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ABSTRACT

We study several aspects of the behavior of strongly correlated electron systems with

disorder. First we examine the influence of strong electron-electron interactions on the

impurity dominated resistivity. In the weak-coupling limit, the resistivity is reduced by the

screening effect which is determined by the charge compressibility, which is proportional to

the inverse screening length. We show that when strong correlations are present, although

the compressibility is reduced, the screening effect is nevertheless strongly enhanced. This

phenomenon is traced to the non-perturbative Kondo-like processes captured by dynamical

mean field theory, but which are absent in weak coupling approaches. We discuss a possible

relevance of our results for the physics of high mobility MOSFETs. In the second part of the

thesis we study possible mechanisms of disorder-driven non-Fermi liquid behavior in heavy

fermion systems. We present simple analytical arguments explaining the universal emergence

of electronic Griffiths phases as precursors of disorder-driven metal-insulator transitions in

correlated electronic systems. Then we examine the interplay of the Kondo effect and the

RKKY interactions in electronic Griffiths phases using extended dynamical mean-field theory

methods. We find that sub-Ohmic dissipation is generated for sufficiently strong disorder,

leading to suppression of Kondo screening on a finite fraction of spins, and giving rise to

universal spin-liquid behavior.

ix



CHAPTER 1

INTRODUCTION

One of the central goals of condensed matter physics is fabricating of new materials

with interesting and unusual transport, optical and thermodynamic properties. Prominent

examples include high-temperature superconductors, heavy fermion systems, doped semicon-

ductors, frustrated magnets, and quantum Hall systems. The physical understanding and

microscopical description of many aspects of their behavior has remained as a challenge for

theorists. The main difficulty for theory lies in the existence of several competing processes.

Some of the interactions may favor metallic behavior, superconductivity or ferromagnetism,

while others favor localization of carriers, glassy phases or antiferromagnetism. Therefore,

these materials are, as a rule, very sensitive to a change of the chemical composition (doping),

application of a magnetic field, or pressure.

In this thesis we study several aspects of the low temperature behavior of strongly inter-

acting disordered systems. In particular, we find motivation in puzzling transport properties

of high mobility silicon metal-oxide semiconductor field-effect transistors (MOSFETs) [1]

and transport and thermodynamic properties of heavy fermion alloys [2]. High mobility

two-dimensional (2D) MOSFETs have a very low concentration of carriers, and hence the

potential Coulomb energy is much larger than the kinetic (Fermi) energy. Therefore, 2D

MOSFETs are strongly interacting electronic systems. On the other hand, the MOSFETs

are disordered systems due to the presence of ionized impurities randomly distributed in

the oxide layer, and roughness of the Si-SiO2 interface [3]. The relative importance of the

interaction effects in these systems depends on the concentration of charge carriers, which

can easily be modified by changing the gate voltage. This makes 2D MOSFETs an excellent

probe for a study of the interplay of correlation effects and disorder.

Heavy fermions are strongly correlated systems due to the strong on-site electron-electron

interaction in partially filled f -electron shells [4]. Low temperature thermodynamic and
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transport properties of these materials can typically be described by the Landau Fermi

liquid theory of metals, but with strongly renormalized quasiparticle parameters. In the last

fifteen years, however, a large number of heavy fermion alloys has been discovered whose

properties clearly deviate from the predictions of the Fermi liquid theory [2]. The origin of

this ”non-Fermi liquid” (NFL) behavior is still an unresolved problem, and it is hoped that

its solution will give us a better understanding of the physics of strongly correlated systems

in general. In this thesis we will concentrate on those heavy fermion alloys, like UCu5−xPdx,

whose thermodynamic and transport properties are believed to be dominated by disorder.

There are very few viable theoretical approaches that address the difficult problem of

strongly interacting electronic systems with disorder. We will work within the dynamical

mean field theory (DMFT) [5] and its extensions to disordered systems [6, 7, 8]. The main

advantage of the DMFT approach is that while being reasonably simple, it is controlled in

the sense that it becomes exact in the limit of large coordination number. It is similar

to the Weiss mean field theory of magnetism in that we solve a problem of a chosen

particle embedded in an averaged bath, which has to be determined self-consistently. The

difference, however, is that the dynamical mean field theory fully takes into account quantum

fluctuations. In other words, it allows hopping of a particle between a given site and

its surroundings. Therefore, the DMFT is capable of capturing many physical properties

unaccessible in the standard mean field theory. In particular, one of its great successes

is a correct description of the interaction effects which lead to the Mott metal-insulator

transition.

This thesis is divided into two rather independent parts. The first part of the thesis

(Chapters 2, 3 and 4) addresses the questions of the disorder screening in the regime of

strong interactions. In Chapter 2, we motivate our research by the description of the

metallic phase of high mobility MOSFETs. In particular, we point out the unusually strong

temperature dependence of the resistivity in the vicinity of the metal-insulator transition.

In the next two chapters we consider the electron scattering on nonmagnetic impurities.

Chapter 3 contains critical remarks on the applicability of different versions of the random

phase approximation (RPA) to the case of strong coupling. In Chapter 4 we examine how

the scattering rate is modified in the presence of a strong electron-electron interaction. We

solve this problem within DMFT for a half-filled lattice at zero temperature with short-range

2



(Hubbard) interactions. To our knowledge, this is a first controlled treatment of the disorder

screening in the strong coupling regime. We discuss the limitations of our approach and its

applicability to real physical systems.

In the second part of the thesis (Chapters 5, 6, and 7) we examine possible routes that

can lead to the non-Fermi liquid behavior in disordered heavy fermion materials. Chapter

5 contains a brief overview of the low temperature thermodynamic and transport properties

of heavy fermions. The emphasis is on the experimental data, like the divergence of the low

temperature specific heat and magnetic susceptibility, which do not fit into the predictions

of the Landau Fermi liquid theory. In Chapter 6, following the previous work within an

extended dynamical mean field theory, we develop a simple model of the non-Fermi liquid

behavior in disordered Kondo lattice systems which can even be solved analytically. Within

this model, rare sites with the lowest Kondo temperatures provide the leading singular low

temperature thermodynamic response. We refer to the system described by this model as an

electronic Griffiths phase. In Chapter 7 we introduce random inter-site magnetic interactions

into the model of the electronic Griffiths phase. We solve this model within an extended

dynamical mean field theory and show that a fraction of the f -electrons which decouples

from the conduction bath forming a spin liquid, provides the leading logarithmic contribution

to the local dynamic magnetic susceptibility. We conclude the thesis in Chapter 8, where we

summarize our main results and outline possible directions for the future research.
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CHAPTER 2

ANOMALOUS METALLIC PHASE IN

TWO-DIMENSIONAL

MOSFETS

The synthesis of high mobility silicon metal-oxide semiconductor field-effect transistors

(MOSFETs) in early 90’s has intensified the efforts to understand the physics of disordered

strongly interacting systems. High mobility MOSFETs have many surprising and puzzling

transport properties. However, despite the significant number of the experimental data and

theoretical papers, many of those properties remained poorly understood. In this chapter,

as a motivation for our theoretical work, we will briefly review some of the most important

properties of high mobility MOSFETs.

2.1 Metal-insulator transition in two dimensions

According to the scaling theory of localization [9] there can be no metallic state in

two dimensions in zero magnetic field. Within this two decades old theory, all carriers

are localized in an infinitely large two-dimensional (2D) system at zero temperature.

With decreasing temperature the resistance is expected to grow logarithmically (“weak

localization”) or exponentially (“strong localization”), becoming infinite as T → 0. Although

this prediction was made for noninteracting particles, subsequent work showed that weak

interaction increases the localization even further [10]. In the opposite limit of very strong

interaction between particles, a 2D electron system is expected to become a Wigner crystal

[11]. In the presence of even a small amount of disorder, such a crystal is expected to be

pinned so that the system of crystallized electrons would not conduct at zero temperature.

Therefore 2D systems were not expected to be conducting in either limit: weak (or absent), or

very strong interactions between carriers. The experiments in early 1980s seemed to support
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that conclusion, and the question whether a conducting state can exist in 2D systems was

considered resolved.

Recently, high mobility samples of MOSFETs have become available, which has allowed

systematic studies of 2D systems in a very dilute regime, i.e. at electron densities below

1011 cm−2 [1]. Surprisingly, experiments on these samples consistently show the existence of

a critical density nc, above which the resistivity is decreasing with decreasing temperature.

This behavior persists up to the lowest accessed temperatures (∼ 4 mK), strongly indicating

the existence of the metal-insulator transitions at T = 0. At the critical density, the

resistivity is found to be nearly independent of temperature and of the order of the quantum

unit of resistance, h/e2 ≈ 25.6 kΩ. Another prominent unusual feature is the strong positive

magnetoresistance, both in the conducting and in the insulating phase of MOSFETs. An

external magnetic field applied at an arbitrary angle with respect to the 2D plane seems

to suppress the metallic behavior and eliminates it completely for fields of order of several

tesla. Neither the metallic behavior, nor its suppression by a magnetic field is currently

understood.

2.2 Experiments

The first experiments that turned attention to a possible existence of the MIT in 2D

systems were performed by Kravchenko et al. [12, 13]. The experiments were done on

very low-disordered silicon MOSFETs. Peak electron mobilities in these samples exceeded

those in the samples used in previous studies by an order of magnitude, reaching more than

4×104 cm2/Vs at T = 4.2 K. This allowed measurements at very low electron concentrations

ns, where the electron-electron interaction Ee−e becomes the dominant parameter, being

much larger than the Fermi energy. Estimates for Si MOSFETs at ns = 1011 cm−2 yield

Ee−e ∼ e2

ε
(πns)

1/2 ≈ 10 meV, (2.1)

while

EF =
π~2ns

2m∗ ≈ 0.58 meV, (2.2)

where e is the electron charge, ε is the dielectric constant, EF is the Fermi energy, and m∗ is

the effective electron mass. The dimensionless parameter rs ≡ Ee-e/EF thus assumes values

5



above 10 in these samples. In the very dilute regime, 2D electrons are expected to form a

Wigner crystal. Numerical simulation [11] predicted that this should occur at rs ≈ 37 ± 5,

and at even higher density when disorder is present [14]. Therefore, it is reasonable to expect

that the 2D system is a strongly correlated liquid at rs ∼ 10.

Subsequent experiments in dilute silicon MOSFETs with different geometry and oxide

thicknesses [15] confirmed the earlier findings, and similar behavior was reported in a variety

of other 2D systems (p-GaAs, n-GaAs, p-SiGe, etc.). Fig. 2.1 shows the dependence of the

resistivity on the electron density and temperature [12, 13]. We see that there is a critical

electron density ns = nc, at which the systems changes its behavior. For ns > nc, the system

is metallic, and for ns < nc the resistivity slope changes sign, and the system becomes

insulating. The change in the resistivity is very pronounced. A change of the concentration

of only a few percent leads to a change in resistivity of even several orders of magnitude
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Figure 2.1. (a) Resistivity as a function of electron density for 2D system of electrons
in a high-mobility silicon MOSFET; different curves correspond to different temperatures.
(b) Resistivity as a function of temperature; here different curves are for different electron
densities. From Ref. [13].
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at lowest temperatures. At the critical electron density nc, the resistivity is approximately

3h/e2 and almost independent of temperature, while for densities away from nc the resistivity

changes rapidly with decreasing temperature, giving a clear distinction between metallic and

insulating behavior. Above T ∗ ≈ 2 K the temperature dependence of the resistivity becomes

weak. At higher densities, of the order of those used in the experiments in the 1980s, a weak

insulating temperature dependence is observed, reminiscent of Anderson localization.

In the critical regime, the resistivity vs. temperature curves can be collapsed onto two

branches by applying a single scaling parameter T0(ns) [13], Fig. 2.2. The resistivity is given

by

ρ(T, ns) = ρcf1[T/T0(ns)], (2.3)

where ρc is the value of the resistivity at the critical density. The scaling relation breaks
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Figure 2.2. For a silicon MOSFET, resistivity versus T/T0, with T0’s chosen to yield scaling
with temperature. The inset shows the scaling parameter, T0, versus deviation from the
critical point, |ns − nc|; data are shown for silicon MOSFETs obtained from three different
wafers. Open symbols correspond to the insulating side and closed symbols to the metallic
side of the transition. From Ref. [13].

7



down at T > T ∗ and at very low temperatures, where the temperature dependence of the

resistivity becomes weak. However, it is remarkable that the scaling is possible over the

range of temperatures where the resistivity changes for an order of magnitude. Moreover,

T0(ns) is independent of the sign of δn ≡ (ns − nc)/ns. The inset in Fig. 2.2 shows T0 as

a function of the absolute deviation from the critical density, |ns − nc|, on a log-log scale

for both metallic and insulating curves and for three different samples. It is important to

note that the dependence is a power law, T0 ∝ |δn|b, with approximately the same power

b = 1.60± 0.1 for all three samples and for both metallic and insulating curves. It was also

observed that the metallic and insulating curves are reflection symmetric in the temperature

range above 300 mK and below T ∗. Dobrosavljević et al. [16] showed that the observed

scaling and reflection symmetry could be consequences of a simple analysis assuming that

a T = 0 quantum critical point describes the metal-insulator transition. Within quantum

critical scaling the power law exponent b in T0 ∝ |δn|b is given by b = zν, where z is the

dynamical exponent and ν is the correlation length exponent.

Another unusual property of dilute 2D systems is their enormous response to an external

magnetic field. A parallel magnetic field of an order of several tesla increases the resistance

for more than an order of magnitude [17] (Fig. 2.3). This is true for both the metallic and the

insulating side of a transition. Above a characteristic magnetic field Bsat, which depends on a

density of the electrons, the magnetoresistance becomes saturated. This is associated with a

total polarization of the electron spins. A parallel magnetic field suppresses metallic behavior

and eventually turns the zero-field metal into a high-field insulator [17] (Fig. 2.4). The

effect of the field is negligible at temperatures above T ∗, i.e., above the temperature below

which the metallic behavior in B = 0 sets in. Therefore, T ∗ signals a temperature below

which there is an abrupt onset of metallic behavior and below which the magnetoresistance

becomes extremely large. In isotropic systems such as Si MOSFETs, studies have shown

that the metallic temperature dependence is suppressed in a similar way by magnetic fields

applied at any angle relative to the 2D plane. In this case the magnetoresistance arises from

the superposition of two terms: the total field coupled to the electron spins, yielding a large

positive magnetoresistance, and the perpendicular field component coupled to the orbital

motion, giving rise to the quantum Hall effect.
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2.3 Central open questions and possible explanations

The main observations which need to be explained are:

• Metallic behavior is displayed down to the lowest accessed temperatures and is

accompanied by an enormous decrease of resistivity as T → 0. The effects of strong

interaction seem to be crucial for this behavior.

• In the metallic side of the transition, for magnetic fields applied parallel to the electron

planes, the resistivity increases dramatically by an order of magnitude in response to

relatively modest fields of order of a few tesla, saturating to a constant value at higher

fields.

• Well defined metallic or insulating behavior is observed only at temperatures lower than

a characteristic temperature T0(δn) that vanishes at the transition. The characteristic

magnetic field Bsat(δn) which leads to a total spin polarization also tends to zero as

δn → 0, while the effective mass becomes divergent, m∗ →∞ as δn → 0.

As in many other interesting open questions in condensed matter physics, both inter-

actions and disorder play a role, and their relative importance is unclear. The transition

from insulating to metallic temperature-dependence occurs at very low electron densities

(≈ 1011 cm−2 or lower), where interaction energies are much larger than kinetic energies.

The resistivity is of the order of h/e2, which implies according to the Ioffe-Regel criterion

that kF l ∼ 1 (here kF is the Fermi wave number and l is the mean free path). Hence, we

also are in the regime where localization due to disorder is expected to be strong.

The possibility that a metallic state can exist in zero magnetic field in two dimensions

was first suggested by Finkelstein [18]. He found an interaction driven enhancement of the

conductivity at weak disorder, which was expected to overwhelm the localization effects of

coherent backscattering (weak localization). However, the analysis revealed that the effective

interaction strength diverges upon scaling, making it difficult to determine what will actually

happen at long scales or low temperatures. More recent suggested explanations are based on

the existence of non-Fermi liquid states [19] and melting of disordered Wigner solid (Wigner

glass) [20]. Theories classical in nature are proposed as well, relying on single-particle physics

with temperature-dependent scattering on charged traps [21] and temperature-dependent
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screening [22, 23, 24, 25]. In a phenomenological, scaling approach [16], the metal-insulator

transition is considered as a quantum critical point, and it is shown that no general scaling

principles are violated because of the transition. However, none of the proposed theories

explains all the important features of diluted 2D systems. The most recent experiments

on Si MOSFETs [26, 27, 28] provide a clear indication that the effective mass is strongly

enhanced close to the MIT, while the effective Landé g factor remains nearly constant (Fig.

2.5). These conclusions, obtained within the Fermi-liquid framework, may give important

guidance for theoretical work.

In the following two chapters, we will consider a metallic system with nonmagnetic

impurities. We will concentrate on the question how the interaction effects modify the

scattering rate and conductivity. We will emphasize the difference between the well

understood weak coupling limit, and the case of a strong interaction and proximity to the

Mott metal-insulator transition. We will discuss the limitations of our results and their

possible relevance to experiments.

Figure 2.5. Renormalization of the effective mass (filled squares) and g factor (dots) as a
function of electron density. The dashed lines are guides to the eye. From [26].
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CHAPTER 3

DISORDER SCREENING WITHIN

THE RANDOM PHASE APPROXIMATION

There are several attempts of describing the metallic side of the MIT in diluted 2D

systems using the Drude-Boltzmann theory [22, 23, 24, 25]. In these papers, the resistivity

is dominated by randomly distributed charged impurities. In a spirit of the Boltzmann

approach, a weak disorder is assumed, and the conductivity is given by σ = ne2〈τ〉/m, where

m is the carrier effective mass, and 〈τ〉 is the energy averaged relaxation time. Temperature

and magnetic field dependent screening is proposed as the main mechanism leading to strong

temperature and magnetic field dependence of the resistivity, ρ = σ−1, on the metallic side

of the transition. While giving a good qualitative picture, these theories still cannot explain

the enormous changes in the resistivity for densities very close to nc. In addition, they are

limited to weak disorder and cannot address questions of the MIT. However, the simplicity

and robustness of the given arguments, suggest that they should be incorporated in a more

comprehensive theory.

In this chapter, we consider a model with short-ranged (Hubbard) interactions within

the random phase approximation (RPA). We will show that the results within the

local approximation associated with the dynamical mean field theory, where quanti-

ties like the self-energy and charge compressibility are momentum-independent, are in a

semi-quantitative agreement with the standard RPA solution. We will, however, emphasize

and discuss the limitations of the RPA approach in the case of strong electron-electron

interactions.
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3.1 Disorder screening in the Hubbard model

We consider, following Ref. [24], the disordered Hubbard model for spin 1/2 electrons on

a quadratic 2D lattice1

H = −t
∑

〈i,j〉σ
c†iσcjσ +

∑
i,σ

(εi + σH − µ0)niσ +
U

2

∑

i,σ,σ′
niσniσ′ . (3.1)

Here, ciσ and c†iσ are fermionic creation and annihilation operators, niσ = c†iσciσ is the number

operator, σ =↑, ↓ labels the projection of spin along the direction of the magnetic field, and

µ0 is the (bare) chemical potential. The magnetic field parallel to the 2D plane is coupled

only with the electron spin, and the values of the Bohr magneton and the Lande factor are

set to unity. U > 0 represents the Hubbard on-site repulsion, and εi is a Gaussian random

potential with εiεj = Wδi,j, where the overbar denotes an average over randomness. (With a

redefinition of the chemical potential, the interaction term can be written in a more familiar

form U
∑

i ni↑ni↓.)

In the Hartree-Fock (or RPA) approach of Ref. [24], one searches for the optimal

single-particle approximation to the above Hubbard Hamiltonian

HHF = −t
∑

〈i,j〉σ
c†iσcjσ +

∑
i,σ

(ε̃i + σH − µ)niσ, (3.2)

where the screened random potential is self-consistently determined as

ṽiσ = εi + U〈ni,−σ〉 − U〈ni,−σ〉, (3.3)

and the thermal average in the last equation is taken over the states of HHF . The chemical

potential µ is chosen so that ε̃i = 0.

1In the very dilute regime, 2D electrons form the Wigner crystal [11, 14]. In that case, they can be treated
within the tight-binding model, as localized on orbitals belonging to the sites of a (triangular) lattice. An
overlap of the adjacent orbitals leads to a formation of the energy band. The electron-electron interaction
suppresses the double occupancy of the lattice site. In the case of half-filling, the only possible states where
the electrons can hop are the interstitial sites, which form the higher energy band. This naturally introduces
a two-band model for a description of this system. The orbitals belonging to the higher energy band, and
describing interstitial electrons, are spatially localized between the sites of the original Wigner lattice. When
the interaction is strong enough, an energy gap opens between these two bands, which leads to insulating
behavior. It is plausible that the low density electron liquid, which is close to the Wigner crystallization,
can be treated within this discrete lattice model, similar to how the 3He liquid has been traditionally treated
using a lattice Hubbard model [29, 30].
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For weak disorder

〈ni,−σ〉 ≈
∑

j,σ′
χ−σσ′(~xi − ~xj) ε̃jσ′ + 〈ni,−σ〉, (3.4)

where

χ−σσ′(~xi − ~xj) ≡ ∂〈ni,−σ〉
∂ε̃jσ′

∣∣∣∣
ε̃jσ′=0

(3.5)

is the compressibility of 2D electron gas in the Hartree-Fock approximation. In zero magnetic

field, the Fourier components of the screened and the bare random potential are then readily

found to be linearly related

ε̃σ(~q) =
ε(~q)

1− Uχ(q)
, (3.6)

where the compressibility (static polarization function) is given by the standard RPA

expression

χ(q) = T
∑
ωn

∫
d2~p

(2π)2

1

(iωn − ξ(~p))(iωn − ξ(~p + ~q))
, (3.7)

and ξ(~q) = E(~q)− µ. Eqs. (3.6) and (3.7) describe screening of the weak random potential

by the electron liquid. The screened random potential then satisfies

ε̃(~q)ε̃(~p) = W̃ (q)δ(~q + ~p), (3.8)

with

W̃ (q) =
W

(1− Uχ(q))2
. (3.9)

Now it becomes straightforward to calculate the Boltzmann dc conductivity of the Hartree-

Fock quasiparticles , which is given by [31]

σB = −e2

m
N

∑
σ

∫
dE E τ(E)

∂f(E)

∂E
, (3.10)

where f(E) is the Fermi distribution function and the inverse relaxation time of the

quasiparticles with energy E is

τ−1(E) = N
∫ 2π

0

dθ (1− cos θ)W̃ (2
√

2mE sin
θ

2
). (3.11)

Here, low-filling is assumed, so that the electron dispersion relation is approximately

E(q) = k2/2m, with m = 1/2t, and the corresponding density of states per spin is
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N = m/2π. The expression for the Boltzmann conductivity becomes particularly simple

at zero temperature and in zero magnetic field, and is given by the formula

σB = (1 + 2g)2σ0, (3.12)

where

σ0 =
e2n0

2πmNW
(3.13)

is the conductivity without the screening effect, and g = UN/2 is the dimensionless

interaction. The conductivity is enhanced by the interactions since the random potential

is effectively reduced by the electron liquid.

In a high magnetic field, the electron spins are polarized and there is no screening at

all within the Hubbard model. Therefore, the ratio of the conductivities in zero and high

magnetic field is (1+2g)2. To get an order of magnitude increase in resistivity in high fields,

we need an interaction parameter g of order of one. However, according to the Hartree-Fock

theory, a magnetic instability in the electron gas occurs when UN = 1 (the Stoner criterion)

[32], i.e. for g = 1/2 in our notation. This represents an important constraint in the

applicability of the HF theory which was overlooked in Ref. [24], where the value g = 1.5

is used for quantitative comparison with the experimental data. We note that the other

theories based on the Boltzmann approach [22, 23], but starting from the more realistic

long-ranged Coulomb interaction, are still unable to explain the change of the resistivity by

an order of magnitude as a result of screening.

