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Bose-Einstein condensation

Intensive progress in the field of ultracold atoms has been recognized by 2001
Nobel prize for experimental realization of Bose-Einstein condensation in 1995
Cold alkali atoms: Rb, Na, Li, K . . .
T ∼ 1 nK, ρ ∼ 1014 cm−3

Cold bosons, cold fermions
Optical lattices
Short-range interactions, long-range
dipolar interactions, SO coupling, . . .

Tunable quantum systems concerning dimensionality, type and strength of
interactions
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Field-theoretical description

Hamiltonian
Ĥ = Ĥ0 + Ĥint

Free Hamiltonian
Ĥ0 =

∫
d3r Ψ̂†(r, t)

[
−

ℏ2

2m
∇2 + V (r)

]
Ψ̂(r, t)

Interaction
Ĥint =

1

2

∫
d3r

∫
d3r′ Ψ̂†(r, t)Ψ̂†(r′, t)Vint(r− r′)Ψ̂(r′, t)Ψ̂(r, t)

Bosonic commutation relations[
Ψ̂(r, t), Ψ̂†(r′, t)

]
= δ(r− r′) ,

[
Ψ̂(r, t), Ψ̂(r′, t)

]
=

[
Ψ̂†(r, t), Ψ̂†(r′, t)

]
= 0

Bogoliubov prescription

Ψ̂(r, t) = Ψ(r, t) + δψ̂(r, t) , Ψ̂†(r, t) = Ψ∗(r, t) + δψ̂†(r, t)
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Mean-field theory

Heisenberg equation
iℏ
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
Zeroth order gives mean-field theory

Ψ̂(r, t) = Ψ(r, t) , Ψ̂†(r, t) = Ψ∗(r, t)

Time-dependent Gross-Pitaevskii equation

iℏ
∂

∂t
Ψ(r, t) =

[
−

ℏ2

2m
∇2 + V (r) +

∫
d3r′ Ψ∗(r′, t)Vint(r− r′)Ψ(r′, t)

]
Ψ(r, t)

Time-independent Gross-Pitaevskii equation

µΨ(r) =

[
−

ℏ2

2m
∇2 + V (r) +

∫
d3r′ Ψ∗(r′)Vint(r− r′)Ψ(r′)

]
Ψ(r)
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Gross-Pitaevskii equation

Interaction potential: contact interaction, describing s-wave scattering

Vint(r) = gδ(r) , g =
4πℏ2as

m

Nonlinear terms due to the interaction

iℏ∂Ψ(r, t)
∂t

=

[
− ℏ2

2m
∇2 + V (r) + gN |Ψ(r, t)|2

]
Ψ(r, t)

Time-independent form

µΨ(r) =

[
− ℏ2

2m
∇2 + V (r) + gN |Ψ(r)|2

]
Ψ(r)
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GPE for a rotating condensate

We assume that the system rotates with an angular velocity Ω around z axis

In the corotating frame the Hamiltonian becomes

Ĥ ′(r̂′, p̂′) = Ĥ(r̂′, p̂′)−Ω · L̂(r̂′, p̂′) , where L̂(r̂′, p̂′) = r̂′ × p̂′ = −iℏ r×∇

Time-dependent GPE, where we drop the primes

iℏ∂Ψ(r, t)
∂t

=

[
− ℏ2

2m
∇2 + V (r) + gN |Ψ(r, t)|2 − ΩL̂z

]
Ψ(r, t)

Time-independent GPE

µΨ(r) =

[
− ℏ2

2m
∇2 + V (r) + gN |Ψ(r)|2 − ΩL̂z

]
Ψ(r)

L̂z = −iℏ(x∂/∂y − y∂/∂x)
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Dimensionless form of GPE

Usually, the trap potential is harmonic

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

Dimensionless form of GP equation is obtained by rescaling all quantities using
convenient units, based on a chosen referent frequency ωref :
Length is expressed in units of ℓ =

√
ℏ/(mωref), time in units of 1/ωref , energy in

units of ℏωref , etc.

i
∂Ψ(r, t)

∂t
=

[
−1

2
∇2 +

1

2

(
γ2x2 + ν2y2 + λ2z2

)
+ g |Ψ(r, t)|2 + iΩ

(
x
∂

∂y
− y

∂

∂x

)]
Ψ(r, t)

