2 ∼ κ2

L2

∫ µL

mL

dEE2
√
E2 − (mL)2

with µL = µloc above.
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and eq. (5.2.17) is thus equivalent to the semiclassical limit ~ → 0 with
qeff fixed. Since AdS/CFT relates L/κ ∼ Nc this acquires the meaning
in the context of holography that there is a large Nc scaling limit [53, 63]
of the CFT with fermionic operators where the RG-flow is “adiabatic”.
Returning to the gravitational description the additional assumption that
the chemical potential is much larger than the mass is equivalent to

Qtotal
phys

Vspatial AdS

=
LQtotal

eff

κVspatial AdS

≡ L

κVspatial AdS

∫
dr
√−ginduced (qeffn) (5.2.18)

≃ 1

Vspatial AdS

∫
dr
√−g qeffκ

L
µ3loc(r) ≫ q(mL)3 .

This implies that the total charge density in AdS is much larger than
that of a single charged particle (as long as mL ∼ 1). The adiabatic
limit is therefore equivalent to a thermodynamic limit where the Fermi
gas consists of an infinite number of constituents, n → ∞, q → 0 such
that the total charge Q ∼ nq remains finite.

The adiabatic limit of a many-body fermion system coupled to gravity
are the Tolman-Oppenheimer-Volkov equations. Solving this in asymp-
totically AdS gives us the charged neutron or electron star constructed in
[51]. Knowing the quantitative form of the adiabatic limit, it is now easy
to distinguish the electron star solution from the “single wavefunction”
Dirac Hair solution. The latter is trivially the single particle limit n→ 1,
q → Q with the total charge Q finite. The electron star and Dirac Hair
black hole are opposing limit-solutions of the same system. We shall now
make this connection more visible by identifying a formal dialing param-
eter that interpolates between the two solutions.

To do so we shall need the full adiabatic Tolman-Oppenheimer-Volkov
equations for the AdS electron star [51]. Since the fluid is homogeneous
and isotropic, the background metric and electrostatic potential will re-
spect these symmetries and will be of the form (recall that we are already
using “dimensionless” lengths, eq. (5.2.2))

ds2 = −f(r)dt2 + g(r)dr2 + r2(dx2 + dy2), A = h(r)dt, (5.2.19)

where f(r), g(r), h(r) are functions of r; the horizon is located at r = 0
and the boundary is at r = ∞. Combining this ansatz with a rescaling
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mL = qeffm̂ the bosonic background equations of motion become [51]

1

r

(
f ′

f
+
g′

g

)
− ghσ√

f
= 0, ρ =

q4effκ
2

π2L2

∫ h√
f

m̂
dǫǫ2

√
ǫ2 − m̂2 ,

f ′

rf
+
h′2

2f
− g(3 + p) +

1

r2
= 0, σ =

q4effκ
2

π2L2

∫ h√
f

m̂
dǫǫ
√
ǫ2 − m̂2 ,

h′′ +
2

r
h′ − gσ√

f

(
rhh′

2
+ f

)
= 0, − p = ρ− h√

f
σ , (5.2.20)

where we have used that µloc = qeffh/
√
f and σ = nqeff is the rescaled

local charge density. What one immediately notes is that the Tolman-
Oppenheimer-Volkov equations of motion for the background only depend

on the parameters β̂ ≡ q4effκ
2

π2L2 and m̂, whereas the original Lagrangian

and the fermion equation of motion also depend on qeff =
(
π2L2β̂
κ2

)1/4
.

It is therefore natural to guess that the parameter qeff = qL/κ will be
the interpolating parameter away from the adiabatic electron star limit
towards the Dirac Hair BH.

Indeed in these natural electron star variables the adiabatic bound
(5.2.17) translates into

β̂ ≪ L2

κ2
=
q2eff
q2

. (5.2.21)

Thus we see that for a given electron star background with β̂ fixed decreas-
ing κ/L improves the adiabatic fluid approximation whereas increasing
κ/L makes the adiabatic approximation poorer and poorer. “Dialing κ/L
up/down” therefore interpolates between the electron star and the Dirac
Hair BH. Counterintuively improving adiabaticity by decreasing κ/L cor-
responds to increasing qeff for fixed q, but this is just a consequence of
recasting the system in natural electron star variables. A better way to
view improving adiabaticity is to decrease the microscopic charge q but
while keeping qeff fixed; this shows that a better way to think of qeff is
as the total charge rather than the efffective constituent charge.

The parameter κ/L = q/qeff parametrizes the gravitational coupling
strength in units of the AdS curvature, and one might worry that “dialing
κ/L up” pushes one outside the regime of classical gravity. This is not the
case. One can easily have β̂ ≫ 1 and tune κ/L towards or away from the
adiabatic limit within the regime of classical gravity. From eq. (5.2.17) we
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see that the edge of validity of the adiabatic regime β̂ ≃ L2/κ2 is simply
equivalent to a microscopic charge q = 1 which clearly has a classical
gravity description. It is not hard to see that the statement above is the
equivalent of changing the level splitting in the Fermi gas, while keeping
the overall energy/charge fixed. In a Fermi gas microscopically both the
overall energy and the level splitting depends on ~. Naively increasing
~ increases both, but one can move away from the adiabatic limit either
by decreasing the overall charge density, keeping ~ fixed or by keeping
the charge density fixed and raising ~. Using again the analogy between
κ/L and ~, the electron star situation is qualitatively the same where one
should think of β̂ ∼ q4L2/κ2 parametrizing the microscopic charge. One
can either insist on keeping κ/L fixed and increase the microscopic charge
β̂ to increase the level splitting or one can keep β̂ fixed and increase κ/L.
In the electron star, however, the background geometry changes with β̂ in
addition to the level splitting, and it is therefore more straightforward to
keep β̂ and the geometry fixed, while dialing κ/L.

We will now give evidence for our claim that the electron star and
Dirac Hair solution are two opposing limits. To do so, we need to identify
an observable that goes either beyond the adiabatic background approx-
imation or beyond the single particle approximation. Since the generic
intermediate state is still a many-body fermion system, the more natu-
ral starting point is the electron star background and perturb away from
there. Realizing then that the fermion equation of motion already depends
directly on the dialing parameter qeff the obvious observables are the sin-
gle fermion spectral functions in the electron star background. Since one
must specify a value for qeff to compute these, they directly probe the
microscopic charge of the fermion and are thus always beyond the strict
electron star limit q → 0. In the next two sections we will compute these
and show that they indeed reflect the interpretation of qeff as the inter-
polating parameter between the electron star and Dirac Hair BH.

5.3 Fermion spectral functions in the electron
star background

To compute the fermion spectral functions in the electron star background
we shall choose a specific representative of the family of electron stars
parametrized by β̂ and m̂. Rather than using β̂ and m̂ the metric of
an electron star is more conveniently characterized by its Lifshitz-scaling
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behavior near the interior horizon r → 0. From the field equations (5.2.20)
the limiting interior behavior of f(r), g(r), h(r) is

f(r) = r2z + . . . , g(r) =
g∞
r2

+ . . . , h(r) = h∞r
z + . . . (5.3.22)

The scaling behavior is determined by the dynamical critical exponent z,
which is a function of β̂, m̂ [51] and it is conventionally used to classify
the metric instead of β̂. The full electron star metric is then generated
from this horizon scaling behavior by integrating up an irrelevant RG-flow
[39, 37]

f = r2z
(
1 + f1r

−α + . . .

)

g =
g∞
r2

(
1 + g1r

−α + . . .

)

h = h∞r
z

(
1 + h1r

−α + . . .

)
. (5.3.23)

with

α =
2 + z

2
−
√

9z3 − 21z2 + 40z − 28− m̂2z(4− 3z)2

2
√

(1− m̂2)z − 1
. (5.3.24)

Scaling f1 → bf1 is equal to a coordinate transformation r → b1/αr and
t→ bz/αt, and the sign of f1 is fixed to be negative in order to be able to
match onto an asymptotically AdS4 solution. Thus f1 = −1 and g1 and
h1 are then uniquely determined by the equations of motion.

Famously, integrating the equations of motion up the RG-flow out-
wards towards the boundary fails at a finite distance rs. This is the edge
of the electron star. Beyond the edge of the electron star, there is no
fluid present and the spacetime is that of an AdS4-RN black hole with the
metric

f = c2r2 − M̂

r
+
Q̂2

2r2
, g =

c2

f
, h = µ̂− Q̂

r
. (5.3.25)

Demanding the full metric is smooth at the radius of electron star rs
determines the constants c, M̂ and Q̂. The dual field theory is defined on
the plane ds2 = −c2dt2 + dx2 + dy2.



5.3 Fermion spectral functions in the electron star background 111

The specific electron star background we shall choose without loss of
generality is the one with z = 2, m̂ = 0.36 (Fig. 5.1)5, smoothly matched
at rs ≃ 4.25252 onto a AdS-RN black-hole.

0 2 4 6 8 10

0.0

0.5

1.0

1.5

r

Figure 5.1: Electron star metric for z = 2, m̂ = 0.36, c ≃ 1.021, M̂ ≃ 3.601, Q̂ ≃
2.534, µ̂ ≃ 2.132 compared to pure AdS. Shown are f(r)/r2 (Blue), r2g(r) (Red)
and h(r) (Orange). The asymptotic AdS-RN value of h(r) is the dashed blue line.

For future use we have also given µloc = h/
√
f (Green) and µqeff =

√
giih/

√
f

(Red Dashed) At the edge of the star rs ≃ 4.253 (the intersection of the purple
dashed line setting the value of meff with µloc) one sees the convergence to pure
AdS in the constant asymptotes of f(r)/r2 and r2g(r).

The CFT fermion spectral functions now follow from solving the Dirac
equation in this background [79, 17]

[
eµAΓ

A

(
∂µ +

1

4
ωµABΓ

AB − iqeffAµ

)
−meff

]
Ψ = 0 (5.3.26)

where qeff and meff in terms of the parameters of the electron star equal

qeff =

(
π2L2β̂

κ2

)1/4

, meff = qeffm̂ = m̂

(
π2L2β̂

κ2

)1/4

(5.3.27)

For a given electron star background, i.e. a fixed β̂, m̂ the fermion spectral
function will therefore depend on the ratio L/κ. For L/κ≫ β̂1/2 the poles
in these spectral functions characterize the occupied states in a many-body
gravitational Fermi system that is well approximated by the electron star.

5This background has c ≃ 1.021, M̂ ≃ 3.601, Q̂ ≃ 2.534, µ̂ ≃ 2.132, β̂ ≃
19.951, g∞ ≃ 1.887, h∞ = 1/

√
2, α ≃ −1.626, f1 = −1, g1 ≃ −0.4457, h1 ≃ −0.6445.
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As L/κ is lowered for fixed β̂ the electron star background becomes a
poorer and poorer approximation to the true state and we should see this
reflected in both the number of poles in the spectral function and their
location.

Projecting the Dirac equation onto two-component Γr eigenspinors

Ψ± = (−ggrr)− 1
4 e−iωt+ikix

i

(
y±
z±

)
(5.3.28)

and using isotropy to set ky = 0, one can choose a basis of Dirac matrices
where one obtains two decoupled sets of two simple coupled equations [79]

√
giigrr(∂r ∓meff

√
grr)y± = ∓i(kx − u)z∓, (5.3.29)√

giigrr(∂r ±meff

√
grr)z∓ = ±i(kx + u)y± (5.3.30)

where u =
√

gii
−gtt (ω + qeffh). In this basis of Dirac matrices the CFT

Green’s function G = 〈Ōψ+iγ
0Oψ+〉 equals

G = lim
ǫ→0

ǫ−2mL

(
ξ+ 0
0 ξ−

) ∣∣∣∣
r= 1

ǫ

, where ξ+ =
iy−
z+

, ξ− = − iz−
y+

.(5.3.31)

Rather than solving the coupled equations (5.3.29) it is convenient to solve
for ξ± directly [79],

√
gii
grr

∂rξ± = −2meff

√
giiξ± ∓ (kx ∓ u)± (kx ± u)ξ2±. (5.3.32)

For the spectral function A = ImTrGR we are interested in the re-
tarded Green function. This is obtained by imposing in-falling boundary
conditions near the horizon r = 0. Since the electron star is a “zero-
temperature” solution this requires a more careful analysis than for a
generic horizon. To ensure that the numerical integration we shall per-
form to obtain the full spectral function has the right infalling boundary
conditions, we first solve eq. (5.3.32) to first subleading order around r = 0.
There are two distinct branches. When ω 6= 0 and kxr/ω, r

2/ω is small,
the in-falling boundary condition near the horizon r = 0 is (for z = 2)

ξ+(r) = i− i
kxr

ω
+ i

(k2x − 2imeffω)r
2

2ω2
− i

f1kxr
1−α

2ω
+ . . .

ξ−(r) = i+ i
kxr

ω
+ i

(k2x − 2imeffω)r
2

2ω2
+ i

f1kxr
1−α

2ω
+ . . . .(5.3.33)
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Figure 5.2: Electron star MDF spectral functions with multiple peaks as a
function of k for ω = 10−5, z = 2, m̂ = 0.36. The blue curve is for κ = 0.091; the
red curve is for κ = 0.090. Note that the vertical axis is logarithmic. Visible is
the rapidly decreasing spectral weight and increasingly narrower width for each
successive peak as kF increases.

When ω = 0, i.e. kxr/ω is large, and r/kx → 0,

ξ+(r) = −1 +
(qeffh∞ +meff)r

kx
+

(
ω

kxr
− ω

2
√
g∞k2x

)
+ . . .

ξ−(r) = 1 +
(qeffh∞ −meff)r

kx
+

(
ω

kxr
− ω

2
√
g∞k2x

)
+ . . . ,(5.3.34)

the boundary conditions (5.3.34) become real. As (5.3.32) are real equa-
tions, the spectral function vanishes in this case. This is essentially the
statement that all poles in the Green’s function occur at ω = 0 [27]. Note
that the fact that the electron star ω = 0 boundary conditions (5.3.32) are
real for all values of k is qualitatively different from the AdS-RN ω = 0
boundary conditions (eq. (26) in [79]). In the AdS-RN “quantum-critical”
infrared governed by the near horizon AdS2×R2 geometry, in general there
is a special scale ko below which the boundary condition turns complex.
This scale ko is related to the surprising existence of an oscillatory region
in the spectral function. One therefore infers that in a scaleful Lifshitz
infrared this oscillatory region is no longer present [63]. We will confirm
this in section 5.4.

5.3.1 Numerical results and discussion

We can now solve for the spectral functions numerically. In Fig. 5.3 we
plot the momentum-distribution-function (MDF) (the spectral function as
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a function of k) for fixed ω = 10−5, z = 2, m̂ = 0.36 while changing the
value of κ. Before we comment on the dependence on qeff ∼ κ−1/2 which
studies the deviation away from the adiabatic limit of a given electron
star background (i.e. fixed dimensionless charge and fixed dimensionless
energy density), there are several striking features that are immediately
apparent:

• As expected, there is a multitude of Fermi surfaces. They have very
narrow width and their spectral weight decreases rapidly for each
higher Fermi-momentum kF (Fig. 5.2). This agrees with the expo-

nential width Γ ∼ exp(−
(
kz

ω

)1/(z−1)
) predicted by [26] for gravita-

tional backgrounds that are Lifshitz in the deep interior, which is the
case for the electron star. This prediction is confirmed in [61, 53, 63]
and the latter two articles also show that the weight decreases in a
corresponding exponential fashion. This exponential reduction of
both the width and the weight as kF increases explains why we only
see a finite number of peaks, though we expect a very large number.
In the next section we will be able to count the number of peaks,
even though we cannot resolve them all numerically.

• The generic value of kF of the peaks with visible spectral weight is
much smaller than the effective chemical potential µ in the boundary
field theory. This is quite different from the RN-AdS case where
the Fermi momentum and chemical potential are of the same order.
A numerical study cannot answer this, but the recent article [63]
explains this.6

• Consistent with the boundary value analysis, there is no evidence of
an oscillatory region.

The most relevant property of the spectral functions for our question is
that as κ is increased the peak location kF decreases orderly and peaks
disappear at various threshold values of k. This is the support for our
argument that changing κ changes the number of microscopic constituents
in the electron star. Comparing the the behavior of the various Fermi
momenta kF in the electron star with the results in the extremal AdS-RN
black-hole, they are qualitatively identical when one equates κ−1/2 ∼ qeff
with the charge of the probe fermion. We may therefore infer from our

6In view of the verification of the Luttinger count for electron star spectra in [53, 63],
this had to be so.
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Figure 5.3: (A) Electron-star MDF spectral functions as a function of κ for
z = 2, m̂ = 0.36, ω = 10−5. Because the peak height and weights decrease expo-
nentially, we present the adjacent ranges k ∈ [0.017, 0.019] and k ∈ [0.019, 0.021]
in two different plots with different vertical scale. (B1/B2) Locations of peaks of
spectral functions as a function of κ: comparison between the electron star (B1)
for z = 2, m̂ = 0.36, ω = 10−5 (the dashed gray line denotes the artificial separa-
tion in the 3D representations in (A)) and AdS-RN (B2) for m = 0 as a function
of q in units where µ =

√
3 These two Fermi-surface ‘spectra’ are qualitatively

similar.

detailed understanding of the behavior of kF for AdS-RN that also for the
electron star as kF is lowered peaks truly disappear from the spectrum
until by extrapolation ultimately one remains: this is the AdS Dirac hair
solution [18].

We can only make this inference qualitatively as the rapid decrease in
spectral weight of each successive peak prevents an exact counting of Fermi
surfaces in the numerical results for the electron star spectral functions.
One aspect that we can already see is that as κ decreases all present peaks
shift to higher k, while new peaks emerging from the left for smaller kappa.
This suggests a fermionic version of the UV/IR correspondence where the
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peak with lowest kF corresponds to the last occupied level, i.e. highest
“energy” in the AdS electron star. We will now address both of these
points in more detail.

5.4 Fermi surface ordering: kF from a Schrödinger

formulation

Our analysis of the behavior of boundary spectral functions as a function of
κ relies on the numerically quite evident peaks. Stricly speaking, however,
we have not shown that there is a true singularity in the Green’s function
at ω = 0, k = kF . We will do so by showing that the AdS Dirac equation,
when recast as a Schrödinger problem has quasi-normalizable solutions at
ω = 0 for various k. As is well known, in AdS/CFT each such solution
corresponds to a true pole in the boundary Green’s function. Using a
WKB approximation for this Schrödinger problem we will in addition be
able to estimate the number of poles for a fixed κ and thereby provide a
quantitative value for the deviation from the adiabatic background.

We wish to emphasize that the analysis here is general and captures
the behavior of spectral functions in all spherically symmetric and static
backgrounds backgrounds alike, whether AdS-RN, Dirac hair or electron
star.

