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Activation process in excitable systems with multiple noise sources: One and two interacting units
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We consider the coaction of two distinct noise sources on the activation process of a single excitable unit
and two interacting excitable units, which are mathematically described by the Fitzhugh-Nagumo equations. We
determine the most probable activation paths around which the corresponding stochastic trajectories are clustered.
The key point lies in introducing appropriate boundary conditions that are relevant for a class II excitable unit,
which can be immediately generalized also to scenarios involving two coupled units. We analyze the effects of
the two noise sources on the statistical features of the activation process, in particular demonstrating how these
are modified due to the linear or nonlinear form of interactions. Universal properties of the activation process are
qualitatively discussed in the light of a stochastic bifurcation that underlies the transition from a stochastically
stable fixed point to continuous oscillations.
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I. INTRODUCTION

Excitability is a dynamical feature shared by nonlinear
systems that lie in the vicinity of the bifurcation underlying the
transition from the stationary state toward sustained periodic
activity [1]. Study of models where stochastic excitable
dynamics is crucial for shaping local or collective behavior
is a rapidly developing field, gaining relevance in terms of
theory as well as for offering qualitative insights into a variety
of biological [1–3] and inorganic systems [4–6].

Excitability is manifested in the existence of a narrow range
of stimuli magnitudes where marginally different perturbations
may cause the system to generate two qualitatively distinct
types of responses. While smaller perturbations give rise
to small-amplitude (linear) responses, the slightly larger
perturbations may elicit pulselike, large-amplitude excitation
loops. The latter are composed of activation and relaxation
stages, whereby the spike profile remains independent of the
form of applied perturbation. If one interprets perturbation
in terms of setting the particular initial conditions, then the
excitability feature is reflected in the point that the system
shows strong sensitivity to initial conditions within a small
domain of relevant values. Consequently, behavior of excitable
systems is heavily susceptible to noise [7], whose influence
may at least in part be understood as excitability amplification.

Given the strong likelihood of encountering systems which
are influenced by combined action of variations in the
environment and the fluctuations of the internal parameters,
it is justified to analyze models where different sources of
noise affect the dynamics of multiple variables. This point,
together with the fact that the existence of pulselike excitations
requires a flow with dimension no less than two [8], suggests
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that the system with two variables, each subjected to stochastic
perturbation, may be considered a paradigmatic setup. For
example, two sharply separated characteristic time scales and
two sources of noise acting independently on the fast and the
slow variable are relevant ingredients for the description of
a typical neuron [9,10] or laser dynamics [4]. For neurons,
stochastic term affecting the fast variable may account for
synaptic noise due to random arrival of spikes from a large
number of afferents, whereas the stochastic component in
the slow variable dynamics may be seen as internal noise,
associated to thermal fluctuations in the opening of the ion-
gating channels. Consistent with this, we refer to stochastic
term added to the dynamics of the fast (slow) variable as
external (internal) noise.

From the theoretical viewpoint, a comprehensive insight
into the noise-driven activation process is fundamental for
understanding excitability. The problem we focus on concerns
the activation process in a single excitable Fitzhugh-Nagumo
(FHN) element or two coupled excitable FHN elements driven
by two independent sources of noise. The main reason for
considering the FHN model lies in its generic character, viz.
the fact that it is canonical for class II excitable systems, which
involve an almost continuous transition between the small- and
the large-amplitude excitations. For conceptual reasons and in
view of potential applications, only the spiking responses are
relevant and of interest to us. It follows that the formulation of
activation event has to be adapted to class II excitable systems,
such that it satisfies two criteria: (i) it should warrant a clear-cut
distinction of the spiking response from the small-amplitude
excitation and (ii) it should allow an immediate generalization
from the case of a single unit to that of two interacting units.
We stress that in order to meet both criteria, it is crucial
to introduce an appropriate terminating boundary set for the
activation problem, as demonstrated in the paper.

Note that the term activation is inherited from but not used
in the same sense as in a typical escape problem [7,11–14]. To
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explain the differences, one first invokes a general remark that
for excitable systems, two possible types of response derive
from the proximity to bifurcation rather than the bistable
dynamics, so the thresholdlike behavior is not associated
to a genuine separatrix (saddle structure) but rests on the
coaction of nonlinearity and the sharp separation between the
system’s characteristic time scales. Thus, resolving the origin
and character of thresholdlike behavior for excitable elements
may be linked to an unstable fixed point or, as in case of a
FHN unit, to a quasiseparatrix (“ghost separatrix”) [15]. This
apparently differs from the typical escape problem scenario.

Another important point is that we tie the activation
exclusively to spiking response, so the event where the phase
point reaches the quasiseparatrix per se is insufficient to count
as activation. In other words, crossing the quasiseparatrix
does not present a discriminative condition between the
small- and the large-amplitude excitations. This is why we
introduce novel terminating boundary conditions rather than
just consider an extension of the escape problem to excitable
systems [15]. One should also point out that our approach
conceptually differs from the earlier work concerning noisy
excitable neurons [16,17], where the terminating boundary
does not constitute a set, but rather a unique boundary
point, introduced as an arbitrary threshold independent on the
structure of phase space.

We analyze the activation problem from two angles, one
by determining the most probable activation paths (MPAPs)
and the other by examining the statistical features of the
activation process. An important result consists in determining
the MPAPs for a single and two coupled units under different
ratios of external versus internal noise D1/D2. In the case of
two units, the topology of the obtained trajectories is shown to
qualitatively depend on the form of coupling. The statistics of
a single- and two-unit activation processes is characterized by
examining how the time-to-first-pulse (TFP) τ averaged over
different stochastic realizations and the associated coefficient
of variation R depend on noise. Both τ (D1,D2) and R(D1,D2)
are found to display universal behavior for all considered
setups, whereby the transition between two of the observed τ

regimes is associated to the fact that a unit undergoes stochastic
bifurcation induced by D1 and D2. For two units, the form of
coupling is shown to have a nontrivial effect on correlation of
the individual mean TFPs, which we relate to synchronization
properties of the time series for the given parameter set.

The paper is organized as follows. In Sec. II, we present the
details of the model, focusing on the thresholdlike behavior
of a single unit and the results of bifurcation analysis for
the coupled units. Section III concerns the case of a single
unit subjected to external and internal noise. Having laid out
the details of the method used to determine the MPAPs, cf.
Sec. III A, we examine how the topological features of the
MPAPs depend on the pertaining noise intensities. Apart from
relating the properties of τ (D1,D2) dependence to the onset of
stochastic bifurcation from the stochastically stable fixed point
to the stochastically stable limit cycle, we also introduce an
approximation to explicitly demonstrate that D1 and D2 make
substantially different impact on the mean TFPs. Section IV
contains the results for two units interacting via the linear
or nonlinear couplings. It is analyzed how the different form
of coupling affects the profile of the respective MPAPs, the

stochastic bifurcation as well as the correlation of single unit
mean TFPs. Section V provides a summary of the main results.

II. BACKGROUND ON THE APPLIED MODEL

A. Dynamics of a single excitable unit

As a paradigm for excitable systems, we consider the FHN
model, so the dynamics of a single unit is given by

dx = fx(x,y) = [x − x3/3 − y]dt +
√

2D1dW1

dy = fy(x,y) = ε(x + b)dt +
√

2D2dW2. (1)

The model is canonical for the type II excitability class,
meaning that the equilibrium lies in the vicinity of the direct
supercritical Hopf bifurcation. The latter is controlled by
the excitability parameter b, whereby the critical value is
|b| = 1. For |b| > 1, the system possesses a unique stable
equilibrium (xeq,yeq) = (−b,−b + b3/3), whereas for |b|<1
the oscillatory state sets in. Given the symmetry of the system
(1), the analysis may be confined to case b > 0 without loss of
generality. The unit in the subcritical state displays excitable
behavior if b is kept close to the bifurcation threshold. In this
paper, we fix b = 1.05.

The other important ingredient of the model is the sharp
separation between the characteristic time scales of the
activator and the recovery variable. The fast-slow dynamics
is facilitated by setting ε to a small value (ε = 0.05). So far,
the FHN model has been applied in describing the dynamics
of electrochemical reactions [18] and cardiac cells [3] but is
best known for its role in the field of neuroscience [1,7]. In the
latter context, the fast variable may be viewed as analogous
to the neuron membrane potential, whereas the action of
the slow variable may qualitatively be compared to that of
K+ ion-gating channels [1]. Regarding the impact of random
perturbations, we are interested into how the activation of units
is shaped by two independent sources of noise. In Eq. (1),
the stochastic effects are represented by the Wiener processes
whose increments satisfy 〈dWi〉 = 0 and 〈dWidWj 〉 = dtδij

for i,j ∈ 1,2. The dynamics of an excitable unit may be
summarized as follows. In the absence of perturbation, the
selected parameter values are such that the system lies at
equilibrium. Kicked by the perturbation, the unit may either
display a small amplitude response, whereby the phase point
rapidly decays back to equilibrium, or may exhibit a large
excursion, settling to equilibrium only after the phase point
has traversed the orbit corresponding to a complete oscillation
cycle.