3.2 RPA in local approximation

We have explicitly seen in the previous section some of the limitations that appear in the

Hartree-Fock (or equivalently RPA) approach. Our goal is to examine the disorder screening

and its implications to the scattering time in the presence of a strong interaction. We will

do that within dynamical mean field theory (DMFT) [5]. The DMFT is not limited to the

Hartree-Fock approximation and weak disorder, but the price that we have to pay is that

the quantities that enter the theory have local character. As a preliminary step, we will first

calculate the renormalized (screened) disorder ε̃i within the Hartree-Fock theory, but in the

approximation where the non-local components of the compressibility are set to zero.
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In the local approximation

χ(~xi − ~xj) =
∂〈ni〉
∂ε̃i

∣∣∣∣
ε̃i=0

δij ≡ χloc δij, (3.14)

giving the screened random potential

ε̃i =
εi

1− Uχloc

. (3.15)

Since 〈ni〉 =
∫∞
−∞ dω f(ω)D(ω), where the local density of states

D(ω) = −1/πImGii(ω+iη), and Gii is the on-site Green’s function, the local compressibility,

χloc = ∂〈ni〉/∂ε̃i|ε̃i=0, is given by

χloc =
1

π
Im

∫ ∞

−∞
dω f(ω)

[
G0

ii(ω + iη)
]2

. (3.16)

Here, G0
ii is the noninteracting local (on-site) Green function

G0
ii(ω + iη) =

∑

~q

1

ω + µ− E(~q) + iη
. (3.17)

In the effective mass approximation, a straightforward calculation gives

χloc = −N
(

2 ln
Ω

Ω− µ
+ 2

µ

Ω
ln

Ω− µ

µ

)
, (3.18)

where Ω is the energy cut-off (upper boundary of the energy band). One can easily check that

the function in the parentheses of Eq. (3.18) is of the order of one for half-filling (µ = Ω/2),

and much less than one for low and high filling. Since the standard RPA result gives

χ(q) = −N for q < 2kF [3], we conclude that taking the local value of compressibility

is a reasonable approximation when we are not too far from half-filling.

In contrast to the Boltzmann theory, in the DMFT approach the conductivity is given

by [5]

σ(ω) =
2πe2

dV

∑

k

v2

k

∫
dω′ ρ̄(k, ω′)ρ̄(k, ω′ + ω)

f(ω′)− f(ω′ + ω)

ω
, (3.19)

where

ρ̄(k, ω) = − 1

π
Im

1

ω + iη + µ− εk −Σ(ω + iη)
(3.20)

is the spectral function, and Σ is the local (momentum-independent) self-energy. It is

instructive to show that in absence of the interaction for weak disorder at zero temperature

both the Boltzmann theory and DMFT give the same result.
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Within DMFT, the disorder averaged Green function

G(iωn) =

∫
dεiP (εi)Gi(iωn) (3.21)

can be expressed through the momentum-independent self-energy Σ and ”Weiss” field (cavity

field, hybridization function) ∆

G(iωn) = G0 (iωn − Σ(iωn)) =
1

iωn + µ− Σ(iωn)−∆(iωn)
. (3.22)

Here, G0 is the local Green function for the clean lattice (in the absence of disorder),

G0(iωn) =
1

iωn + µ−∆(iωn)
. (3.23)

Its form is determined by the cavity field ∆, which depends only on the form of the lattice

and hopping amplitudes.

For a weak disorder, from Eq. (3.21), we find

G(iωn) =

∫
dεiP (εi)Gi(iωn) =

∫
dεiP (εi)

1

iωn + µ− εi −∆(iωn)

≈ 1

iωn + µ−∆(iωn)

∫
dεiP (εi)

[
1 +

εi

iωn + µ− εi −∆(iωn)

+
ε2

i

(iωn + µ− εi −∆(iωn))2

]

=
1

iωn + µ−∆(iωn)

[
1 +

W

(iωn + µ− εi −∆(iωn))2

]

= G0(iωn)
[
1 + WG2

0(iωn)
]
. (3.24)

Similarly, from Eq. (3.23), for weak disorder

G(iωn) = G0(iωn) [1 + G0(iωn)Σ(iωn)] . (3.25)

Comparing the last two equations, we find that the self-energy is equal to

Σ(iωn) = WG0(iωn). (3.26)

The spectral function, Eq. (3.20), is equal to

ρ̄(k, ω) = − 1

π

Σ′′(ω)

(ω + µ− εk − Σ′(ω))2 + Σ′′(ω)
, (3.27)
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where Σ′(ω) = Re(Σ(ω + iη)) and Σ′′(ω) = Im(Σ(ω + iη)). In the weak disorder limit the

spectral function assumes its clean case form, ρ̄(k, ω) → δ(ω + µ− εk). From the identity

∫ ∞

−∞

dω

2π

(
2a

ω2 + a2

)2

=
1

a
, (3.28)

we find that in Eq. (3.19) we should replace

(ρ̄(k, ω))2 → 1

−2πΣ′′(ω)
δ(ω + µ− εk). (3.29)

Therefore, for weak disorder and at zero temperature, dc conductivity is equal to

σ =
2πe2

dV

∑

k

v2

k

∫
dω′

δ(ω′ + µ− εk)

−2πΣ′′(ω′)
δ(ω′) = − e2

dV

∑

k

v2

k
δ(µ− εk)

Σ′′(0)
. (3.30)

For two-dimensional (d = 2) system in the effective mass approximation (εk = k2/2m), we

find

σ =
e2n

2πmNW
, (3.31)

in agreement with Eq. (3.13). In the presence of an electron-electron interaction, the disorder

strength W should be replaced by its renormalized value W̃ =

√
ε̃2

i , where ε̃i is given by

Eq. (3.20).

To summarize, the conclusions that we have reached are the following: (a) In the presence

of weak disorder at zero temperature, the conductivity obtained using the Boltzmann

approach is the same as the one obtained within the DMFT. (b) The replacement of the

renormalized disorder by its value obtained within the local approximation is justified in the

case of an approximately half-filled conduction band.

The reason for doing this simple exercise was to get some feeling about the validity of

the local approximation associated with DMFT approach that we are going to use in the

next Chapter. Interestingly, the validity of the local approximation for the self-energy has

been studied recently in somewhat different context in Refs. [33, 34]. In this work, the

behavior of interacting fermions is analyzed near a ferromagnetic Stoner instability. It is

shown that as the system approaches a ferromagnetic quantum critical point the fermionic

self-energy crosses over from predominantly momentum dependent away from the transition

to predominantly frequency dependent in the immediate vicinity of the transition.
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3.3 Impossibility of the mass divergence within RPA

Several recent experiments on high mobility MOSFETs [26, 27, 28] indicate very strong

mass enhancement in the vicinity of the MIT, and its possible divergence at the critical

concentration nc. The microscopical origin of this mass enhancement is one of the main

open problems in the field, and it is discussed by several research groups. In our work

presented in the next chapter, we advocate that the strong mass divergence comes from the

strong interaction effects in the vicinity of the Mott (or Mott-Anderson) MIT. In this section,

we critically review a recent work [35] which uses ”on-shell” RPA approximation. We argue,

following Ref. [36], that the RPA theory, which is well known to successfully describe weak

coupling effects, cannot describe a divergence of the effective mass. A similar conclusion is

reached also in Ref. [37].

Let us first recall several definitions. The quasiparticle energy, can be calculated by

solving self-consistently the Dyson equation

E(k) =
k2

2m
+ Σ′(k, E(k)− µ), (3.32)

where k2/2m is the single particle energy of the noninteracting electrons, µ is the chemical

potential of the interacting system, and Σ′ is the real part of the self-energy. The quasiparticle

group velocity is defined by vk = ∇kE(k), and the relation vk = k/m∗ defines the effective

mass. Therefore,
1

m∗ =
1

kF

dE(k)

dk

∣∣∣∣
k=kF

. (3.33)

Combining Eqs. (3.32) and (3.33), we find

m∗

m
=

Z−1

1 + m
k

∂
∂k

Σ′(k, ω)

∣∣∣∣∣
k=kF ,ω=0

, (3.34)

where

Z =
1

1− ∂
∂ω

Σ′(k, ω)
∣∣
k=kF ,ω=0

(3.35)

is the renormalization constant that measures the discontinuity of the momentum distri-

bution at k = kF . From general Fermi liquid arguments 0 < Z ≤ 1, which implies

∂
∂ω

Σ′(k, ω)
∣∣
k=kF ,ω=0

≤ 0. We see that the divergence of the effective mass is driven
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either by an infinite ∂
∂ω

Σ′(k, ω)
∣∣
k=kF ,ω=0

(which is equivalent to Z−1 → ∞), or by

∂
∂k

Σ′(k, ω)
∣∣
k=kF ,ω=0

= −kF /m.

In the so called ”on-shell” approximation of Ref. [35], the quasiparticle energy is given

by

E(k) =
k2

2m
+ Σ′(k, ξk), (3.36)

where Σ′ is calculated at the energy ξk = k2/2m−µ which corresponds to the single-particle

energy of the noninteracting electrons. In this approximation the effective mass m∗ is given

by
m∗

m
=

1

1 + m
k

∂
∂k

Σ′(k, ω)
∣∣
k=kF ,ω=0

. (3.37)

In the weak coupling limit Eqs. (3.34) and (3.37) give the same result, but in the presence

of strong interaction their predictions are qualitatively different. A simple way to see the

nonphysical predictions of the on-shell approximation is to consider the case when the self

energy is momentum-independent Σ(k, ω) = Σ(ω). Then the effective mass is given by

m∗

m
= 1− ∂

∂ω
Σ′(ω)

∣∣∣∣
ω=0

. (3.38)

Note that, since generally ∂
∂ω

Σ′(ω)
∣∣
ω=0

< 0, the interactions increase the effective mass. The

actual divergence is obtained only if the quantity A ≡ − ∂
∂ω

Σ′(ω)
∣∣
ω=0

itself diverges. This

scenario is realized, for example in Brinkman-Rice theory of the Mott transition, as well as

in the more recent DMFT solution. Within the same scenario, the quasiparticle weight is

simply Z−1 = m∗/m, so it must diverge at the same place as m∗ does.

We contrast this with the application of the on-shell method to our case. We get

Σ′(k, ω = ξk) ≈ Σ′(ω = ξk). Since

m

k

d

dk
Σ′(ω = ξk)

∣∣∣∣
k=kF

=
∂

∂ω
Σ′(ω)

∣∣∣∣
ω=0

, (3.39)

we get

m∗

m
≈ 1

1 + ∂
∂ω

Σ′(ω)

∣∣∣∣∣
ω=0

. (3.40)

In terms of the quasiparticle enhancement factor A ≡ − ∂
∂ω

Σ′(ω)
∣∣
ω=0

, we can write the

”on-shell” expression as
m∗

m
≈ 1

1− A
. (3.41)
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As we can see, this expression is equivalent to the exact expression m∗/m = 1 + A, only

through leading order, i.e. for infinitesimal A. On the other hand, the positive quantity A

is expected to grow with the interaction. As long as it is finite, neither will the properly

defined effective mass m∗/m, nor will the inverse quasiparticle wight Z−1 ever diverge. In

contrast, if one uses the on-shell approximation, than the effective mass will blow up as soon

as A = 1, and this will happen at some point in any approximation where A grows with

the interaction. However, as we can see, this will not lead to the divergence of the inverse

quasiparticle weight Z−1. We can see from these expressions that the essence of the on-shell

approximation is simply to linearize the expression for (m∗/m)−1, by expanding it in the

quantity A = − ∂
∂ω

Σ′(ω)
∣∣
ω=0

. Instead of appearing in the numerator of the effective mass

expression, it now enters the denominator, and since it has the opposite sign prefactor, it

can lead to a spurious effective mass divergence.
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CHAPTER 4

DISORDER SCREENING IN THE REGIME OF

STRONG CORRELATIONS

This is the central chapter of the first part of the thesis, where we examine how the

scattering time changes in the presence of strong electron-electron interactions. We solve

this generally very difficult problem for a specific case of on-site Hubbard interactions for

half-filled lattice in the limit of large coordination number. We find that the scattering

time strongly enhances as we approach the Mott metal-insulator transition. This is a rather

counter-intuitive result since we may naively expect that the interactions, which lead to the

divergence of the effective mass at the MIT, would tend to localize the quasiparticles and

decrease the scattering time. We make a connection of our results with the Kondo pinning

which leads to the perfect transmittance through quantum dots, a phenomenon which is

very well studied theoretically and also experimentally verified. We discuss the relevance of

our results for real physical systems, and make a list of further theoretical questions which

remain as a challenge for future work.

4.1 Slave boson approach

In the Kotliar-Ruckenstein (KR) slave boson approach [38] the original Hamiltonian is

rewritten in terms of the original fermions and a set of four bosonic operators which keep track

of the occupation numbers of the lattice sites. The main formal advantage of this approach

is that we are now in a position to write the Hubbard interaction as a bosonic occupation

number operator. The operator for the kinetic energy on the other hand becomes much more

complicated since the motion of a physical electron changes the numbers of the slave bosons

on both lattice sites involved.
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Kotliar and Ruckenstein enlarged the Hilbert space of the Hubbard model by introducing

four bosonic operators at each site, di (d†i ), piσ (p†iσ), and ei (e†i ), corresponding respectively

to doubly, singly occupied, and empty state. The physical Hilbert space is recovered if we

impose the following local constraints, which have to be fulfilled exactly

∑
σ

p†iσpiσ + e†iei + d†idi = 1,

f †iσfiσ = p†iσpiσ + d†idi, σ =↑↓ .

(4.1)

First of these constraints states that only one of the four physical possibilities on a lattice

site is allowed, either a double occupancy, a single occupancy, or a hole. The second one

expresses the fact that the presence of a physical electron implies either a double, or a single

occupancy. In a physical subspace defined by Eqs. (4.1), the Hubbard Hamiltonian obtains

the form

H = −
∑
ij,σ

tijf
†
iσfjσz

†
iσzjσ + U

∑
i

d†idi, (4.2)

where

ziσ = e†ipiσ + p†i−σdi. (4.3)

In the KR mean-field approximation, equivalent to the saddle-point approximation in the

functional integrals formalism, the Bose operators are taken to be independent of space and

time, and the constraints (4.1) become satisfied only on average. The slave boson approach

is exact while we satisfy the exact constraints, but in order to get sensible results in the

mean-field approximation, we have to make use of the fact that the described procedure is

not unique. Kotliar and Ruckenstein pointed out that by replacing ziσ by another operator

z̃iσ, given by

z̃iσ = (1− d†idi − p†iσpiσ)−1/2ziσ(1− e†iei − p†i−σpi−σ)−1/2, (4.4)

we still obtain the exact Hamiltonian in the physical subspace, but get at the same time a

correct mean-field behavior in the limit U = 0. It is important to emphasize that as compared

to the Hartree-Fock, the Kotliar-Ruckenstein theory introduces not only effective fields, but

also renormalizes the hopping which describes the mass renormalization. Therefore, the KR

23



theory can describe the Mott metal-insulator transition. At T = 0 this theory is equivalent

to the Gutzwiller variational approach [39].

4.1.1 Clean lattice

To include in the convenient way the effects of disorder, we have applied the KR theory

to the Hubbard model with large coordination number - the D = ∞ limit where dynamical

mean field theory (DMFT) becomes exact. We first consider the clean limit. In the D = ∞
Bethe lattice,1 solving the Hubbard model reduces to solving an Anderson impurity model

defined by the action [5]

Seff = −
∑
ωn,σ

c†σ(iωn)
[
iωn + µ− t2G(iωn)

]
cσ(iωn) + U

∫ β

0

dτ n↑(τ)n↓(τ), (4.5)

and supplemented by the self-consistency condition

G(iωn) = 〈c†(ωn)c(ωn)〉Seff
. (4.6)

In the slave boson method c†σ is replaced by z̃σf
†
σ, where z̃σ is a bosonic operator given

by Eq. (4.4). In the mean field approximation z̃ is replaced by a number z̃†z̃ → q. The

constraints, Eq. (4.1), are enforced by the Lagrange multipliers, and in the mean field

approximation the free energy is given by

F = −2
1

β

∑
ωn

ln
[−iωn − µ + λ0 + qt2G(iωn)

]
+ Ud2 − λ0(1− e2 + d2). (4.7)

For µ fixed, we have 3 variational parameters λ0, e, and d. The self-consistency equation

(4.6) becomes

G(iωn) = q〈f †(ωn)f(ωn)〉Seff
, (4.8)

with

G(iωn) =
q

iωn + µ− λ0 − qt2G(iωn)
. (4.9)

If we define the quantity Gf (ωn) = G(iωn)/q, we get

1Bethe lattice (infinite Cayley tree) is a lattice which has a tree-like structure. It has a semicircular (more
precisely, semi-elliptic) density of states. While qualitatively the results in the DMFT do not depend on
the form of a lattice, often equations simplify for the Bethe lattice, where the ”hybridization” function ∆ is
related to the local Green function simply as ∆(iωn) = t2G(iωn).
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Gf (iωn) =
1

iωn + µ− λ0 − q2t2Gf (iωn)
. (4.10)

Gf (iωn) is identical to the Green’s function of noninteracting electrons, with a chemical

potential µ̃ = µ − λ0 and hopping t̃ = qt. Note that Gf (iωn) obeys a spectral sum rule

(density of states is normalized to one) as opposed to G(iωn), which describes just the

quasiparticle part of the physical electron.

For the half filling µ = U/2, e = d and λ0 = µ. Minimizing the free energy with respect

to d, we obtain

d2 =
1

4

(
1− U

Uc

)
, (4.11)

with Uc = 16
∫∞

0
dε ερ(ε). This is the critical value of the interaction parameter, which

corresponds to the vanishing of the number of doubly occupied states and indicates that the

system is undergoing the Mott transition at finite critical value of U .

4.1.2 Disordered lattice

We now concentrate on a disordered Hubbard model described by the Hamiltonian

H = −
∑
ijσ

tijc
†
iσcjσ +

∑
iσ

εiniσ + U
∑

i

ni↑ni↓. (4.12)

Here tij are the hopping matrix elements, ciσ and c†iσ are fermionic creation and annihilation

operators, n = c†iσciσ is the number operator, and σ labels the spin projection. U represents

the Hubbard on-site repulsion, and the disorder is introduced by random site energies εi

specified by a distribution function P (εi).

Similarly as in the clean case, the mean-field slave boson equations are obtained by

minimizing the local free energy, which now becomes site-dependent

Fi = − 2

β

∑
ωn

ln [−iωn − µ + λi + εi + qi∆(ωn)] + Ud2
i − λi

[
1− e2

i + d2
i

]
. (4.13)

We define the renormalized disorder energy as

ε̃i = ε + λi − µ. (4.14)

Then the free energy assumes the form

Fi = − 2

β

∑
ωn

ln [−iωn + ε̃i + qi∆(ωn)] + Ud2
i − λi

[
1− e2

i + d2
i

]
. (4.15)
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Minimizing the local free energy with respect to ei, di and λi, we find

−∂qi

∂ei

1

β

∑
ωn

∆(iωn)Gfi(iωn) = (µ + ε̃i − εi) ei, (4.16)

−∂qi

∂di

1

β

∑
ωn

∆(iωn)Gfi(iωn) = (U − µ− ε̃i + εi) di, (4.17)

and
1

β

∑
ωn

Gfi(iωn) =
1

2

(
1− e2

i + d2
i

)
, (4.18)

where Gfi is the quasiparticle Green function given by

Gfi(iωn) =
1

iωn − ε̃i − qi∆(iωn)
, (4.19)

and

qi = 2
[
1− (e2

i − d2
i )

2
]−1

(ei + di)
2
[
1− (e2

i + d2
i )

]
. (4.20)

The system of equations (4.16)-(4.20) has to be supplemented by the self-consistency

condition, which determines the “hybridization function” ∆ describing the environment

of a given site. ∆ is determined by the self-energy Σ and the hybridization function ∆o

corresponding to the clean lattice of noninteracting electrons,

∆(iωn) = ∆o (iωn − Σ(iωn)) . (4.21)

The self-energy and the hybridization function are related to the disorder-averaged Green’s

function

G(iωn) =

∫
dε P (ε)G(ε, iωn), (4.22)

by

Σ(iωn) = iωn + µ−∆(iωn)− [G(iωn)]−1 . (4.23)

We emphasize that

G(ε, iωn) =
qi

iωn − ε̃i − qi∆(ωn)
≡ qiGfi (4.24)

describes the low-energy (quasiparticle) part of the physical electron. The spectrum

(density of states) of this function is not normalized to one, as opposed to Gfi, which

describes the noninteracting quasiparticles with renormalized hopping. Also, we note that
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∆o(iωn) = iωn + µ − [Go(iωn)]−1, where Go is the lattice Green’s function corresponding

to the clean lattice and U = 0. Half-filling can be enforced by the requirement e2
i = d2

i , or

equivalently ∫
dεP (ε)

1

β

∑
ωn

Gf (ε, iωn) =
1

2
. (4.25)

In the following, we will solve the system of equations (4.16)-(4.25) at zero temperature

analytically in several important limits, as well as fully numerically for arbitrary values of

parameters [40]. We will distinguish the particle-hole symmetric and asymmetric cases, and

concentrate particularly on the solution in a vicinity of the Mott metal-insulator transition.

4.2 Particle-hole symmetric lattice

For the particle-hole symmetric lattice, half-filling condition, Eq. (4.23), is automatically

satisfied if we set the chemical potential to µ = U/2. We will first solve analytically the slave

boson equations in the vicinity of the Mott MIT and derive a remarkable result showing that

the system becomes perfectly conducting on the metallic side of the Mott transition. Then

we will solve the equations numerically for the full range of parameters and obtain the phase

diagram for a disordered Hubbard model.

4.2.1 Weak disorder

The system of equations further simplifies if we concentrate on the Bethe lattice. In this

case the hybridization function is very simply related to the Green function,

∆(iωn) = t2G(iωn), (4.26)

which significantly simplifies the self-consistency condition. We will find a solution for weak

disorder in the vicinity of the MIT, where the slave boson parameters are small.

For clarity, we will rewrite the the system of equations (4.16)-(4.23), which now assume

the form

−∂q

∂e
t2

1

β

∑
ωn

G(iωn)

iωn − ε̃(ε)− q(ε)t2G(iωn)
=

(
U

2
+ ε̃(ε)− ε

)
e(ε), (4.27)

−∂q

∂d
t2

1

β

∑
ωn

G(iωn)

iωn − ε̃(ε)− q(ε)t2G(iωn)
=

(
U

2
− ε̃(ε) + ε

)
d(ε), (4.28)
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1

β

∑
ωn

1

iωn − ε̃(ε)− q(ε)t2G(iωn)
=

1

2

(
1− e2(ε) + d2(ε)

)
, (4.29)

and

G(iωn) =

∫
dεP (ε)

q(ε)

iωn − ε̃(ε)− q(ε)t2G(iωn)
, (4.30)

with

q = 2
[
1− (e2 − d2)2

]−1
(e + d)2

[
1− (e2 + d2)

]
. (4.31)

The renormalized disorder is defined as ε̃(ε) = ε + λ(ε)− µ, and µ = U/2.

We assume the solution in the form

e(ε) = e0

(
1 +

2ε

U
+ Aε2 +O(ε3)

)
, (4.32)

d(ε) = e0

(
1− 2ε

U
+ Bε2 +O(ε3)

)
, (4.33)

where the constants A and B are to be determined. (The coefficient 2/U is obtained by

solving the system (4.27)-(4.30) to the first order in ε.) Then,

q(ε) ≈ (e + d)2 ≈ q0(1 + Cε2), (4.34)

where q0 ≡ q(ε = 0) = 8e2
0 and C = A + B. We now make a further assumption that ε̃ ∼ q2

0.