The ω = 0 Dirac equation (5.3.26) for one set of components (5.3.29,
5.3.30) with the replacement iy− → y−, equals

√
giigrr∂ry− +meff

√
giiy− = −(k − µ̂qeff)z+,√

giigrr∂rz+ −meff

√
giiz+ = −(k + µ̂qeff)y−, (5.4.35)

where µ̂qeff =
√

gii
−gtt qeffAt and we will drop the subscript x on kx. In our

conventions z+ (and y+) is the fundamental component dual to the source
of the fermionic operator in the CFT [79, 17]. Rewriting the coupled first
order Dirac equations as a single second order equation for z+:

∂2rz+ + P∂rz+ +Qz+ = 0 (5.4.36)

where the coefficients are

P =
∂r(giig

rr)

2giigrr
− ∂rµ̂qeff
k + µ̂qeff

,

Q = −meff∂r
√
gii√

giigrr
+
meff

√
grr∂rµ̂qeff

k + µ̂qeff
−m2

effgrr −
k2 − µ̂2qeff
giigrr

.(5.4.37)
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the first thing one notes is that both P andQ diverge at some r = r∗ where
µ̂qeff + k = 0. Since µ̂qeff is (chosen to be) a positive semidefinite function
which increases from µ̂qeff = 0 at the horizon, this implies that for negative
k (with −k < µ̂qeff |∞) the wavefunction is qualitatively different from the
wavefunction with positive k which experiences no singularity.The analysis
is straightforward if we transform the first derivative away and recast it
in the form of a Schrödinger equation by redefining the radial coordinate:

ds

dr
= exp

(
−
∫ r

dr′P
)

⇒ s = c0

∫ r

r∞
dr′

|k + µ̂qeff |√
giigrr

(5.4.38)

where c0 is an integration constant whose natural scale is of order c0 ∼
q−1
eff. This is a simpler version of the generalized k-dependent tortoise
coordinate introduced in [27]. In the new coordinates the equation (5.4.37)
is of the standard form:

∂2sz+ − V (s)z+ = 0 (5.4.39)

with potential

V (s) = − giig
rr

c20|k + µ̂qeff |2
Q. (5.4.40)

The above potential (5.4.40) can also be written as

V (s) =
1

c20(k + µ̂qeff)
2

[
(k2+m2

effgii− µ̂2qeff)+meffgii
√
grr∂r ln

√
gii

k + µ̂qeff

]
.

(5.4.41)
We note again the potential singularity for negative k, but before we

discuss this we first need the boundary conditions. The universal bound-
ary behavior is at spatial infinity and follows from the asymptotic AdS
geometry. In the adapted coordinates r → ∞ corresponds to s → 0 as
follows from ds/dr ≃ c0(k + µ̂qeff |∞)/r2. The potential therefore equals

V (s) ≃ 1

s2
(
meff +m2

eff

)
+ . . . (5.4.42)

and the asymptotic behavior of the two independent solutions equals z+ =
a1s

−meff + b1s
1+meff + . . .. The second solution is normalizable and we

thus demand a1 = 0.
In the interior, the near-horizon geometry generically is Lifshitz

ds2 = −r2zdt2 + 1

r2
dr2 + r2(dx2 + dy2) + . . . , A = h∞r

zdt+ . . . ,(5.4.43)
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with finite dynamical critical exponent z — AdS-RN, which can be viewed
as a special case where z → ∞, will be given separately. In adapted
coordinates the interior r → 0 corresponds to s → −∞ and it is easy to
show that in this limit potential behaves as

V (s) ≃ 1

c20
+

1

s2
(
meff

√
g∞ +m2

effg∞ − h2∞q
2
effg∞

)
+ . . . . (5.4.44)

Near the horizon the two independent solutions for the wavefunction z+
therefore behave as

z+ → a0e
−s/c0 + b0e

s/c0 . (5.4.45)

The decaying solution a0 = 0 is the normalizable solution we seek.

Let us now address the possible singular behavior for k < 0. To under-
stand what happens, let us first analyze the potential qualitatively for pos-
itive k. Since the potential is positive semi-definite at the horizon and the
boundary, the Schrödinger system (5.4.39) only has a zero-energy normal-
izable solution if V (s) has a range s1 < s < s2 where it is negative. This

can only at locations where k2 < µ̂2qeff−m2
effgii−meffgii

√
grr∂r ln

√
gii

k+µ̂qeff
.

Defining a “renormalized” position dependent mass m2
ren = m2

effgii +

meffgii
√
grr∂r ln

√
gii

k+µ̂qeff
this is the intuitive statement that the momenta

must be smaller than the local chemical potential k2 < µ̂2qeff −m2
ren. For

positive k the saturation of this bound k2 = µ̂2qeff −m2
ren has at most two

solutions, which are regular zeroes of the potential. This follows from the
fact that µ̂2qeff decreases from the boundary towards the interior. If the
magnitude |k| is too large the inequality cannot be satisfied, the poten-
tial is strictly positive and no solution exists. For negative k, however,
the potential has in addition a triple pole at k2 = µ̂2qeff ; two poles arise
from the prefactor and the third from the meff∂r ln(k+ µ̂qeff) term. This
pole always occurs closer to the horizon than the zeroes and the potential
therefore qualitatively looks like that in Fig. 5.4 (Since µ̂qeff decreases as
we move inward from the boundary, starting with µ̂2qeff > µ̂2qeff − µ2 > k2,
one first saturates the inequality that gives the zero in the potential as
one moves inward.) Such a potential cannot support a zero-energy bound
state, i.e. eq. (5.4.39) has no solution for negative k. In the case meff = 0
a double zero changes the triple pole to a single pole and the argument
still holds. This does not mean that there are no k < 0 poles in the
CFT spectral function. They arise from the other physical polarization
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y+ of the bulk fermion Ψ. From the second set of decoupled first order
equations for the other components of the Dirac equation (after replacing
iz− → z−,)

√
giigrr∂ry+ −meff

√
giiy+ = −(k − µ̂qeff)z−,√

giigrr∂rz− +meff

√
giiz− = −(k + µ̂qeff)y+, (5.4.46)

and the associated second order differential EOM for y+:

∂2ry+ + P∂ry+ +Qy+ = 0,

with the coefficients

P =
∂r(giig

rr)

2giigrr
− ∂rµ̂qeff

−k + µ̂qeff
,

Q = −meff∂r
√
gii√

giigrr
+
meff

√
grr∂rµ̂qeff

−k + µ̂qeff
−m2

effgrr −
k2 − µ̂2qeff
giigrr

,(5.4.47)

one sees that the Schrödinger equation for y+ is the k → −k image of the
equation (5.4.39) for z+ and thus y+ will only have zero-energy solutions
for k < 0. For simplicity we will only analyze the z+ case. Note that
this semi-positive definite momentum structure of the poles is a feature
of any AdS-to-Lifshitz metric different from AdS-RN, where one can have
negative k solutions [27].

(A)

VHsL

(B)

VHsL

Figure 5.4: The behavior of the Schrödinger potential V (s) for z+ when k is neg-
ative. Such a potential has no zero-energy bound state. The potential is rescaled
to fit on a finite range. As |k| is lowered below kmax for which the potential is
strictly positive, a triple pole appears which moves towards the horizon on the
left (Fig A. The Blue,Red,Orange,Green curves are decreasing in |k|). The pole
hits the horizon for k = 0 and disappears. Fig B. shows the special case meff = 0
where two zeroes collide with two of the triple poles to form a single pole.

The exact solution of (5.4.39) with the above boundary conditions cor-
responding to poles in the CFT spectral function is difficult to find. By
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construction the system is however equivalent to a Schrödinger problem of
finding a zero energy solution z+ in the potential (5.4.40) and can be solved
in the WKB approximation (see e.g. [27]). TheWKB approximation holds
when |∂sV | ≪ |V |3/2. Notice that this is more general than the back-
ground adiabacity limit meff ≫ 1, qeff ≫ 1 with β̂, m̂ fixed . Combining
background adiabaticity with a scaling limit k ≫ 1,meff ≫ 1, qeff ≫ 1
with c0k fixed and k is parametrically larger than µ̂qeff one recovers the
WKB potential solved in [53, 63]. As our aim is to study the the devia-
tion away from the background adiabatic limit we will be more general and
study the WKB limit of the potential itself, without direct constraints on
qeff,meff. And rather than testing the inequality |∂sV | ≪ |V |3/2 directly,
we will rely on the rule of thumb that the WKB limit is justified when the
number of nodes in the wave-function is large. We will therefore estimate
the number n of bound states and use n≫ 1 as an empirical justification
of our approach.7 With this criterion we will be able to study the normal-
izable solutions to the Dirac equation/pole structure of the CFT spectral
functions as a function of κ/L.

The potential is bounded both in the AdS boundary and at the hori-
zon, and decreases towards intermediate values of r. We therefore have a
standard WKB solution consisting of three regions:

• In the regions where V > 0, the solution decays exponentially:

z+ = c1,2V
−1/4exp

(
±
∫ r

r1,2

dr′
[
c0
√
giigrr

(
k+ µ̂qeff

)√
V
])
. (5.4.48)

Here r1, r2 are the turning points where V (r1) = 0 = V (r2).

• In the region r1 < r < r2, i.e. V < 0, the solution is

z+ = c3(−V )−1/4Re

[
exp
(i ∫ r

r1
dr′[c0

√
giigrr

(
k+µ̂qeff

)√
−V ]−iπ/4)

]
,

(5.4.49)
with the constant phase −iπ/4 originating in the connection formula
at the turning point r1.

Finding a WKB solution shows us that the peaks seen numerically
are true poles in the spectral function. But it also allows us to estimate

7A large number of bound states n implies |∂sV | ≪ |V |3/2 if the potential has a
single minimum, but as is well known there are systems, e.g. the harmonic oscillator,
where the WKB approximation holds for small n as well.
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the number of peaks that the numerical approach could not resolve. The
WKB quantization condition

∫ r2

r1

dr′
[
c0
√
giigrr

(
k + µ̂qeff

)√
−V

]
= π(n+ 1/2) (5.4.50)

counts the number of bound states with negative semi-definite energy.
Note that n does not depend on the integral constant as there is also a
factor 1/c0 in

√
−V . Since V depends on k, we will see that as we increase

k this number decreases. The natural interpretation in the context of a
bulk many-body Fermi system is that this establishes the ordering of the
the filling of all the ω = 0 momentum shells in the electron star. For
a fixed k one counts the modes that have been previously occupied and,
consistent with our earlier deduction, the lowest/highest kF corresponds to
the last/first occupied state. Though counterintuitive from a field theory
perspective where normally E ∼ kF , this UV/IR correspondence is very
natural from the AdS-bulk, if one thinks of the electron star as a trapped
electron gas. The last occupied state should then be the outermost state
from the center, but this state has the lowest effective chemical potential
and hence lowest kF .

Let us now show this explicitly by analyzing the potential and the
bound states in the electron star and AdS-RN.

Electron star

The potential (5.4.41) for the electron star is given in Fig. 5.5 and the
number of bound states as a function of k in Fig. 5.6. As stated the
number of states decreases with increasing k, consistent with the analogy
of the pole distribution of the spectral functions compared with AdS-RN.
Moreover, we clearly see the significant increase in the number of states
as we decrease κ/L thereby improving the adiabaticity of the background.
This vividly illustrates that the adiabatic limit corresponds to a large
number of constituents. As all numbers of states are far larger than one,
the use of the WKB is justified.

The Reissner-Nordström case

For AdS-RN the Schrödinger analysis requires a separate discussion of the
near horizon boundary conditions, which we present here for completeness
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Figure 5.5: The Schrödinger potential V (s) for the fermion component z+ of in
the ES background m̂ = 0.36, z = 2, c0 = 0.1. Fig. A. shows the dependence on
the momentum k = 0.0185 (Purple), k = 5 (Blue), k = 10 (Red) for κ = 0.092.
Fig. B. shows the dependence on κ = 0.086 (Purple), κ = 0.092 (Blue), κ = 0.1
(Red) for k = 0.0185. Recall that s = 0 is the AdS boundary and s = −∞ is the
near-horizon region.
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Figure 5.6: The WKB estimate of the number of bound states n as a function of
the momentum k for κ = 0.086(Purple), 0.092(Blue), 0.1(Red) (Fig A.); for κ =
0.001(Purple), 0.002(Blue), 0.003(Red) (Fig B.) and for κ = 10−5(Purple), 3×
10−5(Blue), 5× 10−5(Red) (Fig C.). Note the parametric increase in number of
states as the adiabaticity of the background improves for smaller κ. Both figures
are for the electron star background with m̂ = 0.36, z = 2. Since n ≫ 1 in all
cases, WKB gives a valid estimate.

and comparison. Part of this analysis is originally worked out in [27]. The
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AdS-RN black hole with metric

ds2 = L2

(
−f(r)dt2 + dr2

f(r)
+ r2(dx2 + dy2)

)
, (5.4.51)

f(r) = r2
(
1 +

3

r4
− 4

r3

)
, (5.4.52)

A = µ

(
1− 1

r

)
dt, (5.4.53)

has near horizon geometry AdS2 × R
2

ds2 = −6(r − 1)2dt2 +
dr2

6(r − 1)2
+ (dx2 + dy2), (5.4.54)

A =
√
3

(
r − 1

)
dt. (5.4.55)

A coordinate redefinition of r in eq. (5.4.43) to r = (rAdS2 − 1)1/z shows
that this corresponds to a dynamical critical exponent z = ∞ and is
outside the validity of the previous analysis.

Before we proceed, recall that the existence of AdS2×R
2 near-horizon

region allows for a semi-analytic determination of the fermion spectral
functions with the self-energy Σ ∼ ω2νkF controlled by the IR conformal
dimension δk = 1/2 + νk with

νk =
1√
6

√
m2 + k2 − q2

2
. (5.4.56)

When νk is imaginary, which for q2 > 2m2 always happens for small k,
the spectral function exhibits oscillatory behavior, but generically has fi-
nite weight at ω = 0. When νk is real, there are poles in the spectral
functions at a finite number of different Fermi momenta kF . The associ-
ated quasiparticles can characterize a non-FL (νkF < 1/2), a marginal FL
(νkF = 1/2) or irregular FL (νkF > 1/2) with linear dispersion but width
Γ 6= ω2 [27].

The analytic form of the near-horizon metric allows us to solve exactly
for the near horizon potential V in terms of s = c0√

6
(k+ q/

√
2) ln (r − 1)+

. . .. As noted in [27] one remarkably obtains that the near-horizon poten-
tial for s→ −∞ is proportional to the self-energy exponent:

V (s) ≃ 6

c20(k + q/
√
2)2

ν2k + . . . . (5.4.57)
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Figure 5.7: The Schrödinger potential V (s) for the fermion component z+ of in
the AdS-RN background r+ = 1, µ =

√
3, gF = 1,mL = 0.4, c0 = 0.1. Fig. A.

shows the dependence on the momentum k = 1 (Red), k = 2 (Purple), k = 3
(Blue) for charge q = 2.5. Fig. B. shows the dependence on the charge q —
analogous to κ in the ES background —. Shown are the values q = 2 (Blue),
q = 2.5 (Purple), q = 3 (Red) for the momentum k = 2. In both figures the
Red potentials correspond to the oscillatory region ν2k < 0, the Purple potentials
show the generic shape that can support an ω = 0 bound state, and the Blue
potentials are strictly positive and no zero-energy bound state is present. Recall
that s = 0 is the AdS boundary and s = −∞ is the near-horizon region.

One immediately recognizes the oscillatory region ν2k < 0 of the spectral
function as an ω = 0 Schrödinger potential which is “free” at the horizon
s = −∞ (Fig. 5.7) and no bound state can form. Comparing with our
previous results, we see that this oscillatory region is a distinct property
of AdS-RN. For any Lifshitz near-horizon metric the potential is always
positive-definite near the horizon and all ω = 0 solutions will be bounded.
(see also [53, 63]). As we increase k, ν2k becomes positive, then the AdS-
RN potential is also positive at the horizon and bound zero-energy states
can form. Increasing k further, one reaches a maximal kmax, above which
the potential is always positive and no zero-energy bound state exists
anymore.

Because the near-horizon boundary conditions for AdS-RN differ from
the general analysis, the possible singularity in the potential for k < 0 also
requires a separate study. This is clearly intimately tied to the existence
of an oscillatory regime in the spectral function, as the previous analysis
does apply for ν2k > 0. The clearest way to understand what happens
for ν2k < 0 is to analyze the potential explicitly. Again if |k| > kmax
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VRNHsL

Figure 5.8: The qualitative behavior for negative k of the Schrödinger
potential V (s) for the fermion component z+ of in the AdS-RN background
r+ = 1, µ =

√
3, gF = 1,mL = 0.1. The radial coordinate has been

rescaled to a finite domain such that the full potential can be represented
in the figure; on the right is the AdS boundary and left is the near-horizon
region and the range is slightly extended beyond the true horizon, which
is exactly at the short vertical line-segments on the right. Potentials are
given for q = 12/

√
3, k = −15 (Blue) for which the potential is strictly

positive, k = −10 (Red), k = −7 (Orange), which both have triple poles
and the pole can be seen to move towards the horizon on the left as k
decreases, and k = −4 (Green) which has no pole and a finite negative
value at the horizon. The pole disappears for |k| < q/

√
2 leaving a regular

bounded potential which can support zero-energy bound states.

the potential is strictly positive definite, and no zero-energy bound state
exists. As we decrease the magnitude of k < 0, a triple pole will form
near the boundary when k = −µ̂qeff(s), soon followed by a zero at k =
−
√
µ̂qeff(s)

2 −mren(s)2 (see Fig. 5.4). As we approach the horizon, in
the general case where limr→0 µ̂qeff = h∞qeffr + . . ., this pole at r∗ =
−k/(h∞qeff) hits the horizon and disappears precisely when k = 0 . In

AdS-RN, however, where limr→1 µ̂qeff =
q√
2
+

√
2q
3 (r− 1)+ . . ., the pole at

rRN∗ − 1 = 3√
2q
(k + q√

2
) hits the horizon and disappears at k = − q√

2
. For

negative values of k whose magnitude is less than |k| < q√
2
, the potential

is regular and bounded and can and does have zero-energy solutions. Fig.
5.4 shows this disappearance of the pole for the AdS-RN potential.

Counting solutions through WKB is also more complicated for AdS-
RN. For O(1) values of q there are only few Fermi surfaces and the WKB
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Figure 5.9: The WKB estimate of the number of bound states n in the AdS-
RN Schrödinger potential for z+ with mL = 10. The WKB approximation only
applies to large values of the charge q = 45 (Red), q = 50 (Blue), q = 55
(Purple). Fig B. gives the associated values of the IR conformal dimension νk =

1√
6

√
m2 + k2 − q2

2 . Both figures are for the extremal AdS-RN background with

µ =
√
3, r+ = 1, gF = 1.

approximation does not apply. For large q it does, however. For com-
pleteness we show the results in Fig. 5.9.

5.5 Conclusion and Discussion

These electron star spectral function results answer two of the three ques-
tions raised in the introduction directly.