For the proper statement of our problem, it is important
to first consider the geometric interpretation of the unit’s
dynamics. Two particular issues are addressed, one related
to the existence and the structure of the boundary between
the initial conditions resulting in small- or large-amplitude
responses, whereas the other concerns the distinction between
the roles of D1 and D2 in triggering the pulse emission.
Regarding the first point, we summarize the results on the
deterministic (noiseless) version of the system (1) obtained
by the method of phase plane analysis, which rests on the
singular perturbation theory. In the limit ε → 0, (1) turns into
a one-dimensional system ẋ = fx(x,y) under the constraint
ẏ = 0, meaning that y may be viewed as a fixed parameter.
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FIG. 1. (Color online) Phase plane analysis for a FHN excitable
unit. Equilibrium (EQ) lies at the intersection of the nullclines
fx(x,y) = 0 and fy(x) = 0. The x nullcline comprises three branches.
In the singular limit ε → 0, the spiking branch SS and the refractory
branch SR are attractive, whereas the orbit separating the initial
conditions that lead to small- or large-amplitude excitations, SAE and
LAE, respectively, contains the middle unstable branch. For finite ε,
the boundary between the two sets of initial conditions foliates into
a thin layer of canardlike trajectories (CNRD) referred to as “ghost
separatrix.” Illustrated trajectories are obtained by fixing the x initial
condition to x0 = −3, whereas y0 is varied. Extreme sensitivity to
initial conditions in vicinity of ghost separatrix is corroborated by
the fact that a difference in y0 of the order of 10−14 gives rise to a
different form of excitation. The parameters of FHN model are fixed
to ε = 0.05,b = 1.05.

For small but finite ε, x quickly relaxes to the value given by
fx(x,y) = 0, the condition outlining the curve referred to as
the x (cubic) nullcline or the slow manifold, see Fig. 1. The
x nullcline is composed of three branches, whose stability
features derive from the singular limit ε → 0. While the
refractory SR and the spiking branch SS may then be regarded
as attractors, the middle branch is unstable and is a part of
separatrix between the attractive branches. The key point is
that for small but finite ε the structure of the boundary and the
related threshold behavior is mostly inherited from the singular
limit. The distinction is that finite ε induces foliation of the
boundary around the maximum of the x nullcline. What has
explicitly been shown by the so-called blow-up method [19] is
that the boundary between the initial conditions leading to SS

or SR is not given by a single line but rather by a thin layer made
up of an infinite family of canardlike trajectories of system
(1). The latter further implies that the boundary constitutes
an invariant set. Boundary layer may still be perceived as
a single line, a kind of “ghost separatrix” [15], because at
distances d � ε from the fold point (1,2/3), all the constituent
trajectories become virtually indistinguishable.

As for the qualitative interpretation of the effects of noise,
it is evident that the noise term added to the slow-variable
dynamics may shift the position of the y nullcline. In other
words, internal noise is capable of translating the fixed point
from the stable refractory to the unstable (middle) branch of
the x nullcline, which temporarily switches the system from
the excitable state to the oscillatory state. While the impact
of D2 can be understood by geometric analysis, there is no
analogous interpretation in case of D1.

B. Dynamics of a couple of excitable units

In case of a pair of coupled units, we consider two distinct
setups, one where the units interact via the symmetrical linear
couplings and the other involving couplings given by the
nonlinear thresholdlike function.

The dynamics of a couple of FHN units interacting via
linear couplings is given by

dxi = [
xi − x3

i /3 − yi

]
dt +

√
2D1dWi

1 + c[xi − xj ]dt

dyi = ε(xi + b)dt +
√

2D2dWi
2, (2)

where i,j ∈ {1,2},i �= j specify the individual units. The
random perturbations are such that the terms acting on different
elements are supposed to be uncorrelated 〈dWi

kdW
j

l 〉 =
0,k,l ∈ 1,2. Regarding the system parameters, note that the
units are assumed to be identical (same b and ε), while
the symmetrical couplings are characterized by the coupling
strength c. To see how the unit’s excitability feature is modified
in the presence of interaction, we make a brief summary
of the results of the bifurcation analysis carried out on the
noise-free version of the system (2). The first remark is that
the equilibrium is located at (x1,y1,x2,y2) = (−b,−b + b3/3,

−b,−b + b3/3), whereby its stability is determined by the two
pairs of complex conjugate characteristic exponents which
satisfy μ1,2 = [1 − b2 + 2c ±

√
(1 − b2 + 2c)2 − 4ε]/2 and

μ3,4 = [1 − b2 ±
√

(1 − b2)2 − 4ε]/2. Given that the single
unit parameters are kept fixed, the local stability of equilibrium
is changed under variation of the coupling strength. In
particular, it may be demonstrated that the system undergoes
a direct supercritical Hopf bifurcation at the critical value
cH,L = (b2 − 1)/2. At this point, the stability of equilibrium
is lost and the units are no longer in the excitable regime.
However, we stress that the complete picture on the system
dynamics cannot be gained from the local bifurcation analysis
alone, because even before the excitability feature is lost
(for c = cH,L), it is modified due to a global fold-cycle
bifurcation which occurs at cFC < cH,L. Thus, under increasing
c the system exhibits three types of characteristic behavior:
(i) the “proper” excitable regime for c < cFC, (ii) the
regime of “generalized excitability” for c ∈ (cFC,cH,L), and
(iii) the oscillatory state at c > cH,L. The case (ii) involves
coexistence between the fixed point and the large limit cycle,
whose basins of attraction are separated by the stable manifold
of the saddle cycle. In strict terms, such a scenario does
not conform to Izhikevich’s definition of excitability, because
instead of relaxing to equilibrium after the large excursion, the
system displays continuous oscillations. Nevertheless, some
authors consider such a behavior as excitable or excitable-like,
and one should also note that the oscillation orbit may still pass
quite close to equilibrium, depending on the position, size, and
manifold structure of the saddle cycle. Note that above cH,L,
the large limit cycle created in the global event survives as
the only attractor, because the incipient cycle born via Hopf
bifurcation grows only until colliding with the preexisting
saddle cycle, such that the two get annihilated in the inverse
fold-cycle bifurcation. In other words, the properties of the
limit cycle attractor both below and above cH,L are determined
by the global bifurcation.
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Having summarized the results of the bifurcation analysis
for the setup involving two units coupled via linear function,
we turn to the scenario where the units subjected to external
and internal noise interact in a nonlinear fashion. The dynamics
of the units then obeys

dxi = [
xi − x3

i /3 − yi

]
dt +

√
2D1dWi

1 + c arctan(xj + b)dt

dyi = ε(xi + b)dt +
√

2D2dWi
2 . (3)

The interaction terms have a form of a thresholdlike function,
whose argument is defined relative to the corresponding
unit’s equilibrium xj − xj,EQ = xj + b. This way, the impact
of the state xj is felt more strongly if it lies further
away from the equilibrium. The stability of the equilib-
rium is determined by the four roots of the characteristic
equation, which appear as two pairs of complex conju-
gates μ1,2 = [1 − b2 + c ±

√
(1 − b2 + c)2 − 4ε]/2, μ3,4 =

[1 − b2 − c ±
√

(1 − b2 − c)2 − 4ε]/2. Again, it may be
shown that the system (3) undergoes a direct supercritical
Hopf bifurcation at cH,NL = b2 − 1. Note that we confine the
analysis to the case c > 0. Unlike the setup based on the linear
coupling, here one does not encounter the global bifurcation
controlled by c. In other words, the equilibrium is stable and
the units are in excitable regime for c < cH,NL, whereas the
system is in oscillatory state for c > cH,NL.

III. ACTIVATION PROCESS IN AN EXCITABLE UNIT
DRIVEN BY EXTERNAL AND INTERNAL NOISE

In the following subsection we introduce the numerical
method applied to determine the MPAPs. The method is
illustrated in case of a single FHN unit, but it can readily carry
over to the process of first pulse emission for two interacting
units. In Secs. III B and IV A, the topological features of
the pertaining trajectories will be analyzed in reference to
stochastic bifurcation, viz. for noise intensities substantially
below, near, or above the critical domain of (D1,D2) values.
While the main focus lies with the MPAPs explicitly obtained
from stochastic simulations, the extended discussion will also
concern the trajectories generated as solutions of the effective
Hamiltonian equations under boundary conditions relevant for
the process of first pulse emission. We stress that the use of such
equations is distinct from the standard Hamiltonian approach
which yields optimal trajectories in a typical escape problem
or the generalization of an escape problem to an excitable FHN
unit. In order to set up the discussion carried out in Secs. III B
and IV A, the following subsection addresses the precise role
of these effective equations and the ensuing trajectories.

A. Method applied to determine the MPAPs

The problem of obtaining the MPAPs for excitable units
in general comprises two issues. One issue concerns how the
terminating boundary conditions are specified, whereas the
other relates to the particular details of the method. A common
ingredient in previous approaches to analysis of activation
process in excitable units has been to draw an analogy to
motion of a particle in a one-dimensional potential perturbed
by noise. Reduction to a one-dimensional problem naturally
utilizes the decomposition of the system dynamics to fast

and slow motions. Though such approximate methods are not
intended to trace the unit’s most likely activation paths, the use
of Fokker-Planck formalism still allows one to gain insight into
certain statistical features of the activation process, including
the mean activation time and its variance [11,20]. Nevertheless,
an inherent drawback consists in the lack of ability to account
for the simultaneous influence of perturbations added to both
the slow and the fast component. In conceptual terms, the
key problem lies in the fashion by which the escape from
the stationary state is precisely defined. In particular, instead
of associating the terminating boundary to the structure of
the system’s phase space, the activation event is considered
a crossing of a predefined threshold, typically coinciding
with the fold point at the minimum of the slow manifold.
Compared to such methods, the approach we apply is preferred
because (i) it introduces a unique definition of the activation
path consistent with the structure of the phase space, (ii) one
may consider the coaction of random perturbations added to
both the fast and the slow subsystem, and (iii) one is able to
explicitly determine the MPAPs around which the different
stochastic realizations are clustered.