γ = ωx/ωref , ν = ωy/ωref , λ = ωz/ωref , g = 4πNa/ℓ , Ω̃ = Ω/ωref → Ω
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Emergence of vortices

Intensive Week SFB/TR 185 | Numerical simulation of vortices 9/31

http://www.scl.rs/IWeek2022/19.mp4


INSTITUTE OF PHYSICS

BELGRADE

Center for the Study
of Complex Systems

Introduction: Rotating condensates
Numerical algorithms for solving GPE
Ground state of rotating condensates

Quantization and generation of vortices
Spin-orbit-coupled condensates

Solving GP equation

In general, GPE cannot be solved analytically

Perturbation methods
Thomas-Fermi
Variational approximation

L(Ψ∗,Ψ) =
i

2

(
Ψ∗Ψ̇−ΨΨ̇∗

)
−

1

2
∇Ψ∗ · ∇Ψ− V |Ψ|2 −

g

2
|Ψ|4 − ΩΨ∗L̂zΨMany popular numerical methods

Split-step methods
Finite difference methods
Spectral methods

Semi-implicit split-step Crank-Nicolson scheme
Unconditionally stable
Preserves normalization of the wave function
The error is second order in space and time steps
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Split-step Crank-Nicolson method

GPE in a dimensionless form

i
∂Ψ(r, t)

∂t
=

[
−
1

2
∇2 +

1

2

(
γ2x2 + ν2y2 + λ2z2

)
+ g |Ψ(r, t)|2 + iΩ

(
x
∂

∂y
− y

∂

∂x

)]
Ψ(r, t)

t −→ 2t , g̃ = 2g −→ g , Ω̃ = 2Ω −→ Ω
Split-step approach

Ĥ = Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4

Ĥ1 = H1 = γ2x2 + ν2y2 + λ2z2 + g|Ψ(r, t)|2

Ĥ2 = −
∂2

∂x2
− iΩy

∂

∂x
, Ĥ3 = −

∂2

∂y2
+ iΩx

∂

∂y
, Ĥ4 = −

∂2

∂z2

Comput. Phys. Commun. 180, 1888 (2009)

;

Comput. Phys. Commun. 240, 74 (2019)
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Ĥ2 = −
∂2

∂x2
− iΩy

∂

∂x
, Ĥ3 = −

∂2

∂y2
+ iΩx

∂

∂y
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Ĥ2 = −
∂2

∂x2
− iΩy

∂

∂x
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Split-step Crank-Nicolson method (non-rotating case)
Propagate GPE from tn (tn = n∆) to tn+1 in multiple steps

First, we propagate Ψn ≡ Ψ(r, tn) wrt H1 and obtain Ψn+1/2

i
∂

∂t
Ψ(r, t) = H1Ψ(r, t) ⇒ Ψn+1/2 = Ond(H1)Ψ

n ≡ e−i∆H1Ψn

Then we perform time propagation wrt Ĥ2 using the semi-implicit CN scheme
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Ĥ2(Ψ

n+1/2 +Ψn+1/2+1/6)
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Ψ(r, t) = Ĥ2Ψ(r, t) ⇒ i

Ψn+1/2+1/6 −Ψn+1/2

∆
=

1

2
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Propagation in imaginary time

Mathematical trick to calculate the ground state

Real time t is replaced by imaginary time τ = it, such the the GP equation
becomes

−
∂Ψ(r, t)

∂t
=

[
−∇2 + γ2x2 + ν2y2 + λ2z2 + g |Ψ(r, t)|2 + iΩ

(
x
∂

∂y
− y

∂

∂x

)]
Ψ(r, t)

Starting from an arbitrary initial state (under certain conditions),
imaginary-time propagation leads to the ground state
Chemical potential is calculated as

µ =

∫
d3rΨ∗(r)

[
−∇2 + γ2x2 + ν2y2 + λ2z2 + g |Ψ(r)|2 − L̂zΨ

]
Ψ(r)
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Available software packages

Available GPE and NLSE solvers:
TS-MPI, GPUE, GPELab, ATUS-PRO, GPFEM, . . .
Serial, MATLAB, FreeFem++, . . .