This assumption will be justified a posteriori, from the explicit solution of the slave boson

equations.

One can easily check that, under the assumption ε̃ ∼ q2
0, the renormalized disorder ε̃ can

be neglected in Eq. (4.30). Then the averaged Green’s function of the form

G(iωn) = q0(1 + Cε2)Gf (iωn), (4.35)

with

Gf (iωn) =
1

iωn − q2
0(1 + Cε2)2t2Gf (iωn)

, (4.36)

satisfies the self-consistency condition, Eq. (4.30). Note that the density of states still has

semicircular form, but with the bandwidth which is broadened by the disorder, as respect
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to the clean case. Inserting this expression into the variation equation for the parameter λ

(Friedel sum rule), Eq. (4.29), we obtain

1

β

∑
ωn

Gf (iωn)
1

1− ε̃Gf (iωn)− Cq2
0t

2G2
f (iωn)×O(ε2)

=
1

2
− 1

2
q0

[ ε

U
+ 2(A−B)ε2

]
. (4.37)

Since 1
β

∑
ωn

Gf (iωn) = 1/2 and 1
β

∑
ωn

G2
f (iωn) = −4/(3πtq0(1 + Cε2)), to the first order in

ε, renormalized disorder is equal to

ε̃(ε) =
3πt

8
q2
0

ε

U
, (4.38)

Note that this justifies the assumption ε̃ ∼ q2
0.

Now we go back to the equations for the variational parameters e and d. The renormalized

disorder ε̃ can be neglected in these equations. Inserting the expressions for e(ε), q(ε) and

G(iωn) into Eq. (4.27), and using 1
β

∑
ωn

G4
f (iωn) = 8/(15πq3

0(1 + Cε2)3t3), to the second

order in ε we obtain

e0U
0
c

[
1 +

2

5
(A + B)ε2

] [
1 +

1

10
(A + B)ε2

]
= e0U

[
1 +

(
A− 4

U2

)
ε2

]
. (4.39)

Similarly, Eq. (4.28) assumes the form

e0U
0
c

[
1 +

2

5
(A + B)ε2

] [
1 +

1

10
(A + B)ε2

]
= e0U

[
1 +

(
B − 4

U2

)
ε2

]
. (4.40)

The above equations have to be satisfied for each ε. Therefore, A = B and (A + B)/10 =

A− 4/U2, which gives

A = B =
C

2
=

5

U2
≈ 5

(U0
c )2

. (4.41)

The critical value of the interaction parameter is

Uc = U0
c

[
1 +

2

5
Cε2

]
. (4.42)

To find q0 as a function of U , we need to expand q to the forth order in e and d

q(e, d) = 2e2 + 4ed + 2d2 − 2e4 − 4e3d− 4e2d2 − 4ed3 − 2d4. (4.43)

Then, ∂q/∂e|ε=0 = 8e0(1− 4e2
0), and from Eq.(4.27) we obtain e2

0 = 1
4
(1− U/Uc), i.e.

q0 = 2

(
1− U

Uc

)
. (4.44)

This completes the solution of the system (4.27)-(4.30) for weak disorder.
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Let us summarize the results. Close to the Mott transition, to the second order in

disorder, we have shown the following:

(i) The quasiparticle weight q depends on the site energy ε as q(ε) = q0(1 + Cε2), where

the constant C = 10/(U0
c )2 = 0.867, and U0

c = 64t/3π = 3.395 is the critical interaction

parameter in the absence of disorder.2 For a given disorder distribution q0 = 2(1 − U/Uc),

where the critical interaction is given by Uc = U0
c (1 + 2

5
Cε2).

(ii) Quasi-particle density of states remains semicircular. The averaged Green’s function

is given by G(iωn) = q0(1 + Cε2)Gf (iωn), where Gf is determined by the equation

Gf (iωn) = [iωn − q2
0(1 + Cε2)2t2Gf (iωn)]−1.

(iii) Renormalized disorder strength is equal to ε̃(ε) = 3πtq2
0ε/8U .

4.2.2 Scattering rate: perfect screening

In the following, we will derive the expression for the scattering rate as a function of the

renormalized disorder, and show that it goes to zero as we approach the Mott transition.

This leads to perfect conductivity at the metallic side of the Mott MIT.

Scattering rate. The conductivity σ is proportional to the scattering time (inverse

scattering rate) τ determined by the imaginary part of the self-energy at zero frequency

1

σ
∼ 1

2τ
= −Im Σ(0). (4.45)

The average Green function

G(iωn) =

∫
dεP (ε)

q(ε)

iωn − ε̃(ε)− q(ε)∆(iωn)
(4.46)

expressed through the self-energy Σ is given by

G(iωn) =
1

iωn − Σ(iωn)−∆(iωn)
. (4.47)

We make an expansion of Eq. (4.46) with respect to ε̃, which gives

2We will set t = 1/2, which corresponds to the half-bandwidth D = 1.
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G(iωn) =

∫
dεP (ε)

q(ε)

iωn − q(ε)∆(iωn)

[
1− ε̃(ε)

iωn − q(ε)∆(iωn)

]−1

=

∫
dεP (ε) G̃(ε, iωn)

[
1− ε̃(ε)

q(ε)
G̃(ε, iωn)

]−1

≈
∫

dεP (ε) G̃(ε, iωn)

[
1 +

ε̃(ε)

q(ε)
G̃(ε, iωn) +

(
ε̃(ε)

q(ε)
G̃(ε, iωn)

)2
]

= G̃(iωn) +

∫
dεP (ε)

ε̃(ε)

q(ε)

[
G̃(ε, iωn)

]2

+

∫
dεP (ε)

[
ε̃(ε)

q(ε)

]2 [
G̃(ε, iωn)

]3

. (4.48)

The Green functions G̃(iωn) and G̃(ε, iωn) are defined as

G̃(iωn) =

∫
dεP (ε)

q(ε)

iωn − q(ε)∆(iωn)
. (4.49)

and

G̃(ε, iωn) =
q(ε)

iωn − q(ε)∆(iωn)
. (4.50)

Due to the particle-hole symmetry q(ε) and G̃(iωn) are even functions in ε, while ε̃(ε) is odd.

Therefore the second integral is equal to zero and we find

G(iωn) = G̃(iωn) +

∫
dεP (ε)

[
ε̃(ε)

q(ε)

]2 [
G̃(ε, iωn)

]3

. (4.51)

Following the same idea, we define the self-energy Σ̃ by

G̃(iωn) =
1

iωn − Σ̃(iωn)−∆(iωn)
, (4.52)

and denote Σs(iωn) = Σ(iωn) − Σ̃(iωn). Then we can expand G(iωn) to the first order in

Σs(iωn)

G(iωn) =
1

iωn − Σs(iωn)− Σ̃(iωn)−∆(iωn)

=
1

iωn − Σ̃(iωn)−∆(iωn)

[
1− Σs(iωn)

iωn − Σ̃(iωn)−∆(iωn)

]−1

= G̃(iωn)
[
1− G̃(iωn)Σs(iωn)

]−1

≈ G̃(iωn)
[
1 + G̃(iωn)Σs(ωn)

]

= G̃(iωn) +
[
G̃(iωn)

]2

Σs(iωn). (4.53)

By comparison with Eq. (4.51), we find
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Σs(iωn) =
1[

G̃(iωn)
]2

∫
dεP (ε)

[
ε̃(ε)

q(ε)

]2 [
G̃(ε, ωn)

]3

. (4.54)

In a particle-hole symmetric system with random hopping only, it is easy to see that the

Green function at zero frequency is pinned to its noninteracting value, G̃(ε, ω = 0) = G̃(ω =

0) = G0(ω = 0), and the self-energy is equal to zero, Σ̃(ω = 0) = 0. Therefore

Σs(0) = G0(0)

∫
dεP (ε)

[
ε̃(ε)

q(ε)

]2

. (4.55)

Hence ImΣ(0) = ImΣs(0), which gives

1

τ
= −2 [ImG0(0)]

∫
dε P (ε)

[
ε̃(ε)

q(ε)

]2

. (4.56)

This equation explicitly shows that the renormalized disorder, as seen by the physical

quasiparticle at the Fermi energy, should be defined as

vi =
ε̃i

qi

. (4.57)

In the case of weak disorder, from Eq. (4.38), we find

1

τ
= −2 [ImG0(0)]

[
3πt

4Uc

(
1− U

Uc

)]2

〈ε2〉. (4.58)

This is a remarkable result showing that τ → 0 as U → Uc. In other words, the conductivity

becomes infinite at the metallic side of the Mott metal-insulator transition. This one of our

main results, and we will discuss its physical origin and applicability to real physical systems

in the remaining sections of this chapter. We will refer to this phenomenon as ”perfect

screening”.

Perfect screening. We have seen that the renormalized disorder vi = ε̃i/qi goes to zero

at the MIT. However, we have derived this result for weak disorder and Bethe lattice. Now

we will show that vi → 0 as U → Uc for an arbitrary particle-hole symmetric lattice and for

arbitrary disorder strength.

Similarly as in the case of weak disorder, we will concentrate on the slave boson equation

(4.18) (Friedel sum rule)
1

β

∑
ωn

Gfi(ωn) =
1

2

(
1− e2

i + d2
i

)
, (4.59)

and make an expansion with respect to ε̃i.
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1

β

∑
iωn

Gfi(ωn) = − 1

π

∫ 0

−D

dω Im

[
G̃fi(iωn)

1

1− ε̃iG̃fi(iωn)

]

= − 1

π

∫ 0

−D

dω Im

[
G̃fi(iωn) + ε̃i

(
G̃fi(iωn)

)2

+ · · ·
]

, (4.60)

where

G̃fi(iωn) =
1

iωn − qi∆(iωn)
. (4.61)

If the system has global particle-hole symmetry, then

1

β

∑
ωn

G̃fi(iωn) =
1

2
. (4.62)

(Note that that the local Green function G̃fi is particle-hole symmetric as opposed to Gfi.)

Therefore,
1

β

∑
iωn

Gfi(ωn) ≈ 1

2
+ ε̃(ε)

∫ 0

−D

dω Im
(
G̃fi(ω)

)2

. (4.63)

We express the hopping in a form qi = Ai qo, where qo ≡ q(ε = 0) goes (linearly) to zero as

U → Uc, while Ai ≡ A(εi) remains constant. Then

G̃fi(ω) =
1

ω − qi∆(ω, {qi}, {ε̃i}) =
1

qi

1
ω
qi
−∆(ω, {Aiqo}, {ε̃i})

=
1

qi

1

ω
qi
−∆

(
ω
qo

, {Ai}, {ε̃i/qo}
) =

1

qi

G̃f

(
ω

qi

, {Ai}, {ε̃i/qo}
)

, (4.64)

where the curly brackets denote that the the Green function depends on the distribution of

Ai and ε̃i. The bandwidth 2D̃f corresponding to G̃f is 1/qo times larger than the bandwidth

2D̃fi of G̃fi, while the density of states is 1/qo times smaller. Both the bandwidth 2D̃f and

the density of states −ImG̃f (ω + i0+)/π remain finite as qo → 0 which is the reason why we

scaled the energy with qi and defined the Green function G̃f . We emphasize that the exact

form of G̃f depends on the bare disorder distribution and interaction (through qi), but the

corresponding density of states and the bandwidth will be of the order of the bandwidth 2D

of the clean lattice of noninteracting electrons.

Eq. (4.63) now assumes the form

1

β

∑
iωn

Gfi(ωn) ≈ 1

2
+ ε̃i

∫ 0

−D

dω
1

q2
i

Im

[
G̃f

(
ω

qi

)]2

. (4.65)

After the change of variables, ω → ω/qi, we obtain
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1

β

∑
iωn

Gfi(ωn) ≈ 1

2
+ ε̃i

∫ 0

− eD dω′qi Im

[
1

qi

G̃f (ω
′)
]2

=
1

2
+

ε̃i

qi

∫ 0

− eD dω′ Im
[
G̃f (ω

′)
]2

, (4.66)

and Eq. (4.59) reduces to

ε̃i

qi

∫ 0

− eD dω Im
[
G̃f (ω)

]2

+O
(

ε̃i

qi

)2

=
1

2

(−e2
i + d2

i

)
. (4.67)

The integral remains constant as we approach the Mott transition, while the right-hand side

goes to zero. Therefore, the renormalized disorder vi = ε̃i/qi goes to zero as qi → 0.

4.2.3 Numerical results

We have solved the slave boson equations (4.27) - (4.31) numerically for the full range of

parameters at zero temperature. The goal is twofold: first we want to check and illustrate

our analytical results, and second, we want to obtain a full metal-insulator transition phase

diagram.

We have solved the equation on imaginary frequency axis using the following identity [41]

lim
η→0

T
∑
ωn

G(iωn)e−iωnη = 2T
∑
ωn≥0

′
Re G(iωn)− 1

2
sgn η, (4.68)

where the prime on the summation sum means that the ωn = 0 term is taken with weight

1/2. At zero temperature the sum over ωn can be replaced by an integral

T
∑

· · · → 1

2π

∫
· · · , (4.69)

which gives

lim
η→0

T
∑
ωn

G(iωn)e−iωnη =
1

π

∫ ∞

0

dω Re G(iω)− 1

2
sgn η. (4.70)

Then we obtain a system of integral equations

−∂qi

∂ei

1

π

∫ ∞

0

dω Re [∆(iω)Gfi(iω)] = (µ + ε̃i − εi) ei, (4.71)

−∂qi

∂di

1

π

∫ ∞

0

dω Re [∆(iω)Gfi(iω)] = (U − µ− ε̃i + εi) di, (4.72)
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and
1

π

∫ ∞

0

dω Re Gfi(iω) =
1

2

(−e2
i + d2

i

)
. (4.73)

We have solved the system of Eqs. (4.71)-(4.73) using the codes dcadre1.f from the NIST

archive for the numerical integration, and DNSQE.f as a root search. The self-consistent

solution is reached by iterations. Figure 4.1(a) shows how the quasiparticle weight changes

as the interaction U is increased. The noninteracting lattice has semicircular density of
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Figure 4.1. (a) Quasiparticle weight for ε = 0 site as a function of the interaction U .
(b) Quasiparticle weight as a function of the site disorder for U = 3.4. (c) Renormalized
disorder as a function of the (bare) site disorder for U = 3.4. The plots are obtained for the
semicircular density of states and W=0.7.
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states. The disorder is taken to be uniformly distributed in the interval (−W/2,W/2),

where W is set to 0.7, expressed in units of the half-bandwidth D of the noninteracting

clean system. This value of W corresponds to moderate disorder since
√
〈ε2〉 = 0.216.

The disorder averaging is done by choosing a finite number of site energies which sample

the distribution. Typically we used m = 11 site energies distributed equidistantly in the

interval (−W/2,W/2). The frequency grid is taken to be 0.01. Numerically obtained critical

interaction Uc = 3.445 is in good agreement with the analytical result for weak disorder,

Uc = U0
c (1 + 2

5
Cε2) = 3.452. Figure 4.1(b) shows the value of the quasiparticle weight for

sites with different site energies. The data are taken for U = 3.4 and W = 0.7. Function

q(ε) has a parabolic form q = 0.3(1 + 0.878ε2) in very good agreement with the analytical

result, q = qo(1 + 0.867ε2). Figure 4.1(c) shows the renormalized disorder ε̃ as a function

of site energies. A linear fit gives the slope 1.79 × 10−4 in good agreement with analytical

result 3πtq2
o/8U = 1.53× 10−4.

The scattering rate, τ−1 = −2Im Σ(0), normalized with the noninteracting value, for

different amounts of disorder is shown in Figure 4.2. At the Mott transition the scattering

rate goes to zero.
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Figure 4.2. Scattering rate normalized with the noninteracting value. From the lower to
the upper curves: W=0.1,1,2,4.
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4.2.4 Phase diagram

The metal-insulator phase diagram for the disordered Hubbard model at zero temperature

is shown in Figure 4.3. The Mott insulating phase is completely suppressed for W > U ,

since the disorder tends to fill in the Mott-Hubbard gap. The phase boundary separating

the correlated metal and the Mott insulator is identified by the simultaneous vanishing of

the quasiparticle weights qi on all lattice sites.

The DMFT approach is too simple to describe Anderson localization effects, which cannot

be neglected for strong enough randomness. Nevertheless, it is interesting to estimate the

disorder strength necessary for localization. In the absence of interactions, localization is

expected to set in when the disorder scale W is comparable to the kinetic (i.e. Fermi)

energy [42], as indicated by a dotted line in Fig. 1.3 However, we have shown that correlations

lead to strong screening, with a renormalized disorder scale W̃ ∼ ( v2
i )

1/2 ¿ W, which we can

numerically compute for any U and W , and analytically in several limits. In particular, in

the atomic limit (EF → 0), we find W̃ ∼ (1− U/W )3/2. In the presence of interactions, the

onset of localization should be estimated by comparing W̃ to EF , and the resulting boundary

is shown by a dashed line in Fig. 4.3. Hence, the metallic phase is found to be strongly

stabilized by screening in the intermediate regime W ∼ U. Of course, such an interplay

of the correlation and localization effects should be studied in more detail by extensions of

DMFT which can explicitly incorporate the localization effects. Interestingly such a work has

been done very recently [43] within an extended DMFT which uses geometrically averaged

(”typical”) density of states as an order parameter for the Anderson localization [8]. The

DMFT equations are solved using numerical renormalization group and the results are in

excellent agreement with our phase diagram.

4.3 Particle-hole asymmetric lattice

The behavior of the scattering time in a vicinity of the Mott transition is qualitatively

different in the case of a particle-hole asymmetric lattice. However, although the disorder is

not perfectly screened, the renormalized disorder vi becomes very small, leading to the very

large increase in the scattering time and conductivity.

3In the case of a particle-hole symmetric lattice the Fermi energy is equal to the half-bandwidth D.
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Figure 4.3. DMFT phase diagram of the Hubbard model with random site energies. The
Mott insulator can be suppressed by sufficiently strong (bare) disorder W > U. Also shown
is an estimate of the regime where Anderson localization effects are important, as obtained

by comparing the Fermi energy EF to bare disorder W (dotted line) or screened disorder W̃
(dashed line). Localization is strongly suppressed by correlation effects in the intermediate
regime where the disorder is comparable to the on-site repulsion U . The lower panel shows the
same phase diagram, but with the disorder W and the interaction U as explicit parameters.
The question mark corresponds to the crossover between the Anderson and Mott insulator,
which cannot be described within standard DMFT.
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4.3.1 Clean lattice

It is instructive to familiarize first with a solution of the slave boson equations in the clean

case. We will start from the mean field expression for the free energy at zero temperature

(this expression is not restricted to DMFT)

F = 2

∫
dε ρ(ε)(qε− µ + λ) nF (qε− µ + λ) + Ud2 − λ(1− e2 + d2). (4.74)

The minimization of the free energy with respect to the slave boson parameters gives4

−2
∂q

∂e2

∫ µ−λ
q

−∞
dε ερ(ε) = λ, (4.75)

−2
∂q

∂d2

∫ µ−λ
q

−∞
dε ερ(ε) = U − λ, (4.76)

and ∫ µ−λ
q

−∞
dε ρ(ε) =

1

2
. (4.77)

At half-filling in the clean case e = d, and from Eqs. (4.75) and (4.76) we find λ = U/2.

From Eq. (4.77), (µ − λ)/q = µ0, where µ0 is the chemical potential of the noninteracting

lattice at half-filling. (Note that for the particle-hole symmetric lattice µ0 = 0.) If we write

µ− U

2
= qµ0, (4.78)

we see that the chemical potential goes to U/2 as we approach to the Mott transition. Then,

since q = 8d2(1− 2d2), from Eq. (4.76)

−8(1− 4d2)

∫ µ0

−∞
dε ερ(ε) =

U

2
, (4.79)

which gives

Uc = −16

∫ µ0

−∞
dε ερ(ε), (4.80)

and

d2 =
1

4

(
1− U

Uc

)
. (4.81)

4∂nF (qε − µ + λ)/∂λ = −δ(qε − µ + λ). Since
∫

dxxδ(x) = 0, this partial derivative after integration
gives zero. The same is true for partial derivatives with respect to e and d.
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4.3.2 Disordered lattice: strong screening

In the case of a particle-hole asymmetry it is convenient to define the renormalized

disorder as

ε̃i = εi + λi − µ + µ̃o, (4.82)

where µ̃o sets ε̃(ε = 0) to be equal to 0. Note that µ̃o ∼ qµ0, see Eq. (4.78). The local free

energy has the form

Fi = − 2

β

∑
ωn

ln [−iωn − µ̃o + ε̃i + qi∆(ωn)] + Ud2
i − λi

[
1− e2

i + d2
i

]
. (4.83)

As in the particle-hole symmetric case, we consider λ variation equation

1

β

∑
ωn

1

iωn + µ̃0 − ε̃i − qi∆(iωn)
=

1

2

(
1− e2

i + d2
i

)
. (4.84)

First note that, by a definition of µ̃0, ε̃(0) = 0 and

1

β

∑
ωn

1

iωn + µ̃0 − qo∆(iωn)
=

1

2
. (4.85)

Close to the transition µ̃0 ∼ qo. The bandwidth corresponding to the conduction bath

∆ is also of the order of qo, while ∆(ω) ∼ O(1). Since qi − qo ∼ O(qo), in order to

fulfill Eq. (4.84), ε̃i has to be of the order of qo. In this analysis, the right-hand side of

Eq. (4.84) can be approximated by 1/2.5 Now we can interpret ε̃i as a correction in the local

chemical potential, which provides simultaneous formation of the local moments on every

site (simultaneous qi → 0). This correction obviously has to be much smaller than the width

of the quasiparticle band, which gives the conclusion that ε̃i/qi ¿ 1. This means that the

disorder screening is strong (though not perfect), even in the case of a strong particle-hole

asymmetry and strong disorder. This is the central result of this section, which we will now

present in more quantitative form in the case of weak disorder.

4.3.3 Weak disorder

For weak disorder and weak particle-hole asymmetry we can obtain an explicit expression

for the renormalized disorder. qi can be written as qi = qo(1 + αi), where αi ¿ 1. Then

5This means that ε̃(ε) = ε̃(−ε) when U → Uc, which agrees with the numerical results. We will come
back to this interesting feature in the next subsection.
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1

β

∑
ωn

1

iωn + µ̃o − ε̃i − qi∆(iωn)
=

1

β

∑
ωn

1

iωn + µ̃o − ε̃i − qo∆(iωn)− αiqo∆(iωn)

=
1

β

∑
ωn

1

[iωn + µ̃o − qo∆(iωn)]
[
1− ε̃i+αiqo∆(iωn)

iωn+µ̃o−qo∆(iωn)

]

≈ 1

β

∑
ωn

1

iωn + µ̃o − qo∆(iωn)

[
1 +

ε̃i + αiqo∆(iωn)

iωn + µ̃o − qo∆(iωn)

]

=
1

β

∑
ωn

1

iωn + µ̃o − qo∆(iωn)
+

1

β

∑
ωn

[
1

iωn + µ̃o − qo∆(iωn)

]2

[ε̃i + αiqo∆(iωn)]

=
1

2
+

1

β

∑
ωn

[
1

iωn + µ̃o − qo∆(iωn)

]2

[ε̃i + αiqo∆(iωn)] . (4.86)

Eq. (4.84) then reduces to

1

β

∑
ωn

[
1

iωn + µ̃o − qo∆(iωn)

]2

[ε̃i + αiqo∆(iωn)] = 0. (4.87)

Here the cavity function ∆(iωn) can be approximated by its value for a clean lattice. For a

semicircle Green’s function ∆(iωn) = qot
2Gf (iωn), where Gf (iωn) = 1/(iωn − q2

ot
2Gf (iωn)).