Before proceeding to the details of the numerical method
implemented for calculation of the MPAPs, let us specify the
boundary conditions relevant for the problem of first pulse
emission in case of an excitable FHN unit. In particular, for the
noise-driven system (1), we consider the stochastic fluctuation
paths in configuration space (x,y) that emanate from the
deterministic fixed point (xeq,yeq) = (−b,−b + b3/3) and
terminate at the spiking branch of the cubic [(x)] nullcline.
The given selection of the terminating boundary set derives
from the fact that the spiking branch of the cubic nullcline
defines the spike profile for the deterministic limit cycle
in the superthreshold regime b � 1, while the analogous
point holds for the noise-induced oscillations in the excitable
regime b � 1. In these terms, it has been verified that the
profiles of spikes for an arbitrary combination of relevant
(D1,D2) values can be approximated with sufficient accuracy
by the orbit corresponding to the deterministic limit cycle
characterizing the supercritical state. Note that the terminating
boundary set we introduce is distinct from the one in Ref. [15],
where a conceptually distinct problem has been considered.
In particular, the aim in that paper has been to extend the
standard escape problem to the case of an excitable FHN unit,
which has been achieved by fixing the “ghost separatrix” as
the terminating boundary set. The advantage of the boundary
conditions we have adopted is that they can readily be
generalized to the case of two interacting excitable units. In
another paper, we shall further demonstrate that the relevance
of a proper problem formulation which warrants that the
small-amplitude response and the spiking response are clearly
distinguished, as well as the related selection of the appropriate
terminating boundary conditions, is even more pronounced
when analyzing the noise-driven first pulse emission process
for an assembly of excitable units [21].

The details of the numerical method applied to determine
the MPAPs are as follows. For the given (D1,D2), we consider
an ensemble of fluctuation paths (x(t),y(t)) which start from
the deterministic fixed point (xeq,yeq) at moment ti and
satisfy the above-stated terminating boundary conditions. The
terminating time tf , as well as the associated coordinates
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(x(tf ),y(tf )), are left unspecified. For the described ensemble,
we study the statistics of the (x(t),y(t)) position of trajectories
as a function of time ti < t < tf preceding the arrival to the
terminating boundary set. In general, the idea is to sample
the different stochastic realizations of activation trajectories in
order to determine histograms of the path history reaching the
terminating boundary set. Naturally, the recorded trajectories
are characterized by the different tf times. Thus, the proper
approach to characterize the statistics of the paths in configura-
tion space is to consider the prehistory probability density [22],
which concerns the distribution of paths ending at the specified
boundary set. To obtain the former, one effectively sets the time
when each stochastic realization terminates to t = 0, such that
the behavior of the process during the initiation of the pulse
is observed by looking backward in time. This approach has
been introduced in Ref. [22] and has been applied a number
of times since [23]. The prehistory probability distribution is
defined as

H (x,y,t)dxdy = Pr[x(t) ∈ (x,x+dx),y(t) ∈ (y,y+dy)|
xb(tf ),yb(tf ),x(ti) = xeq,y(ti) = yeq],

ti < t < tf ,x < xb(tf ),y < yb(tf ). (4)

The most probable path for the first pulse emission process
is determined by collecting the points (xm(t),ym(t)) which
correspond to the maximum of H (x,y,t) at any given moment
t . In other words, the MPAP for the given (D1,D2) by
definition coincides with the peak of H as a function of
time. In practice, the numerical method used to determine
the prehistory probability density has involved dividing the
(x,y) phase space into a grid of 70 × 70 cells of length
�x = 0.048 and width �y = 0.09. Throughout the paper,
the numerical integration of the appropriate set of stochastic
equations is carried out by the Heun algorithm with the time
step δt = 0.002, whereas the averaging is performed over an
ensemble of 5000 different stochastic realizations of the first
pulse emission process.

In order to provide qualitative guidelines for an extended
discussion, the MPAPs determined via the above described
method for different setups and the different domains of
noise intensities will be compared to trajectories obtained
by integrating the set of effective Hamiltonian equations
under boundary conditions relevant for the problem of first
pulse emission. One recalls that in case of a typical escape
problem, the Hamiltonian theory formulated in the extended
variable-momentum state space may be used to explicitly
obtain the optimal trajectories which coincide with the MPAP,
whereby such trajectories are determined by the minimum of
action, introduced as an effective cost function. In Ref. [15],
such an approach has been implemented for an extension of the
escape problem to an excitable FHN unit, having considered
the ghost separatrix as the terminating boundary. Due to
fundamentally different terminating boundary conditions, one
cannot apply the Hamiltonian theory per se for the problem of
first pulse emission, as we explain in more detail further below.
Therefore, our approach cannot be interpreted in the genuine
context of or be referred to as an extension of the Hamiltonian
theory. In fact, the Hamiltonian system we consider should be
interpreted as a set of effective equations integrated for relevant
boundary conditions, whereby a particular trajectory is singled

out according to a certain predefined recipe. Our current goal
is not to provide a systematic theory but only to point out to
striking similarity between the numerically obtained MPAPs
for the process of first pulse emission and the trajectories
generated by the set of effective Hamiltonian equations. This
can be considered a preliminary stage of a study which may
ultimately lead to derivation of an appropriate theory for the
process of first pulse emission, whose basis would take into
account certain aspects of the standard Hamiltonian formalism.

In the remainder of this subsection, we briefly consider the
main elements of the Hamiltonian approach, whose detailed
description may be found in Ref. [24], and clarify the
differences emerging in case of the first pulse emission process.
Within the Hamiltonian formalism, the optimal trajectories for
a noise-driven escape process are obtained by variation-like
approach which minimizes the appropriately defined “cost
functional” [25,26] S̄(J ,t) along the set of possible activation
trajectories J between the two fixed boundaries. In particular,
the probability for noise to induce the xi �→ xf transition is
given by p(xf |xi) = ∫

J P [J ]d{J }, such that d{J } denotes
integration along all the paths {J = {x1, . . . ,xN }} connecting
xi and xf . Each path is weighted by the probability P [J ] ∝
exp[−S(x1,...,xN )

D
], where S is the cost function for the particular

path. When D is small, the largest contribution to p(xf |xi)
comes from the path with the minimal cost function Smin =
min{SJ |J = {x1, . . . ,xN }}. In other words, small noise rarely
gives rise to transition events, but once they occur, all the other
orbits are suppressed in favor of the one corresponding to the
minimal cost function. The transition probability then takes
the asymptotic form

p(xf |xi) = z exp

[−Smin

D

]
, x1 ≡ xi, xN ≡ xf , (5)

whereby the prefactor z is associated to “degeneracy” of the
minimum or rather the number of trajectories close to the one
given by Smin [24].

The form of S̄ is selected so to reflect on one hand the impact
of noise, whereas on the other hand to explicitly incorporate
the constraints between the variables and the stochastic terms
which derive from the equations of motion. The necessary
conditions for the minimum of such a constraint problem
can then be treated by the Lagrange multiplier technique.
Ultimately, one arrives at a set of equations that may be
interpreted as a Hamiltonian system, where the Lagrange
multiplier λ enact the momenta conjugate to the system
variables. In particular, for system (1), the corresponding
Hamiltonian set including the generalized momenta is given by

dx

dt
= x − x3/3 − y + rxpx

dy

dt
= ε(x + b) + rypy

dpx

dt
= −(1 − x2)px − εpy

dpy

dt
= px, (6)

where px and py are the components of the momentum,
while rx and ry represent the scaled noise intensities. By
the latter notation, D1 and D2 are conveniently expressed in
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terms of a single amplitude D (D1 = rxD and D2 = ryD).
System (6) has the Wentzel-Freidlin Hamiltonian [27] H =
px(x − x3/3 − y) + pyε(x + b) + rx

2 p2
x + ry

2 p2
y , whereas the

trajectories connecting the initial state i and final state f

are characterized by the action S = ∫ tf
ti

dt 1
2 (rxp

2
x + ryp

2
y).

At variance with system (1), the fixed point of the system
(6), (x0,y0,px,0,py,0) = (−b,−b + b3/3,0,0), is unstable for
b > 1, which is corroborated by the positive real part of the

characteristic exponents μ1,2 = −(1−b2)±
√

(1−b2)2−4ε

2 .
Conceptually, the Hamiltonian formalism is typically ap-

plied to escape problems, where the stable equilibrium coexists
with a certain saddle state, most often the saddle cycle [24].
The aim is then to obtain the heteroclinic trajectory in the
extended space, which emanates from the unstable manifold
of the fixed point at t → −∞ and reaches the stable manifold
of the saddle cycle asymptotically at t → ∞, as well as
tangentially (p → 0) for t → 0. In principle, depending on
p, the dynamics in the extended space may also support the
trajectories that do not settle at, but run across, the cycle, as
well as the trajectories that are repelled by the cycle, thus being
reflected back to initial state. In Ref. [15], an extension of the
escape problem to a single FHN unit has been considered by
utilizing the threshold-like behavior to construct the “ghost”
manifold (a separatrix in the asymptotic limit ε → 0), which
plays the role of a saddle structure. For such a scenario, the
Hamiltonian approach yields the optimal trajectory connecting
the unstable manifold of the fixed point to the stable manifold
of the ghost separatrix.

