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Spontaneous isotropy breaking for vortices in nonlinear left-handed metamaterials
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We explore numerically and analytically the pattern formation and symmetry breaking of beams propagating
through left-handed (negative) nonlinear metamaterials. When the input beam is a vortex with topological charge
(winding number) Q, the initially circular (isotropic) beam acquires the symmetry of a polygon with Q, 2Q, or
3Q sides, depending on the details of the response functions of the material. Within an effective field-theory
model, this phenomenon turns out to be a case of spontaneous dynamical symmetry breaking described by a
Landau-Ginzburg functional. Complex nonlinear dependence of the magnetic permittivity on the magnetic field
of the beam plays a central role, as it introduces branch cuts in the mean-field solution, and permutations among
different branches give rise to discrete symmetries of the patterns. By considering loop corrections in the effective
Landau-Ginzburg field theory we obtain reasonably accurate predictions of the numerical results.
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I. INTRODUCTION

The idea of a material with negative refraction index was
first considered long before it could be realized in experiment,
in the now famous paper by Veselago [1], in 1968. He con-
sidered a material with negative electric permeability ε and
magnetic permittivity μ, and predicted a number of interesting
properties in such systems, among them negative refraction.
Only much later did it become possible to combine elements
with negative ε and negative μ at a microscopic level, as a
composite metamaterial. First experimental realizations were
reported in [2,3]. Negativity, or left-handedness, is typically
only achieved in a narrow frequency range, close to the
resonant frequency of the conductive elements of the metama-
terial. This was the original motivation for studying nonlinear
effects in these systems. Nonlinearities can be strengthened
by appropriate design at the microscopic level. The study
of nonlinear phenomena in metamaterials started with [4].
This has become a broad and important field in metamate-
rials research [5]. Nonlinear phenomena like solitons [6,7],
nonlinear surface waves [8], modulational instability [9,10],
and ultrashort pulses [11] were observed. Other work in left-
handed metamaterials relevant for our paper includes, among
others, [12–20]. We have no intention of being exhaustive
in this short review of the literature; we merely mention the
results we have directly used or found particularly inspiring.

The focus of our paper is the dynamics of symmetry
breaking in intensity patterns of electromagnetic waves propa-
gating through a left-handed nonlinear metamaterial. Numer-
ical solutions of the equations of motion reveal that circular
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(usually Gaussian) input beams turn into polygonal patterns,
with some discrete symmetry. This fits the textbook notion of
symmetry breaking, more specifically dynamical symmetry
breaking. The general theory of dynamical criticality is by
now well developed [21] and has been applied to numer-
ous systems [22]. In [22], a systematic theory of isotropy-
breaking transition is presented, though mainly for periodic
and quasiperiodic structures (convection in fluids, fluctuations
in quasicrystals). The basic mechanism is that the system
develops momentum eigenmodes of a fixed module but with
multiple discrete directions on the sphere |k| = const in mo-
mentum space. In nonlinear negative materials, the situation
is complicated by the strong frequency dependence of the
magnetic permittivity but the same basic logic remains. At
a fundamental level, this situation can be understood from
the viewpoint of a spatially nonuniform Landau-Ginzburg
theory. Quantitative accuracy is, however, hard to achieve; this
requires cumbersome perturbative calculations. Ultimately,
numerical work is the best way to describe the patterns in
detail; they look like polygons or, occasionally, necklaces,
with C3Q, C2Q, or CQ symmetry, depending on the parameter
regime; here, Q is the topological charge of the beam, a
property we will discuss in detail in the next paragraph.
The paper [10] is very important in this context: it starts
from the model derived in [9] and studies mainly necklace
configurations, which consist of discrete beads (spots of high
intensity) distributed more or less uniformly along a circle.
The authors find the same C3Q symmetry that we see. Our
goal is to gain a detailed understanding of the phenomenon,
and move beyond single beams toward collective behavior and
interactions.

We have chosen to study this phenomenon on vortices,
topologically nontrivial solutions where the phase of the

2469-9926/2019/100(5)/053853(15) 053853-1 ©2019 American Physical Society

https://orcid.org/0000-0001-7163-8798
https://orcid.org/0000-0003-1266-9759
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.053853&domain=pdf&date_stamp=2019-11-25
https://doi.org/10.1103/PhysRevA.100.053853
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complex electric and magnetic field winds one or more times
along a closed line encircling the vortex core. Vortices appear
in many systems described by a complex field, i.e., a field
with U(1) phase invariance [23,24]. In optics, this is just the
complex beam envelope of the electric and magnetic field.
The phase of any complex wave function or field can wind
along some closed line around a defect, forming a vortex.
Famously, vortices may coexist with the superconducting
order [U(1) symmetry breaking] in type-II superconductors
or they may exist only in the normal phase, upon destroying
the superconductivity (type I). Pattern-forming systems like
fluids and soft matter often have rich vortex dynamics [22].
Other examples of vortex matter in nature arise in liquid
helium [25], Bose-Einstein condensates [26], and magnetic
systems [27]. In two spatial dimensions, interactions among
the vortices lead to a vortex unbinding phase transition of
infinite order found by Berezinsky, Kosterlitz, and Thouless
for the planar XY model [28]. We study a three-dimensional
metamaterial but with an elongated geometry, so we treat it
as a 2 + 1-dimensional system (the x and y coordinates are
spatial dimensions and the z direction has the formal role
of time). We therefore have a similar situation to the XY
model but with different equations of motion and different
phenomena.