• They show explicitly how the fermion wavefunctions in their own
gravitating potential well are ordered despite the fact that they all
have strictly vanishing energy: In a fermionic version of the UV-
IR correspondence they are ordered inversely in k, with the “low-
est”/first occupied state having the highest k and the “highest”/last
occupied state having the lowest k. With the qualitative AdS/CFT
understanding that scale corresponds to distance away from the in-
terior, one can intuitively picture this as literally filling geometrical
shells of the electron star, with the outermost/highest/last shell at
large radius corresponding to the wavefunction with lowest local
chemical potential and hence lowest k.

• The decrease of the number of bound states — the number of oc-
cupied wavefunctions in the electron star — as we decrease qeff =

β̂1/4
√

πL
κ for a fixed electron star background extrapolates naturally
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to a limit where the number of bound states is unity. This extrap-
olation pushes the solution beyond its adiabatic regime of validity.
In principle we know what the correct description in this limit is: it
is the AdS Dirac Hair solution constructed in [18]. The dependence
of the number of bound states on κ/L therefore illustrates that the
electron star and Dirac Hair solutions are two limiting cases of the
gravitationally backreacted Fermi gas.

With this knowledge we can schematically classify the groundstate so-
lutions of AdS Einstein-Maxwell gravity minimally coupled to charged
fermions at finite charge density. For large mass mL in units of the con-
stituent charge q, the only solution is a charged AdS-Reissner-Nördstrom
black hole. For a low enough mass-to-charge ratio, the black hole becomes
unstable and develops hair. If in addition the total charge density Q is of
the order of the microscopic charge q this hairy solution is the Dirac Hair
configuration constructed in [18], whereas in the limit of large total charge
density Q one can make an adiabatic Thomas Fermi approximation and
arrives a la Tolman-Oppenheimer-Volkov at an electron star (Fig. 5.10).

Translating this solution space through the AdS/CFT correspondence
one reads off that in the dual strongly coupled field theory, one remains
in the critical state if the ratio of the scaling dimension to the charge ∆/q
is too large. For a small enough value of this ratio, the critical state is
unstable and forms a novel scaleful groundstate. The generic condensed
matter expectation of a unique Fermi liquid is realized if the total charge
density is of the same order as the constituent charge. Following [53, 63]
and [54, 97, 55] the state for Q≫ q is some deconfined Fermi liquid.

The gravity description of either limit has some deficiencies, most no-
tably the lack of an electron star wavefunction at infinity and the unnat-
ural restriction to Q = q for the Dirac Hair solution. A generic solution
for Q ≥ q with wavefunction tails extending to infinity as the Dirac hair
would be a more precise holographic dual to the strongly interacting large
N Fermi system. Any CFT information can then be cleanly read off at
the AdS boundary. A naive construction could be to superpose Dirac Hair
onto the electron star; in principle one can achieve this solution by a next
order Hartree-Fock or Local Density Approximation computation.

This best-of-both-worlds generic solution ought to be the true holo-
graphic dual of the strongly interacting Fermi ground state. If one is able
to answer convincingly how this system circumvents the wisdom that the
groundstate of an interacting many-body system of fermions is a generic
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Figure 5.10: Schematic diagram of the different groundstate solutions of strongly
coupled fermions implied by holography for fixed charge density Q. Here q is the
constituent charge of the fermions and mL ∼ ∆ the mass/conformal scaling
dimension of the fermionic operator. One has the gravitational electron star
(ES)/Dirac Hair (DH) solution for large/small Q/q and small mL/q dual a de-
confined Fermi liquid/regular Fermi liquid in the CFT. For mL/q ∼ ∆/q large
the groundstate remains the fermionic quantum critical state dual to AdS-RN.

single quasiparticle Landau Fermi liquid, then one would truly have found
a finite density Fermi system that does not refer at any stage to an un-
derlying perturbative Fermi gas.



Chapter 6

The phase diagram: electron
stars with Dirac hair [83]

6.1 Introduction

The problem of fermionic quantum criticality has proven hard enough for
the condensed matter physics to keep seeking new angles of attack. The
main problem we face is that the energy scales vary by orders of magnitude
between different phases. The macroscopic, measurable quantities emerge
as a result of complex collective phenomena and are difficult to relate to
the microscopic parameters of the system. An illustrative example present
the heavy fermion materials [80] which still behave as Fermi liquids but
with vastly (sometimes hundredfold) renormalized effective masses. On
the other hand, the strange metal phase of cuprate-based superconducting
materials [118], while remarkably stable over a range of doping concentra-
tions, shows distinctly non-Fermi liquid behavior. Holography (AdS/CFT
correspondence) [81, 38, 114] has become a well-established treatment of
strongly correlated electrons by now, but it still has its perplexities and
shortcomings. Since the existence of holographic duals to Fermi surfaces
has been shown in [79, 17], the next logical step is to achieve the un-
derstanding of the phase diagram: what are the stable phases of matter
as predicted by holography, how do they transform into each other and,
ultimately, can we make predictions on quantum critical behavior of real-
world materials based on AdS/CFT.

The condensed matter problems listed all converge toward a single
main question in field-theoretical language. It is the classification of
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ground states of interacting fermions at finite density. In this paper we at-
tempt to understand these ground states in the framework of AdS/CFT,
the duality between the strongly coupled field theories in d dimensions
and a string configuration in d+1 dimension. The classification of ground
states now translates into the following question: classify the stable asymp-
totically AdS geometries with charged fermionic matter in a black hole
background. Most of the work done so far on AdS/CFT for strongly in-
teracting fermions relies on bottom-up toy gravity models and does not
employ a top-down string action. We stay with the same reasoning and
so will work with Einstein gravity in 3+1 dimensions. We note, however,
that a top-down construction of holographic fermions has been derived
in [35]. While expectedly more complicated, it confirms the robustness
of some features seen in 3+1-dimensional classical gravity, such as the
emergent scale invariance of the field theory propagators in the IR.

So far three distinct models aiming at capturing the stable phases of
holographic fermionic matter have appeared: the electron star [51], Dirac
hair [18] and a confined Fermi liquid model [96]. The electron star is essen-
tially a charged fermion rewriting of the well-known Oppenheimer-Volkov
equations for a neutron star in AdS background. The bulk is thus modeled
as a semiclassical fluid. The mystery is its field theory dual: it is a hier-
archically ordered multiplet of fermionic liquids with stable quasiparticles
[53]. On the other end of the spectrum is Dirac hair, which reduces the
bulk fermion matter to a single quantum-mechanical wave function. As
a consequence the field theory dual is a single Fermi liquid, however its
gravitational consistency properties are not yet fully understood. In [19]
we have shown that Dirac hair and electron star can be regarded as the
extreme points of a continuum of models, dialing from deep quantum – a
single occupied state — to a classical regime — a very large occupation
number — in the bulk. They correspond to two extreme “phases” in the
field theory phase diagram: a multiplet of a very large number of Fermi
liquids and a single Fermi liquid. The confined Fermi liquid model [96]
introduces confinement through modifying the bulk geometry and solves
for quantum-mechanical wave functions adding them up to compute the
full bulk density. This latter step is more general then the single-particle
approach of [18] and it naturally extends a Dirac hair state with single
Fermi surface to a state with multiple Fermi surfaces. Our main motiva-
tion is to construct a complementary model that extends from the other
end — the classical regime — down to a state with few Fermi surfaces.
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We aim for a system which is general enough to encompass the middle
ground between extreme quantum and extreme classical regimes in the
original deconfined setup.

In addition to simply improving the mathematical treatment of the
many-body-bulk fermion system, the guiding principle in our analysis will
be to rest on the advantages and disadvantages of the current models. On
the one hand, the Dirac hair is a fully quantum-mechanical model which
shows its strength in particular near the boundary (the ultraviolet of the
field theory) but becomes worse in the interior, i.e.close to the horizon
(the infrared of the field theory) where density is high and the resulting
state of matter cannot be well described by a single-particle wave function.
On the other hand, the electron star yields a very robust description of
high-density matter in the interior but its sharp boundary at some radius
rc means that it has zero density at the boundary of the AdS space. This
is a crucial drawback as the holographic dictionary defines densities and
thermodynamic quantities on the CFT side in terms of the asymptotics of
the bulk fields at infinity. It is thus obvious that the physically interesting
model lies somewhere in-between the two approaches. This is why what
we try to achieve will essentially be an ”electron star with Dirac hair”.

We will reproduce the results of the electron star/Dirac hair models
in the limit of infinitely large/small fermion charge but also get a look
at what is in-between. Importantly, our model incorporates the quantum
corrections to the leading WKB approximation for the bulk electron den-
sity. Our system therefore does not terminate at some finite radius like
the electron star, allowing direct calculation of the CFT quantities at the
boundary. This will allow us to sketch the phase diagram as a whole. We
do not aim at quantitative accuracy in this paper: in a follow-up publi-
cation we will present a more accurate calculation making use of density
functional formalism for interacting fermions in the bulk. Here, we use a
simple WKB formalism with quantum tails which adds quantum correc-
tions to the Thomas-Fermi (fluid) approximation by taking into account
finite level spacing. While not highly accurate, it is able to penetrate
deep in the quantum regime thus giving at least a qualitative look in the
intermediate regime. In particular, we are able to detect the instability of
the RN black hole leading to its discharge and formation of finite density
phase in the bulk. The precursor os this instability is known as oscillatory
or log-oscillatory region [27, 50, 63]. All calculations are self-consistent
and include the backreaction on the gauge field by fermions and on the
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geometry by both.

The physical task of understanding the various states and their insta-
bilities is clearly still ahead of us. The obvious question to ask is, what
is the nature of the phase transitions and to what degree is it universal?
A partial answer is provided by our finding that the finite density phases
with fermionic quasiparticles at high enough temperatures always exhibit
a first order transition into the zero density phase. Intuitively, this can be
interpreted as a universal van der Waals liquid-gas transition. In the fluid
limit however, returning to the semiclassical description, the transition
becomes continuous as predicted in [52]. At zero temperature, we detect
a continuous transition whereby the AdS-RN system develops finite bulk
density of fermions, driving the instability of the black hole toward a finite
density phase, which in the fluid limit is just the electron star. It is here
that our method is especially useful as it allows us to probe the ”electron
star at birth”, i.e. to observe the instability of the black hole when only
few fermion levels are filled. The instability mechanism was discussed in
[50, 63] in the framework of electron star. We again find that finite level
spacing matters and the transition is shifted compared to the electron star
model. Finally, we find also a crossover between the low density (Dirac
hair) and high density (electron star) regime. The crossover is not a tran-
sition and thus there is no clear transition point. However, looking at the
two extremes, with N ∼ 1 levels and with N ∼ ∞ levels we will see that
they bring a characteristic difference in the behavior of the system in field
theory.

The nature of the zero temperature phase transition and the crossover
between the finite density phases is complex and we will not be able to
offer a complete description of these phenomena. Hopefully any gain of
understanding in these questions will give us some insight into the crucial
question: are there any stable phases of fermion matter that cannot be
adiabatically continued to a Fermi gas?

The outline of the paper is as follows. In the Section II we describe
the field content and geometry of our gravity setup, an Einstein-Maxwell-
Dirac system in 3 + 1 dimension, and lay out the single-particle solution
to the bulk Dirac equation. In Section III we start from that solution
and apply the WKB approximation to derive the Dirac wave function of
a many-particle state in the bulk. Afterwards we calculate density and
pressure of the bulk fermions – the semiclassical estimate and the quantum
corrections, thus arriving at the equation of state. Section IV contains the
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solution of the self-consistent set of equations for fermions, gauge field and
the metric. There we also describe our numerical procedure. Section V
is the core of the matter, where we analyze thermodynamics and spectra
of the field theory side and identify different phases as a function of the
three parameters of the system: chemical potential µ, fermion charge e
and conformal dimension ∆. Section VI sums up the conclusions and
offers some insight into possible broader consequences of our work and
into future steps.

6.2 Holographic fermions in charged background

We wish to construct the gravity dual to a field theory at finite fermion
density. Dimensionality is not of crucial importance at this stage. While
some interesting condensed matter systems live in 2 + 1 dimensions, the
heavy fermion materials are for instance all three-dimensional. We will
specialize to 2+1-dimensional conformal systems of electron matter, dual
to AdS4 gravities. We consider a Dirac fermion of charge e and mass m
in an electrically charged gravitational background with asymptotic AdS
geometry. Adopting the AdS radius as the unit length, we can rescale the
metric gµν and the gauge field Aµ:

gµν 7→ gµνL
2, Aµ 7→ LAµ. (6.2.1)

In these units, the action of the system is:

S =

∫
d4x

√−g
[

1

2κ2
L2 (R+ 6) +

L2

4
F 2 + L3Lf

]
(6.2.2)

where κ is the gravitational coupling and Fµν = ∂µAν − ∂νAµ is the field
strength tensor. The fermionic Lagrangian is:

Lf = Ψ̄

[
eµAΓ

A

(
∂µ +

1

4
ωBCµ ΓBC − ieLAµ

)
−mL

]
Ψ (6.2.3)

where Ψ̄ = iΨ†Γ0, eµA is the vierbein and ωABµ is the spin connection.
Since the magnetic field is absent, the U(1) gauge field is simply A = Φdt.
We parametrize our (spherically symmetric asymptotically AdS) metric
in four spacetime dimensions as:

ds2 =
f(z)e−h(z)

z2
dt2 − 1

z2
(
dx2 + dy2

)
− 1

f(z)z2
dz2 (6.2.4)
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The radial coordinate is defined for z ≥ 0, where z = 0 is the location
of AdS boundary. All coordinates are dimensionless, according to (6.2.1).
This form of the metric is sufficiently general to model any configuration
of static and isotropic charged matter. Development of a horizon at finite
z is signified by the appearance of a zero of the function f(z), f(zH) = 0.
From now on we will set L = 1.

We will now proceed to derive the equation of motion for the Dirac
field. From (6.2.3), the equation reads:

eµAΓ
A

(
∂µ +

1

4
ωBCµ ΓBC − ieAµ

)
Ψ = mΨ. (6.2.5)

In the metric (6.2.4) we can always eliminate the spin connection [79] by
transforming:

Ψ 7→ (ggzz)−
1
4Ψ =

eh(z)/4z3/2

f(z)1/4
Ψ ≡ a−1(z)Ψ (6.2.6)

After decomposing into radial projections Ψ±, defined as:

Ψ± =
1

2

(
1± ΓZ

)
Ψ, (6.2.7)

in a basis where ΓZ = diag(1, 1,−1,−1), the Dirac equation in matrix
form becomes: √

f∂z

(
Ψ+

Ψ−

)
= D̂

(
Ψ+

Ψ−

)
. (6.2.8)

Here the matrix D̂ is the differential operator along the transverse coor-
dinates (x, y) and time, which we will specify shortly.

We will give the solution of the Dirac equation in the cylindrical co-
ordinates, which will serve as the input to the calculation of bulk fermion
density in WKB approximation. Introducing the cylindrical coordinates
as (t, x, y, z) 7→ (t, ρ, φ, z) we make the separation ansatz:

(
Ψ+(z, ρ, φ)
Ψ−(z, ρ, φ)

)
=

∫
dω

2π

(
F (z)K1(ρ, φ)
−G(z)K2(ρ, φ)

)
e−iωt (6.2.9)

where, unlike previous approaches, the F,G are are taken as scalars and
the modes K1,2 are in-plane spinors. The Dirac equation then takes the
form:
(
∂zFK1

−∂zGK2

)
=


 −∂̂/

√
f(z)

(
Ẽ (ω, z) + M̃ (z)

)
σ3(

Ẽ (ω, z)− M̃ (z)
)
σ3 −∂̂/

√
f(z)



(
FK1

−GK2

)

(6.2.10)
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We recognize the matrix at the right hand side as D̂/
√
f . The terms Ẽ

and M̃ have the meaning of local energy and mass terms, respectively:

Ẽ(z) = −e
h(z)/2

f(z)
(ω + qΦ(z)), M̃(z) =

m

z
√
f(z)

. (6.2.11)

The in-plane operator ∂̂ acts on each in-plane spinor as:

∂̂ =

(
0 i∂̄

−i∂ 0

)
(6.2.12)

with ∂ ≡ eiφ(∂ρ + ∂φ/ρ). To maintain the separation of variables in

(6.2.10), we require ∂̂Ki = λiKi, where |λi|2 corresponds the momentum-
squared of the in-plane motion of the particle. The solution of the cylin-
drical eigenvalue problem for each in-plane spinor Ki gives:

Ki(ρ, φ) =

(
Jl−1/2(λiρ)e

i(l−1/2)φ

Jl+1/2(λiρ)e
−i(l+1/2)φ

)
. (6.2.13)

Of the two linearly independent solutions, only the Bessel function of the
first kind J(x) is chosen in order to satisfy the normalizability condition
of the wave function at ρ −→ 0 (for linear independent Bessel function
Y this condition is not fulfilled). Remembering that |λi|2 is the squared
in-plane momentum, the physical requirement that this momentum be the
same for both radial projections translates into the condition |λ2| = |λ1|.
Consistency of the separation of variables then shows us that K2 = σ3K1

and thus λ1 = −λ2 = k and the reduced radial equation becomes:

(
∂zF
∂zG

)
=

(
−k̃ Ẽ + M̃

M̃ − Ẽ k̃

)(
F
G

)
(6.2.14)

with k̃ = k/
√
f (let us note that Eq. (6.2.14) is for the pair (F,G), whereas

the initial equation (6.2.10) is written for the bispinor (FK1,−GK2)). For
the WKB calculation of the density, it is useful to remind that the wave
function Ψ in Eq. (6.2.9) has two quantum numbers corresponding to the
motion in the (ρ, φ) plane: λ, l (or equivalently the momenta kx, ky
in Cartesian coordinates). The radial eigenfunctions in z-direction will
provide a third quantum number n.
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6.3 Equation of state of the bulk fermion matter

In this section we construct the model of the bulk fermions in an improved
semiclassical approximation. In the next section we will complement it
with the equations for the Einstein-Maxwell sector. We will start by es-
timating the bulk fermion density in the semiclassical case. The Dirac
equation is solved in the WKB approximation, and the density is com-
puted assuming a large number of energy levels. This is in the spirit of
WKB approximation. However, we sum the exact quantum-mechanical
solutions for the wave functions rather than immediately taking the fluid
limit. In this respect our method goes beyond Thomas-Fermi and in fact
corresponds to calculating the vacuum density in the Hartree approxima-
tion. The resulting estimate has sharp bounds along the radial direction,
at some points z1 and z2 (0 < z1 < z2 ≤ 1), similar to electron star [51]
and its finite-temperature generalization [52]. As we have already argued,
sharp bounds fail to capture several essential phenomena on the CFT side.
To overcome this shortcoming, we will improve on the WKB approxima-
tion and continue our bulk density profile outside the classical region by
making use of Airy corrections to WKB in the interior, and the Dirac hair
formalism near the boundary. The reason for the latter is that Airy or de-
caying WKB approximations rapidly fail beyond the naive exterior sharp
edge. Compared to other models of holographic fermions at finite density
this quantum improvement on the semiclassical WKB limit bridges the
gap between the all-classical electron star [51] and single-particle quan-
tum mechanical calculation of Dirac hair [18].