Now we calculate the sums

1

β

∑
ωn

[
1

iωn + µ̃o − qo∆(iωn)

]2

≈ 1

β

∑
ωn

[
1

iωn − qo∆(iωn)

]2

=
1

β

∑
ωn

G2
f (iωn) = − 4

3πq0t
, (4.88)

and

1

β

∑
ωn

[
1

iωn + µ̃o − qo∆(iωn)

]2

qo∆(iωn) =
1

β

∑
ωn

[
1

iωn − q0o∆(iωn)

1

1 + µ̃o

iωn−qo∆(iωn)

]2

qo∆(iωn)

=
1

β

∑
ωn

[
Gf (iωn)

1

1 + µ̃oGf (iωn)

]2

q2
ot

2Gf (iωn) ≈ q2
ot

2 1

β

∑
ωn

G3
f (iωn) [1− 2µ̃oGf (iωn)]

= q2
ot

2 1

β

∑
ωn

G3
f (iωn)− 2µ̃oq

2
ot

2 1

β

∑
ωn

G4
f (iωn) = − 16

15π

µ̃0

qot
≈ − 16

15π

µo

t
. (4.89)

Here we assumed that µo ¿ t, and used that 1
β

∑
ωn

G3
f (iωn) = 0 and 1

β

∑
ωn

G4
f (iωn) =

8/(15πq3
ot

3). Eq. (4.87) then gives
ε̃i

q0

= −4

5
µoα. (4.90)
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Since for weak disorder qi ≈ qo(1 + Cε2), we obtain that6

ε̃i

qo

≈ −0.7µoε
2. (4.91)

We can find the expression for the scattering rate similarly as in the particle-hole

symmetric case, and here the derivation will be just outlined. We start from the relations

which define the disorder-averaged Green function

G(iωn) =

∫
dεP (ε)

q(ε)

iωn + µ̃o − ε̃(ε)− q(ε)∆(iωn)
(4.92)

and the corresponding self-energy

G(iωn) =
1

iωn + µ̃o − Σ(iωn)−∆(iωn)
. (4.93)

Note that as compared with Eq. (4.46), G includes the ”chemical potential” µ̃o. Then in full

analogy with the symmetric case we define

G̃(ε, iωn) =
q(ε)

iωn + µ̃o − q(ε)∆(iωn)
, (4.94)

the corresponding disorder-averaged Green function G̃(iωn), and the self-energy Σ̃(iωn). We

define Σs(iωn) = Σ(iωn)− Σ̃(iωn), and expand Eqs. (4.92) and (4.93) to the second order in

ε̃(ε)/q(ε). Using Eq. (4.91), we find Im Σs(ω = 0) = Im G0(0) µ2
oC

2[0.96〈ε4〉+ 1.6〈ε2〉2], and

Im Σ̃(ω = 0) = Im G0(0) µ2
oC

2[〈ε4〉 − 〈ε2〉2], which gives

Im Σ(ω = 0) ≈ 0.8 [Im G0(0)] µ2
o

[
2〈ε4〉+ 0.6〈ε2〉2] . (4.95)

Therefore, we have found that for weak disorder, close to the Mott transition, the scattering

rate τ−1 = −2Im Σ(0) approaches very small asymptotic value

1

τ
∼ µ2

o〈ε4〉, (4.96)

instead of 1/τ ∼ 〈ε2〉 as for weak interaction. In addition, for any realistic lattice at

half-filling, µo is small number (. 0.1), explaining the smallness of the scattering rate.

6C ≈ 0.9 for weakly asymmetric Bethe lattice. We will keep this value as an estimate for C.
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4.3.4 Numerical results

Typical numerical results are shown in Fig. 4.4, where the full line corresponds to

the (symmetric) semicircular density of states ρo = − 1
π

Im G0(ω + iη), and the dashed

line is obtained for the particle-hole asymmetric lattice described by the Green function

G0a(ω) = [ω − t2G0(ω + a)]
−1

. In this plot, the asymmetry parameter a is chosen to be

0.3D (strongly asymmetric lattice), where D is the half-bandwidth. The data are obtained

for W = 1, which corresponds to moderate disorder strength. For weaker interaction the

behavior of the scattering time is almost the same in the symmetric and asymmetric case.

The difference appears very close to the critical interaction Uc, where the scattering rate in

the case of a particle-hole asymmetric lattice saturates to a very small, but nonzero value.

Fig. 4.5(a) shows renormalized disorder as a function of the bare site energy. Interestingly,

renormalized disorder is a nonmonotonic function of its bare value, as opposed to the results

in the particle-hole symmetric case, but in agreement with the analytical arguments from

the previous subsection. The average occupation number, Fig. 4.5(a), however, decreases

with the increase of the site disorder, as expected.
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Figure 4.4. Scattering rate normalized with the noninteracting value. Results close to Uc

for the particle-hole symmetric lattice (full line), and the asymmetric lattice (dashed line),
with W = 1. The inset shows the density of states in these two cases.

43



-0.3 -0.2 -0.1 0 0.1 0.2 0.3
ε

-0.0002

-0.0001

0

0.0001

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
ε

0.998

1

1.002

n(
ε)

ε~

(a)

(b)

Figure 4.5. Renormalized disorder (a), and average occupation number (b), as a function
of the bare site energy. Here, asymmetry parameter a = 0.3D, W = 0.6, and U = 3.3. For
these parameters Uc = 3.355.

4.4 Breakdown of conventional theory

In the strongly correlated regime our DMFT results are in sharp discrepancy with the

results obtained within the Hartree-Fock theory. In this section, working within the DMFT

limit of large coordination number, we will compare the results for the scattering time in

the slave boson and Hartree-Fock approach. This provides an explicit example how an

uncontrolled extrapolation of the Hartree-Fock theory to the regime of strong correlation

may lead to nonphysical results.

In the Hartree-Fock theory the screening appears as a consequence of finite (nonzero)

compressibility of the electron gas. We can think of it semiclassically, as a result of the
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redistribution of electrons in the presence of a random potential. In DMFT the renormalized

(screened) disorder is equal to

viσ = εi − Σiσ(ω = 0), (4.97)

where Σiσ is the momentum-independent self-energy, which is equal to Uδni,−σ in the

Hartree-Fock approximation. Here δn is the deviation of the occupation number from its

average value. For weak disorder δniσ = χσε
sc
iσ, where the local compressibility (charge

susceptibility) is given by χσ = − ∂〈niσ〉/∂viσ|viσ=0. The renormalized disorder is then

viσ =
1− Uχ−σ

1− U2χ−σχσ

εi. (4.98)

This result obtains much more familiar form in the nonmagnetic case

vi =
1

1 + Uχ
εi. (4.99)

But what is the charge compressibility in the vicinity of the Mott metal-insulator transition?

It is well established that it is very small, and in fact within the slave boson mean field theory

χ → 0 as U → Uc [5]. Therefore, Eq. (4.99), applicable in the weak coupling limit, predicts

very weak disorder screening close to the Mott transition.

To further elaborate our arguments, we will complete the Hartree-Fock solution, though

at this point it is already obvious that we can expect spurious results for two different reasons:

(i) In the strong coupling limit the simple relation between the renormalized disorder and the

charge compressibility is not valid. (ii) The Hartree-Fock theory does not describe correctly

the Mott metal-insulator transition.

The local compressibility expressed through the local Green function Gσ
i (iωn) =

[iωn + µ− ε̃i −∆σ(iωn)]−1 is equal to

χσ = − ∂〈niσ〉
∂viσ

∣∣∣∣
viσ=0

= − ∂Gσ
i (τ, τ+)

∂vi

∣∣∣∣
viσ=0

= − ∂

∂vi

(
1

β

∑
ωn

eiωnηGσ
i (iωn)

)∣∣∣∣∣
viσ=0

=
1

β

∑
ωn

(Gσ
0 (iωn))2 . (4.100)

Then the renormalized disorder, Eq. (4.98) assumes the form

viσ =
1 + U 1

β

∑
ωn

(
G−σ

0 (iωn)
)2

1− U2 1
β

∑
ωn

(
G−σ

0 (iωn)
)2 1

β

∑
ωn

(Gσ
0 (iωn))2

εi, (4.101)
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where

Gσ
0 (iωn) =

1

iωn + µ0 − Un−σ −∆σ
0 (iωn)

. (4.102)

Half-filling condition, n−σ + nσ = 1, can be imposed by setting µ0 = U/2. We have solved

Eq. (4.101) for semicircular density of states for the full rang of the interaction parameter.

For small U , Hartree-Fock and slave boson methods both give similar results, but closer

to the transition Hartree-Fock theory (dashed line in Fig. 4.6), predicts a reduced disorder

screening, while full DMFT (full line) shows that the screening remains strongly enhanced.

The reduction of screening found in the Hartree-Fock approximation reflects the decrease of

the compressibility near the Mott transition. We note that the Mott gap within Hartree-Fock

theory opens at much smaller value of interaction (U = 2D) than in the full DMFT solution

(U = 3.39). The reason is that the Hartree Fock theory misses non-perturbative interaction

effects, reflected in the formation of the quasiparticle Kondo peak. The decrease in the

Hartree-Fock compressibility seen in Fig. 4.6 appears as a result of a Stoner instability in

the magnetic Hartree-Fock solution, which sets in for U = 1/ρ0(0) = πD/2 as a precursor

to a gap opening at the transition [32].
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Figure 4.6. Normalized scattering rate for weak disorder as a function of U , from the
full DMFT solution (full line), and the corresponding Hartree-Fock approximation (dashed
line). For moderate interaction both methods predict the same screening, but diametrically
opposite results are obtained in the strongly-correlated regime, where DMFT predicts
enhanced screening, while a strong suppression is obtained within Hartree-Fock theory.
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We would like to stress once again a difference between the renormalized disorder and

the disorder screening as defined in our paper with the ”static charge response” and ”static

overscreening” as defined and studied, e.g. in Ref. [44]. In this work the ”screening charge”

is essentially equal to the local compressibility. The Hubbard model is studied for the full

range of the parameter U , using a combination of numerical Monte Carlo approach and slave

boson mean field theory, and a comparison is made with the RPA results. However, as we

have seen, there is no simple connection between the charge compressibility and transport

properties in the strong coupling limit, and a study of solely the static charge response is

not sufficient to determine the impurity scattering dominated conductivity.

4.5 Physical picture: enhanced screening as Kondo pinning

In this section we establish a connection between enhanced disorder screening in a vicinity

of the Mott transition and the well studied phenomenon of increased low temperature

transmittance of quantum dots. This provides simple physical interpretation of of our results

in terms of the Kondo physics.

In the DMFT approach that we use, the solution of the full Hubbard model is mapped

to solving an ensemble of auxiliary Kondo-Anderson impurity problems. Accordingly, the

approach to the Mott transition can be described as the decrease of the local Kondo

temperature, corresponding to the reduction of the local quasiparticle weight. This is

illustrated in Fig. 4.7, which is obtained for a clean lattice using the iterated perturbation

theory [5].

But what happens in the presence of a site disorder? For a single impurity in a given

conduction bath this corresponds to ordinary Kondo problem. It is well known that in the

local moment limit at zero temperature, in the case of a particle-hole symmetric lattice,

the renormalized site energy level coincides with the Fermi energy [4]. This ”pinning” of the

renormalized energy to the Fermi level is responsible for increased resonant tunneling through

quantum dots, as first theoretically predicted by [46, 47]. A strong increase of the resonant

conductivity through a quantum dot is also experimentally verified [45]. A schematic plot of

the experiment is shown in Figure 4.8. Note how the appearance of the quasiparticle peak

at the Fermi energy resembles the quasiparticle peak in the Hubbard model. Therefore,
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Figure 4.7. Local spectral density at T = 0, obtained by the iterated perturbation theory.
The first four curves (U/D = 1, 2, 2.5, 3) correspond to an increasingly correlated metal,
while the bottom one (U/D = 4) corresponds to an insulator. From [5].

Figure 4.8. Schematic plot of the density of states of a quantum dot connected to the
conduction leads. From [45].
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the renormalized energy level vi in the disordered Hubbard model can be identified as the

position of the Kondo resonance, which is pinned to the Fermi energy in the Kondo limit

Zi → 0. We can thus interpret the surprising enhancement of disorder screening in the

strongly-correlated regime as a reflection of the non-perturbative Kondo physics captured

by our DMFT method, but not by standard weak-coupling theories.

4.6 Finite temperature conductivity: importance of inelastic
scattering

In good metals electron-electron scattering is relatively unimportant even at room

temperature since the Fermi energy is very large (∼ 104 K). At these temperatures the

scattering is dominated by electron-phonon interactions, which reduce at low temperatures,

where the resistivity appears primarily due to the scattering on impurities. High mobility

MOSFETs, however, have very low Fermi energy (EF ∼ 10 K), and the role of (inelastic)

electron-electron scattering has to be reexamined.

Slave boson mean field theory describes only the quasiparticle part of the spectrum,

and cannot describe the incoherent processes at finite (nonzero) temperature. The same

model that we have studied at T = 0 can be studied at finite temperature using iterated

perturbation theory. This has been done in Ref. [48]. The results show that the Fermi liquid

coherence occurs only at rather low temperatures, while strong inelastic scattering (leading

to decoherence) sets in rapidly as the temperature is raised, as shown in the upper panel in

Fig. 4.9. The solution within Hartree-Fock theory does not capture inelastic processes, and

shows weak temperature dependence of the scattering rate, lower panel in Fig. 4.9. Note

that at very low temperatures the DMFT solution gives a much smaller scattering rate than

the Hartree-Fock approximation, in agreement with our zero temperature results.

4.7 Conclusions and discussion

In this Chapter we have examined the influence of strong short-ranged interactions on

the electron scattering on nonmagnetic impurities. We have formulated and solved this

problem in the DMFT limit of large coordination number, where physical quantities like

the self-energy and compressibility become local in space, i.e. momentum-independent.
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Figure 4.9. Scattering rate τ−1(∼ resistivity) as a function of temperature. Results are
shown for the disorder strength W equal to the interaction U , as we reduce the Fermi energy
EF /U = 2.0, 1.0, 0.67, 0.5, 0.4 (bottom to top curves). Note the large resistivity drop in
the DMFT solution (upper panel), but much weaker temperature dependence within the
Hartree-Fock approach (lower panel). From [48].

Within this model, the site disorder is strongly renormalized in the presence of strong

electron-electron interactions, which leads to the large enhancement of the scattering time

and conductivity. This happens exactly in the regime where the effective mass becomes

very large, while the charge compressibility decreases. Therefore, a simple semiclassical

connection between the renormalized disorder and charge compressibility from the weak

coupling (RPA) theories is not valid in the strong coupling regime. In the following, we will

make further connections of our work with the related results from other research groups,

discuss the applicability of the results to real physical systems, and outline several important

questions which should be addressed in the future research.

After publication of our work, several other research groups have independently solved the

same disordered Hubbard model using (extended) DMFT, and obtained essentially the same

results. S. Florens [49] has solved the DMFT equations at zero temperature using numerical

renormalization group method, and reached the same conclusion that the renormalized
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disorder is perfectly screened at the metallic side of the Mott metal-insulator transition

in the case of a particle-hole symmetric lattice. Byczuk, Hofstetter, and Vollhardt [43] have

obtained the MIT phase diagram within an extended DMFT (”typical medium theory”) [8]

which includes the Anderson localization effects even on the mean-field level, using the

geometrically averaged (typical) local density of states as an order parameter. This work has

shown that the Anderson localization effects are strongly suppressed by the electron-electron

interactions. Balzer and Potthoff [50] applied another extension of the DMFT (”self-energy-

functional” approach) to the Hubbard model with binary site disorder, and obtained a very

similar phase diagram.

What are the the implications of our results for a formulation of theory which would

realistically describe the metal-insulator transition in high mobility 2D MOSFETs, and in

particular, explain the anomalously strong temperature dependence of conductivity in the

metallic phase? These questions have raised a lot of dispute within the scientific community

in the last ten years, and we cannot claim to provide here definite answers. However, we

believe that the amount of evidence favoring the Mott-Anderson metal-insulator scenario,

which we advocate, is increasing. In particular, a consensus seems to be reached that the

effective mass is strongly enhanced close to the MIT. This is consistent with a picture of the

interaction-driven Mott transition. However, as we discussed in some detail in Chapter 3,

a strong enhancement of the effective mass cannot be described by different versions of the

RPA theory advocated, for example, by Zhang and Das Sarma [35].

Following the idea that the temperature dependent screening is the main mechanism for

the large temperature dependence of the conductivity, several authors have suggested that

the observed MIT transition is essentially a (semi)classical percolation transition [51, 52].

It is proposed that at low enough carrier densities, the spatial fluctuations associated

with the long-range disorder potential arising from the random charged impurity centers,

become too strong to be effectively screened by the carriers, leading to screening breakdown

that provides spatial inhomogeneities (”hills” and ”puddles”) giving rise to a percolation

MIT transition in conductivity. The percolation theory again assumes a semiclassical,

essentially Thomas-Fermi picture of screening, where the ”screening cloud” smoothes out

the long-ranged Coulomb interaction of randomly displaced charged impurities. However,

our results presented in this Chapter seriously question the applicability of the semiclassical
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picture of disorder screening in the strong coupling limit, at least in the case of short range

interactions.

What are the predictions of our theory in its current stage? First we will discuss its zero

temperature predictions as the concentration of carriers is varied. An important question

is what is the physical trajectory on the phase diagram, Fig. 4.3, which corresponds to the

change of the carrier (electron) density. For a two-dimensional system the Fermi energy

(equal to the half-bandwidth D) depends on the carrier density as EF ∼ n, while the

interaction U goes as U ∼ n1/2. Therefore, EF /U ∼ n1/2. On the other hand, the

density of charged impurities does not change with the change of the gate voltage and

carrier density. This gives, W/U ∼ n1/2, and the physical trajectory on the phase diagram

should be a hyperbola, EF /U ∼ W/U . This hyperbola intersects a dashed line on the phase

diagram which corresponds to the Anderson localization. Accordingly, our theory predicts

that the metal-insulator transition is of the Anderson localization type, however, modified

by the presence of strong electron-electron interaction. A natural extension of our theory

to finite temperatures [48], described in Section 4.5, predicts that the strong temperature

dependence of the conductivity is a consequence of the inelastic electron-electron scattering.

Though these results are to some extent similar to those based on the temperature dependent

charged impurity screening [22, 23, 24, 25], the physical origin of the results is completely

different. The inelastic scattering, which is argued to be the dominant scattering mechanism

at low temperatures for systems with very small Fermi energy, is completely neglected in the

impurity scattering based theories.

What are the limitations of our theory? Obviously, in order to have a realistic description

of low density 2D MOSFETs, we need to include into the theory long-range Coulomb

interactions, and go beyond the large coordination limit in order to describe realistic

two-dimensional systems. Also, a further study of Anderson localization effects is necessary

for a reliable description of a system close to the metal-insulator transition. Each of these

questions by itself poses a difficult and challenging theoretical problem and a step towards

a complete understanding of the long standing problem of strongly correlated systems with

disorder. We believe that our work further emphasizes a need for developing such a theory,

and also presents a promising direction for future research.
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CHAPTER 5

DISORDER-DRIVEN NON-FERMI LIQUID

BEHAVIOR IN HEAVY FERMION SYSTEMS

In the second part of the thesis we will present our work on the disordered Kondo lattice

systems. This research is motivated by the intensive debate among the scientific community

about the origin of the non-Fermi liquid (NFL) behavior observed in a large number of heavy

fermion alloys. This is considered to be one of the most important problems in contemporary

condensed matter physics. Its solution should give us deeper understanding of the competing

processes in strongly correlated electronic systems, which lead to the enormous sensitivity

of their thermodynamic and transport properties to a change of the chemical composition

(doping), application of a magnetic field, or pressure. Also, the physics of heavy fermion

materials may give us important guidance in the search to fully understand the mechanism

leading to the high temperature superconductivity in cuprates.

5.1 Landau Fermi liquid theory

The Landau Fermi liquid theory [53] forms the foundation of our understanding of the

behavior of electrons in metals. It is based on two premises. First, it is recognized that the

low energy excitations of a Fermi sea have a very long life time due to the restricted space

available for their scattering. Second, these excitations are in one to one correspondence to

those of a non-interacting Fermi gas. In another words, switching on the interactions does

not qualitatively change the excitation spectrum. We refer to this second premise as the

adiabatic continuity.
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As a consequence, the thermodynamic properties of metals at low temperatures are

very similar to those of a non-interacting Fermi gas. The interaction leads only to

the renormalization of the physical parameters which can be described by only a few

phenomenological Landau parameters. For example, the effective mass is equal to m∗ =

m(1+F s
1 /3), and the density of states N(0) = m∗kF /π2. To leading order in the temperature,

the specific heat is linear in temperature and the magnetic susceptibility is temperature

independent
CV (T )

T
≡ γ =

1

3
m∗kF , χ(T ) =

m∗kF µ2
B

π2(1 + F a
0 )

. (5.1)

Here F s
1 and F a

0 are the Landau parameters. Several predictions about the transport

properties come out of the Fermi liquid framework as well. In particular, the resistivity

increases as a second power of temperature

ρ = ρ0 + AT 2, (5.2)

where ρ0 is the residual resistivity due to impurities and lattice imperfections, and A is a

non-universal constant.

The Landau Fermi liquid theory is originally formulated for clean systems, but its

concepts remain applicable also in the presence of disorder [42, 54, 55]. In particular, the

magnetic susceptibility χ and specific heat parameter γ remain finite even in the disordered

metallic phase. The perturbative quantum corrections to the conductivity are calculated in

the case of weak disorder [42], predicting singular terms in the conductivity temperature

dependence, which can typically be seen at the experiments at millikelvin temperatures.

Predictions of the Fermi liquid theory survive even in the presence of very strong electron

correlation, as in the case of a number of Ce and U compounds. In these systems a

strong electron-electron interaction in partially filled f-electron shells leads to a very strong

renormalization of the quasiparticle mass which is of the order 102 to 103 larger then the

mass of an electron (hence the name heavy fermions). Experiments on a very well studied

heavy fermion compound CeAl3 nicely illustrates Fermi liquid features. The specific heat,
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Fig. 5.1(a), is linear with T at the lowest temperatures, with the very large value of the

parameter γ. The inverse magnetic susceptibility, Fig. 5.1(b) saturates to a constant at zero

temperature, while at higher temperatures follows usual Curie-Weiss law. The electrical

resistivity increases with the decreasing temperature, due to the strong scattering of the

conduction electrons on f electron local moments. However, at low temperatures the

scattering becomes coherent and the resistivity suddenly decreases, Fig. 5.2. At the lowest

temperatures, the resistivity follows the predictions of the Fermi liquid theory, Eq. (5.2).

Figure 5.1. (a) Specific heat of CeAl3 as a function of temperature. Bellow a crossover
temperature T ∗, linear temperature dependence of the specific heat is restored. Note that
the specific heat of the ”conventional” metal LaAl3 is much smaller (due to the smaller
effective mass), and also exhibits Fermi liquid behavior in a much wider temperature region.
(b) Inverse magnetic susceptibility of CeAl3 as a function of temperature. At higher T
the f-electron of Ce3+ act as free local moment which leads to Curie-Weiss χ ∼ 1/T law,
but at low temperatures the f-electron spin is ”quenched” (screened) by the conduction
electrons and Fermi liquid picture with the Pauli form of the magnetic susceptibility takes
over. From [56].
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Figure 5.2. Temperature dependence of the electrical resistivity for CeAl3, UBe13,
CeCu2Si2, and U2Zn11. The inset shows the T 2 behavior for CeAl3 for T < 0.1 K. From [57].

5.2 Non-Fermi liquid behavior in heavy fermion alloys

The study of the possible routes which may lead to the breakdown of the Fermi liquid

picture in metals has strongly intensified in the last twenty years. The motivation came from

experiments on high temperature superconductors and many heavy fermion alloys. In this

Section, we will briefly describe two classes of heavy fermion materials, which are extensively

studied both experimentally and theoretically.