Compared to this, the problem of first pulse emission
fundamentally differs because one should look for trajectories
that cross the ghost separatrix, viz. leave the basin of attraction
of the fixed point. While the action surface in vicinity of
the basin boundary should have one clearly defined global
minimum, the physical picture near the spiking branch of
the x nullcline typically involves multiple local minima of
the action surface. A deeper theoretical analysis of these
issues is beyond the scope of the current paper. The point we
make here is as follows. Let us consider the trajectories that
correspond to local minima of the action surface and adopt as
a rule to select the solution that has the smallest momentum
at the terminating boundary. Then, for different system
configurations, the comparison of the MPAPs numerically
obtained from an ensemble of stochastic realizations reveals
significant similarity to the respective trajectories generated
by the set of effective Hamiltonian equations.

In terms of numerical treatment, obtaining the relevant
trajectories from the effective system (6) comprises a boundary
value problem. At the initial moment ti , the coordinates
(x(ti),y(ti),px(ti),py(ti)) lying on the unstable manifold of the
fixed point are specified according to the method provided in
Ref. [24], which connects the coordinates in the configuration
space with the components of the momentum. By this method,
it follows that the initial coordinates in the extended space can
be parameterized via a single angular variable φ ∈ (0,2π ).
The different trajectories are then obtained by sampling 1000
equally spaced initial conditions that cover the entire range of
φ values. The moment of arriving at the second boundary ts ,
as well as the coordinates (x(ts),y(ts),px(ts),py(ts)), are not
explicitly specified. In effect, we apply a shooting approach

that involves a set of different trajectories with particular initial
conditions, whereby all the trajectories terminate at the spiking
branch of the cubic nullcline. System (6) is integrated by a
standard solver implementing the fourth-order Runge-Kutta
routine. The cost function S is calculated along each of the
trajectories, and we single out the trajectory that corresponds
to a local minimum having the smallest value of angular
momentum at the terminating boundary (typically of the order
of 10−4 or less). Note that the analogous numerical approach
is applied in case of two interacting units. The only difference
is that the initial conditions are parameterized in terms of three
angular variables, instead of a single angular variable.

B. Examples of MPAPs and the method’s persistence
under increasing noise

We systematically examined how the MPAPs change under
variation of the ratio of external versus internal noise intensity
rx/ry . It has been established that the MPAP profiles are
not sensitive to gradual changes over the whole range of
rx/ry values. In particular, when slowly increasing rx/ry , the
trajectories are found to either exhibit barely visible changes in
shape or to converge to each other once the “ghost separatrix”
is crossed. Therefore, in qualitative terms one may single out
three characteristic forms of solutions, corresponding to cases
(rx,ry) = (1,0),(rx,ry) = (0,1) and (rx,ry) = (1,1), which can
be held representative for the problem of first pulse emission. In
other words, the topological features of MPAPs are primarily
sensitive to whether a particular noise source or both sources
are present in the system (1).

The other point one has to consider is the impact of the noise
intensity D. Naturally, the physical picture described above is
maintained for sufficiently small D. The analysis provided
in Sec. III D will show that the term “sufficiently small” D

effectively implies that the system lies sufficiently away from
the stochastic bifurcation underlying transition from stochas-
tically stable fixed point to the noise-induced oscillations.
Above the stochastic bifurcation, the attractive power of the
fixed point is no longer felt, such that the noise can move
the phase point away from equilibrium without an opposing
force. Thus, if one focuses on MPAPs for any of the three
characteristic rx/ry ratios, the impact of noise will become
substantial as one approaches the stochastic bifurcation and
will become overwhelming above the stochastic bifurcation.
Note that for large D, the MPAPs determined via the method
introduced in Sec. III A lose physical meaning, because the
fluctuations over an ensemble of stochastic realizations grow
too large to be accurately described by the maximums of the
prehistory probability density H (x,y,t). The influence of noise
is reflected in the increase of the skewness and the kurtosis of
the distribution of system’s variables for different stochastic
realizations at arbitrary t .

Let us now consider some examples of MPAPs in order
to corroborate the points stated above. First we illustrate the
validity of the method used to obtain the MPAPs, see Fig. 2(a).
The figure refers to the case (rx,ry) = (0,1) for D = 0.00003,
the noise value substantially below the stochastic bifurcation.
By taking 10 arbitrary realizations of the first pulse emission
process, it is shown that the stochastic realizations indeed
cluster around the MPAP, indicated by the open circles. We
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FIG. 2. (Color online) MPAPs for an excitable FHN unit. (a) The
main frame shows that the activation paths for different stochastic
realizations (solid lines) cluster around the MPAP (open blue circles).
The ratio of external vs internal noise intensities is rx : ry = 0 : 1,
whereas the noise intensity is D = 0.00003. The x nullcline (NULL)
and the canardlike trajectory (CNRD) pertaining the ghost separatrix
are shown by the dashed and the dotted lines, respectively. Inset:
The enlarged view of the region of phase space before the CNRD.
In (b) is illustrated how the MPAP profile changes under increasing
D for the fixed ratio rx : ry = 0 : 1. The MPAPs shown correspond
to D = 0.00003 (circles), D = 0.00015 (squares), and D = 0.001
(diamonds). These noise intensities lie substantially below, in vicinity
and above the stochastic bifurcation, respectively.

have observed that the distribution of (x,y) values at fixed
t for different stochastic realization is narrow around the
terminating boundary and broadens towards the initiation
point. With increasing noise intensity D, the changes in the
shape of the MPAPs become clearly visible around D ≈
0.00015, the value close to the onset of stochastic bifurcation,
cf. Fig. 2(b). The effect of noise is felt particularly strong in
the region of phase space before the ghost-separatrix, which
is indicated by the dotted line. An interesting point is that the
larger noise may also have an inhibitory effect on the process
of first pulse emission, in the sense that the phase point which
has already crossed the ghost separatrix may still diffuse back
to the basin of attraction of the fixed point.

We further highlight how the topological properties of
MPAPs depend on the characteristic ratio rx/ry . As announced

FIG. 3. (Color online) Extended analysis of MPAPs. Panel (a)
is intended to illustrate the difference between the first pulse
emission problem and the generalized escape problem for a FHN
unit. The setup and the style of presentation are the same as in
Fig. 2(a), but two additional curves are presented. The solid black
line approaching the CNRD indicates the optimal trajectory obtained
for the escape problem via the standard Hamiltonian approach,
whereas the dash-dotted line denotes the trajectory generated by the
system (6) according to the recipe described in Sec. III A. Panel
(b) shows the MPAPs for rx : ry = 1 : 0 (circles) and rx : ry = 1 : 1
(squares), together with the corresponding trajectories (dash-dotted
lines) generated by the system (6). In both instances, the noise
intensity is D = 0.00009.

earlier, the discussion is put into a broader perspective by
comparing the MPAPs to the trajectories generated by the
effective Hamiltonian system (6) according to the prescription
provided in Sec. III A. Taking the case rx : ry = 0 : 1 as an
example, we first demonstrate how the problem of first pulse
emission differs from the extension of the escape problem to
an excitable FHN unit addressed in Ref. [15]. Apart from
the ghost separatrix, denoted by the dotted line, Fig. 3(a)
also shows the optimal trajectory for the escape problem
obtained using the standard Hamiltonian formalism. The latter
trajectory is indicated by the solid line which approaches,
but does not cross, the ghost separatrix, because the optimal
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escape path cannot intersect the system’s manifold. The MPAP
numerically determined for the process of first pulse emission
is represented by the open squares. The particular MPAP is
obtained for small, but finite, noise D. Such D values may
actually be referred to as intermediate, because, on one hand,
they lie below the critical domain giving rise to stochastic
bifurcation, but, on the other hand, they cannot be considered
as asymptotically small noise (D → 0) where the theory
of large fluctuations would naturally apply. It can be seen
that the initial part of the MPAP matches very closely the
optimal trajectory calculated by the standard Hamiltonian
formalism but also departs from it well before reaching the
ghost separatrix. Nevertheless, an interesting finding is that
the trajectory generated from the effective system (6), cf.
the thick solid line that crosses the ghost separatrix, matches
quite closely the MPAP along the entire trajectory relevant
for the process of first pulse emission. This point suggests
that a theory using certain aspects of the standard Hamiltonian
approach could potentially be derived to characterize the first
pulse emission process.

Figure 3(b) is intended to compare the MPAPs for the two
remaining characteristic rx/ry ratios at D values substantially
below the stochastic bifurcation. As expected, the respective
trajectories show significant differences well before crossing
the ghost separatrix. The trajectories generated by the effective
Hamiltonian equations in the fashion described in Sec. III A
again seem to closely match the MPAPs obtained by averaging
over the ensemble of stochastic realizations. The profile of the
escape paths in vicinity of equilibrium in Fig. 3(b) suggests
that the noise-induced linearization [28,29] takes place in the
presence of the external noise. In particular, the latter is found
to smear the effect of nonlinearity, such that the thresholdlike
behavior becomes smoother.