6.3.1 WKB hierarchy and semiclassical calculation of the
density

In the framework of WKB calculations, the first task is to construct the
effective potential as a functional of the induced charge density n(z). Phys-
ically, the origin of the induced charge in our model is the pair production
in the strong electromagnetic field of the black hole. To remind the reader,
a (negatively) charged black hole in AdS space is unstable at low temper-
atures, and spontaneously discharges the vacuum [60]. This means that
there will be a non-zero net density of electrons n. Within the semiclassical
approximation it is consistent to calculate n as density of non-interacting
electrons. We will thus employ the semiclassical gas model and add up all
possible states enumerated by good quantum numbers. For this we choose
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the set (λ, l, n).
We now give the algorithm for the WKB expansion of the wave func-

tion for Dirac equation, adopted from [113]. Even though every single
step is elementary, altogether it seems to be less well known than its
Schrödinger equivalent. We consider the Dirac equation in the form (6.2.8)
and introduce the usual WKB phase expansion for it:

Ψ(z) = e
∫ z
z0
dzy(z)

√
f(z)

χ(z) (6.3.15)

with the spinor part χ(z). The phase y(z) can be expressed as the semi-
classical expansion in ~

1

y(z) = (y−1(z) + y0(z) + y1(z) + . . .) . (6.3.16)

The equations for the perturbative corrections now follow from (6.3.15-
6.3.16):

D̂χ0 = y−1χ0, (6.3.17)

D̂χ1 = y−1χ1 + y0χ0 +
√
f∂zχ0, (6.3.18)

. . .

D̂χn = y−1χn +
√
f∂zχn−1 +

n−1∑

i=0

yn−i−1χi. (6.3.19)

Notice in particular that y−1/χ0 is an eigenvalue/eigenvector of D̂. In our
case the matrix D̂ has rank two, so there are two eigenvalues/eigenvectors
for y−1/χ0: y

±
−1 and χ±

0 . To find the first order correction to the phase
of the wave function y0, we multiply (6.3.18) from the left by the left
eigenvalue χ̃±

0 of the matrix D̂ (D̂ is in general not symmetric, so the
right and left eigenvalues are different):

y0 = −(∂zχ
±
0 , χ̃

±
0 )

(χ̃±
0 , χ

±
0 )

. (6.3.20)

so we can now construct the usual WKB solution of the form Ψ± =
eiθ±/

√
q, where q is the WKB momentum and θ± the phase. The term y0

is just the first order correction to θ±.

1From the very beginning we put ~ = 1. However, to elucidate the semi-
classical nature of the expansion we give it here with explicit ~. Dirac equation
becomes ~

√
f∂zΨ̂ = D̂Ψ̂, where Ψ̂ = (Ψ+,Ψ−), yielding the expansion y(z) =

~
−1

(
y−1(z) + ~y0(z) + ~

2y1(z) + . . .
)
.
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Finally, let us recall the applicability criterion of the WKB calculation.
It is known that WKB approximation fails in the vicinity of turning points.
The condition of applicability comes from comparing leading and the next
to leading term in the expansion (6.3.16):

y0(z)

y−1(z)
≪ 1. (6.3.21)

In terms of Ẽ(z) and M̃(z) introduced in Eq. (6.2.11) it gives at k = 0:

M̃(z)∂zẼ(z)− Ẽ(z)∂zM̃(z)

Ẽ(z)(Ẽ(z)− M̃(z))
≪ 1. (6.3.22)

We will use this expression later on to estimate the point where we need to
replace the WKB density and pressure with their full quantum estimates.

WKB wave function

According to (6.3.17), the leading effective WKB momentum for the mo-
tion in z direction q ≡ |y±−1| is:

q2(z) = Ẽ2(z)− M̃2(z)− k̃2(z). (6.3.23)

The wave function in radial direction, Ψ = (F,−G), is given by the su-
perposition of two linear independent solutions

Ψ(z) = C+χ+(z)e
iθ(z) + C−χ−(z)e

−iθ(z), (6.3.24)

with the phase determined by

θ(z) =

∫ z (
q(z′) + δθ(z′)

)
dz′ (6.3.25)

δθ(z) =

∫ z k̃∂zk̃ − q∂zq +
(
Ẽ − M̃

)(
∂zẼ + ∂zM̃

)

2k̃q
dz.(6.3.26)

The constants C+ and C− are related by invoking the textbook boundary
conditions for the behavior of WKB wave function at the boundary of the
classically allowed region (q2(z) > 0) and the classically forbidden region
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(q2(z) < 0). The wave function in the classically allowed then reads:

Ψ(z) =
C√
q(z)



√
Ẽ(z) + M̃(z) sin (θ(z)− δθ(z))√

Ẽ(z)− M̃(z) sin θ (z)


 , (6.3.27)

δθ(z) = ArcSin
q(z)√

Ẽ2(z)− M̃2(z)
, (6.3.28)

and C is the only remaining undetermined normalization constant. For
the classically forbidden region we will use a different wave function, to
be described in the subsequent subsections. Integrating the probability
density over all coordinates in classically allowed region (z1, z2) gives the
normalization condition:

C2

∫ z2

z1

dz

√
g3d(z)

a(z)2

∫
ρdρ

∫
dφC2

2dΨnlλ(z, ρ, φ)Ψ
†
n′l′λ′(z, ρ, φ) = 1.

(6.3.29)
The metric factor is g3d(z) = g(z)gtt(z), and a(z) is the conversion factor
from (6.2.6). In the left-hand side of the equality we took into account
the normalization of the continuous spectrum in the (ρ, φ) plane. The
integration over φ is trivial. The orthogonality relation for Bessel functions
(which encapsulates the (ρ, φ) solution) gives the definition of C2

2d:

C−2
2d

∫ ∞

0
J(λρ)J(λ′ρ)ρdρ =

δ(λ− λ′)
λ

(6.3.30)

and it allows us to express the normalization constant as:

C =

(
4π

∫
dz

√
gtt√
gzz

Ẽ(z)

q(z)

)−1/2

, (6.3.31)

where a factor of 2π comes from the integration over φ and an additional
factor of 2 from the summation over the full four-component wave func-
tion, i.e. bispinor (each spinor gives Ẽ(z)/q(z) after averaging over the
fast oscillating phase θ). This completes the derivation of WKB wave
function and allows us to compute the density.

WKB density

The key input for WKB approximation is the self-consistent bulk electron
density n(z). As in [113] we find the total density by summing single-
particle wave functions in the classically allowed region. The WKB wave
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function is characterized by the quantum numbers (λ, l, n) with λ being
the linear momentum in the x− y plane, l – the orbital momentum in the
x− y plane and n – the energy level of the central motion in the potential
well along z direction. The bulk density can be expressed as the sum over
the cylindrical shells of the bulk Fermi surface. This suggests to work
in the cylindrical geometry as the natural choice (remember that we use
the SO(2) invariant in-plane spinors). Each shell satisfies the Luttinger
theorem in the transverse (x− y) direction and so the density carried by
each shell nxy(z) can easily be found. We can then sum over all shells to
arrive at the final answer which reads simply

∫
dznz(z)nxy(z). A similar

qualitative logic for summing the Luttinger densities in the x − y plane
was used also in [96] although the model used in that paper is overall very
different.

Let us start by noticing that the end points of the classically allowed
region determine the limits of summation over n and λ: q2(ωn, λ) ≥ 0.
Thus, the density in the WKB region is:

n(z) =
1

a(z)2

∞∑

l=0

∫ 2π

0
dφ

∑

n:q2(ωn,λ)≥0

∫ λ0

0
λdλ

∫ ∞

0
dρρC2

2d|Ψ(z, ρ, φ)|2,

(6.3.32)

where λ0 =
√
f(z)(Ẽ2(ω, z)− M̃2(z)). The limit of the sum over the

level number n is determined by the requirement that WKB momentum
be positive; in other words, we sum over occupied level inside the poten-
tial well only. The sum over the orbital quantum number l extends to
infinity as the (x, y) plane is homogenous and the orbital number does not
couple to the non-trivial dynamics along the radial direction. For large
occupation numbers the normalization condition (6.3.31) and the (local)
Bohr-Sommerfeld quantization rule (

∫
dz
√
q(z) = Nπ) then give:

Cn =

(
1

4π2
∂ωn
∂n

)1/2

, for q(z) ≫ δθ(z), z ≈ 1. (6.3.33)

Now we turn the summation over the quantum number n into the inte-
gration over energy and obtain for the bulk electron density (here we also
performed the integration over ρ using the explicit expression for the wave
function (6.2.10) and the normalization condition (6.3.30) for the Bessel



6.3 Equation of state of the bulk fermion matter 141

functions):

n(z) =
2

a(z)2

∞∑

l=0

∫ 2π

0
dφ

∫ √
f(z)(Ẽ2(ω,z)−M̃2(z))

0
dλλ

∫ µloc

0
dω

Ẽ(ω, z)

4π2q(ω, λ, z)
.

(6.3.34)
After performing first integral over ω and then over λ we get2:

n(z) = z3
p3max(z)f

3/2(z)

3π2
(6.3.35)

with pmax determined by

p2max = Ẽ2(0, z)− M̃2(z). (6.3.36)

Notice that this result corresponds with common knowledge on the
density of electron star [51].

6.3.2 Airy correction to semiclassical density

The semiclassical density profile has sharp cutoffs in the classically for-
bidden regions, that is, for p2max < 0, i.e. Ẽ(z) < M̃(z) (Fig. 6.1, dashed
curves). Generically, there will be such two turning points, z∗ and z∗∗,
so that 0 < z∗ < z∗∗ < zH where zH = ∞ in pure AdS or equals the
horizon radius at finite temperature. The semiclassical density is only
nonzero for z∗ < z < z∗∗. Leaving out the quantum ”tails” outside
this region misses even some qualitative features of the system, as we
have discussed in the introduction. Moreover, the WKB approximation
ceases to be valid close to the turning points (Eq. 6.3.22), at some z1,2
(0 < z∗ < z1 < z2 < z∗∗ < zH). We thus account for the quantum cor-
rections for z < z1 and z > z2. We first treat the latter case, i.e. the
quantum corrections in the near-horizon IR region.

To this end it is convenient to rewrite the Dirac equation in the
Schrödinger (second order) form for the Ψ+ component. Following the

2The given result for n can be compared to the charge density in the electron star
limit given in [53]. The metric functions used there are related to ours as f 7→ fe−h/z2

and g 7→ 1/fz2, where our metric functions are on the right hand side. Likewise, our
definition of pmax is related to kF of [53] as pmax = kF /

√
f . Now the total bulk charge

is expressed in [53] as Q =
∫
dzñe(z) where ñe(z) ∼ n(z)eh/2. In our conventions

Q =
∫
dz

√−ggzzgttn =
∫
dzn(z)eh/2 thus giving the same result as in [53].
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textbook, the lowest order correction to the WKB solution is obtained by
expanding the potential,

Veff (z) = Ẽ2(z)−M̃2(z)−3
(
∂z log

(
Ẽ(z) + M̃(z)

))2
+
1

2

∂zz(Ẽ(z) + M̃(z))

Ẽ(z) + M̃(z)
,

(6.3.37)
in the vicinity of the turning point. Naively the logical extension of our
formalism into the classically forbidden region would be to solve the Dirac
equation or the corresponding Schrödinger equation in WKB form with
imaginary WKB momentum. The result would be a set of exponentially
decaying wave functions. This is, however, not the optimal approach.
Firstly, the summation of all exponentially decaying wave functions would
be an overkill as the contributions of all but the highest amplitude expo-
nential correction are negligible and do not have a measurable influence
on the result. Secondly, the summation of wave functions with imaginary
WKB momenta turns out to be much more difficult in practice. We thus
perform the series expansion of the potential (6.3.37)around z = z2 as our
approximation scheme. The lowest order (linear) term in the expansion
of the potential yields a solution in terms of an Airy function which co-
incides with the WKB solution as we approach the turning point, i.e. for
z = z2 − 0.

In principle, also for Airy corrections such a continuation should be
made for each of the wave functions (6.3.24), and the corrections then
should be summed up. However, the Airy corrections for excited levels
are also exponentially suppressed outside the classically allowed region.
It is therefore a good approximation to only match the squared module
of one single, suitably chosen, Airy function to the total WKB density.
This should be the solution at the Fermi level ω = 0. Exponentially small
corrections are in any case beyond the scope of a Hartree-based method
and require a density functional approach.

We first expand the potential Veff in z−z∗∗, where z∗∗ is the (second)
turning point, i. e. q(z∗∗) = 0. The resulting second-order equation for
Ψ+ is schematically of the form:

(∂zz + (P0 + P1 (z − z∗∗)) ∂z +Q0 +Q1 (z − z∗∗))Ψ+ = 0. (6.3.38)

We transform to a Schrödinger-type equation (without a first derivative
term) but consistently keep only linear correction in the potential, giving
the equation:

(∂zz +Q0 + (Q1 − 2P0)(z − z∗∗))Ψ+ = 0 (6.3.39)
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with

Q0 = k̃
∂zẼ + ∂zM̃

Ẽ + M̃
− ∂zk̃|z=z∗∗

Q1 = 2M̃∂zM̃ + 2k̃∂zk̃ − 2Ẽ∂zẼ +
∂zẼB + ∂zM̃

(Ẽ + M̃)2

[
(Ẽ + M̃)∂zk̃ − (∂zẼ + ∂zM̃)k̃

]

P0 = −∂zE + ∂zM̃

Ẽ + M̃
|z=z∗∗ (6.3.40)

The decaying normalizable solution to the above equation is (non-normalizable
solution would imply instability of the interior):

Ψ+(z) = NAi

(
−(2P0 −Q1)(z − z∗∗)

(2P0 −Q1)
2/3

)
(6.3.41)

where N is the normalization constant. There is a similar equation for
Ψ− with the same normalization N for consistency with the first order
Dirac equation. The density is now simply

nIR(z) = |Ψ+(z)|2 + |Ψ−(z)|2. (6.3.42)

where in our approximation the only contribution comes from the single
wavefunction with ω = 0. We match this to the WKB density at the point
where it fails, i.e. at the point z2 in the interior where y0/y−1 = 1:

nWKB(z2 − 0) = nIR(z2 + 0). (6.3.43)

This determines the normalization N .
This approximation for the quantum tail becomes better and better

at zH as z∗∗ → zH . It is exactly there, in deep interior, where the Airy
correction is most critical for gravitational backreaction. The presence of
a nonzero density for z → zH implies backreaction at the horizon as we
shall see in the next section.

6.3.3 Dirac hair correction to semiclassical density

In principle, the Airy expansion can also be applied to the UV non-classical
region near the AdS boundary (0 < z < z1). This approach, however, has
both practical problems and problems of principle when applied in the
near-boundary region:
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• The convergence of the Airy expansion is poor near the boundary.
Airy expansion is nothing but the linear approximation of the ef-
fective potential, as in Eq. (6.3.38). Typically, however, the AdS
boundary is too far away from the turning point and the rate of
change of the effective potential Veff for z ≈ 0 is large enough to
require higher-order terms in the expansion of Veff . These would,
however, make the calculations much more complicated and go be-
yond the accuracy of the current model.

• More importantly, expanding away from z∗ toward the boundary in-
evitably means that the resulting approximation will not reproduce
the exact asymptotics of the fermion field at the AdS boundary.
The holographic dictionary identifies expectation values on the field
theory side by considering the asymptotics of the bulk fields at the
AdS boundary (z → 0). In particular, the correct asymptotics are
necessary to have the correct fermionic contribution to thermody-
namics. With an Airy expansion around z∗, the behavior at z = 0
is completely uncontrolled.

Therefore, in the context of the AdS/CFT correspondence one needs to
start the expansion at z = 0 in the UV region and glue it to the semiclas-
sical region at z = z∗ and not vice versa. The natural framework for this
task is the Dirac hair formalism [18]. In the region 0 < z < z∗ the density
rapidly decreases toward zero and it is increasingly dominated by the long
range wave functions with ω = 0 and k ≈ 0 [19]. These facts are precisely
the necessary conditions for Dirac hair to be a good approximation. We
will thus glue the Dirac hair wave function to the semiclassical result to
obtain the quantum tail at small z. The quantum correction in the UV
is especially crucial, since otherwise all holographic dictionary entries re-
lated to fermions (density, currents, response functions) are all, according
to the holographic dictionary, equal to zero.

We will start with a very concise review of Dirac hair. As argued
in [18], a very good approximation to the bulk fermion profile at low
densities is to describe it through a single collective wave function which
encapsulates the nonzero VEV of the fermion density. The right quantity
to consider is just the spacetime average of the bulk density J(z):

J(z;E, p) =

∫
dω

∫
d2kΨ†(z;−ω,−k)Ψ(z;E + ω, p+ k) (6.3.44)
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In the bulk, this is just the probability density associated with the quantum-
mechanical state Ψ. Analogously to the Airy correction in the IR region,
one should, strictly speaking, construct a separate density bilinear for ev-
ery bulk excitation (filled level) and add up all the bilinears. Analogously
to the Airy correction, we do not implement this procedure, but approxi-
mate the density with only a single wave function, as we did in the original
Dirac hair approximation [18] essentially neglecting the multi-particle na-
ture of the system in the classically forbidden region. The justification is
less rigorous than for the Airy correction: the subleading Dirac hair correc-
tions are not damped exponentially but only as a power law. In practice,
however we have shown that the numerical value of the amplitude of the
excited wave functions with k 6= 0 is small enough to be neglected [19].

In the single-particle Dirac hair approximation the expectation value
of J(z;E, p) at the boundary at zero energy and momentum 〈J(z = E =
p = 0)〉 translates into the density discontinuity in the vicinity of the
Fermi surface [18]:

〈J(E = p = 0)〉 =
∫ kF+0

kF−0
d2kN(k) ∼ Z, (6.3.45)

where through Migdal’s theorem Z corresponds with the quasiparticle pole
strength in the spectral function. Especially in the single particle approxi-
mation, it is convenient to directly deduce effective equations of motion for
J(z, E, p) from the Dirac equation, rather than solving the Dirac equation
and squaring. Since the dominant Fermi momentum in the UV is kF ≃ 0
the contribution of the Fermi momentum to the effective equations of mo-
tion for J can be ignored. In this simplification its equations of motion
only contain the explicit density momentum p. The Fermi momentum is
still implicitly present in the integration over the internal momentum k.
To write the evolution equation directly for the density J(ω = k = 0), it is
convenient to consider separately the radial projections Ψ± and construct
the bilinears

J±(z) =
∫
dω

∫
d2kΨ†

±Ψ±, with J = J+ + J− (6.3.46)

together with the auxiliary quantity

I(z) =

∫
dω

∫
d2kΨ†

+Ψ− + h.c. (6.3.47)
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which we need to close the system of equations. The coupled equations
for J±, I implied by the Dirac equation read:

(
∂z +

∂zf

2f
− 3

z
± 2m

z
√
f
− 2∂zh

h

)
J± ± eΦ

f
I = 0 (6.3.48)

(
∂z +

∂zf

2f
− 3

z
− 2∂zh

h

)
I − 2eΦ

f
(J+ − J−) = 0. (6.3.49)

Here we just need the Dirac hair solution to correct the semiclassical model
near the boundary, not in the whole space. We find it easiest to seek the
solution near z = 0 in the form of a series in z:

J−(z) = j0−z
α−(1 + j1−z + j2−z

2 + . . .) (6.3.50)

J+(z) = − µ2

(2m+ 1)2
zα+(j0+ + j1+z + j2+z

2 + . . .) (6.3.51)

I(z) =
iµ

2m+ 1
zα0(i0 + i1z + i2z2 + . . .). (6.3.52)

The exponents α0,± are determined by the lowest order of the near-
boundary expansion of the Dirac equation. As usual, one gets two families
of solutions and, according to the dictionary, the one with faster decay at
z → 0 corresponds to a VEV. This is the family with α± = 4 + 2m ± 1,
α0 = 4 + 2m. Since we will only use this solution in the UV region,
it is convenient to solve directly for the coefficients in this power series,
rather than a full numerical determination. We have explicitly checked
the convergence of the series using the D’Alembert criterion.