5.2.1 NFL behavior in the vicinity of the quantum critical point

Heavy fermion metals are generically close to the magnetic ordering due to the antifer-

romagnetic interaction between f-shell local moments. This interaction is mediated by the
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conduction electrons. Many of these materials can easily be tuned to the critical point by

changing chemical composition, applying magnetic field or pressure. This makes them ideal

for a study of the processes which are driven by strong electron-electron interaction, and/or

disorder.

The low temperature region in a vicinity of the quantum critical point is characterized by

strong deviations from Landau’s Fermi liquid theory. In many cases, the following properties

are observed:

• A diverging specific heat coefficient, often logarithmically, C(T )/T = −γo log(T/To).

• An anomalous temperature dependence of the resistivity, ρ(T ) = ρo + ATα, where

α < 2.

• An anomalous Curie-Weiss law, χ−1(T ) = χ−1
0 + CT β, where β < 1.

A typical phase diagram for these materials is presented on Fig. 5.3(a). Undoped

CeCu6 is paramagnetic metal, which enters into antiferromagnetic metallic phase by doping

with gold. At the critical doping the specific heat coefficient diverges logarithmically,

C/T ∼ − log(T/To) (Fig. 5.3(b)), magnetic susceptibility follows χ = χo(1−α
√

T ) behavior,

and electrical resistivity increases linearly with temperature, ρ = ρ0 + AT .

The first theoretical study of zero temperature magnetic phase transitions in metals was

done by John Hertz in 1976 [62]. It assumes that the only important low energy degrees of

freedom are long-wavelength paramagnons. This weak coupling spin density wave approach,

however, cannot explain properties observed in the vicinity of a quantum critical point in

heavy fermions. For example, Hertz theory predicts nonsingular specific heat coefficient and

the Fermi liquid form for resistivity. Many attempts have been made to amend the Hertz

picture of quantum phase transitions. For example, the apparent momentum independence

of the localized critical correlations at the quantum critical point [63] has led to the suggestion

that the explanation of the non-Fermi liquid behavior should be searched within the local

quantum criticality [64], which follows the ideas of the dynamical mean field theory.
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Figure 5.3. (a) Temperature vs. doping phase diagram for CeCu6−xAux. Paramagnet-an-
tiferromagnet quantum critical point is reached for x ≈ 1. The region above the critical
point has NFL transport and thermodynamic properties. (b) Temperature dependence of
the specific heat coefficient, γ ≡ C/T , for several levels of doping. Note that at the critical
concentration the logarithmic behavior persists up to the lowest measured temperatures.
From [58].

5.2.2 Disorder-driven NFL behavior

Another class of heavy fermion materials exhibits non-Fermi liquid behavior at the

lowest temperatures even away from the critical point. These materials are typically

non-stoichiometric compounds with very large residual resistivity. The disorder effects are

believed to be crucial for their thermodynamic and transport properties.

A very well studied material from this class is UCu5−xPdx. Its phase diagram is shown

on Fig. 5.4. For doping larger than the critical value x ≈ 1, the antiferromagnetic order is

destroyed, but the properties of the low temperature metallic region clearly deviate from the

Fermi liquid framework. The resistivity linearly decreases with temperature, ρ = ρo − AT ,
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Figure 5.4. Phase diagram for UCu5−xPdx. From [59].

Fig. 5.5(a), showing no traces of coherent scattering. The magnetic susceptibility, Fig. 5.5(b),

and the specific heat diverge approximately logarithmically as T → 0. At even larger doping,

x & 2, the neutron scattering experiments [65] show spin glass ordering at low temperatures.

This is to be expected as a consequence of the inter-site RKKY interactions in the strongly

disordered environment.

I the remaining part of the thesis, we will concentrate on a theoretical description of

disordered heavy fermion compounds. In particular, the emphasis will be to shed light on

the interplay of the RKKY interactions which induces magnetic ordering and the Kondo

effect which screens the local moments and favors paramagnetic phase.

5.3 NFL behavior in disordered Kondo lattice systems

Kondo (Anderson) lattice models have been established to provide excellent theoretical

description of heavy fermion materials. In this Section we will summarize the work which

generalizes these models to the case of disordered systems. The results provide strong

evidence for the relevance of the disordered Kondo lattice models for description of the

thermodynamic and transport properties of UCu5−xPdx. We will point out, however, to the
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Figure 5.5. Left panel: Electrical resistivity as a function of temperature for
UCu5−xPdx [60]. Right panel: Magnetic susceptibility vs. temperature measured at
H = 5 kOe (triangles), and in a stronger magnetic field H = 50 kOe [61]. Solid curves:
fits to χ (see next Section).

limitations of these studies, which sets up a direction for our subsequent work presented in

the final Chapters of the thesis.

5.3.1 Phenomenological Kondo disorder model

The disorder based mechanism for explanation of the non-Fermi liquid thermodynamic

properties of UCu5−xPdx has been first proposed by Bernal et al. [61] It came out of the

nuclear magnetic resonance (NMR) measurements which have shown large broadening of

resonances in NMR spectra. Since the Knight shift (the shift in resonant frequency) is

proportional to the local susceptibility, K(R) ∝ χ(R), the broadening of the resonances is

ascribed to the inhomogeneous distribution of the local susceptibility associated with the U

ions.
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The local susceptibility in the Kondo system is related to the local Kondo temperature

by a simple formula due to Wilson [4]

χ(T, TK) =
C

T + aTK

. (5.3)

The Kondo temperature is, as usual, approximatelly equal to

TK = De−1/ρJ , (5.4)

where ρ is the local density of states, J is the local Kondo coupling, and D is the bandwidh of

the conduction electrons. Bernal et al. obtained a fit for the NMR line-widths by adjusting

the distribution P (TK) of the Kondo temperatures. The results, Fig. 5.6, show that P (TK)

has a finite intercept with x-axis, meaning that at arbitrary small temperature T , there will

always be a finite fraction of spins with TK < T . These spins are effectively decoupled from

the conduction bath and provide dominant contribution to the magnetic susceptibility and

specific heat. The leading temperature dependence of the uniform susceptibility can easily

be obtained as an average value of the local susceptibility

χ(T ) = χ(T, TK) =

∫ ∞

0

P (TK)χ(T, TK)dTK =

∫ Λ

0

dTKP (TK)
C

T + aTK

=

∫ Λ

0

dTKP (0)
C

T + aTK

+ const. ∼ ln

(
T0

T

)
. (5.5)

The results for the uniform (bulk) susceptibility are in excellent agreement with the

experimental data, Fig. 5.5. It is interesting to notice that a successful fit to the experimental

data is obtained for fitting parameter which corresponds to moderate amount of disorder.

5.3.2 Disordered Kondo lattice model within DMFT: transport properties

Phenomenological Kondo disorder model treated local moments as independent though

U ions form a dense lattice. The limitations of this approach are the most obvious in

calculating the transport properties where, for example, the effects of coherent scattering

at low temperatures are completely omitted. The disorder effects are studied within more
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Figure 5.6. Distribution of Kondo temperatures obtained within the Kondo disorder model
from an analysis of the NMR data for UCu5−xPdx [61]. Spins with TK < T (shaded area)
dominate the thermodynamic response.

realistic microscopical model by Miranda et al. [6, 66]. They considered Anderson lattice

model as given by the Hamiltonian

H = −t
∑

〈ij〉σ
(c†iσcjσ + H.c.) +

∑
jσ

(
Vjc

†
jσfjσ + H.c.

)

+
∑
jσ

Efjf
†
jσfjσ + U

∑
j

f †j↑fj↑f
†
j↓fj↓. (5.6)

Here fjσ and cjσ are annihilation operators for f - and conduction electrons, respectively.

The kinetic energy of the conduction electrons is proportional to the hopping parameter t.

The largest energy scale in the model is the Coulomb repulsion energy U of the f-electrons

occupying the same site j, and this energy is set to infinity, thus preventing the double

occupancy of the f -sites. Vj is the hybridization parameter, and Efj is the f -electron energy

on the site j. The local Kondo temperature in the Anderson model is

TKj ≈ De−|Efj |/(2ρV 2
j ), (5.7)

and the connection to the Kondo model is obtained from Jj = 2V 2
j /|Efj|.
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The disordered Anderson lattice model has been solved within dynamical mean field

theory, and various thermodynamic and transport properties have been obtained. The

disorder distribution in both Vj and Efj is considered, and it is fitted to reproduce the

same distribution of local Kondo temperatures as in the work of Bernal et al. [61]. The

main results of this work are the following:

(i) Bulk thermodynamic responses in the Anderson/Kondo lattice models can be very

accurately obtained through an ensemble average of the individual contribution from each

site, thus justifying the procedure of Ref. [61].

(ii) Although the clean system has low resistivities due to the onset of coherence at low

T , moderate amounts of f -shell disorder are capable of destroying this low-T coherence,

leading to characteristic incoherent Kondo scattering behavior. The essential condition for

the linear dependence in low temperature resistivity is that P (TK = 0) 6= 0.

The work of Miranda et al. [6, 66] has explained the anomalous linear temperature

dependence of resistivity, but several important questions remained unanswered. In par-

ticular, the results are very sensitive on the form of the disorder distribution, and rely on

the finite value of P (TK = 0). There are no apparent physical reasons favoring this type

of distribution. Also, there are many other compounds which exhibit power low divergence

in thermodynamic properties instead of the logarithmic one, but again fine tuning of the

disorder distribution is needed to explain such properties. This problem is resolved within

an extended DMFT approach described in the next Section.

5.3.3 Statistical DMFT approach: electronic Griffiths phase as a precursor to
the Mott-Anderson MIT

Within standard DMFT approach, even in the presence of disorder, each site ”sees”

the same conduction bath and spatial fluctuations of the electronic wave functions are

completely neglected. This is one of the most severe limitations of DMFT, and it is an

immediate consequence of the assumption of large (infinite) coordination number which is

embedded into the standard formulation of DMFT. Spatial fluctuations in the electronic wave

functions (density of states) are included within ”statistical” dynamical mean field theory

(statDMFT) developed by Dobrosavljević and Kotliar [67, 68]. The assumption of retaining

only on-site correlations, as in DMFT, is maintained in statDMDF. In another words,
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the self-energy remains to have only the frequency, and not the momentum dependence.

However, in the disordered case statDMFT treats the lattice with finite coordination number,

and the self-consistency condition is no longer a simple algebraic equation, but rather a set

of stochastic equations in the local Green functions whose distribution has to be determined

numerically. If the interactions are turned off, the treatment of disorder is equivalent to the

self-consistent theory of localization [69].

The inclusion of spatial fluctuations in the local density of states has important con-

sequences on the thermodynamic properties of disordered Kondo lattice systems which

can be anticipated already from the expression for the local Kondo temperature TK(x) ≈
D exp(−1/ρ(x)J(x)). We notice that the fluctuations in the conduction bath lead to the

disorder in the Kondo temperatures even in the absence of disorder in the Kondo couplings.

Miranda and Dobrosavljević [70] have established a remarkable universality in the form of

the distribution functions for Kondo temperatures. The most important results are the

following:

(a) For weak disorder the distribution of Kondo temperatures P (TK) has log-normal form,

and for stronger disorder it assumes the power law form P (TK) ∼ T α−1
K . A crossover to the

NFL region is obtained for α = 1. For α = 1, P (TK = 0) = const., there is a logarithmic

divergence in magnetic susceptibility, and for α < 1, P (TK = 0) = ∞, and the divergence

assumes the power law form, χ ∼ T α−1, Fig. 5.7.

(b) The results are qualitatively and semi-quantitatively the same in the presence of

disorder in the Kondo couplings J (i.e. Ef and V ) and in the presence of a site disorder

in the conduction bath. Furthermore, the distribution of the Kondo temperatures has the

same form for both discrete and continuous, bounded and unbounded distribution of the

bare disorder. (A detailed discussion of these features is presented in the next Chapter of

the thesis.)

(c) The NFL region generically appears before the Mott-Anderson metal-insulator

transition is reached. A schematic phase diagram for the disordered Kondo/Anderson lattice

is shown in Fig. 5.8.

The thermodynamic and transport properties in the NFL region are dominated by

the small fraction of sites with the lowest Kondo temperatures. This resembles to the

situation in disordered insulating magnets studied originally by Griffiths [71], and later
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Figure 5.7. Distribution of local Kondo temperatures within statDMFT [70]. For stronger
disorder W the distribution assumes a power law form P (TK) ∼ T α−1

K .

Figure 5.8. Schematic phase diagram for the disordered Kondo/Anderson lattice.

by McCoy and Wu [72]. In these systems a formation of rare large magnetic clusters is

well established. Although their number is exponentially rare, they provide the leading

thermodynamic response with power low singularities with disorder-dependent power law

exponent. Such systems whose properties are dominated by the rare events are classified

as Griffiths phases. Therefore NFL region that appears in the Kondo lattice systems as a

precursor to the Mott-Anderson MIT is named electronic Griffiths phase (EGP). Note that

the Griffiths phase in this model is not connected to any form of magnetic ordering, and

in this sense it is an alternative to the magnetic Griffiths phase scenario in the disordered
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Kondo lattice systems introduced by Castro Neto and Jones [73, 74] which has provoked a

lot of controversy and debate [75, 76].

5.3.4 Limitations of the statDMFT picture of the electronic Griffiths phase

The model of the electronic Griffiths phase within statDMFT is not completely satisfac-

tory because of the following reasons:

(a) The magnetic susceptibility and specific heat exhibit power law divergence with the

disorder dependent power law exponent. For stronger disorder this would lead to very

strong power law singularities while in the experiments only logarithmic, or weak power law

singularities are seen.

(b) Quite generally, the spins which are Kondo unscreened at temperature T , and act

as local moments, are not completely free due to the long ranged RKKY interactions (see

Fig. 5.9 for a schematic illustration). The RKKY interaction favors spin glass phase at low

temperatures as seen in experiments.

Therefore, our subsequent work has concentrated on the study of the influence of

additional RKKY interactions on the properties of the electronic Griffiths phase. As a

preliminary step, we have derived a simplified effective model of the EGP within standard

DMFT [77], which qualitatively and semi-quantitatively reproduces all the features obtained

within more generic statDMFT. This work is presented in detail in Chapter 6. The effects of

Figure 5.9. Schematic illustration of the interplay of the RKKY interactions and the Kondo
effect.
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additional inter-site RKKY interactions are studied within the effective model of the EGP

in Chapter 7.
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CHAPTER 6

EFFECTIVE MODEL FOR THE ELECTRONIC

GRIFFITHS PHASE

In this Chapter we introduce and solve an effective model for the electronic Griffiths phase

as a DMFT model with a Gaussian distribution of random site energies. We should emphasize

that localization is not present in this effective model, but the Griffiths phase emerges in

qualitatively the same fashion as in the more realistic calculations within ”statistical” DMFT

[70, 78]. We discuss how the specific disorder distribution which is hand-picked in the effective

model is dynamically generated by fluctuation effects within the statDMFT formulation,

elucidating the origin of the universality of the Griffiths phase behavior. In addition, the

simplicity of this DMFT effective model makes it possible to describe all the qualitative

features of the solution using simple analytical arguments, thus eliminating the need for

large scale numerical computations in the description of the electronic Griffiths phase. This

is crucial in order to address more complicated issues, such as the role of additional RKKY

interactions in disordered Kondo alloys [79].

6.1 Model

We consider the Anderson lattice model where the disorder is introduced by random site

energies εi in the conduction band, as given by the Hamiltonian

H = −t
∑

〈ij〉σ
(c†iσcjσ + H.c.) +

∑
jσ

(εj − µ)c†jσcjσ

+V
∑
jσ

(
c†jσfjσ + H.c.

)
+

∑
jσ

Eff
†
jσfjσ

+U
∑

j

f †j↑fj↑f
†
j↓fj↓, (6.1)
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where fjσ and cjσ are annihilation operators for f - and conduction electrons, respectively.

V is the hybridization parameter, and Ef is the f -electron energy. We assume U →∞, and

choose a Gaussian distribution of random site energies for the conduction band

P (εi) = (2πW 2)−1/2 exp{−1

2
ε2

i /W
2}. (6.2)

In Sec. 6.4 we will explain how this particular disorder distribution comes out naturally from

the more generic statDMFT approach.

To solve these equations, we use the DMFT approach [5], which is formally exact in the

limit of large coordination. We concentrate on a generic unit cell j, containing an f -site

and its adjoining conduction electron Wannier state. After integrating out the conduction

electron degrees of freedom, we obtain the effective action for the f -electron on site j

Simp(j) =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′f †jσ(τ) [δ(τ − τ ′)(∂τ + Ef )

+ ∆fj(τ − τ ′)] fjσ(τ ′). (6.3)

Here, the restriction of no double f -site occupancy is implied. The hybridization function

∆fj between the f -electron and the conduction bath ∆c is given by

∆fj(iωn) =
V 2

iωn − εj + µ−∆c(iωn)
. (6.4)

The self-consistency condition for the conduction bath (cavity field) assumes a simpler

form for the semi-circular model density of states [5], which we use for simplicity. All the

qualitative features of our solution are independent of the the form of the lattice, and the

quantitative results depend only weakly on the details of the electronic band structure. For

this model ∆c(iωn) = t2Gc(iωn), where Gc(iωn) is the disorder-averaged Green’s function of

the conduction electrons, and the self-consistency is enforced by

Gc(iωn) = 〈[iωn − εj + µ− t2Gc(iωn)− Φj(iωn)]−1〉, (6.5)

where

Φj(iωn) =
V 2

iωn − Ef − Σfj(iωn)
, (6.6)

and Σfj is the f -electron self-energy derived from the impurity action of Eq. (6.3). From

a technical point of view, within DMFT the solution of the disordered Anderson lattice
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problem reduces to solving an ensemble of a single impurity problems supplemented by a

self-consistency condition.

We will solve the system of Eqs. (6.3)-(6.6) at zero temperature using the slave boson

mean field theory approach [80, 81]. This approximation is known [70, 82, 78] to reproduce

all the qualitative and even most of the accurately quantitative features of the exact

DMFT solution at T = 0. It introduces renormalization factors (quasi-particle weights)

Zj and renormalized f -energy levels εfj, which are site-dependent quantities in the case

of a disordered lattice. These parameters are determined by the saddle-point slave boson

equations (see Ref. [6] for more details) which, on the real frequency axis, assume the form

− 1

π

∫ 0

−∞
dω Im

[
1

ω − εfj − Zj∆fj(ω)

]
=

1

2
(1− Zj), (6.7)

1

π

∫ 0

−∞
dω Im

[
∆fj(ω)

ω − εfj − Zj∆fj(ω)

]
=

1

2
(εfj − Ef ). (6.8)

Eq. (6.6) in this case becomes

Φj(ω) =
ZjV

2

ω − εfj

. (6.9)

6.2 Analytical solution in the Kondo limit

Before presenting a numerical solution of the slave boson Eqs. (6.7)-(6.8) supplemented

by the self-consistency condition of Eq. (6.5), we will solve these equations analytically in

the Kondo limit for a given conduction bath. A comparison with the numerical solution will

show that the self-consistency does not qualitatively change the analytical results.

The slave boson equations simplify in the Kondo limit Zj → 0. The integral in Eq. (6.7)

is dominated by the low-frequency region, and the frequency dependence in ∆c and ∆fj can

be neglected. Therefore, after integration

εfj ≈ −ZjRe [∆fj(0)] , (6.10)

where, for simplicity, we took a semi-circle conduction bath with µ = 0. In the integral of

Eq. (6.8), the frequency dependence of ∆fj can also be neglected. Introducing the energy

cutoff D and using Eq. (6.10) we obtain (see Appendix A for the details of the derivation)
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Zj ≈ D
ε2

j + (πt2ρo)
2

πt2ρoV 2
e−π2t2ρo/Je−ε2

j/t2ρoJeεj/2t2ρo

= Zo

ε2
j + (πt2ρo)

2

(πt2ρo)2
exp

[
− ε2

j

t2ρoJ

(
1− J

2εj

)]
. (6.11)

Here, ρo is the density of states (DOS) of the conduction electrons at the Fermi level,

J = 2V 2/|Ef |, and Zo = Z (εj = 0). The Kondo temperature is proportional to the

quasi-particle weight, TKj = πV 2ρoZj. In the limit εj À J/2 and neglecting a weak

site-energy dependence in the pre-factor, we obtain

TKj ≈ T 0
Ke−1/λj , (6.12)

where the site dependent coupling constant is

λj =
t2ρoJ

ε2
j

, (6.13)

and T 0
K is the Kondo temperature in the clean limit (for εj = 0). From these equations,

we can immediately find the desired distribution of local Kondo temperatures P (TK) =

P (ε(TK))|dε/dTK |, which (up to a negligible logarithmic correction) is given asymptotically

by

P (TK) ∝ (TK/T 0
K)α−1, (6.14)

with

α(W ) =
t2ρoJ

2W 2
. (6.15)

This expression is one of the central results of this Chapter. It has exactly the form expected

for a Griffiths phase, where the exponent characterizing the local energy scale distribution

assumes a parameter-dependent (tunable) form.

To show how the NFL behavior appears due to the singularity in P (TK), we use the

standard expression due to Wilson for the magnetic susceptibility [4]

χ(T, TK) =
C

T + aTK

, (6.16)

which is an excellent approximation for a single Kondo impurity. Here C and a are constants.

In the disordered case, we can split the average susceptibility χ(T ) =
∫∞
0

P (TK)χ(T, TK)dTK

in a regular “bulk” part

χr(T ) =

∫ ∞

Λ

P (TK)χ(T, TK)dTK , (6.17)
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and a potentially singular part

χs(T ) = C1

∫ Λ

0

T α−1
K

T + aTK

dTK , (6.18)

coming from the tail with low Kondo temperatures (Λ is a crossover scale). At weak disorder,

the exponent α is large and the distribution P (TK) is regular, χ(0) = χo + C2/(α − 1), but

NFL behavior emerges once α 6 1, which corresponds to

W ≥ Wnfl =
√

t2ρoJ/2. (6.19)

For α = 1 the magnetic susceptibility has a logarithmic divergence, χ(T ) ∝ ln(1/T ),

characteristic of marginal Fermi liquid behavior [83], while for α < 1 a power law divergence

is obtained, χ(T ) ∝ T α−1 as T → 0. The same singularity also leads to an anomalous

behavior in the transport properties, as shown in detail in Refs. [6] and [66].

6.3 Numerical results

In the above derivation we ignored the fact that the conduction bath ∆c has to be self-

consistently determined. This will also produce particle-hole asymmetry and an asymmetric

distribution of Kondo temperatures TKj. A nonzero chemical potential will further increase

this asymmetry. However, the numerical solution we obtained using the slave boson

approximation at zero temperature shows that the essential physics described by Eqs. (6.12)-

(6.15) remains qualitatively correct. The distribution of local Kondo temperatures in the

asymptotic limit is indeed a power law, P (TK) ∼ TK
α−1, where the exponent α is a decreasing

function of disorder.

Fig. 6.1 shows the distribution P (TK) for several values of the disorder distribution

strength W . For the parameters that we here use, the system is close to the Kondo limit,

and the Kondo gap of the clean system is approximately 0.04 (in energy units of the half

bandwidth of bare DOS). The NFL behavior appears for W & 0.14. We note that in the

NFL regime the power law behavior appears already for the site energies εj which deviate

only moderately from the mean (zero) value. In other words, the asymptotic behavior is

established well before we attain very rare realizations of εj which belong to the tail of the

Gaussian distribution. For example, for W = 0.3, sites with εj & 0.4 (which correspond to

Z . 0.01) are already in the power-law regime.
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Figure 6.1. Distribution of the local Kondo temperatures. The disorder ranges from
moderate W = 0.1 to strong W = 0.4. We used V = 0.5, Ef = −1, and µ = −0.1.

According to the simplified derivation from Sec 6.2, the exponent α is inversely propor-

tional to W 2. The numerical results shown in Fig. 6.2 confirm such behavior for weak and

moderate disorder. For strong disorder there appear some deviations from this formula,

which can be ascribed to the dependence of the DOS at the Fermi level on the disorder

strength.

