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We give an overview of a recently developed method which systematically im­
proves the convergence of generic path integrals for transition amplitudes, par­
tition functions, expectation values, and energy spectra. This was achieved by 
analytically constructing a hierarchy of discretized effective actions indexed by 
a natural number p and converging to the continuum limit as 1/NP. We analyze 
and compare the ensuing increase in efficiency of sev ral orders of magnitude, 
and perform series of Monte Carlo simulations to verify the results. 

Keywords: Effective actionjMany-body system; Monte Carlo simulation. 

1. Introduction 

Path integral formalism offers a general framework for treatment of quan­
tum the ries. l FUnctional integrals provide easy way for generalization and 
ext nsion of quantization methods to more complex physical systems, in­
cluding systems with no classical counterparts. Originally introduced in 
quantum mechanics and later most widely used in high energy theory and 
condensed matter, path integrals can today be found in almost all areas of 
physics, ranging from atomic, molecular and'1Uclear physics, to the physics 
of polymers, biophysics, and chemistry. Moreover, path integrah) are start ­
ing to play important roles in several areas of mathematics, even in modern 
financ . An up to date overview of the path integral formalism and its 
various applications can be found in Kleinert's book. 2 

The defulition of path integrals as a limit of multiple integrals over a 
discretized theory makes their numerical evaluation quite natural. How­
ever, path integrals remain notoriously demanding of computing. Consid­
erable research effort has been devoted to the development of approaches 
th t enable faster numerical convergence to the continuum. Efficient imple­

mailto:antun@phy.bg.ac.yu


Accelerated path-integral calculations via effective actions 87 

ntation of path integral Monte Carlo algorithms, coupled with various 
del-related approximations, has enabled the application of path integrals 

'0 real-world problems.3 For a long time the state of the art result was 1j N 4 

onvergence of discretized partition functions. 4 ,5 This was achieved using 
generalized form6 of the Trotter formula. However, it is only the integral 
'er all the diagonal amplitudes (Le. cyclicity of the trace) that has the 

~ 1/N 4 ) behavior, so such approach cannot be applied to the calculation 
! general amplitudes or associated (non-thermal) expectation values. 

A recently developed method for analytical construction of improved 
cretized effective actions,7-9 based on the study of relationship between 
retizations of different coarseness,IO,11 has led to substantial speedup 

: numerical path-integral calculations of several orders of magnitude. Un­
now, the method has been limited to one.particle one-dimensional sys­

-ems. Here we present the generalization of this formalism to generic non­
:p ativistic many-particle quantum systems in arbitrary dimensions. 

_. Improved Discretized Effective Actions 

~ne resented method is applicable to all quantum theories. For simplicity, 
illustrate the details of the derivation on the case of a non-relativistic 

antum system consisting of M distinguishable particles in d spatial di­
~nsions, in eracting through the potential V. The imaginary time ampli­

e A(a, b; T) for a transition from initial state la) to final state Ib) in time 
::- ;- given as the N --; 00 limit of the discretized amplitude 

AN(a, b; T) = 1MNd dql ... dqN-l e- SN 
• (1)J

(27rt:)-2­

.~ his expression, N is the discretization coarseness (number oftime slices), 
'tile SN is the naively discretized action, 

N-l (M 1(8 .)2 )
SN = ~ t: ~ 2 :,t + V(qn) (2) 

:< re th time step is t: = T jN, while discr tized velocities are defined as 
= qn+l,i - qn,i, and mid-point coordinates qn = (qn + qn+l)j2. The 

ex n goes over N time steps, and index i goes over M particles. 
The above definition of the path integral requires the transition from 

ntinuum to discretized theory, i.e. the introduction of coarseness N. Such 
pre ions converge to the continuum very slowly, typically O(ljN). 

One of the key features of definition (1) is that the discretization is not 
.que. In fact, the choice of discretization strongly affects convergence of 



88 A. Balaz et al. 

discretized amplitudes to the continuum. In a recent paper lO we have shown 
that for a. general theory there exists an ideal discretization (equivalently, 
an ideal discretized action S*), giving the exact (continuum limit) result 
for any discretization coarseness N 

A~(a, b; T) = A(a, b; T). 

This is easily seen if we recall that the defining relation for path integrals as 
the continuum limit of discretized amplitudes follows from the completeness 
relation 

A(a,b;T) = Jdql·· ·dqN-I A(a,ql;c)" ·A(qN-I,b;c), (3) 

through the substitution of short-time amplitudes A(qn, qn+l; c) calculated 
to first order in time step c. A faster converging result may be obtained by 
evaluating the amplitudes under the integral in Eq. (3) to higher orders in 
c. From the above relation we directly see that the ideal discretized action 
S* leads to exact propagation, and is given in terms of the exact amplitude, 

(4) 

The id a1 discretized action S* is simply the sum of expressions S~. We 
will use Eq. (4) to calculate the ideal discretized action as a power series 
in c, which starts from the naive action (2) as the zeroth order term. The 
details of this expansion have been inspired by an analogous derivation given 
in Kleinert's book. 2 The outlined approach makes possible the systematic 
improvement of numerical convergence of path integral calculations, and 
the construction of a hierarchy of discretized actions sy}, denoted by level 
number p, giving improved convergence 

A~)(a,b;T) = A(a,b;T) +O(l/NP). (5) 

In order to calculate the short-time amplitude to the desired order in c, 
we shift integration va.riable q = ~ + x about a fixed referent trajectory ~, 

and the time to s E [-c/2,c/2]' so that the short-time amplitude becomes 

1
·"e<:/2)=0 _/2 ( 1 . 2 .)