The density obtained in this way is

nUV (z) = J+(z) + J−(z). (6.3.53)

This single particle density is now matched to the WKB density at the
point z1 where y0/y−1 = 1 in the exterior:

nUV (z1 − 0) = nWKB(z1 + 0). (6.3.54)

In this way we determine the amplitude j0− (from Eq. (6.3.50)). Together
with the Airy matching in the interior we end up with a continuous density
in the whole space.

To complete our setup, we would like to have a quick and easy way to
quantify the ”classicality” of the system, i.e. the proximity to the electron
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star limit and the smallness of the quantum corrections. A very good
estimate is provided by the number of energy levels N in the potential
well: the classical limit corresponds to N → ∞ and vanishing spacing
between the levels. Provided N is large, it can be well approximated by
the textbook WKB formula. The estimate reads

N =
1

4π

∫ z∗∗

z∗
dz

√
gzzVeff (z) (6.3.55)

where Veff is the effective Schrödinger potential, Eq. (6.3.37), derived in
the context of the Airy function tails. From now on we will frequently use
N to characterize the system at certain values of the parameters (µ, q,m).

In Fig. 6.1 we show the full quantum corrected WKB densities ob-
tained with the matching outlined above. These are obtained upon solving
the whole self-consistent system of equations (including electromagnetic
and gravitational backreaction) described in later sections. We show this
here already just to illustrate of our method. In Figs. 6.1A and 6.1B,
the semiclassical estimates nWKB

e (z) in the whole classically allowed re-
gion (z∗ < z < z∗∗) are shown as dotted lines compared to the actual
(quantum-corrected) density. Fig. 6.1C shows explicitly that N is the
correct parameter that controls the size of the quantum corrections. As
already argues in [19], for low N which is equivalent to the statement
that the total charge density becomes of the order of the charge of the
constituent fermion, the WKB approximation fails. Here we see visually
that quantum corrections become dominant in this limit.

6.3.4 Pressure and equation of state in the semiclassical
approximation

Following the logic behind the density calculation, we will now calculate
the pressure. It will actually prove easier to write the equation of state
first and then derive the pressure. We can start by computing the energy
density of the bulk fermions. By definition, it reads

E(z) =
∑

λ,l

∫ 2π

0
dφ

∫ ∞

0
dρ

∫ µloc

0
dωωΨ†(z)Ψ(z) =

=
∑

λ,l

∫ 2π

0
dφ

∫ ∞

0
dρ

∫ µloc

0
dωω

Ẽ(z)

4π2q(z)
(6.3.56)
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Figure 6.1: Semiclassical bulk density nWKB(z) (Eq. 6.3.35, dashed pink
lines) and full density n(z) with quantum corrections – Airy tails for large
z > z2 in the interior and Dirac hair for small z < z1 near the AdS bound-
ary (Eqs. 6.3.42, 6.3.53, solid blue lines). Parameter values (A) (µ, e,m) =
(1.7, 100, 0.1), (B) (µ, e,m) = (1.7, 10, 1). The classically allowed region lies
between the turning points z∗ and z∗∗, determined by the the condition of van-
ishing WKB momentum (q(z∗) = q(z∗∗) = 0). The gluing of the quantum tails
to the semiclassical part is implemented according to the condition of applica-
bility of WKB approximation, y0/y−1 = 1, at the point z2 for the Airy correc-
tion (Eq. 6.3.41), and at the point z1 for the Dirac hair correction (Eq. 6.3.44).
The parameters for (A) are in the classical (electron star) regime, the quan-
tum corrections are manifestly small and the classical region almost coincides
with the WKB region: z1 ≈ z∗, z2 ≈ z∗∗. The plot (B) is given to show
that when the system is closer to the single particle Dirac hair approximation,
N ∼ 1, the WKB approximation fails and the quantum corrections are of the
same order as the WKB part. (C) Bulk density with quantum corrections, for
a range of values (µ, e,m) = (1.7, 100, 0.1) (red), (µ, e,m) = (1.7, 30, 0.1) (vi-
olet), (µ, e,m) = (1.7, 10, 0.1) (green) and (µ, e,m) = (1.7, 5, 1) (blue). For
large specific charge of the fermion (and therefore a large number of WKB lev-
els in the bulk) the solution is dominated by the classically allowed region. For
smaller q/m values (and thus fewer WKB levels) the quantum correction in the
near-boundary region becomes important and eventually dominates the density
profile. (D) Thermodynamical pressure with quantum tails (Eq. 6.3.59), for the
same parameter values as in (C).
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where Ẽ(z) is defined in (6.2.11) and the sum limits are the same as in
(6.3.34). Performing the integration in a similar fashion as when comput-
ing n(z) in (6.3.34-6.3.35), we obtain

E =
1

2
eΦn+

1

2
f2M̃2ArcSinh

Ẽ

M̃
. (6.3.57)

Notice that the first term exactly captures the electrostatic energy while
the second is the one-loop term that encapsulates the quantum fluctua-
tions. The above result is remarkably close to the Hartree vacuum po-
larization correction as it appears in various model energy functionals in
literature. Now the calculation of pressure needs to be done very carefully
in our semiclassical setup. It is possible to delineate two opposite regimes:
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Figure 6.2: Comparison between full quantum pressure (dashed blue lines,
Eq. 6.3.58) and thermodynamic pressure (solid red lines, Eq. 6.3.59) for two
sets of parameters: (µ, e,m) = (1.7, 100, 0.1) (A) and (µ, e,m) = (1.7, 5, 1) (B).
For comparison we plot also the fluid pressure p = enΦ/2 (dashed green lines).
Expectedly, all three models are close to each other for large N while for N
small the level spacing is large and it is necessary to sum the contributions of
individual levels: both the thermodynamic approximation and the simple fluid
approximation deviate considerably from the exact sum.

1. In the deep quantum regime we can express the pressure from the
microscopic fermionic Lagrangian (6.2.3). By definition it reads

p =
∑

n,l,λ

Ψ†
+∂zΨ+ −Ψ†

−∂zΨ− + h.c. =
∑

n,l

2l + 1

4πq

e−3h/2

z2f
C2
n(ωn − Φ)

(6.3.58)
The explicit calculation is tedious but straightforward and we leave it
out. The end result involves the integral of a complicated function of
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q and θ. Unlike for density case, we find ourselves unable to package
it in a closed-form expression. Instead, we integrate numerically over
the energy levels ωn to obtain the function p(z).

2. Deep in the classical regime, according to thermodynamics p =
∂E/∂V which generically results in a nonzero outcome. While the
volume V is difficult to calculate exactly, we can obtain a crude
estimate in the following way. At unit AdS radius, the volume
equals the length ℓ of the classically allowed interval along z axis, i.e.
the interval between the zeros of the WKB momentum pmax(z) =√
Ẽ2(z)− M̃2(z). From (6.2.11) we find ℓ ∼ m/eµ, assuming nei-

ther of the two turning points is very close to the boundary or very
deep in the interior. One further assumption we make is that, not
too far in the interior, the gauge field is well described by the linear
law Φ ∼ µ(1− z). We thus arrive at the estimate

pthd =
∂E
∂Φ

∂Φ

∂µ

∂µ

∂ℓ
∼ eµ2

2m
(1− z)

(
en+

m2fe−h

z
√
m2f +Φ2e−2hz2

)

(6.3.59)
where we have used (6.3.57). We will call this the thermodynamic
pressure and denote it by pthd to differentiate from the exact quan-
tum expression (6.3.58). The expression (6.3.59) is also the equation
of state of the system as it connects the pressure to the density.

The thermodynamical pressure is much more convenient calculationally.
In spite of its approximate nature, it yields a remarkably accurate re-
sult when compared with the exact quantum pressure. We ascribe the
quantitative proximity of the results in the two cases to the fact that
the differences are small in the two key regions of deep UV and deep IR.
Outside the classically allowed region, we approximate the system with
a single quantum-mechanical particle and calculate the pressure from the
quantum equation (6.3.58). The nonzero pressure obtained in this way for
the classically forbidden region is not the Fermi pressure (which vanishes
for a non-macroscopic number of particles). It is the pressure inherent to
relativistic fluids.

Finally, it is illustrative to see how we reproduce the electron star
pressure [51] in the limit of large density. For n→ ∞, the first term in E
dominates and we obtain

pES =
1

2
∂z(eΦn) (6.3.60)
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as expected for an ideal fluid, which corresponds to the electron star ap-
proach. The physical interpretation of this result (and of the pressure
inside the classically allowed region in general) is that of a Fermi gas
pressure which, as we know, survives also in the limit of classical ther-
modynamics. The comparison of p, pthd and pES is summarized in Fig.
6.2, for high and low number of levels. While all three approximations are
good as N ≪ 1, for small N both the fluid limit and the thermodynamic
limit break down and the contributions of individual levels must be taken
into account.

6.4 Maxwell-Dirac-Einstein system

We have now arrived at the point where we can solve our model self-
consistently with the Einstein-Maxwell equations. Unavoidably, the so-
lution is numerical, using an iterative procedure to converge toward the
solution. Only in the IR region it is possible to use a scaling ansatz to
estimate the scaling behavior of the metric and matter fields, akin to the
procedure used in [50]. We will also see how the ”quantum tails” in both
IR and UV are crucial to capture at least qualitatively the full effect of
backreaction. This is the first attempt at a self-consistent solution includ-
ing backreaction on the geometry with holographic fermions which goes
beyond the fluid picture of [51].

Fortunately, it is known how to calculate it in the fluid (i.e. electron
star) approximation. The action principle for the relativistic fluid as put
forward in [108] and used in [51, 52] gives the Lagrangian of the whole
system (fluid plus Einstein and Maxwell background) as

S =

∫
d4x

[
1

2κ2
(R+ 6)− 1

2q2
(∂zΦ)

2 + p

]
. (6.4.61)

In other words, the contribution of fermions reduces to the pressure p.
While we do not take the fluid limit in this paper, one can suspect that
in the first approximation the influence of the corrections to fluid limit
(N → ∞) is fully encapsulated by the correction to the classical (or fluid)
pressure we found in (6.3.57-6.3.58).

Starting from the exact action (6.2.2), we replace the fermionic terms
with our model for the density and pressure of the bulk fermions. The
total action is represented as S = SE + SM + Sf , the sum of Einstein,
Maxwell and fermionic part. The only nonzero component of the gauge
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field is Φ and the only non-vanishing derivatives are the radial derivatives
∂z (the others average out to zero for symmetry reasons). The fermion
contribution is subtler. On-shell, the bulk action for the fermions van-
ishes because it is proportional to equations of motion. The boundary
contribution is the bilinear Ψ̄Ψ but one can show that this vanishes too
when properly regularized [19]. At the quantum level, however, there is
a nonzero fermion pressure p, considered in Sec. 6.3.4, as well as nonzero
(local) charge density is given by j0e as

j0e = qn
√
g00 = qn

zeh/2√
f
, (6.4.62)

The fermionic term in the effective action thus becomes

Sf = −
∫
d4x

√−g
(
j0eΦ+ p

)
. (6.4.63)

Packaging everything together, we arrive at the effective action:

Seff =

∫
d4x

√−g
[

1

2κ2
(R+ 6)− z4

2
eh
(
∂Φ

∂z

)2

− j0eΦ+
√
gzzp

]
.

(6.4.64)
The only components of the stress tensor the fermion kinetic energy con-
tributes to is Tzz and T00 ; the others vanish due to homogeneity and
isotropy in time and in the x − y plane. From (6.4.64) we get the equa-
tions for the energy-momentum tensor:

T 0
0 = −1

2
z4eh

(
∂Φ

∂z

)2

+ j0eΦ (6.4.65)

T zz = −1

2
z4eh

(
∂Φ

∂z

)2

+ j0eΦ+mn+ gzzp. (6.4.66)

We can now write down our equations of motion:

1√−g
(
∂ze

−h/2∂zΦ
)

= −j0e (6.4.67)

3f − z∂zf − 3 = T 0
0 (6.4.68)

3f − z∂zf(z)− 3zf∂zh− 3 = T zz . (6.4.69)

The boundary conditions for the gauge field are standard in AdS/CFT:
Φ(z0) = µ fixes the chemical potential at the boundary (z0 → 0), while
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∂zΦ(zH) = 0 ensures the stability of the horizon. Asymptotic AdS geom-
etry implies h(z0) = 0, while the redshift factor vanishes at the hori-
zon, f(zH) = 0 (the derivative is determined by the temperature as
∂zf(zH) = T/4π).3 Finally, it remains to define the units used through-
out the paper. The natural unit of energy and momentum is the chemical
potential µ and we will express all quantities in units of µ whenever µ is
kept constant. When varying µ, we will resort to using the temperature
T as the unit. The two ways are essentially equivalent as in holographic
systems only the ration µ/T has physical meaning.

Let us conclude with an outline of the numerical algorithm, which is
not completely trivial. The boundary conditions to be implemented are
given at different points: some are given at the AdS boundary and some
at the horizon. Since the system is nonlinear, it is necessary to either lin-
earize the system or to shoot for the correct boundary conditions with the
full nonlinear system. After experimenting with both, we have decided to
iterate the full, non-simplified system of equations, integrating from the
horizon and shooting for the conditions at the boundary. We perform the
procedure iteratively, gradually increasing the fermion charge in every it-
eration, and then iterating with fixed fermion charge until the convergence
of the solution is achieved to the fixed set of functions, (f, h,Φ). More
explicitly, the procedure is as follows: we start with the non-backreacted
AdS/RN geometry and compute the density (semiclassical plus the quan-
tum corrections) for the the electron charge equal to e/N (where e is the
physical charge and N some positive integer), then we solve the system
of Einstein-Maxwell equations (6.4.67-6.4.69), afterwards we increase the
fermion charge to 2e/N , calculate the charge density in the background
(f, h,Φ) taken from previous iteration and solve for this density Einstein-
Maxwell equations (6.4.67-6.4.69). We repeat this procedure for charge
3e/N , 4e/N etc. After N iterations we have arrived at the physical value
of the charge e. Then we do more iterations with fixed charge e to ensure
that the solution has converged, checking that the set of functions (f, h,Φ)
does not change from iteration to iteration. In this way we achieve the
self-consistent numerical solution of the Maxwell-Dirac-Einstein system of

3At zero temperature, when the horizon vanishes due to fermionic backreaction (this
includes also the case of Lifshitz geometry), the boundary condition for f guarantees
also the smoothness of the solution on the horizon: ∂zf(zH) = 0. This condition ensures
that we pick the correct branch of the solution as there are typically two families of
functions f(z) that satisfy the equations of motion and the condition f(z) = 0. One of
them has a vanishing derivative whereas the other has finite derivative as z → 1.
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equations. The integration is always done from the horizon, shooting for
the conditions for Φ and h at the boundary, since it is well known that
integrating from the AdS boundary is a risky procedure as it is next to
impossible to arrive at the correct branch of the solution at the horizon.
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Figure 6.3: Profiles of the metric functions f(z) (red) and eh(z) (violet), the
gauge field Φ(z) (green), density n(z) (blue) and the pressure p(z) (cyan) at zero
temperature, for (µ, e,m) = (1.7, 100, 0.1) (A) and for (µ, e,m) = (1.7, 10, 0.1)
(B). Solid lines are calculated form our model while dashed lines are the electron
star solution for the same parameter values. For better visibility density and
pressure are rescaled by a constant factor. Near the boundary we always have
h(z) → 0 and Φ(z) = µ+O(z), in accordance with the universal AdS asymptotics
of the solution but in the interior the solutions start to deviate. Most striking
is the absence of sharp classical edges in density and pressure. The difference in
pressure will turn out to be crucial in moving away from the fluid limit. Here
we have not shown the solution with N = 4: this case deviates from the electron
star (N → ∞) so strongly that it does not make sense to compare it. Indeed,
4 ≪ ∞!

We can now analyze the structure of both the bulk and the field theory
side as a function of the parameters µ, e and m. We first shortly discuss
the nature of the bulk solution for the geometry and gauge field and
notice some qualitative properties. Afterwards we study the structure of
the phase diagram using the thermodynamical quantities as the guiding
principle, and corroborate these findings with spectral functions. As a
result we will be able to draw the phase diagram.

The typical way that the solutions to the Dirac-Maxwell-Einstein sys-
tem (6.4.67-6.4.69) look like, including the quantum tails in both UV and
IR for the density n(z), is illustrated in Fig. 6.3. The near-horizon scaling
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of the metric and gauge field is of Lifshitz type, as expected in the light
of earlier models [50, 51]. It is illustrative to make a comparison with the
simpler models of Dirac hair and electron star. The metric functions f and
h of all three models converge toward each other near the boundary, and
the gauge field Φ remains close to the non-backreacted RN setup [18, 51].
This gives hope that these approximations can provide a decent estimate
of important quantities on the CFT side since these are not overly sen-
sitive to the precise modeling of the fermionic condensate in the interior.
In addition, the Dirac-hair-like quantum correction reproduces the finite
density tail near the boundary, crucial for thermodynamics.

6.5.1 Thermodynamics

We can now use these full solutions to determine the macroscopic charac-
teristics of the dual strongly coupled fermion system. Let us first derive
the free energy of the boundary field theory. According to the dictionary,
it is equal to the (Euclidean) on-shell action, which contains both bulk
and boundary components:

F = Son−shellbulk + Son−shellbnd . (6.5.70)

We have already discussed the bulk action in the previous section. We
will approximate the fermionic contribution (6.4.63) by its leading term,
pressure. Notice that we do not disregard backreaction to the metric and
gauge field, i.e. we calculate the exact value of the gravitational and gauge
field action, and then add the fermionic component approximating it with
p.