Before we present arguments which justify our effective DMFT model approach, let us

make a direct comparison with the statDMFT results from Ref. [78]. In this approach, very

broad distributions of local Kondo temperatures are generated for arbitrary distributions of

bare disorder. In particular, even if the bare distribution is bounded, sites with arbitrarily

small Kondo temperatures will exist, and their distribution will have a power law tail. This is

a consequence of the spatial fluctuations of the conduction electron cavity field, as we discuss

in detail in the next Section. In Fig. 6.3 we compare the values of the exponent α for the

effective model with Gaussian disorder of variance W 2, and the statDMFT results obtained

for a bounded uniform distribution of bare disorder with the same variance. Remarkably, not

only does the electronic Griffiths phase emerge in the same fashion, but the numerical values

of disorder strength determining the onset of NFL behavior are also almost the same. The

comparison is made for two different values of the chemical potential. As we move further
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Figure 6.2. Inverse power law parameter α−1 as a function of W 2. For weak and moderate
disorder this dependence is linear. Here V = 0.5, Ef = −1, and µ = −0.2.

away from half-filling by changing the chemical potential, the critical value Wnfl decreases.

That is expected since α should be proportional to the bare (noninteracting) DOS at the

Fermi level.

6.4 The role of spatial fluctuations and the form of renormalized
disorder

In this Section we explain the universal aspects of the emergence of the electronic

Griffiths phase within the more generic statistical DMFT. In particular, we show how the

Gaussian tails in the distribution of renormalized disorder appear for an arbitrary form of

the bare disorder. Moreover, we present arguments showing that the Griffiths phase appears

generically as a precursor of the Mott-Anderson metal-insulator transition.

6.4.1 Universality of the renormalized disorder distribution

In the above DMFT formulation, we had to choose a special form of disorder distribution

in order to obtain the desired power-law distribution of Kondo temperatures. Had we

chosen a different distribution, the results would not have held. For example, for a
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Figure 6.3. Power law exponent α as a function of disorder strength measured by the
standard deviation W . Full lines are the effective model results, and dashed lines are the
statDMFT results. The hybridization V is taken to be 0.5 and Ef = −1. The chemical
potential is µ = −0.1 (upper lines), and −0.5 (lower lines). The onset of NFL behavior
occurs at α = 1.

bounded distribution of site energies, there would always be a minimum value of the Kondo

temperature, and thus no power-law tail. On the other hand, from numerical simulations of

lattices with finite coordination, it has been established that the emergence of the Griffiths

phase is a universal phenomenon [78]. Why? To understand the reason for this, we note

that for finite coordination (as opposed to the DMFT limit) the cavity bath ∆c is not

self-averaging, but is a site-dependent, random quantity ∆cj. In this statDMFT formulation,

the local conduction electron Green’s function is given by

Gcj(iωn) =
1

iωn − εj + µ−∆cj(iωn)− Φj(iωn)
, (6.20)

where Φj describes the local scattering of the conduction electrons off the f -shell at site j,

and is given as before by Eq. (6.6).

For weak disorder, the corresponding fluctuations are small, and we can separate

∆cj = ∆av
c + δ∆cj. (6.21)

In the following, we compute the distribution function for the fluctuations of the cavity

field, which will lead to the renormalized form of the disorder distribution function. The
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renormalized site energies can be defined as

ε̃j = εj + δ∆R
cj, (6.22)

where δ∆R
cj = Re [δ∆cj(ω = 0)]. We stress that the cavity fluctuations are present for a

general finite coordination electronic system in the presence of disorder of any kind. In

particular, the disorder in hybridization parameters Vj, or local f -energy levels Efj, will

induce fluctuations in the local DOS even if random site energies εj in the conduction band

are absent. Furthermore, as we argue in the next subsection, the renormalized distribution

P (ε̃j) will have universal Gaussian tails even if the bare distribution P (εj) is bounded. Note

that δ∆cj has a real as well as an imaginary part δ∆I
cj, due to the fact that fluctuations locally

violate particle-hole symmetry. However, we show in Appendix B that δ∆I
cj fluctuations, at

least when treated to leading order, do not produce singular behavior in P (TK) and therefore

can be neglected when examining the emergence of the electronic Griffiths phase.

6.4.2 The Gaussian nature of the renormalized distribution

From detailed numerical studies it has become clear that the onset of the Griffiths phase

in disordered Anderson lattices generally occurs already for a relatively moderate amount of

disorder. In this limit, the relevant distributions are determined essentially by the central

limit theorem, therefore resulting in a Gaussian form of the tails for P (ε̃j). This is precisely

what is needed to justify the DMFT effective model, where such Gaussian tails are assumed

from the outset.

Before engaging in more precise computations of these distributions, it is worth pausing

to comment on the physical validity of the assumed Gaussian statistics, i.e. the relevance

of the central limit theorem in the cases of interest. Quite generally, if a certain quantity

can be represented as a sum of a large number of independent random variables, then the

central limit theorem tells us that the resulting distribution will be Gaussian, irrespective

of the specific form of the distributions of the individual terms in the sum. In our case,

the fluctuations of the local cavity field result from Friedel oscillations of the electronic

wave functions, induced by other impurities which may lie at a relatively long distance from

the given site. This is a result of the slow (∼ R−d) decay of the amplitude of the Friedel

oscillations in d dimensions, where R is the distance from the impurity site. The situation
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is very reminiscent of the Weiss molecular field of an itinerant magnet, where the RKKY

spin-spin interactions have a long range character for the very same reason, being as they

are a reflection of similar Friedel oscillations. Furthermore, as we will explicitly show, the

leading corrections (to order O (W 2)) at weak disorder take the form of a linear superposition

of contributions from single impurity scatterers, and thus of a sum of independent random

numbers, for which we expect the central limit theorem to hold.

To obtain the precise form of this distribution, it therefore suffices to compute the variance

σ2
R =

〈
(δ∆R

cj)
2
〉
, (6.23)

to leading order in disorder strength. To compute the fluctuations δ∆cj at weak disorder, we

note that the cavity field ∆cj can be computed if we consider a particular site with εj = 0

(call it site 0), and compute its Green’s function in a random medium. At zero frequency

for this site

∆co = µ− 1/Goo. (6.24)

The corresponding variation is

δ∆co = δGoo/(Goo)
2. (6.25)

We still need to compute the fluctuation δGoo, which can be expanded in powers of the

random potential εj. In doing this, we have ignored the interaction renormalizations of

the random potential for conduction electrons. We will return to re-examine this effect in

Appendix B. Note, however, that in the absence of interactions in the environment of a given

site, the following expressions provide the exact leading contributions at weak disorder.

To leading order, we can write

δGoo =
∑

j

εj(Goj)
2 +O(ε2). (6.26)

This gives

σ2
R = CW 2 +O(W 4), (6.27)

where

C =
∑

j
(j 6=0)

[
Re

(Goj)
2

(Goo)2

]2

. (6.28)

The Green’s function sum C will numerically depend on the lattice geometry, but will

generally be a dimensionless number of order one.
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The distribution of renormalized disorder ε̃ = ε + δ∆R
c is given by a convolution of the

distributions P1(ε) and P2(δ∆
R
c )

P (ε̃) =

∫ ∞

−∞
dω P1(ε̃− ω)P2(ω). (6.29)

If the bare distribution is bounded, (e.g. a standard “box” distribution), then Gaussian tails

will emerge due to the fluctuations in δ∆R
c , and the “size” of the tails will be determined by

an effective disorder corresponding to W
(0)
eff = W

√
C. Here, the superscript (0) indicates that

we ignored the interaction renormalizations. In the Appendix B, we argue that the effective

scattering potentials Φj will further renormalize the disorder distribution, but the Gaussian

tails will remain as its generic feature.

Now we present numerical results which provide strong evidence for the universality of

the renormalized disorder. Fig. 6.4 shows the results obtained within the statDMFT [70]

for uniform and binary disorder distributions with the same standard deviation W = 0.1.

As anticipated by Eq. (6.27), the fluctuations of the cavity bath acquire an approximately

Gaussian form with the same variance for both bare disorder distributions, panel (b). The

renormalized disorder distribution P (ε̃) exhibits long tails, panel (c), although the bare

distributions are bounded, panel (a). These Gaussian-like tails are the main universal feature

of the renormalized disorder, and they are crucial for the appearance of the singular behavior

in P (TK) which leads to the formation of the Griffiths phase.

StatDMFT results in Fig. 6.5 provide further illustration of the universality. The upper

panel shows that the distributions of Kondo temperatures for uniform and binary bare

disorder distributions with the same standard deviation W are qualitatively the same. The

exponent α, which determines the slope of the distribution tails, is shown at the lower panel

as a function of W . It depends very weakly on the particular form of disorder distribution.

6.4.3 Localization effects

In the strict DMFT formulation α ≈ t2ρoJ/2W 2, where ρo ≡ ρav is simply the

(algebraic) average DOS of the conduction electrons, which therefore remains finite even at

the localization transition [84]. If J is chosen to be large enough, the above seems to suggest

that the Griffiths phase may not emerge before the electrons localize at W = Wc ∼ 1/ρav.

However, in a theory that includes localization, the Kondo spins do not see the average,
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Figure 6.4. StatDMFT results for uniform and binary distributions of bare disorder.
Universal Gaussian-like tails appear in the cavity field fluctuations, panel (b), and the
renormalized disorder distributions, panel (c), even though the bare disorder distributions
are bounded (uniform and binary), panel (a). We used V = 0.5, Ef = −1, and µ = −0.5.

but rather the typical DOS of the conduction electrons [67, 8]. Thus, in the NFL criterion,

Eq. (6.19), one should actually replace ρo → ρtyp, a quantity that becomes very small (and

eventually vanishes) as the Anderson transition is approached, viz.

ρtyp = A(Wc −W )β, (6.30)

where A and β are constants. We thus get

W 2
nfl =

1

2
At2J(Wc −Wnfl)

β. (6.31)

This transcendental equation cannot be solved in closed form in general, but an approximate

solution can be found for W 2−β
c /At2J ¿ 1. In this case, the quantity δW = 1 −Wnfl/Wc
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Figure 6.5. StatDMFT results for the distribution of Kondo temperatures for uniform and
binary bare disorder distributions (upper panel). The lower panel shows the exponent α
as a function of disorder strength. The results are qualitatively the same regardless of the
specific form of the disorder distribution. We used V = 0.5, Ef = −1, and µ = −0.5.

will be small, and to leading order in δW

Wnfl = Wc − (At2J/2)−1/βW 2/β
c < Wc. (6.32)

Therefore, the Griffiths phase emerges strictly before the transition is reached.
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6.5 Electronic Griffiths phase in the vicinity of the
metal-insulator transition

Previous work [67] has shown that the electronic Griffiths phase appears also in a single

band Hubbard model, as a precursor to the Mott-Anderson metal-insulator transition (MIT).

Since the Hubbard model at half-filling is equivalent to the charge-transfer model [85] of the

MIT, we examine in this Section the appearance of the Griffiths phase within this model,

which can be considered a version of the Anderson lattice model that we examined in our

approach.

The charge transfer model has been used to describe the Mott metal-insulator transition

for various systems, including copper oxides [86]. It consists of a two band model, where one

of the bands is narrow, and has large on-site interaction U (Copper d-band), while the other

band is broad enough that electron-electron interactions can be neglected (Oxygen p-band).

A disordered version of this model is also appropriate to describe the Mott-Anderson

transition [67] in doped semiconductors such as Si:P. Here, the narrow band corresponds [87]

to the impurity band of the Phosphorus donors, while the broad one is the conduction band

of Silicon. This model is given exactly by the Hamiltonian of Eq. (6.1), but supplemented

by the constraint

nfj + ncj = 1, (6.33)

which can be enforced by adjusting the value of the chemical potential. Here nfj and ncj

are the average number of conduction and f -electrons on site j, and the overbar denotes the

average over disorder. In the mean field slave boson approach, the average occupancy of the

f -site is equal to

nfj = 1− Zj. (6.34)

As the f -electron energy level is decreased (|Ef | increased), the occupancy of the f -sites

becomes larger: the charge is “transferred” from the conduction band. The transition to the

Mott insulator is found for sufficiently large |Ef |. At least within DMFT, this metal-insulator

transition has the same character as the more familiar Mott transition in a single band

Hubbard model. As an illustration, we show on Fig. 6.6 the number of conduction electrons

per site, nc = Z, as a function of Ef , in the clean limit.
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Figure 6.6. Number of conduction electrons per site as a function of the f -level energy Ef .
The approach to the insulating phase is linear, nc ∼ Ef −Ec

f , where Ec
f is the critical value

for the f -level energy. The hybridization V = 0.5, and Ef is measured with respect to the
middle of the conduction band.

We have solved our effective model in the parameter regime relevant to the approach to

the Mott-Anderson transition, and the results demonstrate the emergence of an electronic

Griffiths phase in the same fashion as for the Anderson lattice model, consistent with

statDMFT results [67]. Here, the f -level energy in Fig. 6.7 is measured with respect to

the middle of the conduction band, and not with respect to the chemical potential as in

Sec. 6.3. For the parameters used in Fig. 6.7, the system is in the mixed valence regime,

not in the Kondo limit, and stronger disorder is needed for the appearance of the NFL

electronic Griffiths phase, again in close agreement with statDMFT results [67]. These

results demonstrate that our effective model proves capable to describe the emergence of the

electronic Griffiths phase as a universal phenomenon in correlated electronic systems with

disorder.

6.6 Summary

To summarize, we have identified an analytically solvable infinite range model, which cap-

tures the emergence of electronic Griffiths phases found within the more generic statDMFT

approaches [70, 78, 67]. In this effective model, a specific distribution of disorder is
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Figure 6.7. Distribution of local Kondo temperatures for several levels of disorder. The
total number of electrons per unit cell is fixed to 1. The disorder ranges from W = 0.2 to
0.38. We used V = 0.5 and Ef = −1.3, where Ef is measured with respect to the middle of
the conduction band. The inset shows the exponent α as a function of the disorder strength.
The NFL phase occurs for α ≤ 1.

postulated, leading to a power-law distribution of local Kondo temperatures and NFL

behavior for sufficiently strong disorder. We have also presented arguments explaining

how this specific form of randomness is universally generated by renormalizations due to

disorder-induced fluctuations of the conduction bath.

The main motivation for introducing this effective model lies in its simplicity, allowing an

analytical solution, and thus providing further insight into the mechanism for the emergence

of the electronic Griffiths phase. Nevertheless, an essential ingredient is still missing from

our Griffiths phase theory, namely the inter-site RKKY interactions between Kondo spins.

According to the existing picture, all the spins with TK < T will not be Kondo screened,

thus providing a large contribution to thermodynamic response. These decoupled spins will,

however, not act as free local moments, but will feature dynamics dominated by frustrating

inter-site RKKY interactions. The simplifications introduced by our effective model open

an attractive avenue to incorporate both the Kondo effect and the RKKY interaction in a

single theory.
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CHAPTER 7

SPIN LIQUID BEHAVIOR IN ELECTRONIC

GRIFFITHS PHASES

This Chapter contains a detailed study of the interplay of the Kondo effect and RKKY

interactions in the disordered Kondo lattice systems within an extended dynamical mean

field theory. First we concentrate on two special cases of the model: (a) The absence of

hybridization of local moments with the conduction band, when the model reduces to the

infinite-ranged frustrated Heisenberg model [88]; (b) The Kondo lattice model with random

infinite ranged RKKY interactions, but in the absence of disorder in the conduction band

[89]. These two models have already been studied, but we review their properties as a

preliminary step before we proceed to the disordered case. In addition, our results for the

Kondo lattice model are in several aspects more detailed than in Ref. [89].

The presence of disorder in the conduction band leads to qualitatively different behavior

than in the case of a clean Kondo lattice. The main difference is that for sufficient disorder we

end up with the two fluid model, where a fraction of spins are decoupled from the conduction

bath and form the spin liquid, while the other remain Kondo screened. As we will see, the

existence of the the electronic Griffiths phase in absence of RKKY interactions described in

Chapter 6 is crucial, since it provides the sufficient conditions for the decoupling.

7.1 Model

We consider the disordered Kondo lattice model as given by the Hamiltonian

H = −t
∑

〈ij〉σ
(c†iσcjσ + H.c.) +

∑
iσ

(εi − µ)c†iσciσ

+ JK

∑
i

Si · si +
∑

〈ij〉
JijSi · Sj, (7.1)
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where the exchange couplings Jij between localized spins, and the site energies εi are

distributed according to the Gaussian distributions

PJ(Jij) =
1√
2πJ

e−J2
ij/2J2

, (7.2)

and

PW (εi) =
1√

2πW
e−ε2

i /2W 2

. (7.3)

In this expression, Si and si = 1
2

∑
αβ c†iασαβciβ represent a localized spin and the conduction

electron spin density at site i, respectively. The infinite-ranged nature of the RKKY

interactions allows to average over the disorder in Jij using the replica trick [90]. To make

further progress, we take the limit of large coordination number, z → ∞, in which the

problem reduces to the ensemble of the single impurity problems described by the local

effective action

Aj =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c†jσ(τ)[(∂τ − µ + vj)δ(τ − τ ′)

− t2Gc(τ − τ ′)]cjσ(τ ′) + JK

∫ β

0

dτSj(τ) · sj(τ)

− J2

2

∫ β

0

dτ

∫ β

0

dτ ′χ(τ − τ ′)Sj(τ) · Sj(τ
′). (7.4)

The spin bosonic bath χ(τ) = 〈TτSj(τ) · Sj(0)〉Aj
=

∫
dvjPW (vj)〈TτSj(τ) · Sj(0)〉Aj

and the

conduction electron bath Gc(τ) = Gcj(τ) = −〈Tτcjσ(τ)c†jσ(0)〉Aj
are obtained by averaging

over site disorder. For simplicity, a semicircle conduction band density of states is assumed.

On the level of a single site we are dealing with the Bose-Fermi Kondo model [91, 92, 93, 94],

which describes a Kondo spin embedded in a fermionic bath of conduction electrons and

a bosonic bath of spin fluctuations. However, for the Kondo lattice we need to consider

self-consistently an ensemble of such Bose-Fermi Kondo models, and the disorder in the

Kondo couplings will lead to qualitatively different behavior than in the clean case. We will

defer for a moment a discussion of the general properties of the Bose-Fermi Kondo model,

and present results for two important special cases of the model given by the action (7.4).
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7.2 Sachdev-Ye model of the spin liquid

We refer to the system of interacting quantum spins which does not exhibit any magnetic

ordering as a spin liquid. One of the well known spin liquid models is introduced in the work

of Sachdev and Ye [88]. The model describes quantum Heisenberg spins with infinite-range

random interaction. Solution of such a model is made possible by extending the spin

symmetry from SU(2) to SU(N). The Hamiltonian is given by

H =
1√NN

∑
i<j

JijSiSj, (7.5)

where the sum extends over N →∞ sites. The random exchange constants are distributed

by the uncorrelated Gaussian distribution P (Jij) ∼ exp(−J2
ij/2J

2).

This model can be reduced to a single site model with the action

A =
J2

2N

∫ β

0

dτdτ ′χ(τ − τ ′)S(τ) · S(τ ′), (7.6)

supplemented by the self-consistency condition

χ(τ − τ ′) =
1

N2
〈S(τ) · S(τ ′)〉A. (7.7)

The N2 − 1 components of the SU(N) spin operator Si = Siαβ can be represented by the

fermionic representation

Siαβ = f †iαfiβ − 1

N
δαβ

∑
α

f †iαfiα, (7.8)

subject to the constraint ∑
α

f †iαfiα =
N

2
. (7.9)

The interaction term becomes quartic in the fermionic fields f , which can be decoupled by

the Hubbad-Stratonovich transformation, and in the N → ∞ limit Eqs. (7.6)-(7.7) reduce

to

Gf (iωn)
1

iωn − Σf (iωn)
, (7.10)

Σf (τ) = J2χ(τ)Gf (τ). (7.11)

The local spin-spin correlation function is given by

χ(τ) = −Gf (τ)Gf (−τ), (7.12)

where Gf is the fermionic Green function given by δαβGf (τ) = −〈Tfα(τ)f †β(0)〉A. Since the

action is invariant on the rotations in the spin space, only the diagonal terms are non-zero

86



and they are equal. We want to find the solution of the Eqs. (7.10)-(7.12) at zero temperature

for low frequencies.

Let us first solve Eqs. (7.10)-(7.11) assuming that at large imaginary time τ the bosonic

bath has the form

χ(τ) =
C

τ 2−ε
, τ & 1/Λ, (7.13)

where Λ is a large frequency cut-off and 0 < ε < 2. At particle-hole symmetry Gf (iωn) and

Σ(iωn) are purely imaginary and odd, while Gf (τ) and Σ(τ) are real and odd. The Fourier

transform pairs

F (iω) =

∫ ∞

∞
dτeiωτF (τ), F (τ) =

∫ ∞

∞

dω

2π
e−iωτF (iω) (7.14)

then reduce to

F (iω) = 2i

∫ ∞

0

dτ sin(ωτ)F (τ), F (τ) = −i

∫ ∞

0

dω

π
sin(ωτ)F (iω) (7.15)

As we will confirm shortly, the Green function assumes the form

Gf (τ) = − B

τ ε/2
, τ & 1/Λ. (7.16)

Then the self-energy is equal to Σf (τ) = −J2BC/τ 2−ε/2, and its Fourier transform

Σf (iω) = Σr
f (iω)− 2iBCJ2

∫ ∞

1/Λ

dτ
sin(ωτ)

τ 2−ε/2
, (7.17)

where Σr
f (iω) is the regular term which comes from short time part in Σf (τ). Similarly,

Gf (iω) = Gr
f (iω)− 2Bi

∫ ∞

1/Λ

dτ
sin(ωτ)

τ ε/2
. (7.18)

After substitution ωτ = x, the self-energy and the ”f-electron” Green function assume the

form

Σf (iω) = Σr
f (iω)− 2iBCJ2ω1−ε/2

∫ ∞

ω/Λ

dx
sin x

x2−ε/2
, (7.19)

Gf (iω) = Gr
f (iω)− 2iB

ω1−ε/2

∫ ∞

ω/Λ

dx
sin x

xε/2
. (7.20)

The integrals can be calculated explicitly,
∫ ∞

ω/Λ

dx
sin x

x2−ε/2
= cos

(πε

4

) Γ(ε/2)

1− ε/2
, ω/Λ → 0, (7.21)
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∫ ∞

ω/Λ

dx
sin x

xε/2
= cos

(πε

4

)
Γ(1− ε/2), ω/Λ → 0. (7.22)

Now it becomes clear that for ε > 0 the second term in Eq. (7.19) provides a leading

non-analytic contribution to the self-energy at low frequencies,

Σf (iω) = −2iBCJ2 cos
(πε

4

) Γ(ε/2)

1− ε/2
ω1−ε/2, ω → 0, (7.23)

and the second term in Eq. (7.20) a singular contribution to the Green function

Gf (iω) = −2iB cos
(πε

4

)
Γ(1− ε/2)

1

ω1−ε/2
, ω → 0. (7.24)

From Eq. (7.10) a constant B =
[
(1− ε

2
)/(4CJ2 cos2(πε

4
)Γ(1− ε

2
)Γ( ε

2
))

]1/2
.