C. An insight into the activation processes driven
by external or internal noise

Before proceeding to numerical results regarding the
statistical properties of the activation process, let us briefly
consider the conceptual differences between the cases where
noise influences the dynamics on the fast (D1 > 0,D2 = 0)
or the slow characteristic time scale (D1 = 0,D2 > 0). Note
that the “mean activation times” obtained from approximations
introduced here are not intended to be compared quantitatively
with the actual stochastic averages from Sec. III D but are
rather aimed at gaining qualitative insight into the distinct
mechanisms by which the two noise sources affect the
activation process. To this end, we use the standard approach
which consists in reducing the original dynamics, given by
(1) with D1 or D2 set to zero, to an appropriate Langevin
equation of the form dz = −U ′(z)dt + √

2DdW (t), where
U (z) denotes the effective potential.

If only D1 is present, one may conveniently exploit the
sharp separation between the two characteristic time scales.
The analysis is confined solely to the fast variable subsystem,
which is first rewritten as

dx = −∂U (x,y)

∂x
dt +

√
2D1dW, (7)

with U (x,y) = − 1
2x2 + 1

12x4 + xy. In the last expression for
U , y may simply be seen as a parameter, because the evolution
of the y variable takes place on a time scale much slower than
that of the x variable [30]. Another useful point is that U has
the form of a double-well potential. Its two local minima, as
well as the local maximum, correspond to x values which are
the roots of the equation for the x nullcline x − 1

3x3 − y = 0.
In particular, the local minima are given by the solutions x1 and
x3 lying on the refractory and the spiking branch, respectively,
while the local maximum coincides with the x2 solution on the
unstable branch of the x nullcline [x1(y) < x2(y) < x3(y)].
Then the activation process may be interpreted as a jump from
the well at the refractory branch to the one at the spiking
branch, whereby the phase point has to overcome the potential
barrier provided by the local maximum.

Given that U has a double-well shape, the escape time for
a particle to jump from x1(y) to a point near x3(y) can be
approximated by the well-known Kramers formula [31–33]
T = 2π√|U ′′(x2)|U ′′(x1)

e{[U (x2)−U (x1)]/D1}. In our case, one may fix
the y = −2/3 value, which corresponds to the minimum of
the cubic nullcline. Having determined the appropriate x1(−1)
and x2(−1), we have obtained the dependence T (D1) shown by
the dashed line in Fig. 4. Naturally, given the crudeness of the
introduced approximations, both in terms of system dynamics
and the boundary conditions, the obtained T values should not
be compared to the mean activation times for our activation
problem.

The scenario where only D2 is present cannot be ap-
proached the same way as above, because y can no longer
be treated as a parameter. Still, one may implement the
adiabatic elimination of the fast variable to find the effective
potential that influences the y dynamics. Though the roots
of the equation describing the slow manifold y = x − 1

3x3

may be used explicitly, the drawback is that such solutions
are not easily handled analytically. In order to keep the

FIG. 4. (Color online) Assessing the impact of two distinct noise
sources on the activation process of a single FHN unit. The curves
refer to approximate dependencies of “activation times” T on
D1 (dashed line) and D2 (solid line). Note that the introduced
approximations are crude, so the results can only be considered in a
qualitative fashion. Still, the two curves accurately predict that the
activation process led by D2 is comparably faster than the one led
by D1.
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subsequent form of effective potential analytically tractable,
it is more convenient to approximate the relation between y

and x in vicinity of the minimum of the cubic nullcline by a
simple relation y(x) = ym + 1

2k(x − xm)2, where (xm,ym) =
(−1,−2/3) refer to coordinates of the minimum. In other
words, in proximity of the minimum, the cubic dependence
has been replaced by a quadratic approximation. Note that
k = −2xm is determined by taking the second derivative of
the equation for the x nullcline. From the expression for y(x),
one readily finds that x = xm ± √

y − ym, whereby the plus
sign solution is relevant for our activation problem. It follows
that the equation for the dynamics of y may be written as

dy = ε(xm + √
y − ym + b)dt +

√
2D2dW, (8)

such that the corresponding effective potential reads U =
ε(xm + b)y + 2

3ε(y − ym)3/2.
Given that U is not a double-well potential, one cannot use

the Kramers-like equation for the mean first-exit time. Instead,
it is appropriate to use the general form

T = 1

D2

∫ a

i

dueU (u)/D2

∫ u

r

dve−U (v)/D2 , (9)

derived from the Fokker-Planck approximation to a problem
involving a single absorbing boundary a and a single reflecting
boundary r [31–33]. Note that i in one of the integration
limits refers to the injection point (initial location), which in
our activation problem corresponds to the deterministic fixed
point (xeq,yeq) = (−b,−b + b3/3). Regarding the reflecting
boundary, it has often been found that the final results are
not affected by its particular value [11,31], so r may readily
be set to r → −∞ to simplify the calculations. As for the
absorbing boundary, it generally concerns the terminating
point of the activation path and remains a free parameter that
cannot be known a priori. Nevertheless, we may use the results
for the MPAP solutions from Sec. III B and simply read the
necessary coordinates of the terminating point (y = −0.308),
which illustrates the complementary nature of the methods
applied. Note that the integrals such as the ones in Eq. (9) are
typically resolved by introducing convenient approximations.
In the particular case, we have used the approximate solution
provided in Ref. [11]. The obtained curve T (D2) is shown by
the solid line in Fig. 4.

It has already explained that the results in Fig. 4 cannot be
considered reliable in quantitative sense given the crudeness of
the approximations involved. Still, certain qualitative insight
have been gained. For instance, the analysis above indicates
that the activation processes led by D1 or D2 have two consider-
ably distinct backgrounds, whereby only the mechanism of the
former may be interpreted in analogy to a jump over the barrier
that separates two potential wells. Further, the curves in Fig. 4
turn out to be consistent with the general trend for a single
FHN unit demonstrated in the next subsection, according to
which the activation is more easily excited by D2 than D1.

D. Statistical features of the activation process

The statistics of activation events is characterized in terms
of the mean TFP τ (D1,D2) and the associated coefficient of
variation R(D1,D2). The former is an average of TFPs for dif-
ferent stochastic realizations τ (D1,D2) = 1

nr

∑nr

i=1 τi(D1,D2).

The stochastic paths taken into account satisfy the specified
boundary conditions, such that the trajectories emanate from
the deterministic fixed point and terminate at the spiking
branch of the cubic nullcline. The coefficient of variation is
defined as the normalized variation of activation times [34]

R(D1,D2) =
√〈

τ 2
i

〉 − 〈τi〉2

〈τi〉 , (10)

where 〈·〉 refers to averaging over an ensemble of stochastic
realizations. Quantity R is intended to describe the regularity
of the activation process, in the sense that the smaller R

indicates that the TFPs deviate less from the mean value.
Note that numerical simulations for all the considered setups
are carried out by implementing the Euler integration scheme
with the fixed time step δt = 0.002, having verified that no
changes occur for smaller δt . All the results for the mean
TFPs and the associated variances are obtained by averaging
over an ensemble of 5000 different stochastic realizations of
the activation process. In each realization, the initial conditions
of a unit coincide with the deterministic fixed point.

The fields τ (D1,D2) and R(D1,D2) for a single excitable
unit are plotted in Figs. 5(a) and 5(b), respectively. The ob-
tained profiles indicate that the mean TFPs are more sensitive
to variation of D1, whereas R shows strong dependence on
D2. Regarding the mean TFPs, one may distinguish three
characteristic regimes, including (i) long TFPs, encountered
for small D1 and D2; (ii) the plateau region, comprising
intermediate D1 and intermediate to large D2 values; as well
as (iii) short TFPs, found for large D1 irrespective of D2.

Given that the considered stochastic process is influenced
by two sources of noise, one finds that the transitions between
the different regimes are gradual rather than sharp, whereby
the “boundaries” are naturally smeared due to action of noise.
Nevertheless, in terms of theory, it is reasonable and well
justified to discuss the physical background giving rise to
transitions between the different regimes. What we postulate
is that the transition between the domains (i) and (ii) may
qualitatively be accounted for by the fact that the excitable
unit undergoes stochastic bifurcation induced by D1 and D2.
Note that the phenomenological stochastic bifurcation [35–38]
we refer to corresponds to the noise-induced transition from
the stochastically stable fixed point (stationary probability
distribution P (x,y) focused around the fixed point) to the
stochastically stable limit cycle (stationary probability distri-
bution P (x,y) showing non-negligible contribution for (x,y)
values along the spiking and the refractory branches of the
x nullcline). Intuitively, one understands that the fixed point
can be considered stochastically stable if the amplitude of
fluctuations around the fixed point is of the order of noise
intensity. By the same token, one may perceive a limit cycle
as stochastically stable if the general structure involving two
branches of the x nullcline (the spiking and the refractory
branch) is preserved under the action of noise.