The boundary action encapsulates the regularizing terms that elimi-
nate the divergences and the von Neumann boundary condition for the
gauge field:

Sbnd =

∮

∂AdS

√
−h
(
1

2
nνF

µνAµ + Ψ̄+Ψ−

)
, (6.5.71)

with h being the induced metric on the boundary (h = 1
z2
(−1/f(z =

0), 1, 1)) and Ψ+ and Ψ− are radial projections of the wave function as in
Eq. (6.2.7). By ∂AdS we have denoted the boundary of the AdS space.
Their asymptotics at the boundary are given by

Ψ+ =
iµγ0

2m+ 1
B−z

5/2+m + . . . , Ψ− = B−z3/2+m + . . . (6.5.72)
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as noticed in the subsection IIIE. In our system, the electromagnetic
boundary term reduces to Φ∂zΦ|z=0 = −µρ, where ρ is the total bound-
ary (not only fermionic) charge density, read off from the subleading “re-
sponse” of the bulk electrostatic potential limz→0Φ(z) = µ−ρz+ . . .. The
regularized boundary action now reads

Sbnd = lim
z0→0

S(z0) + lim
z0→0

∫
d3x

[
3µ

2(2m+ 1)
B̄−iγ

0B−z
1+2m
0 − 1

2
µρ

]
,

(6.5.73)
and the total on-shell action, i.e. the free energy can be written as

F =

∫ zH

z0

dzd3x
√−g

[
R+ 6 +

zeh/2qnΦ

2
√
f

+ p

]
−1

2
µρ+

µ

2(2m+ 1)
I(z0)z

1+2m
0 ,

(6.5.74)
where we exploit the definition of the bilinear I from Eq. (6.3.47)4. Notice
that the last term in the free energy (6.5.74), coming from the fermionic
term in the boundary action (6.5.73), vanishes in the limit z0 → 0, i.e.
at the boundary. Therefore, it does not influence the free energy and we
include it only for completeness.

6.5.2 Constructing the phase diagram

Let us first briefly describe the role of different control parameters. One
obvious parameter is the temperature T which drives the thermal phase
transitions. In the limit T → 0, we can determine the nature of the
ground state and possible quantum phase transitions between them.5 The
parameters that determine the ground state are µ, e and m. Current
wisdom suggests that the phases of the system are primarily sensitive
to the ratio e/m [19]. Another convenient parameter is the ”effective
chemical potential”

µeff
T

≡ eµ

mT
(6.5.75)

motivated that only the combination eµ appears in the Dirac equation. We
will also sometimes look at µ0, the threshold chemical potential for nonzero

4In Eq. (6.5.74) the kinetic term for the Maxwell field ∼ ∂zΦ
2 is transformed through

partial integration into ∼ Φ∂zzΦ which is then transformed into ∼ nΦ using the Poisson
equation

5Our numerical approach is not convenient at strict zero temperature. However,
it is known that quantum phase transitions can be detected also at small but finite
temperatures.
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bulk density and the formation of a Fermi surface on the field theory side.
Its value at T = 0 is easily determined either by tracking the emergence
of a solution with finite bulk density n, or by looking at the formation of
a quasiparticle peak in the spectrum (see the next subsection). Finally,
we have already argued that the parameter N(µ, e,m) that controls the
classical/quantum regime is another convenient parameter. An alternate
parametrization of the phase diagram is therefore µeff , N and m.

First order thermal phase transition to RN-AdS

n>0 n=0

0.01 0.02 0.03 0.04 0.05 0.06

2.0

2.5

3.0

T�Μ

F

Figure 6.4: Free energy as a function of temperature F (T ). The abrupt change
of the derivative signifies the first order transition between the finite density
phase and the pure black hole (with zero bulk fermion density), in line with
the analytical prediction of the first order transition from the second term in
the bulk free energy in Sec. 6.5.2. We show the calculations for three different
values (µ, e,m) of the system parameters: (1.7, 30, 0.1), N(T = 0) = 40 in red,
(1.7, 10, 0.1), N(T = 0) = 20 in blue and (1.7, 10, 0.7), N(T = 0) = 11 in violet.
In the high temperature (RN) phase the curves F (T ) fall on top of each other
as one expects for the RN black hole with n = 0. The behavior in the low-
temperature phase (with non-zero density) is different for the three curves as the
value of the charge affects the behavior of the bulk fermions. For presentation
purposes, the curves have been rescaled to the same transition temperature; in
general, however, (T/µ)c is not universal and will differ for different corners of
the parameter space.

At high temperature the preferred state of the system is the charged
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Figure 6.5: (A) Free energy (rescaled and centered to common value at the
transition point) for the same parameters as in Fig. 6.4, in the vicinity of T = Tc
(not for the whole range of temperatures). The cusp characteristic of a first
order transition is now clearly visible. The value of F on the RN side (n = 0)
is without error bars as the thermodynamic functions of the black hole can be
exactly calculated. Notice how the slope of F in the low-temperature phase
decreases as the number of levels increases: for N → ∞ we reach the electron
star limit when the transition becomes continuous. (B) Difference between the
entropy of the RN black hole and the entropy of the system ∆S = SRN−S, where
entropy is obtained from free energy as S = −∂F/∂T , for the same parameters
and in the same color schemes as in Fig. 6.4 and panel (A). The first order nature
of the transition is recognized from the jump ∆S at the critical point. Notice
that the difference is positive for T < Tc, and thus the high temperature phase
has more entropy as expected. The entropies in the RN/local quantum critical
phase are exact, as they are calculated from the exactly known RN solution at
given chemical potential. They are thus represented by a single (black) set of
data points. The entropy is in relative (computational) units.

AdS black hole rather than a finite bulk fermion density configuration.
This AdS-RN black hole describes a local (momentum-independent) quan-
tum critical phase which generically has no Fermi surfaces. At low T/µ
one finds several non-Fermi-liquid Fermi surfaces [79, 17, 27, 63], but this
should be where the instability to the finite density system sets in. Fig. 6.4
shows the behavior of the free energy F (T ) in a broad range of tempera-
tures, encompassing both the low and the high temperature phases for dif-
ferent parameters e, µ,m. The cusps in the dependence F (T ) correspond
to the points of a first order phase transition (where the derivative ∂F/∂T
experiences a jump). In the high temperature phase the dependence F (T )
is the same for different electron charges at given chemical potential as
there are no fermions in the bulk and the solution is determined only by
the temperature and the chemical potential at the boundary. In low tem-
perature phase the free energies, although close, are distinct. Fig. 6.5A
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shows the free energy in the vicinity of the phase transition and we can
clearly see the cusp in the function F (T ) signalling the first order phase
transition. To further corroborate the first order nature of the transition,
we plot the entropy S = −∂F/∂T in Fig. 6.5B for the same parameters
as in Fig. 6.4 and 6.5A. To better show the transition, entropy is plotted
with reference to its value for the black hole, as ∆S = SRN − S. Notice
that the jump of the derivative ∆S(T ) is positive for T < Tc, as it should
be, as the system evolves toward maximizing its entropy.

A first order transition between a zero/nonzero bulk density can be
explained from general analytical considerations. Starting from low tem-
peratures, at the transition point the bulk density n vanishes. In our
model that means that the turning points coincide: z∗ = z∗∗. In this
limit we are able to analytically predict the order of the transition in the
following way. Assuming that the transition is dominated by the behavior
of the fermions, the relevant part of the free energy of the system is given
by F =

∫ zH
0 dzE(z) . Since the bulk matter lives at zero temperature,

all thermodynamical potentials are equal and the free energy is just the
total (internal) energy of the system. The first (”electron star”) term in
the energy, eΦn/2 is analyzed in detail in [52] and is concluded to yield
the scaling F ∼ (T − Tc)

3. We will now analyze the second, Hartree

term, f2M̃2ArcSinh
(
Ẽ/M̃

)
. The vanishing of the classically allowed re-

gion means Ẽ ≈ M̃ in the whole (narrow) region z∗ < z < z∗∗. One
can thus expand Ẽ = M̃ + δz × δẼ/δz + . . . and analyze the leading
terms in δz. It is easy to see that its expansion starts from a constant:

ArcSinh
(
Ẽ/M̃

)
= const. + O(δz), where δz = z∗∗ − z∗. Its integral

thus scales as F ∼ δz. Now, for a vanishing bulk charged fluid/emerging
charged black hole, the principle of detailed balance predicts that the
charge of the former equals the charge of the latter: nδz = nBHδzH ,
where the charge densities of the bulk and the black hole are n and nBH ,
respectively, and δzH is the change in the position of the black hole hori-
zon. The crucial insight is that the densities can be assumed constant for
vanishing δz and δzH . We thus find δz ∼ δzH ∼ T − Tc. The conclusion
is that

F ∼ T − Tc (6.5.76)

and the transition is always of first order. The final subtlety is that we
have now analyzed the bulk free energy: the boundary free energy F
(evaluated as the bulk on-shell action) is distinct from it. However, the



160 Chapter 6. The phase diagram: electron stars with Dirac hair [83]

difference F−F cannot have terms of order lower than linear in T−Tc. We
thus conjecture that the thermal transition from a bulk fermionic system
to a black hole is generically of first order.

The numerics confirms the prediction of the first order phase transi-
tion. The field theory interpretation of the discontinuous nature of the
transition to a phase with Fermi surfaces is simple: fermions do not break
any symmetry but the discharge of the black hole does signify that the
ground state is reconstructed due to formation of a rigid Fermi surface.
The only way to reconstruct the ground state without breaking any sym-
metries is precisely the first order transition of the density van der Waals
liquid-gas type. This is the interpretation put forward in [18] for the first
order transition from Dirac hair to RN state. We find here that this con-
clusion stays valid even for large values of n, in contrast to [52]. These
papers study the birth of a (classical) electron star upon reducing the
temperature and find a continuous, third order, transition. The crucial
Hartree term in F is absent in the classical electron star limit, leaving
only the continuous transition from the electrostatic energy enΦ. As the
Hartree term will be present for any finite value of n, no matter how large,
these results indicate that the physical transition in the strongly coupled
fermion system is indeed of first order.
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Figure 6.6: The emergence of Fermi surfaces seen in MDCs A(ω = 0, k) upon
dialing µ = 0.8, 1.0, 1.2 (red, violet, blue), in (A) for (e,m) = (10, 1), and in (B)
for (e,m) = (30, 5). The sharp peaks at some k = kF , present for higher values
of the chemical potential reveals the Fermi surface with Fermi momentum kF .
Remarkably, the emergence of a Fermi surface coincides with critical values of µ
for which the RN black hole is replaced by a finite density solution. The obvious
difference between (A) and (B) is that in the former case only one (generically,
few) Fermi surface can form while in the latter the number of Fermi surfaces
grows rapidly with further increasing µ. The numbers in the figure (pointing on
the curves) give the level count N .
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In order to further explore the physical meaning of different phases on
the field theory side, we will study also the spectra of the fermion in each
of the phases. The central object here is the spectral weight A(ω, k) which
can be defined in terms of the retarded propagator GR:

A(ω, k) = TrℑGR(ω, k). (6.5.77)

To obtain A(ω, k) we solve now the equations of motion for a probe fermion
in the background obtained from the self-consistent solution of the bulk
equations. From this one can construct the retarded propagator GR on
the field theory side and compute the spectral function. The appropriate
procedure is well established by now [79, 17] and we will only briefly
summarize it. The solution to the bulk Dirac equation (6.2.5) can be
expanded near the boundary as

Ψ+ = A+z
3/2+m +B+z

5/2−m + . . . , (6.5.78)

Ψ− = A−z
3/2−m +B−z

5/2+m + . . . (6.5.79)

According to the holographic dictionary, the retarded propagator equals
the ratio of the VEV (subleading term in Ψ−) and the source (leading
term in Ψ+):

GR = z2m0 B−A
−1
+ (6.5.80)

where the prefactor is just the regularization at some z = z0. Following
[79], we package the equation of motion into a single nonlinear equation
for the ratio B−A

−1
+ . At zero temperature, Fermi surfaces are always

located at ω = 0 [79, 27]and they are most easily found by studying the
momentum distribution curves (MDCs) at zero energy, A(ω = 0, k).

We can now confirm that finite/zero density phases are indeed roughly
equivalent to presence/absence of Fermi surfaces. Extensive calculations
of spectra in the vicinity of the critical µ/T or the critical temperature
show that the finite density phase always has at least one Fermi surface on
the field theory side while the zero density phase generically has no Fermi
surfaces. This is expected: Fermi surfaces are signalled in the bulk by
the existence of quasinormal modes, only if there are (quasi)normalizable
modes in the spectrum can we have a finite bulk fermion density, a fi-
nite bulk fermion density implies also finite boundary density, and finite
fermion density in field theory implies the existence of Fermi surfaces.
Emergence of Fermi surfaces from the quantum critical (RN) phase is
observed in Fig. 6.6 for the low- and high µeff case, or roughly for an
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electron star at birth and a Dirac hair at birth from a bald RN black hole.
In the first case (Fig. 6.6A), a single Fermi surface emerges at µcriteff and
remains stable, while in Fig. 6.6B increasing µeff leads to the emergence
of an ever increasing number of Fermi surfaces. Both cases belong to the
low temperature phase from Figs. 6.4-6.5. The difference between the two
regimes of this phase we will study later in this subsection.

Continuous quantum phase transition to RN-AdS

The second axis of the phase diagram is the conformal dimension ∆, i.e.
the bulk mass m. Studies of the electron star [51, 53] suggest that the
appropriate control parameter is actually the charge to mass ratio e/m:
electron star is the thermodynamically preferred solution for high e/m val-
ues. We see from the expression for WKB density (6.3.35) that increasing
the fermion mass or reducing fermion charge reduces the semiclassical
region and the total bulk charge. The electron star reasoning likewise
suggests that the finite density ground state corresponds to high values of
e/m. For some threshold value (e/m)c the electron star vanishes [51] and
the RN solution is preferred.

We will now consider in some detail the quantum phase transition
from AdS-RN zero density regime to the finite density phase. Let us
fist summarize what is known. The near-horizon geometry of the RN
black hole is described by AdS2 throat. The conformal dimension of the
corresponding IR CFT is [27]:

νk =

√
m2

6
+

1

2

(
k

µ

)2

− e2

12
, (6.5.81)

For e < m
√
2 we have ν2k > 0 for any momentum value (including k = 0),

implying that the bulk geometry is stable. For e > m
√
2, the conformal

dimension νk becomes imaginary. According to [63, 87], this region is
unstable due to pair creation near the horizon. Accordingly, one expects
finite bulk density to form for e > m

√
2, leading to backreaction and

disappearance of AdS2 throat. However, to the best of our knowledge,
this was not checked explicitly so far in the Einstein-Maxwell-Dirac setup.
Using our WKB method we will now study the appearance of finite bulk
density and its consequences on field theory side.

The dependence of the free energy on the conformal dimensions ∆ with
other parameters fixed is given at Fig. 6.7. We have marked with dashed
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lines the critical values of the conformal dimension ∆c when a nonzero bulk
density n(z) appears. The free energy does not reveal any simgularity at
these points. Nevertheless, they can be identified as the points where the
dependence F(∆) deviates from the straight line F(∆) = const. – free
energy of a pure RN black hole clearly does not depend on the fermion.
In the zoom-in near ∆c (Fig. 6.7(B)) we find that the behavior of free
energy is consistent with the BKT form:

F(∆)−F(∆c) = const.× e
− const.√

∆c−∆ . (6.5.82)

The BKT nature of the phase transition can be related to the RG inter-
pretation of the oscillatory regime. The effective Schrödinger potential in
AdS2 regime is proportional to 1/r2 [28]. This form of potential gives rise
to RG limit cycles [85]. Finally, it is known that the system generically
experiences a BKT phase transition when the RG flow with a limit cycle
becomes unstable [106]. One can therefore argue that the BKT transition
we observe appears as a consequence of the exiting from RG limit cycle
behavior in the bulk.

In order to understand what drives the instability of the RN regime and
to what it corresponds in field theory, it is helpful to look at the spectra
(Fig. 6.8). By stacking together MDCs for different ∆ values we can eas-
ily follow their evolution: the sharp, narrow maximum corresponding to
the quasiparticle peak vanishes at ∆c simultaneously with disappearance
of n. This again suggests the generic absence of critical Fermi surfaces
immanent in the RN setup [17, 79]: the quantum phase transition sepa-
rates the ES/DH phase with stable quasiparticles from AdS2 metal with
no quasiparticles at all.

Crossover between low and high density phases

Now we will take a closer look at the low temperature finite density phase.
This is the parameter regime where earlier models [18, 51, 19] anticipate
the emergence of regular Landau Fermi surfaces. These models predict a
single Fermi surface for low fermion charge [19] while, according to [53],
the regime of high fermion charge describes a ”deconfined” phase with
a multiplicity of Fermi surfaces, with fermions of different flavors. The
question arises if the two regimes are thermodynamically distinct and if
so, separated by a critical point or by a crossover. To that end we plot
the free energy as a function of the effective chemical potential µeff = eµ.



164 Chapter 6. The phase diagram: electron stars with Dirac hair [83]

(A)
4.03.53.02.52.01.5

3.48

3.5

3.52

3.54

D

F

(B)
3.53.02.5

3.52

3.53

3.54

D

F

Figure 6.7: (A) Free energy as a function of the conformal dimension ∆ =
3/2+m, for (µ, e) = (1.7, 20) – blue, (1.0, 20) – red and (1.0, 5) – violet. Numer-
ically, the curves are smooth and all derivatives ∂kF/∂k∆ are finite. We identify
the transition points as the values ∆c when the fermion density n(z) vanishes
identically and mark the corresponding values in the figure. Both the look of
the curves and the analytical reasoning, i.e. the lack of two independent scales
that could compete as in a crossover, are consistent with a BKT transition. (B)
Zoom-in near the transition points with analytical plots of the BKT scaling rela-
tion F ∝ exp(−const./

√
∆−∆c). The numerical data are fully consistent with

the BKT scaling.

Remarkably, all four curves fall on top of each other for small charges,
where the background is close (though not identical) to AdS-RN. The
curves are smooth in the whole region. The absence of a cusp in F (µeff )
definitely discards the possibility of a first order transition, the distinc-
tion between a continuous transition and a crossover is difficult to make.
Analytical arguments however strongly suggest the crossover. To see why,
remember that the (thermodynamically defined) density nth = ∂F/∂µ
is an analytic function of the solutions to the Einstein-Maxwell system
(f(z), h(z),Φ(z)). We thus expect all higher derivatives n = ∂kF/∂µkr
(k = 2, 3, . . .) to be continuous as well. In addition, the simplest physi-
cal interpretation of increasing µeff is that of increasing the number of
bulk fermions by filling increasingly higher levels in the effective potential
well (6.3.37). One can expect a substantial change of the behavior of the
system as the potential well is filled but not a discontinuity of the ther-
modynamical functions (e.g. [77]). We can thus conclude that a crossover
separates a Dirac-hair-like region from the electron-star-like region.