The self-energy, Eq. (7.23), and the Green function, Eq. (7.24), are obtained for a given

form of the bosonic bath χ(τ) = C/τ 2−ε. If we enforce the self-consistency condition for

the form of the bosonic bath, Eq. (7.12), we find that the exponent ε is equal to 1. The

self-energy and the Green function then assume the form

Σf (iω) = −i

(
J2

π

)1/4√
ω, (7.25)

Gf (iω) = −i
( π

J2

)1/4 1√
ω

. (7.26)

Analytical continuation to the upper complex half-plane gives

Gf (z) =
( π

4J2

)1/4 1− i√
iω

, Imz > 0, |z| → 0. (7.27)

The most prominent feature of the Sachdev-Ye spin liquid model is the logarithmic

divergence of dynamic magnetic susceptibility χ(ω). In the imaginary time

χ(iω) = χr +
1√
πJ

∫ ∞

ω/Λ

dx
cos x

x
, (7.28)

which gives

χ(iω) = − 1√
πJ

ln ω + const., ω → 0. (7.29)

We have solved the Sachdev-Ye model numerically on imaginary frequency axis using

Fast Fourier transform methods. The low frequency results shown in Fig. 7.1 and Fig. 7.2

are in excellent agreement with Eqs. (7.26) and (7.29).
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Figure 7.1. Imaginary time Green’s function of the Sachdev-Ye model showing square root
singularity at ω → 0. The coupling constant is set to J = 1.
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Figure 7.2. Dynamic magnetic susceptibility on imaginary frequency axis. The coupling
constant is set to J = 1.
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7.3 Clean Kondo lattice with magnetic frustration

The inter-site spin-spin interaction reduces the Kondo temperature, and may completely

destroy the Kondo effect in the Kondo lattice systems. In this Section we address

the following questions: (a) What is the minimum spin-spin coupling J necessary for a

destruction of the Kondo effect? (b) How does the Fermi liquid coherence scale diminish as

we approach to the decoupling transition, i.e. spin liquid phase? These questions can be

explicitly answered within an extended DMFT model in the large N limit.

7.3.1 Critical RKKY interaction for the clean Kondo lattice

We consider the model given by action (7.4), but in absence of the disorder in the

conduction bath. In the large N limit the coupling constants are rescaled as JK → JK/N

and J → J/
√

N . The localized spins in the fermionic representation are given as before

by Eq. (7.8). Introducing slave boson parameters r and εj, and minimizing the local free

energy, we come to the following saddle-point equations [89]

1

β

∑
ωn

eiωn0+

Gj(iωn) =
1

2
, (7.30)

1

β

∑
ωn

Gj(iωn)∆j(iωn) = − 1

JK

. (7.31)

The local f -pseudo-fermion Green’s function Gf (τ) = −〈Tτfσ(τ)f †σ(0)〉, is given by

G−1
f (iωn) = iωn − εf − Σ (iωn)− r2∆f (iωn) . (7.32)

The self-energy is equal to

Σ(τ) = J2χ(τ)Gf (τ), (7.33)

and

∆−1
f (iωn) = iωn + µ− t2Gc (iωn) . (7.34)

These equations for a single impurity have to be supplemented by the self-consistency

conditions,

χ(τ) = −Gf (τ)Gf (−τ), (7.35)
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and

G−1
c (iωn) = ∆−1

f (iωn)− r2

iωn − εf − Σj (iωn)
. (7.36)

At the decoupling transition the Kondo temperature, proportional to the slave boson

parameter r2, vanishes. Therefore we seek for the solution of the saddle point equation

(7.31) which, on the real frequency axis at zero temperature, assumes the form

1

π

∫ 0

−∞
dω Im

[
GJc

SY (ω)Go
c(ω + µ)

]
=

1

JK

. (7.37)

Here GJc
SY is the Sachdev-Ye spin liquid Green function which is approximately given by

GJc
SY (ω) =





(π

4

)1/4 1√
Jc

1− i√
ω

, |ω| < Jc

1

ω
, |ω| > Jc.

(7.38)

For simplicity we take uniform DOS of the conduction band from −D to D. Then

ReGo
c(0) = 0, and we denote ImG0

c = −πρo. Eq. (7.37) reduces to

∫ 0

−D

dω ReGJc
SY (ω) = − 1

ρoJK

. (7.39)

After integration, we obtain that the critical RKKY interaction is equal to1

Jc = e2De−1/ρoJK = e2T o
K ≈ 10T o

K . (7.40)

This result nicely agrees with the numerical solution of the system of equations (7.30)-(7.36),

Fig. 7.3.

7.3.2 Critical behavior

An important question is to determine how does the renormalized Kondo temperature

T ∗ (defined below) decrease as we approach to the critical point J = Jc. As discussed in

detail in the next section, the form of the bosonic bath χ(τ) ∼ 1/τ 2−ε, characterized by the

exponent ε, is crucial for the properties of the Kondo lattice model with spin-spin (RKKY)

interactions. Therefore, we will consider first the case of an impurity in a given bosonic

bath. As we will see, fully self-consistent solution has the same critical behavior as a single

impurity in the ε = 1 bosonic bath.

1In agreement with an improved analytical estimate of D. Grempel, private communication.
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Figure 7.3. Slave boson parameter r2 as a function of the RKKY coupling constant J . A
connection between r2 and the renormalized Kondo temperature T ∗ is established the text.

Bosonic ε = 1 bath. We assume that conduction bath and the bosonic bath characterized

by the exponent ε = 1 are given, and we use the first slave boson equation (7.30) (Friedel

sum rule)

− 1

π

∫ 0

−∞
dω ImGf (ω) =

1

2
, (7.41)

where the impurity Green function is given by

Gf (ω) =
1

ω − εf − Σ(ω)− r2∆f (ω)
. (7.42)

For the Bethe lattice ∆f (ω) = Gc(ω).

The idea is to distinguish different energy (frequency) scales of the problem, and use the

approximate form of Gf (ω) in each of the found regimes. First we will use the Friedel sum

rule to find the value of the impurity Green function at zero frequency, Gf (ω = 0). We are

interested in the limit r2 → 0 when the frequency dependence in ∆f (ω) in Eq. (7.42) can be

neglected, and ∆f (ω) replaced by its value at the Fermi level ∆f (0) ≡ ∆. The left-hand-side

of Eq. (7.41) assumes the form
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LHS ≡ − 1

π

∫ 0

−∞
dω ImGf (ω)

= − 1

π
Im

∫ 0

−∞
dω

1

ω − εf − r2∆′ − Σ(ω) + ir2|∆′′|

= − 1

π
Im

∫ 0

−∞
dω

{ ∂

∂ω
ln(ω − εf − r2∆′ − Σ(ω) + ir2|∆′′|)

+
∂Σ(ω)/∂ω

ω − εf − r2∆′ − Σ(ω) + ir2|∆′′|
}

. (7.43)

Performing the integration

LHS = − 1

π
Im ln(ω − εf − r2∆′ − Σ(ω) + ir2|∆′′|)

∣∣0
−∞

− 1

π
Im

∫ 0

−∞
dω

∂Σ(ω)

∂ω
Gf (ω)

= − 1

π
arctan

r2|∆′′| − Σ′′(ω)

ω − εf − r2∆′ − Σ′(ω)

∣∣∣∣
0

−∞

= − 1

π

[π

2
− arctan

ω − εf − r2∆′ − Σ′(ω)

r2|∆′′| − Σ′′(ω)

]∣∣∣∣
0

−∞

=
1

2
− arctan

εf + r2∆′ + Σ(0)

r2|∆′′| (7.44)

Therefore, Eq. (7.41) gives that εf + r2∆′ + Σ(0) = 0, i.e.

εf + Σ(0)

r2
= −∆′. (7.45)

In this derivation we used theorems from the Fermi liquid theory stating that Σ′′(0) = 0 and

Im
∫ εF

−∞ ∂Σ(ω)/∂ωG(ω) dω = 0 [4].

Now we are ready to analyze the impurity Green function, Eq. (7.42). We distinguish

three frequency intervals:

(i) |ω| < T ∗, where T ∗ denotes the Fermi liquid coherence temperature. In this interval

Gf (ω) ≈ Gf (0) = −i/r2|∆′′|, where we used Eq. (7.45).

(ii) T ∗ < |ω| < J . Here Σ(ω) ∝ J
√

(ω) is a dominant term in the numerator of Eq. (7.42),

and Gf (ω) acquires the spin liquid form Gf (ω) ≈ GJ
SL(ω) ∼ (1− i)/(J

√
ω).

(iii) |ω| > J . Atomic limit is approached, and Gf (ω) ≈ GJ
SL(ω) ∼ 1/ω. The coherence

frequency T ∗ is obtained from matching ρf (ω) ≡ − 1
π
Gf (ω) at ω = T ∗. It is given by

T ∗ =
|∆′′|2
J2

r4. (7.46)

(J and ∆ are given in units of D = 2t.)
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The easiest way to proceed is to subtract from Eq. (7.41) the corresponding equation for

J = Jc. We obtain ∫ 0

−∞
dω

[
ImGf (ω)− ImGJc

SY (ω)
]

= 0. (7.47)

The left-hand side is equal to

∫ 0

−T ∗
dω

[
−1

r2|∆′′| −
−1

Jc

√
|ω|

]
+

∫ −T ∗

−Jc

dω

[
−1

J
√
|ω| −

−1

Jc

√
|ω|

]

=
|∆′′|r2

J2
c

− 2

(
1

J
− 1

Jc

)
(
√

Jc −
√

T ∗) ≈ |∆′′|r2

J2
c

− 2√
Jc

δ, (7.48)

where δ = 1− J/Jc. Therefore

r2 =
2J

3/2
c

|∆′′| δ, (7.49)

and

T ∗ ∝ δ2. (7.50)

Note that this derivation relies only on the first slave boson equation and it does not require

small values for J and JK .

Arbitrary ε. The critical behavior in presence of the bosonic bath with an arbitrary

exponent ε, 0 < ε < 2, can be obtained along the same lines as for ε = 1. Again there are

three distinctive intervals:

(i) |ω| < T ∗; in this interval Gf (ω) ≈ Gf (0) = −i/r2|∆′′|.
(ii) T ∗ < |ω| < J ; Gf (ω) ≈ GJ

SL(ω) ∼ (1− i)/(Jω1−ε/2).

(iii) |ω| > J ; Gf (ω) ≈ GJ
SL(ω) ∼ 1/ω. The coherence frequency T ∗ is obtained from

matching ρf (ω) ≡ − 1
π
Gf (ω) at ω = T ∗. It is given by (up to the prefactor which depends

on J)

T ∗ ∼ (r2)2/(2−ε). (7.51)

Similarly as in the as in ε = 1 case, we find that

r2 ∼ δ(2−ε)/ε, (7.52)

which implies

T ∗ ∼ δ2/ε. (7.53)
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Self-consistent solution - Kondo lattice. In the self-consistent solution for the Kondo

lattice [89] the conduction bath obtains a strong frequency dependence for |ω| < r2, and the

Friedel sum rule yields
r2

εf + Σ(0)
= ε>

F − µ. (7.54)

ε>
F is the chemical potential corresponding to the noninteracting Fermi level with (nc + 1)/2

electrons per spin. Luttinger theorem is satisfied for the “large” Fermi surface containing

both conduction electrons and localized spins [95]. This implies that

ImGf (0) =
(ε>

F − µ)2

r2
ImG0

c(ε
>
F ). (7.55)

We can then repeat the same arguments as for a single impurity Green’s function. The

coherence frequency, obtained by matching the density of states at zero frequency and in the

spin liquid regime, is equal to

T ∗ =

[
(4π3)−1/4 r2

(ε>
F − µ)2ρ0(ε

>
F )
√

J

]2

. (7.56)

Following the same steps which lead to Eq. (7.49), we obtain

r2 = 2
√

π(ε>
F − µ)2ρ0(ε

>
F )Jc δ. (7.57)

Therefore the conclusions that r2 ∝ δ and T ∗ ∝ δ2 remain the same. This result is supported

by the numerical solution, Fig. 7.3. Note that we do not find a logarithmic prefactor ln δ

from Eq. (20) in Ref. [89].

7.4 Disordered Kondo lattice: Destruction of the Kondo effect

We have seen that the solution of the Kondo lattice model with RKKY interactions

reduces in the limit of large coordination number to the set of impurity problems which have

to be solved self-consistently. In the previous section, we have solved such a model in a

specific case of the clean Kondo lattice with random infinite-ranged RKKY interactions

in the large-N approximation. However, the problem of an impurity embedded in the

fermionic bath of conduction electrons and the bosonic bath of spin fluctuations (”Bose-Fermi

Kondo model”) is quite generic and it is of importance for various physical systems. In this
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section, we will summarize the results for the Bose-Fermi Kondo model obtained within the

renormalization group approach, and then use this analysis to explain how the disorder in

the local Kondo couplings provides a mechanism which leads to the destruction of the Kondo

effect in the Kondo lattice systems.

7.4.1 Bose-Fermi Kondo impurity model

The Bose-Fermi Kondo model (BFKM) describes a local impurity spin which couples

both to the fermionic fields (describing non-correlated conduction electrons) and the bosonic

fields (describing fluctuating magnetic field). As we have seen, this model naturally appears

in extended DMFT theories, and its purely bosonic version emerges in the mean field theories

of spin glass and spin liquid.

The local effective action of the BFKM model is given by

Aeff =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c†σ(τ)[(∂τ − µ)δ(τ − τ ′)

− ∆c(τ − τ ′)]cσ(τ ′) + JK

∫ β

0

dτS(τ) · s(τ)

− J2

2

∫ β

0

dτ

∫ β

0

dτ ′χ(τ − τ ′)S(τ) · S(τ ′). (7.58)

As before, S and s = 1
2

∑
αβ c†ασαβcβ represent a localized spin and the conduction electron

spin density, respectively. ∆c is (featureless) conduction bath, and χ(τ) decays in the

imaginary time as a power law, χ(τ) ∼ 1/τ 2−ε, 0 ≤ ε < 2.

This model is extensively studied within renormalization group approach [91, 92, 93, 94]

and it provides one of the simplest examples of the zero temperature (quantum) phase

transitions. For ε = 0, which corresponds to so-called Ohmic bosonic bath, the impurity

spin is screened by the Kondo effect at zero temperature for arbitrary RKKY coupling J .

However, for ε > 0 (sub-Ohmic bath) the Kondo effect is destroyed for strong enough J ,

and the spin decouples from the conduction bath. The phase diagram of the BFKM in a

presence of the sub-Ohmic bosonic bath is shown in Fig. 7.4. For small J the system is in

the Kondo screened phase where the only effect of the RKKY coupling is to renormalize

(decrease) the Kondo temperature. The Kondo coupling JK flows to the strong coupling
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Figure 7.4. RG flow for the Bose-Fermi Kondo model.

limit which corresponds to the Fermi liquid fixed point. For stronger J, there is a decoupled

phase where the Kondo coupling JK goes to zero, and J to the spin liquid fixed point.

The form of the critical line can be determined from the RG equations. To the first order

in the exponent ε, RG equations assume the form [92]

β(JK) =
1

2
(−gJK + J2

K), (7.59)

β(g) = εg − g2, (7.60)

where β(JK) ≡ dJK/(d ln t), and g = J2. Here, t is a lower cutoff on the imaginary times.

Its bare value is to ∼ 1/D, where D is the bandwidth. All energy scales are in units of the

bandwidth, so that the conduction electron density of states ρc ∼ O(1) is absorbed in the

definitions of JK and g. The phase transition is controlled by an (unstable) fixed point at

g∗ = J∗K = ε. To eliminate the scaling variable, we can divide Eq. (7.58) by Eq. (7.59), and

obtain
dJK

dg
=

1

2

−gJK + J2
K

εg − g2
. (7.61)
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This nonlinear differential equation defines the family of scaling trajectories, each of which

is specified by an initial condition on the boundary of the g − J plane. In particular, the

critical line corresponds to the solution specified by the initial condition JK(g = 0) = 0.

Critical line near the origin. We first examine the form of this line close to the origin,

such that both JK À ε and g ¿ ε. In this case, we can drop the g2 term in the denominator

and get
dJK

dg
=

JK

2ε

[
−1 +

JK

g

]
. (7.62)

We can immediately see that JK = Ag is not a solution, since this would require the

right-hand-side to be a constant. It is also clear that one must have JK > g, otherwise

JK would not be an increasing function of g. Therefore, near the origin JK/g À 1 so we can

drop −1 term, and obtain
dJK

dg
≈ J2

K

2εg
, (7.63)

which gives

g ≈ e−2ε/JK . (7.64)

The leading behavior is the same as in the large-N solution, J ≡ √
g ∼ e−1ε/JK ∼ T o

K , where

T o
K is the Kondo temperature in the bare (g = 0) model.

Critical line near the unstable fixed point. Here we need to expand the RG equations

around the fixed point value g∗ = J∗ = ε. Let us define δg = g− ε, and δJK = JK − ε. Then

Eqs. (7.59)-(7.60) take the form

β(JK) ≈ ε

2
(δJK − δg), (7.65)

β(g) = −εδg. (7.66)

In vector notation, [
β(JK)
β(g)

]
=

[
ε
2
− ε

2

0 −ε

] [
δJK

δg

]
. (7.67)

The eigenvalues are

λJK
=

ε

2
, (7.68)

λg = −ε. (7.69)
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The critical line corresponds to the eigenvector ~xg (irrelevant direction), determined by

δJK = δg/3. This line has a positive slope and passes through the point (ε, ε). Therefore,

close to the critical point, the form of the critical line is

JK(g) ≈ 2

3
ε +

1

3
g. (7.70)

Critical line for g À ε. In the asymptotic regime

dJK

dg
=

JK

2g
. (7.71)

The solution is of the form JK = C
√

g. To estimate the form of the critical line, we demand

that this asymptotic solution ”matches” in the fixed point region, i.e. we determine the

constant C from the requirement JK(ε) = ε. This gives C =
√

ε, and we can write

JK(g) ≈ √
εg. (7.72)

7.4.2 Sub-Ohmic dissipative bath in the electronic Griffiths phase

The presence of RKKY interactions introduces a qualitative modification to the dynamics

of the Kondo spins, as described by the presence of a dissipative bosonic bath of spin

fluctuations. As we have seen in the previous section, this behavior depends crucially on the

precise spectral form of the bosonic bath, allowing for the destruction of the Kondo effect

in the presence of sub-Ohmic dissipation. For a spectrum of the low frequency (large time)

form

χ (iωn) ∼ χ (0)− C |ωn|1−ε ⇔ χ(τ) ∼ 1

τ 2−ε
, (7.73)

Fermi liquid behavior is recovered for ε = 0, but for ε > 0 (sub-Ohmic dissipation), and

for sufficiently small bare Kondo temperature TK , the spin decouples from the conduction

electrons. Within an electronic Griffiths phase, however, the disordered Kondo lattice has a

very broad distribution of local Kondo temperatures P (TK) ∼ (TK)α−1. Therefore, for ε > 0

and arbitrarily weak coupling to the bosonic bath (i.e. weak RKKY interaction), a fraction

of the spins will decouple. The crucial question is under what conditions the disordered

Kondo lattice model produces a sub-Ohmic dissipative bath.

To obtain a sufficient condition for decoupling, we examine the stability of the Fermi

liquid solution, by considering the limit of infinitesimal RKKY interactions. To leading
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order we replace χ(τ) −→ χo (τ) ≡ χ(τ ; J = 0), and the calculation reduces to the “bare

model of Chapter 6. The resulting bosonic bath, which is an average over the site-dependent

local dynamic spin susceptibility,

χo (iωn) =

∫
dTKP (TK) χ (TK , iωn) , (7.74)

has a Fermi liquid form in the presence of weak disorder. However, for stronger randomness,

W > W ∗ ≈
√

t2ρcJK/2 corresponding to α < 2 (here, ρc is the density of states for

conduction electrons), the power law distribution of energy scales within a Griffiths phase

produces sub-Ohmic dissipation as follows

χo(iωn) =

∫ Λ

0

dT o
KP (T o

K)
1

iωn + T o
K

∼
∫ Λ

iωn

dT o
K(T o

K)α−2

=
1

α− 1

[
Λα−1 − (iωn)α−1

]
. (7.75)

The exponent ε = 2 − α > 0. Note that the estimate based on the bare theory sets

an upper bound for the true critical disorder strength, i.e. Wc < W ∗ = Wnfl/
√

2 (here,

Wnfl ≈
√

t2ρcJK/2 is the threshold for NFL behavior in the bare model, corresponding to

α = 1). We emphasize that within the electronic Griffiths phase, such decoupling emerges

for W > Wc even for arbitrarily small J , in contrast to the clean case where much stronger

RKKY interactions (J > Jc ≈ 10 TK) are required to destroy the Kondo effect.

7.5 Two fluid phase in the disordered Kondo lattice

We have seen that the properties of the Bose-Fermi Kondo impurity model depend

crucially on the form of the bosonic bath. In the lattice case the solution of a set of single

impurity problems determines the form of the bosonic bath, and the problem has to be

solved self-consistently. In this Section we show from renormalization group analysis that

the self-consistent solution has the exponent ε equal to 1. Numerical solution in the large-N

limit confirms the RG results, and also provides an important quantitative estimate of the

phase boundaries and crossover scales.
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7.5.1 Self-consistent form of the bosonic bath

For nonzero RKKY coupling J , and for the disorder strength W larger than the critical

value Wc, the spins break up into two groups: the decoupled spins and those that remain

Kondo screened. Since the self-consistent bosonic bath function χ(iωn) is an algebraic

average over all spins, it is an additive function of the contributions from each fluid

χ (iωn) = nχdc (iωn) + (1− n)χs (iωn) . (7.76)

Here, n is the fraction of spins in the decoupled phase. As we shall see, the functions χdc (iωn)

and χs (iωn) both have a singular, non-Fermi liquid form characterized by exponents εdc and

εs, respectively. Deferring for a moment the study of the critical region (infinitesimally

small n), we first examine the solution deep within the spin liquid phase. The first step

in the self-consistent procedure is computing εdc and εs for a given value of the bath

exponent ε. The spin autocorrelation function in the decoupled phase assumes the form

χdc(τ) = 〈TτS (τ) · S (0)〉 ∼ 1/τ ε, a result valid to all orders in ε. Since εdc is defined by

χdc(τ) ∼ 1/τ 2−εdc , we find

εdc(ε) = 2− ε. (7.77)

The non-analytic part of χs (iωn) comes from the spins with the smallest (renormalized)

Kondo temperatures T ∗ (“barely screened spins”)

χbs (iωn) =

∫ Λ

0

dT ∗P (T ∗) χbs (T ∗, iωn) . (7.78)

Here P (T ∗) is the distribution of renormalized Kondo temperatures (local Fermi liquid

coherence scales), and χbs (T ∗, iωn) is the local dynamic susceptibility for a given T ∗.

Properties of the Bose-Fermi Kondo model in the critical region of the decoupling

transition have been extensively studied within renormalization group (RG) [91, 92, 93, 94]

and large-N approaches [89], and we use these results to calculate χbs. In particular,

T ∗ ∼ (δJK)ν ∼ (δTK)ν , which gives dT ∗/dTK ∼ (T ∗)1−1/ν . Therefore

P (T ∗) = P [TK (T ∗)]
dTK

dT ∗ ∼
dTK

dT ∗ ∼ (T ∗)1/ν−1 . (7.79)

From scaling arguments [91, 92, 93, 94], χbs (T ∗, ω) = (T ∗)η−1 φ (ω/T ∗), where η is the

anomalous dimension, which is known to be exactly ε [93, 94]. Performing the integration
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in Eq. (7.78), we find at low frequencies χbs (iωn) = χbs(0)− C” |ωn|η+ 1
ν
−1, or, equivalently,

at large times χbs(τ) ∼ 1/τ η+ 1
ν . By definition, χs(τ) ∼ 1/τ 2−εs , which gives

εs(ε) = 2− η − 1/ν. (7.80)

Since η = ε and ν > 0 (as the relevant eigenvalue at the unstable fixed point), Eqs. (7.77)

and (7.80) imply that εdc > εs. Therefore, ε = max{εdc, εs} = εdc, and from Eq. (7.77)

we find that the self-consistent bath is characterized by the exponent ε = 1, as in the spin

liquid model of Sachdev and Ye [88], producing a logarithmic divergence of the average local

dynamic spin susceptibility. Note that, in contrast to the bare (J = 0) model of the electronic

Griffiths phase, the renormalized distribution P (T ∗) of local energy scales now assumes a

universal form characterized by an exponent α∗(ε) = 1/ν(ε) ≈ ε/2 = 1/2 within the spin

liquid phase. The divergence of the local susceptibility does not necessarily imply that the

bulk (uniform) susceptibility behaves in the same manner [95], and more work is needed to

determine the behavior of the uniform susceptibility as well as specific heat.