Existing implementations of CN method

BEC-GP (contact interaction only):
Comput. Phys. Commun. 180, 1888 (2009): Fortran

Comput. Phys. Commun. 183, 2021 (2012): C, C/OpenMP

Comput. Phys. Commun. 200, 411 (2016): C/OpenMP/MPI

Comput. Phys. Commun. 204, 209 (2016): Fortran/OpenMP, C/OpenMP

Comput. Phys. Commun. 220, 503 (2017): Fortran/OpenMP

BEC-GP-ROT (rotation and contact interaction):
Comput. Phys. Commun. 240, 74 (2019): Fortran/OpenMP, C/OpenMP
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Available software packages

Existing implementations of CN method
DBEC-GP (contact and dipole-dipole interaction)

Comput. Phys. Commun. 195, 117 (2015): Fortran, C

Comput. Phys. Commun. 200, 406 (2016): C/CUDA

Comput. Phys. Commun. 209, 190 (2016): C/OpenMP/MPI, C/CUDA/MPI

BEC-GP-SPINOR (contact interaction and SO coupling)
Comput. Phys. Commun. 259, 107657 (2021): Fortran/OpenMP

BEC-GP-SPINOR-ROT (rotation, contact interaction and SO coupling)
Comput. Phys. Commun. 264, 107926 (2021): Fortran/OpenMP

Intensive Week SFB/TR 185 | Numerical simulation of vortices 15/31

https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.1016/j.cpc.2015.11.014
https://doi.org/10.1016/j.cpc.2016.07.029
https://doi.org/10.1016/j.cpc.2020.107657
https://doi.org/10.1016/j.cpc.2021.107926


INSTITUTE OF PHYSICS

BELGRADE

Center for the Study
of Complex Systems

Introduction: Rotating condensates
Numerical algorithms for solving GPE
Ground state of rotating condensates

Quantization and generation of vortices
Spin-orbit-coupled condensates

Available software packages

Existing implementations of CN method
DBEC-GP (contact and dipole-dipole interaction)

Comput. Phys. Commun. 195, 117 (2015): Fortran, C

Comput. Phys. Commun. 200, 406 (2016): C/CUDA

Comput. Phys. Commun. 209, 190 (2016): C/OpenMP/MPI, C/CUDA/MPI

BEC-GP-SPINOR (contact interaction and SO coupling)
Comput. Phys. Commun. 259, 107657 (2021): Fortran/OpenMP

BEC-GP-SPINOR-ROT (rotation, contact interaction and SO coupling)
Comput. Phys. Commun. 264, 107926 (2021): Fortran/OpenMP

Intensive Week SFB/TR 185 | Numerical simulation of vortices 15/31

https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.1016/j.cpc.2015.11.014
https://doi.org/10.1016/j.cpc.2016.07.029
https://doi.org/10.1016/j.cpc.2020.107657
https://doi.org/10.1016/j.cpc.2021.107926


INSTITUTE OF PHYSICS

BELGRADE

Center for the Study
of Complex Systems

Introduction: Rotating condensates
Numerical algorithms for solving GPE
Ground state of rotating condensates

Quantization and generation of vortices
Spin-orbit-coupled condensates

Available software packages

Existing implementations of CN method
DBEC-GP (contact and dipole-dipole interaction)

Comput. Phys. Commun. 195, 117 (2015): Fortran, C

Comput. Phys. Commun. 200, 406 (2016): C/CUDA

Comput. Phys. Commun. 209, 190 (2016): C/OpenMP/MPI, C/CUDA/MPI

BEC-GP-SPINOR (contact interaction and SO coupling)
Comput. Phys. Commun. 259, 107657 (2021): Fortran/OpenMP

BEC-GP-SPINOR-ROT (rotation, contact interaction and SO coupling)
Comput. Phys. Commun. 264, 107926 (2021): Fortran/OpenMP

Intensive Week SFB/TR 185 | Numerical simulation of vortices 15/31

https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.1016/j.cpc.2015.11.014
https://doi.org/10.1016/j.cpc.2016.07.029
https://doi.org/10.1016/j.cpc.2020.107657
https://doi.org/10.1016/j.cpc.2021.107926


INSTITUTE OF PHYSICS

BELGRADE

Center for the Study
of Complex Systems

Introduction: Rotating condensates
Numerical algorithms for solving GPE
Ground state of rotating condensates

Quantization and generation of vortices
Spin-orbit-coupled condensates

Shared memory algorithm on multi-core CPUs - OpenMP

Propagation wrt H1 is easy to parallelize
How to parallelize the CN method?