In support of associating the transition between the domains
of large TFPs and the plateau region with the stochastic
bifurcation, one may invoke the qualitative argument that,
above the bifurcation, the attractive power of the fixed point is
effectively no longer felt, in the sense that noise can drive
the phase point away from equilibrium without meeting a
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FIG. 5. (Color online) Statistical features of activation process
influenced by D1 and D2. In (a) is displayed how the mean TFPs τ

averaged over an ensemble of different stochastic realizations depend
on D1 and D2, whereas (b) concerns the associated coefficient of
variation R(D1,D2). τ (D1,D2) exhibits three characteristic regimes
of behavior, whereby the transition from the large values to the plateau
region is found to qualitatively correspond to stochastic bifurcation
from the stochastically stable fixed point to continuous oscillations.
An indication on the noise intensities that give rise to stochastic
bifurcation is provided in the inset of (a). The latter shows bifurcation
curve D2(D1) obtained for the approximate model (11) of the original
stochastic system (1).

strong opposing force. At the level of mean TFPs, this should
be reflected as follows. Below the stochastic bifurcation,
the mean TFPs are expected to be longer, while above the
bifurcation they should substantially reduce and also become
fairly insensitive to further increase of noise. In other words,
once the fixed point becomes stochastically unstable, the gross
effect of noise is the same because the fixed point holds no
attractive power to resist its action.

Having established that the boundary between the domain
of long TFPs and the plateau region in Fig. 5(a) should coincide
with the (D1,D2) values that give rise to stochastic bifurcation,
our next goal is to try to obtain these values analytically. To
do so, we derive a deterministic model based on Gaussian ap-
proximation of the original system (1). According to Gaussian
approximation, all the cumulants above the second order are
assumed to vanish [39–41]. One is ultimately left with a set
of five equations describing the dynamics of the first moments

mx(t) = E[x(t)] and my = E[y(t)], the variances sx(t) =
E{[x(t) − mx(t)]2} and sy(t) = E{[y(t) − my(t)]2}, as well as
the covariance u(t) = E{[x(t) − mx(t)][y(t) − my(t)]}:

ṁx = mx − 1
3m3

x − mxsx − my

ṁy = ε(mx + b)

ṡx = 2sx

(
1 − m2

x − sx

) − 2u + 2D1

ṡy = 2εu + 2D2

u̇ = u
(
1 − m2

x − sx

) + εsx − sy. (11)

Note that the impact of noise in Eq. (11) is described only
by the respective intensities D1 and D2, which can then be
treated as bifurcation parameters. In particular, the bifurcation
analysis shows that the approximate model (11) displays direct
supercritical Hopf bifurcation, which qualitatively accounts
for the stochastic bifurcation exhibited by the excitable unit (1).
The obtained bifurcation curve D2(D1), plotted in the inset of
Fig. 5(a), qualitatively characterizes the stochastic bifurcation
exhibited by the excitable unit, and thereby accounts for the
transition from the large values of mean TFPs to the plateau
region.

Better understanding of the nature of the activation process
behind the τ and R dependencies from Figs. 5(a) and 5(b)
may be gained by examining how the distribution of TFPs
over an ensemble of different stochastic realizations changes
under variation of D1 and D2. Let us note first that even for a
typical escape problem, such an issue has rarely been addressed
in the literature and is difficult to approach analytically. In
particular, for the distribution of first exit times in a typical
escape problem, the only rigorous result so far has been found
within the framework of large fluctuations theory [42]. It states
that for the sufficiently small noise intensity, the distribution
of the first exit times asymptotically acquires exponential
form. If interpolated to the case of an excitable FHN unit,
one should expect the latter statement to apply regardless
of whether noise is added solely to the fast or the slow
variable. Still, note that the mentioned result could concern
only the extension of the escape problem to excitable systems,
where the terminating boundary set would be given by the
“ghost separatrix.” Recall that we have already explained
the conceptual difference between such a problem and the
activation problem we consider, where the focus exclusively
lies with the spiking response of an excitable unit.

The characteristic examples illustrated in Fig. 6 suggest
that the activation process dominated by D2 gives rise to the
exponential distribution of TFPs, whereas the distributions
generated by the prevailing D1 conform to Lorentzian-like
profile with the cutoff at small TFP values. Regarding the
former, one should emphasize that the exponential distribution
of the interevent intervals is typically associated with the
Poisson process [43], and it is indeed not unexpected to find
an excitable unit under small amount of noise to act as a
Poisson generator [11]. Nevertheless, an interesting finding
is that the activation events led by D1 seem to be derived
from some process other than the Poissonian, though the
asymptotic distribution of TFPs is still exponential. Note that
the qualitative distinction between the average effects of D1

and D2 has already been commented on in Sec. II A. The
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FIG. 6. (Color online) Impact of D1 and D2 on the distribution
of TFPs P (τ ) obtained for an ensemble of different stochastic
realizations. D2 alone typically gives rise to an exponential distri-
bution of TFPs, which is consistent with the Poisson process. Under
prevailing D1, the distributions are found to conform to a unimodal,
Lorentzian-like profile. The displayed examples refer to cases D1 =
0.0007,D2 = 0 (solid squares); D1 = 0.0001,D2 = 0.0001 (solid
triangles); D1 = 0.02,D2 = 0 (solid circles); D1 = 0,D2 = 0.0001
(empty circles); and D1 = 0,D2 = 0.02 (empty squares).

remark on the two distribution types holds if the leading noise
term is much stronger than the remaining one. Nevertheless,
while the validity of this statement is maintained even under
substantial increase of D1 as the leading term, the analogous
point for D2 applies up to a certain value, as explained
below.

For (D1,D2) corresponding to the plateau from Fig. 5(a),
one generally encounters the exponential distribution of TFPs
or some of its modifications. In this context, note that the
increase of R in Fig. 5(b) remains fairly slow, if it appears at
all, for D2 values that warrant R < 1, but becomes steep once
R passes 1 around D2 ∼ 10−2. The approximate boundary at
R = 1 coincides with the coefficient of variation one obtains
for the exponential distribution of TFPs. It is further found
that the sufficiently large D2 values where R > 1 give rise
to a peculiar regime where the ensemble of activation events
splits in two sharply distinct classes, such that the one with the
small TFPs dominates, but the contribution from the events
with large TFPs is non-negligible. The examples of stochastic
activation paths for large D2, including those with long TFPs,
where the phase point rebounds onto the refractory branch
of the x nullcline before the transition to spiking branch is
triggered, are already provided in Fig. 3(b). Note that the
intention there has been to illustrate the setup for which the
analytical method of calculating the MPAPs fails.

IV. CASE OF TWO UNITS: MPAPS AND STATISTICAL
PROPERTIES OF THE ACTIVATION PROCESS

In this section, we investigate how the form of coupling
affects the first pulse emission process for two units subjected
to external and internal noise. The first subsection is focused
on the MPAPs obtained for the setups with linear or nonlinear

interactions, whereas the second subsection concerns the
statistical features of the activation process.

A. Dependence of MPAPs on the form of coupling

The MPAPs are obtained by the numerical method
presented in Sec. III A. Nevertheless, before proceeding
with the results, we first consider what counts as a two-
unit activation event by providing the appropriate bound-
ary conditions. In terms of the initial conditions, the
activation paths of units described by (2) or (3) be-
gin at the equilibrium (x1,eq,y1,eq,x2,eq,y2,eq) = (−b,−b +
b3/3,−b,−b + b3/3). The terminating boundary conditions
are specified in such a way that the phase points of both
units should reach the spiking branch of their respective xi

nullclines. This definition implies that the time-to-first pulse
for a couple of units is determined by the slower-firing unit.
Note that the profile of the spiking branch for a coupled unit
is quite similar to that of a single unit, which can readily be
verified. In particular, for the given unit one may approximate
the x coordinate of the other unit within the coupling term
by its value at the deterministic fixed point, around which the
actual values fluctuate for most of the time.

Regarding the coupling strengths, note that we are inter-
ested only in c values that are subcritical with respect to
Hopf bifurcation, viz. c is always set so the deterministic
versions of (2) or (3) admit the locally stable fixed point.
This is consistent with the goal to examine the noise-driven
first pulse emission process and the fashion in which it is
modified by the presence of coupling. The fact that the c

values are subcritical also implies that, in the deterministic
case, the large excitation of one unit (initial conditions far
from equilibrium) cannot induce a spiking response of the
other unit which lies at equilibrium. One should point out
that the adopted formulation of the activation problem for two
units is by far more appropriate than the alternatives, including
the one cast in terms of the average variables (x1 + x2)/2
and (y1 + y2)/2. Without stating the details, we note that the
latter approach would have several drawbacks. On one hand,
the dynamics associated to synchronization would smear the
physical picture relevant for the activation problem, whereas,
on the other hand, there would be no immediate generalization
from the case of a single unit to the setups with two
units.