7.5.2 Transport in the spin liquid phase

Although the renormalized Kondo coupling scales to zero for the decoupled spins, the

precise form of the RG flows (scaling dimension of “irrelevant operators”) near the spin-liquid

fixed point still determines the finite frequency (or finite temperature) corrections. To leading

order, the contribution from decoupled spins scales as ρ(ω) ∼ [J∗K(ω)]2, while J∗K(ω) ∼ ω1/ν .

To compute the appropriate exponent at the spin-liquid fixed point we have used the

ε-expansion approach of Refs. [93, 94], and we find ν = 2/ε+O(ε3). From our self-consistent

solution for the spin-liquid phase (ε = 1), we obtain 1/ν ≈ 1/2, producing again a marginal

Fermi liquid 2 correction to the resistivity δρdc(ω) ∼ ω, or at ω = 0 and finite temperature

δρdc(T ) ∼ T.

7.5.3 Numerical results in the large-N limit

As an illustration of our analytical predictions, and to obtain quantitative results, we

proceed to the numerical solution of our equations in the large-N limit. Introducing

2”Marginal” Fermi liquid model is proposed on phenomenological grounds as by Varma et al. [83] as a
description of the electronic properties of cuprates.
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site-dependent slave boson parameters rj and εfj, and minimizing the local free energy,

we come to the following saddle-point equations

1

β

∑
ωn

eiωn0+

Gfj(iωn) =
1

2
, (7.81)

1

β

∑
ωn

Gfj(iωn)∆fj(iωn) = − 1

JK

. (7.82)

The local f -pseudo-fermion Green’s function Gfj(τ) = −〈Tτfjσ(τ)f †jσ(0)〉, is given by

G−1
fj (iωn) = iωn − εfj − Σj (iωn) − r2

j∆fj (iωn). The self-energy is equal to Σj(τ) =

J2χ(τ)Gfj(τ), and ∆−1
fj (iωn) = iωn + µ − vj − t2Gc (iωn). This Kondo impurity problem

has to be solved self-consistently, such that Gc and χ(τ) have to be calculated by averaging

over the site energies, χ(τ) = −Gfj(τ)Gfj(−τ), and Gc(iωn) = Gcj(iωn), where G−1
cj (iωn) =

∆−1
fj (iωn)− r2

j/ [iωn − εfj − Σj (iωn)] .

These equations were solved on the imaginary axis at T = 0 using fast Fourier transform

methods. The total average local dynamic susceptibility χ together with the contributions

coming from Kondo screened χs and decoupled spins χdc is shown in Fig. 7.5(a). At low

frequencies, the contribution from Kondo screened spins saturates to a constant, while the

decoupled spins produce a logarithmic divergence. A comparison with the bare model

illustrates how the strong power law divergence of χ found for J = 0 is suppressed by the

dynamical RKKY interactions. Fig. 7.5(b) shows how χ evolves with the change of disorder.

Note that marginal Fermi liquid behavior persists up to a crossover scale ωsl ∼ 0.1TK (vj = 0)

which has very weak dependence on the disorder strength.

7.5.4 Critical behavior

In this section we will show that the spin decoupling has a form of a continuous phase

transition, where the number of decoupled spins exponentially goes to zero as the the disorder

strength W approaches to the critical value Wc.

The strategy is to express the minimum site energy εc leading to the destruction of the

Kondo effect as a function of the ratio of decoupled spins n. We will use the second slave

boson equation
1

π

∫ ∞

0

dω Im [Gfj(iω)∆fj(iω)] =
1

JK

, (7.83)
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Figure 7.5. Local dynamic magnetic susceptibility. (a) At low frequencies, the decoupled
spins (dashed line) provide the leading logarithmic dependence of the total averaged
susceptibility (full line). For the values of the parameters used (JK = 0.8, J = 0.05, µ = −0.1
in units of the half bandwidth, corresponding to TK (vj = 0) = 0.1 and Wc ≈ 0.1), there are
n = 8% of decoupled spins at W = 0.4. The bare model (J = 0) leads to a stronger
non-universal power law singularity (dash-dotted line). (b) χ(iω) for the disorder strength
ranging from 0 to 0.4.

where the f -electron Green function is given by

Gfj(ω) =
1

ω − εfj − Σj(ω)− r2
j∆fj

. (7.84)

Close to the decoupling point rj → 0, and Gf is determined by the form of the average

dynamic susceptibility χ.

The arguments which followed Eq. (7.76) have to be modified since the relative im-

portance of the various contributions to the average local susceptibility changes near the

critical point. First, we concentrate on the contribution from the barely screened spins

given by Eq. (7.78). As before, P (T ∗) = P [TK (T ∗)] dTK/dT ∗, but close to the transi-

tion P (TK) is small and cannot be replaced by a constant prefactor of order 1. Since

P (TK) ≈ P (TKc) ∼ (TKc)
α−1, we find
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n =

∫ TKc

0

dTKP (TK) ∼ (TKc)
α , (7.85)

where TKc is the bare Kondo temperature at the site energy εc at which the spins start to

decouple. Therefore

P (TK) ∼ n(α−1)/α. (7.86)

From the bare model, we know that (for small J) α ≈ 2 near the critical point. Now we are

in a position to write down the general form of the total bosonic bath at low frequencies

χ(iωn) = χo − C1 |ωn| − C2n
1/2 |ωn|η+ 1

ν
−1 − C3 n ln |ωn| . (7.87)

The first two terms come from the well screened spins and have the Fermi liquid form.

The third term is due to the “barely screened” spins and the last term is the contribution

from the decoupled spins. The crucial point is that the non-analytic term from the barely

screened spins, being proportional to
√

n, is much larger than the logarithmic term due to

the n decoupled spins, except at exponentially small frequencies. Therefore, we can neglect

the last term in Eq. (7.87). Then the exponent ε of the bosonic bath can be self-consistently

calculated from the equation

1− ε = η +
1

ν
− 1. (7.88)

The anomalous exponent η = ε, and within large-N approximation ν = 2/ε, which gives

ε =
4

5
. (7.89)

The expression for the average susceptibility then assumes the form

χ(ω) = χo − C1 ω − C2 nβ ω1−ε, (7.90)

where β = (α − 1)/α = 1/2 and ε = 4/5. The non-analytic term in Eq. (7.90) becomes

dominant at frequencies smaller than the characteristic frequency

ω∗ =
C2

C1

nβ/ε. (7.91)

Identifying the characteristic frequency ω∗, we are able to write down an approximate

expression for Gfj(ω) close to the decoupling point, i.e. in the limit εfj → 0 and r2
j → 0

Gfj(iω) =





−iB sgnω

|ω|1−ε/2
, |ω| < ω∗

−i
1

ω
, |ω| > ω∗.

(7.92)
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In order to calculate the integral in Eq. (7.83), we will neglect the real part of ∆fj and

its frequency dependence. In other words, we assume that the cavity field ∆fj has flat

particle-hole symmetric DOS ρj with the bandwidth 2D. Then, for large site energy εj, we

find − 1
π
∆f ≈ ρ0/ε

2
j . Eq. (7.83) reduces to

∫ D

0

dω Im Gfj(ω) =
ε2

j

ρ0JK

, (7.93)

and after the integration
2B

ε
(ω∗)ε/2 + ln

D

ω∗
=

ε2
j

ρ0JK

. (7.94)

Keeping only the leading terms, we find the desired relation between the decoupling site

energy εc and the number (ratio) of decoupled spins n

εc =
√
−C ln n. (7.95)

Here C is a positive constant. Since the number of decoupled spins is equal to

n =

∫ ∞

εc

dεP (ε), (7.96)

we have reached our goal: we have a single equation connecting the number of decoupled

spins n and the disorder strength W

n =

∫ ∞

√−C ln n

1√
2πW

e−ε2/2W 2

. (7.97)

In the remaining part of this Section we will find n(W ) from Eq. (7.97).

We will use properties of the error function which is defined as

erf(x) =
2√
π

∫ x

0

dt e−t2 . (7.98)

The large x asymptotic behavior is given by

erf(x) = 1− e−x2

√
π x

, x →∞. (7.99)

After a few steps of algebra, we find

n =
1

2
− 1

2
erf

(√−C ln n√
2W

)
, (7.100)
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and in the limit n → 0

n =
1

2

e−
−C ln n

2W2

√
π
√−C ln n√

2W

, (7.101)

which reduces to

− ln(− ln n)

ln n
= 2

(
1− C

2W 2

)
. (7.102)

The critical disorder strength is equal to

Wc =

√
C

2
, (7.103)

and

n = exp

(
−
√

C

4
√

2

1

W −Wc

ln(− ln n)

)
. (7.104)

If we neglect slow variations in ln(− ln n), we find

n = e−A/(W−Wc), (7.105)

where A is a positive constant. The numerical results for n(W ) are shown in the inset of

Fig. 7.6. From numerical results we can identify that close to the transition the fraction of

decoupled spins is very small, but a precise functional dependence is practically impossible

to determine due to the finite numerical precision. It is limited by the size of the frequency

grid on imaginary frequency axis, which is in our code of the order of 10−4.

7.5.5 Spin glass instability and phase diagram.

In this paper we have concentrated on the paramagnetic solution of our model. However,

the decoupled spins can be expected to form a spin glass (SG) at low temperatures in the

presence of random inter-site interactions [90]. For a rigorous treatment of the spin glass

phase, one needs to go beyond the N = ∞ limit, but a rough estimate of the temperature for

SG ordering [89] may be obtained by using the large-N approach as an approximate theory
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Figure 7.6. Phase diagram obtained for the same values of parameters as in Fig. 7.5. The
inset shows the fraction of decoupled spins as a function of disorder. Note that the decoupling
sets in already for moderate strength of disorder.

for the considered N = 2 case. The spin glass instability criterion [90], as appropriately

generalized to the case of additional site randomness then reads

√
χ2

j J/
√

2 = 1. (7.106)

Fig. 7.6 represents a generic phase diagram of our model. For weak disorder the system

is in the Fermi liquid phase, while for W > Wc the marginal Fermi liquid phase emerges.

The crossover temperature (dashed line) delimiting this regime can be estimated from the

frequency up to which the logarithmic (marginal) behavior in χ(iω) is observed 3. The spin

glass phase, obtained from Eq. (7.106), appears only at the lowest temperatures, well below

the marginal Fermi liquid boundary. Interestingly, recent experiments have indeed found

evidence of dynamical spin freezing in the millikelvin temperature range for some Kondo

alloys [96].

3For quantitative results, we need to solve the large-N equations at finite temperature. However, for the
purpose of obtaining a rough phase diagram, we have replaced temperature with frequency in χj (T ), using
the well-known ω/T scaling of the Bose-Fermi Kondo model.
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7.6 Summary

In summary, we have studied the interplay of the Kondo effect and RKKY interactions

within an extended dynamical mean field theory, where we have concentrated on the model

with random Kondo couplings. The disorder in the Kondo couplings is generated by the

Gaussian distribution of random site energies in the conduction band, the effective disorder

distribution which is earlier found to be quite generic for the disordered Kondo lattice

systems. For weak disorder, for realistic values of the RKKY coupling, the local spins

are screened by the conduction electrons and the system behaves as a Fermi liquid. For

stronger randomness, however, spins with the smallest Kondo temperatures decouple from

the conduction bath even in the presence of a weak RKKY interaction. We end up with

a two fluid behavior, where a fraction of spins are decoupled from the conduction bath

forming a spin liquid, while others remain hybridized with the conduction electrons in a

Fermi liquid. This is to be contrasted with the clean case, where a very large spin-spin

interaction is needed to destroy the Kondo effect. We have found that in the two fluid

phase the decoupled spins provide the leading logarithmic divergence in the local dynamic

magnetic susceptibility. Therefore, a stronger parameter dependent power law divergence in

the electronic Griffiths phase is suppressed by the inter-site RKKY interactions, and replaced

by universal logarithmic behavior.
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

In this thesis we have focused on two different problems in the physics of strongly

correlated systems with disorder. First, motivated by unusual properties of the metallic

phase in high mobility MOSFETs, we examined the influence of strong electron-electron

interactions on the impurity dominated resistivity. We have solved the problem in the case

of short ranged interactions in the limit of large coordination number. Our results favor a

description of the metal-insulator transition in MOSFETs as a Mott-Anderson transition,

but more work is needed to formulate and solve more realistic models. Our current results,

however, clearly illustrate that the solution of the general problem should be searched for

beyond the traditional perturbative theories, which are very successful in description of

weakly interacting systems.

Second, we have examined, within an extended dynamical mean field theory, two

competing processes in heavy fermion systems: the Kondo effect which leads to the

formation of the Fermi liquid with strongly renormalized effective parameters, and the

RKKY interactions which favor magnetic ordering. We have found that even a moderate

amount of disorder in the Kondo couplings leads to decoupling of the spins with lower

Kondo temperatures. These decoupled spins form a spin liquid with a universal logarithmic

divergence of the local dynamic magnetic susceptibility. Our work provides a possible

explanation of the non-Fermi liquid behavior in disordered heavy fermion systems. In

this sense it is very important to carefully examine the behavior of the uniform (bulk)

susceptibility and the specific heat within the present model, and also to include the RKKY

interactions beyond the infinite range model, which remains as a challenge for future work.
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APPENDIX A

ANDERSON IMPURITY MODEL IN THE

KONDO LIMIT

A.1 Limit |Ef | À 2ρ0V
2 with εi = 0

In order to make comparison with the case when the Kondo limit is reached for the large

site disorder, we will first recapitulate results for the well studied case of a single impurity in

a clean lattice. As a criterion for the Kondo limit, we will use |Ef | À 2ρ0V
2. For simplicity,

we will assume µ = 0 and a particle-hole symmetry.

The slave boson equations on a real frequency axis are

− 1

π

∫ 0

−∞
dω ImGf (ω) =

1

2
(1− Z), (A.1)

and
1

π

∫ 0

−∞
dω Im [Gf (ω)Gc(ω)] =

1

2

εf − Ef

V 2
. (A.2)

Here Gf (ω) = [ω − εf − ZV 2Gc(ω)]
−1

is f-electron Green’s function, Z is the slave boson

parameter and εf is the renormalized f-level energy. Let us denote Gc(ω) = G′
c(ω) + iG′′

c (ω).

Eq. (A.1) then becomes

− 1

π

∫ 0

−∞
dω

ZV 2G′′
c (ω)

(ω − εf − ZV 2G′
c(ω))2 + (ZV 2G′′

c (ω))2 =
1

2
(1− Z). (A.3)

In the Kondo limit, i.e. for Z → 0, we neglect frequency dependence in Gc(ω), and substitute

G′
c(ω) and G′′

c (ω) with their values at the Fermi surface. For particle-hole symmetric case
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G′
c(0) = 0. Now we denote ρ0 = −G′′

c (0)/π, and −ZV 2G′′
c (0) = πZV 2ρ0 = ∆. Eq. (A.1)

becomes
1

π

∫ 0

−D

dω
∆

(ω − εf )2 + ∆2
=

1

2
(1− Z). (A.4)

After integration, we obtain
εf

∆
=

π

2
Z. (A.5)

Within the same notation, Eq. (A.2) assumes the form

1

π

∫ 0

−∞
dω

(ω − εf − ZV 2G′
c(ω)) G′′

c (ω) + ZV 2G′
c(ω)G′′

c (ω)

(ω − εf − ZV 2G′
c(ω))2 + (ZV 2G′′

c (ω))2 =
1

2

εf − Ef

V 2
, (A.6)

and after we neglect frequency dependence in G′
c and G′′

c

1

π

∫ 0

−D

dω
(ω − εf )(−πρ0)

(ω − εf )2 + ∆2
=

1

2

εf − Ef

V 2
. (A.7)

After integration
(
ε2

f + ∆2
)1/2

= De−(εf−Ef )/2ρ0V 2

. (A.8)

Using Eq. (2.3) we obtain the final result

Z =
D

πρ0V 2
e−1/ρ0J , (A.9)

where J = 2V 2/|Ef |. The Kondo temperature is defined as

TK = De−1/ρ0J , (A.10)

which means that Z = TK/πV 2ρ0.

Now we will make a comparison of Eq. (A.9) with a numerical solution of the slave

boson equations (A.1)-(A.2). Figure A.1 shows that agreement is good, though there is

some discrepancy in the prefactor of ≈ 30%. The explanation for the discrepancy is simple.

Formula (A.7) has a divergent integral on the left-hand side. It needs to be regularized, in

other words, a cutoff procedure has to be used. The formula for TK will depend on the cutoff

procedure used (the factor ”D” in front). Eq. (A.7) is actually exact for a flat DOS but not

for a semicircular one, which would have a different ”cutoff” in front of the exponential but,

and this is crucial, the same exponential dependence (that’s why both curves in Figure A.1

have the same slope). Note that there is no analogous divergence in Eq. (A.1), the integral
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Figure A.1. Kondo temperature as a function of the bare f-energy level. Density of states
is semicircular and V = 1.

is dominated by the region around the Fermi surface and the result is independent of cutoffs

(in the Kondo limit, of course). By contrast, the integral in Eq. (A.7) has contributions

from all energy scales (that’s why it’s sometimes said that the Kondo temperature sums up

contributions from many decades in energy).

A.2 Limit ε2
i À t2ρ0J with fixed Ef

Now we want to solve the system of equations

− 1

π

∫ 0

−∞
dω Im

[
1

ω − εf − Z∆fi(ω)

]
=

1

2
(1− Z), (A.11)

and
1

π

∫ 0

−∞
dω Im

[
∆fi(ω)

ω − εf − Z∆fi(ω)

]
=

1

2
(εf − Ef ), (A.12)

with

∆fi(ω) =
V 2

ω − εi −∆c(ω)
. (A.13)

Here ∆c(ω) = ∆′
c(ω) + i∆′′

c (ω) is the conduction electron cavity field. We will assume that

it is given and particle-hole symmetric (∆′
c(0) = 0). Also µ is taken to be zero. For a

semicircular DOS ∆′′
c (0) = −πt2ρ0.
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We consider the limit Z → 0. A crutial approximation, analogous to what we had in

Section A.1, is to neglect a frequency dependence in ∆c and in ∆fi. Then, Eq. (A.11)

becomes

− 1

π

∫ 0

−D

dω

ZV 2∆′′c (0)

ε2
i +∆

′′2
c (0)[

ω − εf + ZV 2εi

ε2
i +∆′′2c (0)

]2

+
[

ZV 2∆′′c (0)

ε2
i +∆′′2c (0)

]2

=
1

2
(1− Z). (A.14)

After the integration

εf =
ZV 2εi

ε2
i + ∆′′2

c (0)
. (A.15)

Within the same approximation, Eq. (A.12) gives

1

π

∫ 0

−D

dω
(ω − εf )∆

′′
fi(0)

[
ω − εf − Z∆

′
fi(0)

]2
+ Z2∆

′′2
fi (0)

=
1

2
(εf − Ef ). (A.16)

We now note that Eq. (A.15) is equivalent to

εf = −Z∆
′
fi(0), (A.17)

so we get

1

π

∫ 0

−D

dω
(ω − εf )∆

′′
fi(0)

ω2 + Z2∆
′′2
fi (0)

=
1

2
(εf − Ef ). (A.18)

Direct integration of the left-hand side leads to

∆
′′
fi(0)

π

{
ln

(
Z

∣∣∆′′
fi(0)

∣∣
D

)
− πεf

2Z
∣∣∆′′

fi(0)
∣∣

}
≈ −Ef

2
. (A.19)

Using again Eq. (A.15), we obtain

Z = D
ε2

i + (πt2ρ0)
2

V 2πt2ρ0

e−π2t2ρ0/Je−ε2
i /t2ρ0Jeεi/2t2ρ0 . (A.20)

This is in a good agreement with the numerical solution of Eqs. (A.11)-(A.12), as shown in

Figure A.2.
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t = 0.5, D = 1 and ρ0 = 2/π.

.

115



APPENDIX B

EFFECTIVE MODEL OF THE EGP:

FLUCTUATIONS IN δ∆I
CJ AND INTERACTION

RENORMALIZATIONS

B.1 Fluctuations in δ∆I
cj

In Section 6.4.2 we have ignored the fluctuations in the imaginary part of the cavity

function δ∆I
cj. The corresponding contribution to the low-TK tail is sub-leading, as we now

show. We need to focus on rare events that produce exceptionally small values of the local

conduction electron DOS ρj = − 1
π
Gcj(0). Using Eq. (6.20), and ignoring the fluctuations

in δ∆R
cj, we see that low values for ρj correspond to exceptionally high values for δ∆I

cj. We

therefore need to compute the form of the high-δ∆I
cj tail of P (δ∆I

cj). Just as for the real

part, we can estimate the fluctuations of δ∆I
cj by calculating the second moment,

σ2
I =

〈
(δ∆I

cj)
2
〉
, (B.1)

and we get

σ2
I = CIW

2 + O(W 4), (B.2)

where

CI =
∑

j
(j 6=0)

[
Im

(Goj)
2

(Goo)2

]2

. (B.3)

In this approximation, the quantity δ∆I
cj has a Gaussian distribution, and we find

P (TK) ∼ T−1
K exp

{
− J2

2π2σ2
I

ln2(D/TK)

}
. (B.4)

As we can see, because the “log” in the exponent has an extra power of two, this distribution

is log-normal and not power-law. Therefore the δ∆I
cj fluctuations, at least when treated on
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the Gaussian level as we have done, do not lead to a singular P (TK) distribution. Thus,

to leading order we can ignore these fluctuations when examining the emergence of the

electronic Griffiths phase.

B.2 Interaction renormalizations

In the estimates of Section 6.4.2, we have omitted an important ingredient, the fact

that Kondo disorder itself will produce additional scattering, i.e. disorder in the conduction

channel, which needs to be self-consistently determined. As we have shown in previous

work,[70] this results in a distribution of effective scattering potentials Φj, corresponding to

the Kondo spins (note that in the uniform case, the Φj-s are the same on all sites, resulting in

no scattering, but contributing to the formation of the Kondo gap). The resulting scattering,

in the weak disorder limit again can be considered as a Gaussian distributed potential of

width

WΦ =
〈
Φ2

j

〉1/2
. (B.5)

Note however that this additional “Kondo” scattering does not enter directly (at site 0)

in the solution of the local Kondo problem, since the local f-site “sees” the corresponding

c-site with the f-site removed. However, the presence of Φj-s on all other sites (j 6= 0) does

modify the form of δ∆R
cj which, therefore, has to be computed by including this additional

scattering. At weak disorder, we expect

〈
Φ2

i

〉
= C1W

2
eff , (B.6)

where the constant C1 measures the response of the Kondo spins to the hybridization

disorder. Note that Weff enters here, since the Φj-s are obtained from the solution of local

Kondo problems, which are determined by the strength of the renormalized site disorder, as

modified by hybridization fluctuations. We therefore need to compute Weff self-consistently,

and we get

W 2
eff = W 2 + C(W 2 + C2W

2
eff ), (B.7)

or

Weff =

√
1 + C

1− CC2

W. (B.8)

117



This reasoning, valid for weak bare disorder illustrates how the effective disorder is

generated in the conduction band even if it originally was not there, or is enhanced due to

additional Kondo scattering, if already present. In addition, these arguments illustrate how

Gaussian tails are generated for the renormalized disorder, even if they are not introduced

in the bare model. Of course, nonlinear effects at stronger disorder cannot be accounted

for in this simple fashion, which is especially true for the consideration of the additional

scattering introduced by disordered Kondo spins. Nevertheless, the simple arguments that

we presented illustrate how universality is produced by renormalizations due to cavity field

fluctuations, and seem to capture the essential features of the emergence of the electronic

Griffiths phase.
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[7] V. Dobrosavljević and G. Kotliar. Dynamical mean-field studies of metal-insulator
transitions. Philos. Trans. R. Soc. London A, 356:57, 1998.
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