A(qn,qn+l;C) = e- Sn [(] [dx] e-!-·/2 ds 'IX +uex,t;). (6) 
1:(-<:/2)=0 

The referent trajectory ~ satisfies the same boundary conditions as q, which 
implies that x vanishes at the boundaries. The action Sn[~J is defined as 

(1 )
Sn[~J = 

<:/2 
dS"2e+ V(~) , (7)1-<:/2 
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and U(x; 0 = V(~ + x) - V(~) - x{ The amplitude may now be written as 

e-Sn [{] (f~/2 ) 
(8)A(q q . c) = e- -</2 ds U(x;O 

n, n+l, ()Md ,
27l"c ~ 

where (... ) denotes expectation values with respect to free massless theory. 
The above expre ion holds for any choice of referent trajectory,;. 

Expansion in powers of U gives 

(e- J ds U(X;{)) = 1 - Jds (U(x; ~)) + ~ JJdsds' (U(x; OU(x'; ()) +... , 

where x' = x(s'),e = ~(s'), and U(x;~) is further expanded around the 
referent trajectory~. The expectation values of products (Xi( s) ... Xj (s')) is 
calculated thr ugh the use of the massless free theory generating functional. 
_'ote that the g nerating functional (and as a result the e pectation values) 
do not depend on the choice of ~. However, different choices of ~ are related 
o different approximation techniques: the choice of classical trajectory for 

; corresponds to th semiclassical expansion, while the choice of a linear 
referent trajectory is the simplest way to obtain short-time expansion. 

In order to perform the remaining integrations over s in Eq. (8), due to 
"he explicit dependence of the referent trajectory on s, we first expand the 
potential U and all its derivatives around some reference point. For example, 
,n the mid-point prescription, we choose tin as that reference point. Once 
one chooses the trajectory ~(s), all expectation values in Eq. (8) are given 
.n terms of quadratures. In this way we obtain a double expansion for S* 
n E and in on, i 2

• In order to retain only the terms that contribute up to a 
.ertain order in c, we further use the fact that the short time propagation 
::If the considered class of theories satisfies, to leading order, the diffusion 

.e atIOn un,i c< E.. I' .2 

The explicit analytical expressions for the many-particle discretized ef­
ective action have been so far derived for p :::; 12. The derived expressions 

come algebraically more complex, l.Uld such calculations require the use 
of some of the available packages for symbolic calculus. Note that, in prin­
.•pIe, there are no obstacles in going to as high values of p as desired. The 
derived higher Ie el effective actions can be found on our web site. 12 We 
'>'"ress that in would also be quite interesting to attack the problem of solv­
ng Eq. (4) through the use of other approximation schemes, particularly 
-hose that are non-perturbative in c, e.g. the Feynman-Kleinert variational 

15pproach. 13­
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Fig. 1. Deviations of amplitudes from the continuum limit vs. N for two-particle system 
(9) in two dimensions. Solid lines give the leading 1/NP behavior, while dashed lines 
correspond to the fitted pol.ynomial functions. 

3. Numerical Results 

In order to verify the analytically derived speedup in convergence of dis­
cretized path integrals, we have performed a series of path integral Monte 
Carlo simulations of transition amplitudes for a two-dimensional system of 
two particles interacting through the potential 

- -) 1(_ -)2 91(_ -)4 92(_ -)2V(T1, T2 = 2 T1 - T2 + 24 T1 - T2 +"2 Tl + T2 . (9) 

All numerical simulations were done using the latest version of our 
SPEEDUp12 program that has been extended so as to include multi-particle 
multi-dimensional systems. The simulations have been performed for differ­
ent values of couplings 91 and 92 and for a variety of initial and final states. 
The associated continuum limit amplitudes A (p) have been estimated by 
fitting polynomials in liN to the discretized values A~), according to the 
analytically derived relation (5). For all values of p the fitted continuum 
values A(p) agree within the error bars. Figure 1 gives the plot of the devi­
ations of discretized amplitudes from the continuum limit for two-particle 
system (9) in two dimensions, with 91 = 10, 92 = 0, T = 1, and initial 
and final states a = (0,0; 0.2, 0.5), b = (1,1; 0.3, 0.6). The number of MC 
samples was from 106 for p = 1 to 1010 for p = 4. The increase of level 
p leads to an ever faster approach to the continuum. The obtained 11NP 
dependence gives explicit verification of the analytically derived increase in 
converge.nce. As a result, of the newly presented method, the usual simu­
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'ons proceed much faster than by using standard calculation schemes. 
-ote that even the p = 4 curve corresponds to a precision of four decimal 

- aces in the case of an extremely coarse discretization such as N = 2. 

4. Conclusions 

\-e have presented a derivation of discretized effective actions leading to 
~ bstantial, systematical speedup of numerical calculation of path inte­
gals of a generic many-particle non-relativistic theory. The derived speedup 

Ids for all path integrals - for transition amplitudes, partition functions, 
xpectation values, energy levels. The newly calcu1ated discretized effective 

ions agree with previous approaches. The obtained analytical results 
ve been numerically verified through simulations of path integrals for an 

-iliarmonic oscillator with quartic coupling for two particles in two spatial 
mensions. The two principle advantages of the new method are: simpler 

:erivation and straightforward generalization to more complex systems. 
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