Now let us focus on the scenario where two excitable units
interact via linear couplings. The symmetry of interactions is
reflected in the point that the MPAP trajectories are identical
for both units. This is corroborated in Fig. 7(a), which shows
as an example the respective MPAPs of the two units (solid
and open squares) for the characteristic ratio rx : ry = 1 : 1 at
small D substantially below the stochastic bifurcation. Several
realizations of the first pulse emission process are plotted to
demonstrate the clustering around the MPAP. The approximate
matching between the units’ most likely trajectories is found to
persist for all (rx,ry) characteristic setups. The changes of the
MPAP profile under increasing noise intensity D are illustrated
in the inset of Fig. 7(a). It has already been mentioned
that, depending on c, the units coupled in a linear fashion
may display two different regimes where the fixed point is
stable. These regimes have been referred to as excitability
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FIG. 7. (Color online) MPAPs for two coupled units. In (a)
are displayed the MPAPs for two units (open and solid squares)
interacting via linear couplings of subcritical strength c = 0.04. The
solid lines denote 10 sample paths corresponding to the process of
first pulse emission. The results are obtained for rx : ry = 1 : 1 and
D = 0.00005. The dash-dotted line indicates the trajectory generated
by the extended system (12). In the inset are shown the MPAPs
for the same characteristic ratio and noise intensities D = 0.00002
(squares) and D = 0.0005 (circles). Panel (b) provides a comparison
between the MPAPs obtained for linear (open and solid circles)
and nonlinear interactions (open and solid diamonds). In the latter
case, the subcritical coupling strength is c = 0.07, while the noise
parameters are the same as in (a). In the inset is shown the enlarged
view of the portion of phase space before the CNRD.

proper and generalized excitability, whereby the latter involves
coexistence between the stable fixed point and the stable limit
cycle created in a global fold-cycle bifurcation. Comparing
the cases where c is sub- or supercritical with respect to global
bifurcation, we have established that for small but finite D the
profile of MPAPs for all three characteristic ratios rx/ry does
not appear to show significant differences.

As in case of a single unit, we make a brief remark regarding
the trajectories generated by the effective set of Hamiltonian
equations. Compared to (6), the equations for the dynamics
of the extended system are modified to include the interaction

terms

dxi

dt
= xi − x3

i /3 − yi + rxpx,i + c(xi − xj )

dyi

dt
= ε(xi + b) + rypy,i

dpx,i

dt
= −(

1 − x2
i

)
px,i − εpy,i + cpx,j

dpy,i

dt
= px,i , (12)

whereby i,j ∈ {1,2},i �= j denote the units’ indices. The
numerical treatment of the above system again involves
integration for the initial conditions set on the unstable
manifold of the saddle point. In particular, in configuration
subspace one chooses the initial values (xi,yi) that lie on
a four-dimensional sphere of a very small radius, which
encloses the deterministic fixed point (x1,eq,y1,eq,x2,eq,y2,eq).
Naturally, the points located on a four-dimensional sphere
are parametrized with three independent angular variables.
The initial values of the generalized momenta are then
obtained using the prescription provided in Ref. [24]. An
interesting finding is that the trajectories of the extended
system, selected by the rule described in Sec. III A, again
closely match the numerically obtained MPAPs, cf. the dotted
line in Fig. 7(a). This striking similarity further evinces
that the theory in the spirit of the Hamiltonian approach
may potentially be derived for the problem of first pulse
emission.

An issue that needs to be addressed is whether and how
sensitive the topological features of the MPAPs are with
respect to the linear or nonlinear form of coupling. The
comparison is facilitated in Fig. 7(b), where the corresponding
MPAPs for the scenarios with linear (circles) and nonlinear
interactions (diamonds) are plotted together. The data shown
are obtained for the same D1 and D2, whereas the coupling
strengths are analogous in terms of distance from the Hopf
bifurcation. The trajectories corresponding to the different
units for the same system configuration are distinguished by
the solid and open symbols. Note that in case of nonlinear
interactions, there is no symmetry to warrant that the respective
MPAPs of the two units would be identical for arbitrary values
of external and internal noise. It turns out that the MPAPs are
approximately identical for intermediate D sufficiently below
the stochastic bifurcation. Nevertheless, we have also found
that the spread of the MPAPs in case of nonlinear couplings
increases with D. As for the effects of linear versus nonlinear
interactions, one observes significant differences in the profiles
of MPAPs within the initiation region, which is shown enlarged
in the inset of Fig. 7(b). Also note that the MPAPs of the
interacting units substantially depart from what is found in
case of a single unit, cf. Figs. 2 and 3.

B. Statistical properties of the activation process
for coupled units

Here we consider two types of numerical results, one
referring to the two-unit activation events and the other
concerning the correlation between the activation events on
individual units. Recall that the “compound” activation event
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FIG. 8. (Color online) Statistical properties of activation process for two units interacting via linear couplings. Panels (a) and (b) refer to
mean TFPs τc(D1,D2) in a strongly subcritical (c = 0.01) and a weakly subcritical regime (c = 0.04), respectively. Note that the definition of
the two-unit activation event requires that the phase points of both units have reached the appropriate terminating boundary set. Panels (c) and
(d) show how τc (main frames) and Rc (insets) behave under increasing c. The noise intensities (D1,D2) = (0.00014,0.0008) fixed in (c) are
representative for the domain of large TFPs from (a), whereas (d) is obtained for (D1,D2) = (0.154,0.0002), the values corresponding to the
plateau region in (a). In panel (e) is demonstrated how the distributions of TFPs over different stochastic realizations vary with D1 and D2. Note
that the unimodal distribution profile is preferred over the exponential form. The data are obtained for D1 = 0,D2 = 0.0001 (solid triangles);
D1 = 0.0005,D2 = 0 (solid squares); D1 = 0.01,D2 = 0 (solid circles); D1 = 0,D2 = 0.02 (empty circles); and D1 = 0.005,D2 = 0 (empty
squares).

for a couple of units requires that the phase points of both
units have reached the spiking branch of the appropriate xi

nullcline, consistent with the definition adopted in Sec. IV A.
Adhering to this, we have calculated the mean TFPs τc(D1,D2)
and the associated coefficients of variation Rc(D1,D2) for the
scenarios with the linear or the nonlinear couplings, further
examining how the results are changed under variation of c.
Though c is always selected to lie below the Hopf threshold, in
the latter context one may still distinguish between the strongly
and the weakly subcritical regimes.

In terms of whether the mere form of coupling affects the
statistical features of the activation process, it may be shown
that the fields τc and Rc exhibit qualitatively analogous depen-
dencies for the linear and the nonlinear interactions. It is further
found that the behavior of mean TFPs is in several aspects
different to that of a single unit, whereas the corresponding
coefficient of variation Rc is only marginally dependent on
c, displaying the “universal” behavior qualitatively similar to
the one in Fig. 5(b). As an example of how the properties of
activation process change with c, in Figs. 8(a) and 8(b) are
illustrated the respective fields τc(D1,D2) for the strongly and
weakly subcritical regimes in case of the linear coupling. Both
plots corroborate the existence of the three typical regimes
already indicated in reference to Fig. 5(a), though one no
longer speaks of stochastic bifurcation in vicinity of the Hopf
bifurcation controlled by b but rather of the one induced by
the coupling strength.

Nevertheless, several differences due to presence of cou-
pling should be noted. First, as c is increased, the mean TFPs
for small noise intensities (below the stochastic bifurcation)
become shorter, see Fig. 8(c). Also, at small noise intensities
the activation times τc of the couple are reduced when com-
pared to the case of a single unit. However, for intermediate
D1 and D2 corresponding to the plateau region, the mean
TFPs for the pair are larger than those found for a single
unit. More importantly, the average activation times in this
region seem to increase as c rises, see Fig. 8(d). One may
in fact discern a general trend that the differences between
the three characteristic regions are gradually washed out as
c is enhanced, which is manifested even more once c is
supercritical. This is to be expected in the latter case, given that
the activation process then becomes primarily deterministic,
viz. it is only perturbed by the noise terms. Note that in all the
three characteristic regimes the corresponding coefficients of
variation are seen to reduce with c, cf. the insets in Figs. 8(c)
and 8(d). The final remark on the impact of coupling is that
the region with small mean TFPs apparently decreases with c.

We have further examined how the distribution of activation
events over different stochastic realizations depends on the
form and strength of coupling. One may state that the general
conclusions reached in case of a single unit, cf. Fig. 6, persist
for the activation events of coupled units, though the physical
picture is more perturbed for the scenario with the linear than
the nonlinear interactions. Recall that for a single unit, only
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FIG. 9. (Color online) Relationship between TFPs of individual units making up the pair. In panels (a) and (b) are plotted the differences
in mean TFPs �τ (D1,D2) and the associated coefficients of variation R�τ (D1,D2), respectively. The data are obtained for the linear couplings
of strength c = 0.04, and similar results are found for the setup with nonlinear interactions. Panels (c) and (d) show the correlation coefficients
ρ(D1,D2) between the TFPs for the different stochastic realizations in cases of linear (c = 0.04) and nonlinear interactions (c = 0.06),
respectively.

the external noise has been found to induce deviations from
the typical exponential distribution of events. For the scenario
involving the nonlinear coupling, there may be more noise
domains admitting some distribution other than exponential,
but the latter still constitutes the prevailing form of behavior.
However, under linear interactions, it turns out that both D1

and D2 may give rise to a form of TFP distribution completely
absent in case of a single unit. The particular form is unimodal
and is numerically best approximated by the lognormal profile,
cf. Fig. 8(e). One cannot suspect on the type of activation
process producing such a distribution, though the explanation
on why it is different from both the scenarios with a single unit
and two units interacting in a nonlinear fashion likely has to
take into account the existence of global bifurcation [44].

As far as the effects of coupling strength are concerned, the
TFP distributions typically become narrower as c approaches
the critical value, viz. the tail at longer activation times is
reduced compared to an uncoupled unit for the same (D1,D2).
This point holds independent of the linear or nonlinear form
of coupling. Thus, one may state that the impact of stronger
coupling is expectedly reflected in the decrease of fraction of
the longer individual activation events.