At first sight just the change in the number of occupied states should
not affect any thermodynamic properties. We will argue below that the
cause of the crossover is the change of the scaling behavior of the quasipar-
ticle width. Notice that the function F (µeff/T ) keeps the same convexity
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(A) (B)

Figure 6.8: (A) MDC spectra at ω = 0 for (µ, e) = (1.0, 5) and varying ∆.
Curves for different ∆ values are stacked on top of each other to represent the
evolution of the spectrum with ∆. To better show the Fermi surfaces we use
the logarithmic color scale, i.e. the color value is proportional to logA(ω =
0, k). Crucially, the Fermi surfaces (lines of lighter color) disappear at ∆ = ∆c,
simultaneously with entering the RN phase. Dashed line delimits the area within
which bulk density is nonzero and the system backreacts away from AdS-RN (it
is parallel t0 the k axis as the presence of nonzero bulk density does not depend
on the momentum of the probe fermion). We can conclude that the formation
of a Fermi surface indeed drives the instability of the RN background to a new,
finite density phase. In (B), we show for comparison the MDC curves for the
same parameter values without backreaction, i.e. in the AdS-RN background.
In RN background the number of Fermi surfaces is larger (we see four Fermi
surfaces).Hoeve,r both in (A) and (B) there are no Fermi surfaces bellow the
dashed line.

as in Fig. 6.4: the argument of the function is increasing in Fig. 6.4
and decreasing in Fig. 6.9, hence the increasing/decreasing trend in the
function.

The dispersion of the energy distribution functions (EDCs) for mo-
menta in the vicinity of the Fermi momentum yields a better insight into
the physical meaning of the finite density phases. It is here that the
crossover from Dirac hair to electron star becomes most obvious: the few
Fermi surfaces of Dirac hair regime exhibit a broader power law scaling
of self-energy ℑΣ ∼ ω2ν with ν = 1 to high accuracy while the many
Fermi surfaces of the electron star are exponentially sharp: ℑΣ ∼ e−1/ω

(Fig. 6.10). The latter scaling was predicted in [26] and confirmed in [53],
while the former was postulated on general grounds in [18]. Importantly,
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Figure 6.9: Free energy as a function of the fermion charge e in the crossover
region for (µ,m) = (2.2, 0.5) – red, (1.0, 0.5) – violet, (1.7, 1.0) – green and
(1.7, 5.0) – blue curve and for a range of fermion charge values. On the abscise
we plot the effective chemical potential µeff = eµ. The temperature is kept
fixed at T = 0.0005. All four cases exhibit a crossover about the same value
of µeff/T (µcross

eff /T ≈ 20), suggesting that µeff is indeed the key quantity
that drives the changes of the Fermi surface. The low-µeff region is a few-
Fermi-surfaces DH-like system while the high-µeff regime describes an ES-like
multiplet of Fermi surfaces. We will later study in more detail the dispersion
properties of the two regimes. Apart from the gradual and soft nature of the
transition as seen from the numerical curves, the crossover (as opposed to phase
transition) nature of the phenomenon also follows from analytical considerations.
The dependence of the solution (f(z), h(z),Φ(z)) on the parameters of the system
(µ, q,m) is analytical, which strongly suggests that the derivatives of the free
energy ∂kF/∂µk are continuous to all orders k = 2, 3, . . ..

no unstable or underdamped Fermi surfaces (with self-energy scaling as
ℑΣ ∝ ω2ν with ν < 1/2) are found: these seem to be the artifacts of the
probe limit and will not arise in a self-consistent approach (with backre-
action).

6.5.3 Phase diagram

We are now in the position to summarize our findings in the form of a
phase diagram. In Fig. 6.11(A) we give three-dimensional phase diagram
which includes all three independent parameters – µ/T , e andm, while the
”reduced” phase diagram with only two parameters, eµ/T and ∆, is given
in Fig. 6.11(B). At high temperatures the system is always in the zero
density quantum critical AdS-RN phase. Dialing eµ at fixed temperature
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Figure 6.10: Imaginary part of the self-energy of the quasiparticle in the imme-
diate vicinity of ω = 0 for e = 5, 15, 50 (red, green, blue). It shows the crossover
from power-law (solid line) (red line) to exponential The self-energy of the quasi-
particle undergoes a transition from quadratically damped peaks (ℑΣ ∼ ω2, red
points) toward exponentially narrow poles (ℑΣ ∼ e−1/ω, blue points). Notice
that the all three peaks are stable: the power-law exponent is ν = 1 with high
accuracy, signalling a normal Fermi liquid phase.

toward larger and larger values, the Fermi surfaces proliferate until the
point of crossover, when the peaks become exponentially sharp. The true
nature of this system is not yet known in detail 6. We have already
suggested such a diagram in [19] based on the analysis of the two extreme
limits. Here we have gone further and analyzed quantitatively also the
intermediate regimes. The structure of the phase diagram can now be
summarized as follows:

1. Van der Waals transition, Fig. 6.11(A), Fig. 6.5. There is univer-
sally a the first order (van der Waals) transition from finite to zero
density phase upon dialing µ/T and thus filling the levels of the
bulk fermionic system. In field theory, this means a liquid-gas tran-
sition between the Fermi liquid(s) and the disordered phase, devoid
of quasiparticles and dominated by slow conformal dynamics. In-
terestingly, the quantum corrections to the density and pressure are
crucial for the discontinuous nature of the transition: in the electron
star limit, as shown in [52], the transition becomes continuous.

6Reference [97] interprets it as fractionalized Fermi liquid
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Figure 6.11: (A) Three dimmensional phase diagram (e,m, T/µ). The phase
transition from finite density phase to AdS-RN phase is a first order phase tran-
sition in contrast to zero temperature BKT-type phase transition. (B) Phase
diagram in (eµ/T,∆) plane, based on thermodynamics and spectra, at zero tem-
perature. The two regimes with stable quasiparticles are denoted with different
colors: electron star (ES), describing (likely) a ”Russian doll” of stable Fermi-
liquid-like quasiparticles (ES/FL), and Dirac hair which is closer to normal Fermi
liquid (DH/FL). The third regime, for large ∆, is the RN black hole with its
quantum critical Fermi surfaces and no quasiparticle.

2. Quantum phase transition, Fig. 6.11(B), Fig. 6.7. There is a contin-
uous (likely BKT) transition from finite to zero density phase upon
dialing the conformal dimension ∆ at fixed fermion charge (or equiv-
alently varying the ratio m/e, or equivalently varying the fermion
charge e or the total charge Q at fixed ∆). The fact that the Fermi-
liquid-like quasiparticles vanish in the high ∆/low e regime is known
from the electron star limit and not surprising on basis of general
arguments (bulk density in the classical approximation drops with
increasing m/e). However, our finite level spacing correction to elec-
tron star makes it possible to study the transition region in detail,
and shows a nontrivial outcome: the transition is of BKT type, and
happens inside the oscillatory (pair-creation) region.
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3. No Fermi surfaces in AdS2 metal phase. The transition happens at
such parameter values which, on the AdS-RN side of the transition,
correspond to absence of Fermi surfaces, i.e. imaginary IR conformal
dimension ν. The system thus passes directly from a Fermi-liquid-
like phase into a profoundly different, exotic phase that we call AdS2
metal, and which was studied in detail in [27].

At constant temperature, the finite density phase exhibits analytic
behavior of the free energy and has no phase transitions but shows a
clear crossover between the single-Fermi-surface, Dirac hair limit and the
infinity of Fermi liquids in the electron star limit. Thermodynamically
the crossover is explained by the change in quasi-particle width ℑΣ from
power-law behavior in the Dirac-hair-like quantum regime with NWKB .

10 to exponential suppression in the semi-classical electron star like regime
with N ≫ 10.

We will finish this section with a look towards real-world examples of
such phase diagrams. Condensed matter literature offers a vast landscape
of strongly coupled Fermi liquids like our DH phase, e.g. in the context
of heavy fermions [80]. However, the properties of the electron star (”Ma-
tryoshka” or ”Russian doll”) phase are not easy to relate to the real-world
examples. In part, it is a consequence of the large-N limit in AdS/CFT
which, for example, leads to an exponentially small self-energy. The hope
is that finite-N corrections would eventually lead to a realistic picture
of the ES phase, while the DH, perhaps with some modifications of the
geometry, would correspond to normal metals.

6.6 Discussion and conclusions

In this paper we have constructed a semiclassical model with quantum
tails of holographic fermions in AdS4 space, aimed at understanding the
phase diagram of strongly coupled Fermi and non-Fermi liquids. The
model uses WKB approximation in the classically allowed region, com-
plementing it with quantum-mechanical estimates of the fermionic wave
function in the classically forbidden region. Introducing the pressure into
the essentially quantum mechanical model we get the Hartree quantum
correction (”vacuum polarization”) of the classical model – the electron
star. This approach has allowed us to address the intermediate fermion
charges which cannot be modeled satisfyingly with any of the previously
used models.
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Figure 6.12: Applicability of various approximations as a function of µr ≡ eµ/m
and the ratio of the fermion charge and the total charge of the system, e/Q: Dirac
hair, electron star, confined Fermi liquid and our present model. Dirac hair and
electron star are the simplest and most flexible approximations but limited to
extreme corners of the µr axis.

By studying the free energy of the system as well as the spectra and
the number of Fermi surfaces we have contructed the phase diagram of
the system and analyzed the phase transitions. Most importantly, we find
a universal first order phase transition from finite density to zero density
(Reissner-Nordström, quantum critical) phase. The discontinuity of the
density comes from the quantum term in the internal energy. This term
is always present but its relative contribution to the free energy decreases
with the inverse of the fermion charge as 1/e. The extreme limit e → ∞
thus reproduces the continuous phase transition found in [52]. Neverthe-
less, in any real system with finite fermion charge the discontinuity will
be present, which fits neatly into the general expectation that the ther-
mal phase transition of a fermionic system should be of van der Waals
(liquid-gas, Ising) type.

The finite density phase is further divided into two regimes corre-
sponding to low and high values of the ratio eµ/m or, more precisely,
level number N , that encompass the known limits of Dirac hair [18] and
electron star [51]. The transition manifests itself as a line of crossover
points which end with a BKT quantum phase transition to the RN phase.
The BKT transition fits nicely in the RG interpretation of holography in
the following way. Firstly, the log-oscillatory region studied in [27] can
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be understood as a limit cycle of RG describing a conformal quantum
mechanical system (i.e. a conformal theory in 1 + 1 dimensions) [106].
Then, instability of the limit cycle generically happens through a BKT
transition.

It is illustrative to discuss our model in some more detail in the context
of earlier work in the field: electron star [51], Dirac hair [18] and the
confined Fermi liquid [96]. All models use the same microscopic action,
however they differ in the approximations made in order to to solve it. It
is helpful to introduce a combination of all parameters e, µ,m that one
might dub ”reduced chemical potential”:

µr ≡
eµ

m
. (6.6.83)

Electron star is the fluid limit of the equations of motion, yielding the
Openheimer-Volkov equations in the bulk. As explained in [19], this ap-
proximation is valid in the limit of large chemical potential: µr → ∞.
Dirac hair makes the opposite assumption, treating the bulk fermion as
a single collective excitation, which becomes exact in the limit µr → 0.
Finally, the confined Fermi liquid of [96] is essentially a non-local ver-
sion of Dirac hair, which models the bulk as a non-interacting Fermi gas,
adding individual excitations up to the Fermi energy. This significantly
increases the region of applicability but at the cost of substantial prac-
tical complications, in particular if one wishes to take into account the
backreaction on the metric. This picture breaks down at high chemical
potential but works well for reduced chemical potential of order unity (or
smaller): µr . 1. Our model makes use of the WKB approximation, thus
assuming semiclassical dynamics and large number of energy levels in the
bulk. Nevertheless, we do not make the assumption of zero energy spacing
necessary for the fluid approximation: our model thus works well in the
intermediate regime, µr > 1. In Fig. 6.12 we give a schematic descrip-
tion of these findings, on a one-dimensional diagram with µr and e/Q as
control parameters. The ratio of the fermion charge and the total charge,
e/Q, is crucial for Dirac hair and for electron stars: the former requires it
to be small (otherwise many energy levels are filled and the single-particle
approximation is not valid), the latter to be large (otherwise the level
separation is too small and the fluid limit does not apply). Our approach
does not take the fluid limit and thus does not depend on e/Q. It is shifted
toward high µr values because of the WKB approximation but – thanks
to using the Dirac hair near the boundary – can still cope with lower µr
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values to some extent.
The next step in our work will be the increase of quantitative accuracy

by replacing the WKB approximation with a fully quantum-mechanical
density functional method. It is, in fact, not a significant complication
compared to the approach of this paper: the recipe for computing the
density n will be replaced by a complicated functional of the gauge field
and the metric. It needs to be computed iteratively, however our approach
requires iterations in any case, to account for the backreaction. We do
not expect qualitative changes but some quantitative aspects, e.g. the
values of the scaling exponents and the scaling relations might benefit
from increased accuracy.



Chapter 7

Discussion and conclusions

We have undertaken this research motivated by the the limitations of
field theory and many-body physics to explain the collective behavior of
strongly interacting fermions at finite density. Such a situation is not
encountered in traditional areas of high energy physics – scattering of
fermions is a few-body problem that is perfectly within the reach of per-
turbative field theory. Strongly correlated fermions at finite density are
another story however. Through the lens of holography we have learned a
few things about this problem. At best, this is just setting the stage to face
the truly deep problems of the field. Still, we feel that even the modest
insights we have obtained hinge crucially on the ability of the to penetrate
deep into the workings of strongly coupled physics holographic principle
and could not be found in another way. More than a calculational tool,
AdS/CFT looks to us as a novel viewpoint, connecting many-body and
field theory to gravity. Physics on the gravity side often offers not only
quantitative results but also a clearer view of physics – for example, phase
transition from a quantum critical phase to a stable phase is easily under-
stood as the discharge of an unstable black hole due to the electrostatic
repulsion of fermions. We find that the questions we ask are interesting
not only for specific condensed matter problems but are also informative
in a general field theory context.

The main achievements of this research can be summarized as follows:

1. The Dirac hair formalism. The Dirac hair formalism has been the
backbone of this work in a formal sense. It not only provides us with
a controlled and easy method to calculate various quantities but also
a physical view of what we are doing: expectation values are dual
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to various fermion currents (bilinears) in the bulk, and the flow
equations for field theory propagators are natural bulk extensions
of the boundary action. While rather technical, we find the DH
important as it allows us to tackle any form of order parameter in
principle, to model Cooper pairing, exciton formation, etc. in a
unified way.

2. The holographic Migdal theorem. The extension of the holographic
dictionary that captures the essence of the Fermi surface – a rigid
localized object in momentum space, akin to a classical order pa-
rameters for bosons – is the holographic Migdal theorem. It leads
to the precise conclusion that the Fermi surface after all can indeed
be understood in a Landau-Ginzburg-like language: it is a conden-
sate of a certain bulk operator (Ψ†

−Ψ−) and the jump of the number
density Z is the order parameter associated with such a transition.

3. Phase diagram. The main conclusion of direct relevance for con-
densed matter physics is the phase diagram for the Einstein-Maxwell-
Dirac system we have found. It predicts a quantum critical region
(as opposed to isolated quantum critical points familiar from field
theory), which gives way to a FL-like phase with multiple stable
fermion quasiparticles (as opposed to a single Fermi surface familiar
from field theory). The diagram is thus different from what is usu-
ally seen in experiment but not unheard of. For example, multiple
Fermi surfaces are indeed seen in heavy fermion systems, explained
by the difference between valence and f -shell electrons [80].

4. Fermi liquid stability. The closest we have come to the original goal
of understanding the fermionic physics in Fermi liquids is the finding
of generic stability of Fermi liquids: NFL-like excitations are only
present at the critical point, and generically give way either to AdS2
metal phase where fermions do not condense into a Fermi surface
at all or stable FL-like quasiparticles. In gravity, this is explained
by the instability of the extremal RN black hole, which generically
discharges into bulk fermions, forming a Lifshitz geometry.

As we have explained at the beginning, quantitative results such as
values of critical temperatures etc. cannot be trusted. But qualitative
insights are quite instructive already. From the very start we have en-
countered a zoo of scaling exponents – this is indeed the defining property
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of the quantum critical AdS-RN Fermi surfaces. But this zoo is replaced
by a universal (exponentially narrow or quadratic, depending on if we are
in Dirac hair or electron star regime) behavior of the self-energy in the
stable phase. While relating the AdS-RN zoo to experiment might be
hazardous, the stable phases are easy to identify as they predict quasipar-
ticles which do not depend on microscopic details. The second qualitative
lesson is the universal van der Waals first order thermal transition, present
in the whole finite density regime. So far only detected in liquid helium, it
seems to be a universal property of Fermi surfaces, in sharp contract with
the wealth of phases at zero temperature. Thus the simplifying influence
of temperature conjectured in the quantum criticality literature [15, 95]
is supported by our results. On a more technical level, this result sug-
gests that the fluid limit of the electron star is pathological – it predicts a
continuous phase transition that becomes discontinuous in the presence of
arbitrarily small but finite level spacing. This is an interesting example of
how a model that is perfectly reasonable as a general picture of the bulk
physics – the Thomas-Fermi limit which works out so well in a diverse
array of situations such as atomic physics and astrophysics – might prove
inadequate in a specifically holographic context where we wish to be ac-
curate near the boundary rather than ”everywhere” in the interior, and
where crucial elements of the boundary physics might depend on seem-
ingly unimportant details in the bulk. Dirac hair itself is another example.
There we have an approximation which is in general of poor quantitative
accuracy except for very low densities but which is doing well (actually
becoming exact) in the UV where it matters most.

The Luttinger theorem has proved to be a central criterion for dif-
ferentiation between FL and NFL systems. Again, AdS/CFT offers an
intuitive picture: the Luttinger theorem is the consequence of the black
hole discharge; when no charge hides behind the horizon all of it will show
up in the Fermi surface at the boundary. Only what is inside the black
hole cannot reach the boundary. The fact that the theorem is badly vio-
lated by the NFL-like Fermi surfaces in AdS-RN phase suggests that this
system should not be viewed as a zero density system: even though quasi-
particle density certainly is zero, it does represent a system with nonzero
macroscopic number of fermions, which manage to organize themselves
into a FS (except in the truly mysterious AdS2 phase). We feel that the
true nature of the RN phase is still unclear, despite the vast number of
works devoted to it.
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The first question we have originally asked – what is the gravity dual
of a conventional Fermi liquid – we have not managed to answer with
complete confidence. This question was fully worked out in [96], and it
turns out that the crucial ingredient is to impose the confinement of the
quasiparticles by imposing an IR cutoff. We have found the AdS-DH
phase which captures the stability, robustness and the quasiparticle of FL
systems, but it is just a small corner of the phase containing generically
multiple FL-like quasiparticles, culminating in the electron star phase with
an infinite tower of Fermi surfaces. The open issue is whether this picture,
with many stable quasiparticle excitations, also represents realistic physics
which is yet to be discovered experimentally. This is one direction for
further work stemming from this thesis.

We were more successful in extending the dictionary. The holographic
Migdal theorem is a solid dictionary entry, and it connects the unconven-
tional ”order” of the Fermi surface to the Landau-Ginzburg paradigm. In
a similar fashion, one can couple the fermion to any order parameter and
derive analogous relations for various properties. We regard this as the
most promising continuation of our work and we plan to tackle it in near
future. In particular, a number of approaches to the problem of high tem-
perature superconductivity starts from the assumption that the ground
state in the normal phase is something different from a FL, and unique
enough to account both for robust superconductivity and the zoo of order
parameters (current loops, stripes, spin dimers, etc) seen in the pseudogap
phase [118]. It will be interesting to see what kind of superconductivity
will arise from AdS-DH phase. A first step in that direction was accom-
plished in [29] in the probe limit. But a better chance of reproducing the
simple and universal properties of the strange metal phase [111] lies with
some stable, backreacted setup more akin to AdS-DH.