Difficult due to recursion calculation
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Shared memory algorithm on multi-core CPUs - OpenMP

What can we do?

Not much in 1D,

Solution:

Parallelize outermost loop (with OpenMP)
This uses more memory due to thread-private variables (arrays)
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Distributed memory algorithm - OpenMP/MPI

1D decomposition

Dynamically redistribute data via transpose operation
Use existing computation routines to work with local data
Two ways to transpose data, via FFTW or via our function
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Our experimental equipment

PARADOX-IV cluster
Each node has 2 × Intel Xeon E5-2670

2× 8 = 16 cores
32 GB RAM

Each node has Nvidia Tesla M2090 GPU
512 CUDA cores
6 GB RAM
Fermi architecture
Compute Capability 2.0

1696 CPU cores, 106 GPU cards
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Numerical calculation of the ground state

We consider a pancake-shaped condensate: γ = ν = 1, λ = 100

Nonlinearity: g = 25.066283

Discretization grid: Nx = Ny = 256, Nz = 32; for Ω ≥ 0.9, Nx = Ny = 512

Grid spacing: hx = hy = 0.05, hz = 0.025

Initial state:

ϕin(x, y) =
x+ iy√
πdxdy

exp

(
− x2

2d2x
− y2

2d2y
+2πiR(x, y)

)
, ψin(x, y, z) = ϕin(x, y)

1

(πd2z)1/4
exp

(
− z2

2d2z

)
Visualization of density profiles: VisIt
BEC-GP-ROT: Comput. Phys. Commun. 240, 74 (2019)
C/OpenMP/MPI program available at: http://www.scl.rs/IWeek2022/
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Fast-rotating condensates
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Vortices and quantization of angular momentum

Butts & Rokhsar, Nature 397, 327 (1999)
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Phase profile of vortex structure

Butts & Rokhsar, Nature 397, 327 (1999)
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Experimental and numerical techniques for vortex generation

Rotation (fast enough)
Laser stirring
Phase imprinting: eimφ

Moving obstacle

Dalibard group, Phys. Rev. Lett. 84, 806 (2000)
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Moving obstacle: emergence of vortices
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Moving obstacle: emergence of vortices
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Moving obstacle: emergence of vortices
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Moving obstacle: emergence of vortices
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SO-coupled condensates

i∂tψ±1(r) =

[
−
1

2
∇2 + V (r) + c0ρ+ c2 (ρ±1 − ρ∓1 + ρ0)

]
ψ±1(r) +

{
c2ψ

2
0(r)ψ

∗
∓1(r)

}
+

Ω
√
2
ψ0(r) + γf±1

i∂tψ0(r) =

[
−
1

2
∇2 + V (r) + c0ρ+ c2 (ρ+1 + ρ−1)

]
ψ0(r) + {2c2ψ+1(r)ψ−1(r)ψ

∗
0(r)}+

Ω
√
2

∑
j=+1,−1

ψj(r) + γg

ρj = |ψj |2 ,
∫ [

ρ+1(r) + ρ0(r) + ρ−1(r)
]
dr = 1 ,

∫ [
ρ+1(r)− ρ−1(r)

]
dr = m

SO coupling: γ(ηpyΣx − pxΣy), where η = 1,−1, 0 for Rashba, Dresselhaus and
an equal mixture

Σx =
1
√
2

 0 1 0
1 0 1
0 1 0

 , Σy =
i

√
2

 0 −1 0
1 0 −1
0 1 0

 , Σz =

 1 0 0
0 0 0
0 0 −1

 .

γf±1 = −iγ̃
[
η∂yψ0(r)± i∂xψ0(r)

]
, γg = −iγ̃

[
− i∂xψ+1(r)+ i∂xψ−1(r)+η∂yψ+1(r)+η∂yψ−1(r)

]
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SO-coupled condensates

BEC-GP-SPINOR (contact interaction and SO coupling)
Comput. Phys. Commun. 259, 107657 (2021): Fortran/OpenMP
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SO-coupled rotating condensates
BEC-GP-SPINOR-ROT (rotation, contact interaction and SO coupling)

Comput. Phys. Commun. 264, 107926 (2021): Fortran/OpenMP
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