The final point we address concerns the relation between
the individual activation processes on the units making up
the pair. This issue may be approached from two angles,
either by examining the mean difference in the single unit
TFPs or by analyzing the correlation between the individual

activation events. On the former point, we introduce a measure
of coherence between the individual activation events averaged
over an ensemble of nr different stochastic realizations, �τ =
1
nr

∑nr

k=1 |τk,1 − τk,2|, as well as the associated coefficient
of variation R�τ . �τ (D1,D2) is intended to describe the
net effect of how much the interaction is able to enforce
matching between the activation times of noise-driven units.
To understand the relevance of this, one should recall that the
coherence of the first units’ responses is an issue quite distinct
from that of asymptotic synchronization between the spiking
series.

In Figs. 9(a) and 9(b) are plotted the dependencies
�τ (D1,D2) and R�τ (D1,D2) for the case of two units
interacting via linear couplings, but qualitatively similar results
are found for the nonlinear interactions as well. From Fig. 9(a)
one learns of a general tendency for the mean difference to
increase with the internal noise. For smaller fixed D2, the
spread of individual TFPs reduces under the action of external
noise, but such an effect is lost once D2 overwhelms the system
dynamics. Note that for large internal noise �τ becomes
comparable to τc for the coupled units, which suggests a typical
scenario where the activation process of one unit is rapid,
whereas the pulse emission of the other unit is substantially
delayed. Naturally, for the (D1,D2) domain supporting small
τc, the �τ dependence tells us that both the units emit pulses
virtually at the same time. Regarding Fig. 9(b), the gross effect
is that the variation of the difference of single unit TFPs shows
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a steep increase above some “threshold” external noise, whose
value becomes larger as D2 is enhanced. Similar dependence
is found for the nonlinear interactions, but with the reverse
roles of D1 and D2.

Next we examine the correlation of individual activation
times for units comprising the pair. The correlation is quanti-
fied by the correlation coefficient between the times-to-first-
pulses of single units ρ = 〈τk,1τk,2〉−〈τk,1〉〈τk,2〉√

〈τ 2
k,1〉−〈τk,1〉2

√
〈τ 2

k,2〉−〈τk,2〉2
, where the

angled brackets denote averaging over an ensemble of different
stochastic realizations. The fields ρ(D1,D2) for the setups with
the linear and nonlinear interactions are shown in Figs. 9(c)
and 9(d), respectively. A common ingredient in both cases
is that there exists a certain value of D2, above which the
noise effects prevail. There the first-time pulses are neither
correlated nor anticorrelated, viz. the correlation coefficient
lies around zero. However, for smaller D2, the correlation
between the individual activation events substantially depends
on the form of coupling. For linear interactions, small D1

then facilitates strong correlation, whereas for larger D1 the
TFPs become significantly anticorrelated. On the other hand,
for the nonlinear couplings ρ displays a more homogeneous
dependence on D1 and D2. In fact, the correlation is strong for
small noise intensities, and it reduces with the increase of both
D1 and D2, whereby the rate of decline depends more on D2

than D1.
As an interesting remark for future study, we indicate a

potential link between the form of correlation of the single unit
TFPs and the synchronization state of the stochastic units’ time
series [45–52] under the given parameter set. In particular, note
than in case of linear interactions the time series of two units
display a constant phase shift for small D1, which coincides
with the domain where the TFPs are correlated. Nonetheless,
the time series show phase slips and amplitude fluctuations
for larger D1, where the activation times are uncorrelated or
anticorrelated. In a similar fashion, for the nonlinear coupling
one typically encounters in-phase synchronization, at least for
sufficiently small D1, precisely where the TFPs are correlated.
These arguments suggest that the approximately constant
phase shift in the ensuing time series should imply a strong
correlation between the TFPs of individual units. In other
words, the ordering effect of coupling can make an impact
on the activation processes of units in a fashion similar to
what is found for long time asymptotic processes, such as
synchronization between the unit’s time series.

V. CONCLUSIONS

We have analyzed the noise-driven first-pulse emission
process for a single and two interacting type II excitable units
where both the fast and the slow variable are influenced by
stochastic perturbations. Our results concern two main issues:
(i) determining the MPAPs around which the stochastic activa-
tion paths are clustered and (ii) examining in detail the effects
of two different noise sources on the statistical features of
the activation process, further demonstrating how the statistics
is modified due to linear or nonlinear form of interactions.
For both issues, we have highlighted the impact of stochastic
bifurcation, which underlies the transition from stochastically
stable fixed point to stochastically stable limit cycle.

Since the study is focused on the process of first-pulse
emission, one of the requirements has been to provide a clear-
cut distinction between the spiking responses and the small-
amplitude excitations. This has been achieved by introducing
an appropriate terminating boundary set, given by the spiking
branch of the cubic nullcline. Note that our problem setup
differs from the earlier numerical studies on pulse triggering,
which have introduced the terminating boundary as a fixed
threshold [16,17], as well as the recent study on a single
FHN unit [15], where the ghost separatrix has been used as a
terminating boundary within the generalized escape problem.
The advantages of our approach lie in that the terminating
boundary is analytically tractable, while the adopted formu-
lation further facilitates an immediate generalization of the
activation problem from the case of a single unit to different
scenarios with two interacting units. The differences in the
event statistics between the three mentioned problem setups
may depend on the system parameters b and ε, as well as the
noise intensities.

Regarding point (i), it has been established that the
topological features of the MPAPs qualitatively depend on
which type of noise affects the system dynamics. This has
been demonstrated by examining the MPAPs obtained for
three characteristic ratios of external versus internal noise,
reflecting the scenarios where a particular noise source or both
sources are present. For the fixed characteristic ratio, the MPAP
profiles change under increasing noise intensity. The changes
become apparent as one approaches the noise values that give
rise to stochastic bifurcation. In case of two coupled units,
we have shown that the topology of MPAPs is substantially
affected by the linear or nonlinear form of interactions. For the
linear couplings, the respective MPAPs of the two units are
identical, whereby the solution lies comparably close to that
of an uncoupled unit under the analogous parameter set. For
the nonlinear couplings, the MPAPs of two units may become
visibly asymmetrical, depending on the noise intensity. While
discussing the topological features of the MPAPs, we have
also indicated a somewhat surprising numerical finding that
the trajectories of the effective set of Hamiltonian equations
selected according to a given predefined rule may show
striking similarity to the MPAP profiles for scenarios involving
both a single and two coupled FHN units. This observation
requires a more elaborate study and suggests that a systematic
theory possibly adopting certain elements of the standard
Hamiltonian approach to escape problems may potentially be
derived for the problem of first pulse emission.

Concerning point (ii), the statistical properties of the
first-pulse emission process have been characterized by the
dependencies of the mean TFPs and the associated coefficients
of variation on D1 and D2. Note that the previous work on FHN
model has focused on statistics of first exit times in presence
of a single noise source [11,16,17], which has typically led to
the well-known Kramers result [31] or its modifications [11].
Compared to our approach, the treatment in Refs. [16,17] is
simplified in terms of definition of the considered quantities
and with respect to the terminating boundary conditions. An
important novel result is that τ and R show nearly universal
dependence on D1 and D2 for a single unit, as well as for
two interacting units. In particular, the mean TFPs are found
to display three characteristic regimes, whereby the transition
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from the domain of large τ values to the plateau region can
qualitatively be attributed to the stochastic bifurcation. We
have determined the noise intensities that give rise to stochastic
bifurcation by introducing the model (11) based on a Gaussian
approximation for the dynamics of a stochastic FHN unit.
By carrying out the bifurcation analysis of the approximate
model, we have obtained the Hopf bifurcation curve D2(D1)
which qualitatively outlines the stochastic bifurcation of the
exact system. In case of two units, the impact of stochastic
bifurcation has been found to depend on the form of coupling.

We have further examined the distributions of TFPs over
an ensemble of different stochastic realizations under fixed
(D1,D2). So far, little has been known about the profile of
corresponding distributions even for a typical escape problem.
In fact, the only available analytical result, derived from
the theory of large fluctuations, indicates that the exit time
distribution for the escape problem asymptotically acquires
exponential form [42]. However, the problem of first pulse
emission conceptually differs from the typical escape problem,
whereas the noise intensities we consider are small but
finite. Still, in case of a single unit, we find exponential
distribution of TFPs under prevailing D2, which is consistent
with the Poissonian process. However, the activation process
dominated by D1 yields a different distribution which shows
a unimodal, Lorentzian-like profile. For the interacting units,
the profile of TFP distribution is further influenced by the form
of coupling.

Apart from the TFP distribution, the form of coupling
affects the correlation of individual activation events in a
nontrivial fashion. As a qualitative explanation, in Sec. IV B
we have suggested a link between the correlation of individual
activation events and the synchronization features of the time
series for the given parameter set. In this context, the future
research should set the ground for potential application of
the theory of large fluctuations to the research of stochastic
synchronization in excitable systems.

This study has shown how the analysis of activation process
may be extended from a single excitable unit to different
instances of two interacting units. In a forthcoming paper
[21], our goal will be to examine the noise-driven first pulse
emission process in an assembly of excitable units, focusing on
whether such an assembly may be considered a macroscopic
excitable element, and, if so, what may be the analogies and
differences compared to the excitable behavior of a single unit.
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