We would also like to know what is the role of top-down approaches in
this context. We have not explored that at all in this thesis. A problem
with AdS/CFT is that one is often not sure what the system one is study-
ing actually is. Lacking the microscopic Hamiltonian means we can judge
it only indirectly. Top-down models solve this problem, as the field con-
tent is constrained by string theory, and we know exactly the symmetries
and operators on the field theory side. An important top-down insight
is in [22] where the authors have shown that holographic Fermi surfaces
generically exist in top-down approaches.

Another extension of our work will be in the direction of transport
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phenomena. Adding finite energy and momentum to the flow equations
for DH one derives expressions for conductivity. This is of special impor-
tance for connecting our results to experiment as a straightforward way
to characterize various materials remains the measurement of DC and op-
tical conductivity. The ultimate goal here is the understanding of linear
resistivity in the strange metal phase of cuprates and similar materials
[118]. In principle, this can be achieved by making the scaling exponent ν
os the quasiparticle self-energy a function of an external parameter. This
can be achieved e.g. by coupling the fermion to a bosonic order parame-
ter. In that case, there can be a quantum critical point corresponding to
ν = 1/2, i.e. with a marginal Fermi liquid scaling which leads to linear
resistivity. A puzzle remains however to which degree the phenomenology
of the strange metal is dependent on lattice physics which is harder to
account for in AdS/CFT.

We close this thesis with a look into future development of the field.
Holography seems to be moving away from ”Lagrangian-based” physics
– for the strongly correlated systems we study, the knowledge of micro-
scopic degrees of freedom would anyway be of little value. We can there-
fore hope to understand the key qualitative issues in strongly correlated
electron physics even though we will not be able to study lattice scale
physics and microscopic workings of any material. It remains to be seen if
these microscopic details always matter, or if many deep problems in the
field can be understood through a simple emergent principle encoded by
holography.
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Summary

This thesis is devoted to the physics of strongly interacting electron sys-
tems from the viewpoint of a string-theoretical paradigm known as the
holographic principle. The idea is to bridge the gap between two seemingly
disconnected areas: gravity and quantum fields. The arena of strongly in-
teracting electrons is a prime example which could benefit from such a
connection, for both fundamental and practical reasons. In order to un-
derstand how, let us first take a closer look at how gravity and quantum
fields are related by the holographic principle.

Holography is motivated by the realization that the entropy of a black
hole scales with its area. As the entropy determines the information con-
tent (and eventually the number of degrees of freedom) of a black hole, we
can conclude that the information carried in a black hole can be ”written”
on its surface. In other words, all of its degrees of freedom are captured
by a suitably defined object spanning its surface, not its volume. This has
prompted ’t Hooft and Susskind to conjecture that, quite generally, the
dynamics in a curved spacetime, in the presence of gravity, can be equiva-
lently thought of as a quantum field in flat spacetime with one dimension
less. Finally, in 1997, Maldacena constructed an explicit example, show-
ing that a conformal field theory (CFT – a highly symmetric field theory,
invariant with respect to length rescaling at every point) is the ”image”
of gravity in a space with a certain specific geometry, known as Anti-de
Sitter (AdS) space. The connection is in the form of a duality, meaning
that the partition functions of D-dimensional CFT and D+1-dimensional
AdS gravity are equal. That opens a way to calculate correlation func-
tions, expectation values, stress tensors and other quantities on the CFT
side. The list of such correspondences is known as the holographic dic-
tionary. Importantly, AdS/CFT is a weak/strong duality, meaning that
weakly coupled gravity in AdSD+1 is dual to a strongly coupled quantum
field theory. Weakly coupled gravity is just its classical limit, i.e. general
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relativity, which is relatively well studied and a wealth of exactly solvable
models exists. On the other hand, strongly coupled field theory is out of
reach of perturbative techniques and thus poorly known.

This goes double for fermion systems to which this thesis is devoted.
The core issue comes from the simple fact that fermions obey Fermi-Dirac
statistics – meaning that their wave functions are antisymmetric and the
density matrix of a many-fermion system will contain negative contribu-
tions. This in turn leads to the so-called ”fermion sign problem”: the
partition function acquires negative contributions, which ruins its proba-
bilistic interpretation. Therefore, the formalism of statistical mechanics
(or, equivalently, Euclidean field theory) is not applicable. At weak cou-
pling, the Landau Fermi liquid theory provides a controlled approxima-
tion scheme: the interacting system behaves as a gas of quasiparticles.
A wealth of interesting systems is however outside this weakly coupled
regime. The prime example is the strange metal phase of high-temperature
superconductors, which shows distinctly non-Fermi liquid behavior, with
its universal scaling laws such as linear resistivity scaling with tempera-
ture. It is here that we see a great opportunity to apply the AdS/CFT
correspondence: it is a unique tool which provides an insight into the prob-
lem of strongly interacting fermions in a controlled way. While we are not
yet able to arrive at a realistic model of any condensed-matter system, we
study the universal features characterizing the holographic fermions.

We start our research by looking at the quantum-critical fermion sys-
tems. These systems have a quantum phase transition – a zero temper-
ature transition driven by quantum, not thermal fluctuations. Quite a
number of materials is conjectured to slip from a Fermi liquid to a non-
Fermi liquid by passing through a quantum critical point. The gravity
dual turns out to be a charged black hole in AdS space, with zero fermion
density in the bulk. We study in detail the spectrum of the the system,
and find gapless excitations around specific values (EF , kF ) of energy and
momentum, which are clearly to be identified with the Fermi energy and
Fermi momentum. We thus find holographic Fermi surfaces. Tuning the
parameters of the system, we find both stable, narrow peaks corresponding
to Fermi liquids, and unstable peaks with exotic and nonuniversal features
such as particle-hole asymmetry, of distinctly non-Fermi liquid kind. This
is in line with the expectation that the charged black hole describes a
quantum critical point: it is a point from which the system might evolve
either towards a Fermi or a non-Fermi liquid.



189

The natural step now is to see where the system flows away from the
critical point, i.e. what happens when the black hole becomes unstable.
The gravity picture is that of pair production in an electrostatic and gravi-
tational field: some of the pair-produced fermions will orbit the black hole,
making it unstable. The result is a novel geometry on the gravity side,
and thus a novel system on the field theory side. We have dubbed this
model a black hole with Dirac hair. We find that it contains only stable
Fermi-liquid quasiparticles, while the unstable ones go away. After some
algebra, one can obtain from the gravity side a number of results of the
Fermi liquid theory. We therefore have a solid gravity dual to a Fermi
liquid.

Our next goal is the exploration of the full parameter space and un-
derstanding of all possible ground states. It is found that this holographic
Fermi liquid is unexpectedly robust: in the whole parameter space, the
stable quasiparticles dominate the spectrum as soon as one moves away
from the quantum critical (charged black hole) phase, which shows definite
characteristics of a non-Fermi liquid. Somewhat unexpectedly, even in the
strongly coupled setup of AdS/CFT, Fermi liquids are ubiquitous – and
only disappear when quantum-critical behavior develops. It is conceivable
that different, more involved gravity models would give a richer spectrum
of non-Fermi liquid phases. The transition between the two phases is of
the Berezhinsky-Kosterlitz-Thouless (BKT) type, i.e., of infinite order.
Clearly, it has nothing to do with vortices but with a specific instability of
the non-Fermi liquid (in technical terms, it manifests itself as the merger
of two fixed points of the RG flow).

In conclusion, we have observed previously unknown forms of fermionic
quantum criticality by employing the AdS/CFT correspondence, and ob-
tained a proof of Fermi liquid stability from the theory of gravity. The
former points to the ability of AdS/CFT to bring new developments into
the field of many-body physics, while the latter is an important check,
reproducing the best established result of conventional condensed-matter
theory. We are still at the very beginning of holographic studies of quan-
tum matter, but there is good reason to believe that these studies have
the potential to bring entirely new results to the field.
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Samenvatting

Dit proefschrift is gewijd aan de studie van sterk gecorreleerde elektron
systemen vanuit een snaartheoretisch perspectief, via het zogenoemde
holografisch principe. In essentie relateert dit principe twee onderwer-
pen uit de theoretische natuurkunde, die niets met elkaar te maken lijken
te hebben; zwaartekracht en kwantumveldentheorie. Deze connectie is
wellicht in het bijzonder van nut voor sterk gecorreleerde elektronsyste-
men, vanuit zowel fundamentele als praktisch oogpunt. Om dit te be-
grijpen, is het noodzakelijk om bovengenoemde correspondentie te ver-
duidelijken.

Aan de basis van het holografisch principe ligt de studie van zwarte
gaten. Aangezien de entropie van een zwart gat evenredig is met de op-
pervlakte van zijn horizon, en deze entropie kan worden opgevat als een
hoeveelheid informatie (en uiteindelijk het aantal vrijheidsgraden), kan
men concluderen dat de oppervlakte van de horizon codeert voor de in-
formatie van het zwarte gat. Anders gezegd, de vrijheidsgraden worden
bepaald door de oppervlakte en niet door het volume van het zwarte gat.
Dit bewoog ’t Hooft en Susskind ertoe om te postuleren dat, heel alge-
meen, de dynamica van een gekromde ruimtetijd (i.e. ruimtetijd in aan-
wezigheid van zwaartekracht) evengoed kan worden beschouwd als een
kwantumveldentheorie in een Minkowski-ruimte in een dimensie lager.
Uiteindelijk vond Maldacena in 1997 een expliciet voorbeeld van deze
veronderstelling in de vorm van de AdS/CFT correspondentie. Hierin
wordt aangetoond dat een conforme veldentheorie (CFT - een veldenthe-
orie die invariant is onder hoekgetrouwe transformaties, i.e transformaties
die lengtes herschalen maar hoeken gelijk houden) in verhouding staat tot
een specifieke ruimtetijd geometrie, de Anti-de Sitter ruimte (AdS). Deze
correspondentie betreft een vorm van dualiteit, hetgeen betekent dat de
partitiefuncties in de D dimensionale veldentheorie en D+1 dimensionale
AdS zwaartekrachttheorie gelijk zijn. Als gevolg kan men correlatiefunc-
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ties, verwachtingswaarden, de energie-impuls-tensor en andere grootheden
via deze dualiteit berekenen. In feite heeft men een holografisch woorden-
boek van specifieke correspondenties. Een van de belangrijkste eigenschap-
pen van de AdS-CFT correspondentie is het feit dat het een sterk/zwakke
dualiteit betreft. Namelijk, een zwak gecorreleerd probleem in AdSD+1

is duaal aan een sterk gecorreleerde kwantumveldentheorie. Zwak wissel-
werkende zwaartekracht, d.w.z. de algemene relativiteitstheorie, is uitge-
breid bestudeerd en tal van gevallen zijn dan ook daadwerkelijk opgelost.
Daarentegen zijn sterk gecorreleerde kwantumveldentheorien niet op te
lossen met behulp van storingsrekening, en daardoor slechts oppervlakkig
begrepen.

De situatie voor fermionsystemen, die het onderwerp van dit proef-
schrift vormen, is problematischer. Dit komt omdat fermionen een half-
tallige spin hebben en dus aan de Fermi-Dirac statistiek gehoorzamen.
Hierdoor zijn de bijbehorende golffuncties antisymmetrisch en bevat de
dichtheidsmatrix negatieve bijdragen, waardoor die niet probabilistisch
geinterpreteerd kan worden. Het formalisme van de statistische mechanica
(ofwel Euclidische veldentheorie) is dan niet langer van toepassing. Wan-
neer de interacties zwak zijn biedt Landau-Fermi-vloeistoftheorie uitkomst
als gecontroleerd benaderingsschema: het wisselwerkende system gedraagt
zich als een gas van quasideeltjes. Er zijn echter tal van interessante sys-
temen die niet zwak gekoppeld zijn. Een van de bekendste voorbeelden is
die van hoge-temperatuur supergeleiders, die zich niet als Fermi vloeistof
gedragen. Voor dit soort systemen zien we veel mogelijke winst bij het
toepassen van de AdS/CFT correspondentie; het is een geweldig instru-
ment om sterk wisselwerkende fermion systemen te analyseren op een
gecontroleerde manier. Hoewel we met AdS/CFT nog niet een realis-
tisch model voor een probleem uit de gecondenseerde materie aankunnen,
kunnen we wel kenmerkende universele eigenschappen van holografische
fermionsystemen bestuderen.

In ons onderzoek kijken we allereerst naar kwantum-kritische fermion-
systemen. Deze systemen hebben een kwantum-faseovergang – dat is een
faseovergang bij nul temperatuur die veroorzaakt wordt door kwantum
fluctuaties, en niet door thermische fluctuaties. Van veel materialen is
gesuggereerd dat deze een kwantum-faseovergang kennen van een Fermi-
vloeistof naar een niet-Fermi vloeistof. In de duale zwaartekracht-taal
wordt dit beschreven met een geladen zwart gat in de AdS ruimte, met een
fermionendichtheid in de bulk gelijk nul. We hebben in detail het spectrum
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van dit systeem bestudeerd. Wij vinden excitaties bij een specifieke en-
ergie EF en impuls kF die we duidelijk kunnen identificeren met de Fermi
energie en Fermi impuls. Wij hebben dus holografisch Fermi-oppervlakken
gevonden. Door met de parameters van het model te spelen vinden we
zowel stabiele scherpe pieken die we kennen van de Fermi vloeistof, maar
ook instabiele pieken met exotische en ongewone eigenschappen (zoals
deeltjes-gat asymmetrie) die typerend zijn voor niet-Fermi vloeistoffen.
Dit klopt met de verwachting die we hebben van het kwantum-kritische
punt: van daar uit kan het systeem zowel een Fermi vloeistof alsook een
niet-Fermi vloeistof worden.

De logische vervolgstap is om te onderzoeken hoe dit systeem zich
gedraagt net voorbij het kwantum-kritische punt, dat wil zeggen: wat
gebeurt er als het zwarte gat instabiel wordt? Aan de zwaartekrachtkant
zien wij paar productie in een electrostatisch en zwaartekrachtsveld. Een
deel van de fermionen die ontstaan in de paar-productie komt in een baan
om het zwarte gat, waardoor dit instabiel wordt. Het resultaat is een
nieuwe metriek aan de zwaartekrachtszijde, en dat komt overeen met een
nieuw systeem aan de velden-theoretische kant. We hebben dit nieuwe
model ”een zwart gat met Dirac haar” genoemd. Het blijkt dat dit sys-
tem alleen maar stabiele Fermi-vloeistof quasideeltjes bevat; de instabiele
excitaties zijn verdwenen. Met wat wiskundige trucs kunnen we aan de
zwaartekrachtskant een aantal resultaten vinden die gelijk zijn aan een
Fermi-vloeistof. We hebben daarom een overtuigende duale beschrijving
van de Fermi-vloeistof gevonden.

Ons volgende doel is om dit systeem te begrijpen voor alle mogelijke
parameters in alle mogelijke grondtoestanden. Onze holografische Fermi
vloeistof blijkt echter onverwacht robuust: voor alle parameters wordt
het spectrum gedomineerd door de stabiele quasideeltjes zolang we niet
in de kwantum-kritische fase (het geladen zwarte gat, dat duidelijk een
niet-Fermi vloeistof signatuur heeft) zitten. Het is ietwat onverwacht dat
zelfs in de sterke-koppelingstheorie de Fermi vloeistof overal opduikt – en
alleen verdwijnt in het kwantum-kritisch regime. Overigens is het goed
voor te stellen dat andere, meer gecompliceerde zwaartekrachtsmodellen
meer mogelijke niet-Fermi vloeistof fases kunnen beschrijven. De over-
gang tussen de twee genoemde fases is van het Berezhinsky-Kosterlitz-
Thouless type, oftewel een oneindige-orde faseovergang. De overgang heeft
niets met vortices te maken maar eerder met een specifieke instabiliteit
van de niet-Fermi vloeistof; in technische termen komt het neer op het
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samengaan van twee vaste punten in de renormalisatiegroep-stroom. We
hebben daarmee een nieuw voorbeeld gevonden van een niet-topologische
Berezhinsky-Kosterlitz-Thouless overgang binnen de holografische theorie.

Samenvattend: we hebben tot nu toe onbekende vormen van fermion-
ische kwantum kritikaliteit in AdS/CFT bestudeerd, waarbij we een bewijs
gevonden hebben voor de stabiliteit de Fermi vloeistof aan de zwaartekracht-
skant. Het eerstgenoemde toont de mogelijkheden aan van het gebruik
voor AdS/CFT om vooruitgang te boeken in het onderzoek naar veel-
deeltjes fysica. Het tweede is een belangrijke toets waarbij het best-
bekende resultaat van de gecondenseerde materie wordt gereproduceerd.
We staan slechts aan het begin van het holografisch onderzoek naar kwantum-
materie, maar er zijn goede redenen om te geloven dat dit onderzoek de
potentie heeft om compleet nieuwe inzichten in de gecondenseerde materie
te genereren.
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NMR residual dipolar couplings, M. Čubrović, O. I. Obolensky, A. V. Solov’yov,
Eur. Phys. Jour. D51, 41 (2009).

• String theory, quantum phase transitions, and the emergent Fermi
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ence Center.



Stellingen
behorende bij het proefschrift

Holography, Fermi surfaces and criticality

1. Wavefunction renormalization Z, i.e. the jump of number density
n(k) at the Fermi surface k = kF is the Landau-Ginzburg order
parameter of a holographic Fermi liquid.

This thesis, Chapter 4.

2. At high temperatures holographic Fermi liquids undergo a first order
phase transition to the phase dual of a charged black hole.

This thesis, Chapter 5.

3. In the phase diagram of holographic fermions a continuous phase
transition separates the Fermi liquid phase from the quantum critical
AdS2 metal phase.

This thesis, Chapter 5.

4. The empirical stability of Fermi liquids has its gravity dual in the
fact that an extremely broad class of systems with bulk fermions
develops a Lifshitz horizon in the interior of the AdS space.

5. The accuracy of calculations of field-theoretic quantities in AdS/CFT
is not simply related or directly proportional to the accuracy of cal-
culations on the gravity side.

6. Even if of little use for the understanding of high-Tc superconductiv-
ity, the many elaborate models proposed to explain it such as emer-
gent gauge theories, resonant valence bonds etc. have contributed
much to broadening the horizons and the arsenal of methodological
tools available in many-body physics.

7. The importance of knowing the Lagrangian/Hamiltonian of a phys-
ical system is overrated. At strong coupling it doesn’t help much.

8. The purpose of computational physics is not to replace analytical
work but only to help it. The goal of science is insight, not numbers,
and insight only comes from analytical considerations.



9. Quality of text is an example of a non-extensive property: improving
several paragraphs individually might still decrease the quality of the
whole.

Mihailo Čubrović,
27 February 2013