In addition to direct numerical and analytical study of
the equations of motion, we also propose an effective field-
theory Lagrangian which gives slightly different equations but
captures the key properties of the system. The Lagrangian
form makes it easier to understand some of the phenomenol-
ogy we find in numerical simulations; the foundations of
the symmetry breaking are obtained from this model in a
natural way. Numerical work is done with original equations
of motion, as they are directly grounded in the microscopic
physics. The Lagrangian is just a phenomenological tool to
facilitate the theoretical understanding. It is difficult (and
perhaps impossible) to package the exact original equations
in a Lagrangian form because the system is strongly nonlinear
and dissipative. Dissipative systems can be encapsulated in
a Lagrangian (our Lagrangian is also dissipative) but with
some limitations, and there is certainly no general method
to write down a Lagrangian for a broad class of dissipative
systems.

The structure of the paper is the following. In the next
section we describe the model of a nonlinear left-handed
metamaterial, following closely the wave propagation equa-
tions used in previous research, e.g., in [4,6,7] and oth-
ers, which correspond to a specific experimentally realizable
metamaterial. We also formulate and motivate the field-theory
model of the system. In the third section, we describe our
numerical findings, above all the anisotropy of the intensity
patterns. The fourth section offers the theoretical explanation
for the patterns: first by a direct approximate solution of
the propagation equations, and then also from field theory,
which makes the physics of the symmetry breaking partic-
ularly clear. In the fifth section we briefly discuss how to
check our predictions in experiment and how prominent the
effects of symmetry breaking are compared to other possible
instabilities in realistic metamaterials. The last section sums
up the conclusions. We have included some long calculations
in the Appendices.

II. WAVE EQUATIONS IN A NONLINEAR
LEFT-HANDED METAMATERIAL

We adopt the model of [4,7] to describe a left-handed
metamaterial with a nonlinear response. Microscopically, the
material is realized as a lattice of split-ring resonators and
wires. In the terahertz range, this is an experimentally well-
studied system [3]. In [6], a detailed microscopic derivation
is given, starting from the current transport equations in the
resonator-wire system. The outcome is a nonlinearity similar
to that postulated phenomenologically in [4]. We adopt essen-
tially the same model, described by the electric permeability
ε and the magnetic permittivity μ:

ε(E , E†) ≡ ε(|E |2) = (εD0 + α|E |2)

(
1 − ω2

0

ω(ω + ıγ )

)
, (1)

μ(H, H†) ≡ μ(|H |2) = 1 + Fω2

ω2
0NL(|H |2) − ω2 + ı�ω

, (2)

with α = 1 or −1 for self-focusing or self-defocusing non-
linearity, respectively. Frequency is denoted by ω and εD0 is
the linear part of the permittivity. By F , γ , and � we denote
the filling factor of the material and the electric and magnetic
damping coefficients. Equations (1) and (2) allow us to model
also the real (lossless) dielectric response by putting γ = 0.
For the magnetic field, the permittivity will in general stay
complex even for � = 0, as the nonlinear frequency of the
resonator rings ω0NL can always have a nonzero imaginary
part. This frequency is related to the magnetic field through
the relation (X ≡ ω0NL/ω0):

|H |2 = αA2 (1 − X 2)[(X 2 − �2)2 + �2γ 2]

X 6
, (3)

where � ≡ ω/ω0, ω0 is the eigenfrequency of the rings,
and A is a parameter which can be derived microscopically
[4,6,7]; for our purposes, it can be treated just as a phe-
nomenological parameter. This cubic equation yields three
branches for ω2

0NL. All these branches are physical and cor-
respond to different possible nonlinear oscillations [7]. Now
the equations of motion are just the Maxwell equations in a
medium described by (1) and (2), in the approximation of
slowly changing beam envelopes. We assume an elongated
(cylindrical or parallelepipedal) slab of metamaterial, so we
can employ the paraxial beam approximation (e.g., [29]). The
beam is initially collimated along the longitudinal axis z and
focuses or defocuses slowly in the transverse x-y plane due
to the nonlinearity of the material. The electric and magnetic
field Ê (t ; x, y, z) and Ĥ (t ; x, y, z) are directed along the z axis.
From now on, the speed of light is put to unity, c = 1. All the
steps in deriving the nonlinear Schrödinger-like equation are
well known so we merely state the final result here, which is
quite close to the equations used in [13] in 1 + 1 dimension,
or the equations found in [9–11]. Full derivation can be found
in Appendix A. The equations of motion turn out to be

− ı

b
∂zE = ∇2

⊥E + [ω2ε(|E |2)μ(|H |2) − k2]E

− ∇⊥μ(|H |2)

μ(|H |2)
∇⊥E − ı

∂zμ(|H |2)

2μ(|H |2)
E , (4)

− ı

b
∂zH = ∇2

⊥H + [ω2ε(|E |2)μ(|H |2) − k2]H. (5)
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Here, ∇⊥ ≡ (∂x, ∂y) is the nabla operator in the transverse
plane, k is the wave vector along the z direction, and b is the
characteristic propagation length along the z axis. Equations
of motion (4) and (5) together with the equations (1) and (3)
for the permittivities contain the following five parameters:
εD0, F, �, γ , and ω0. Realistic values for all the parameters
are discussed in [7]. The natural length scale of the model
is dominated by the 1/ω0 scale. Dimensional analysis of the
terms on the right-hand side of (4) determines the length
scale b in (4) and (5) as b ∼ 1/ω0. Both in analytical and in
numerical calculations, we express the transverse coordinates
(x, y) in millimeters but the longitudinal coordinate z is often
stated in units of b. This is because the length scales of
all patterns in the transverse plane are similar whereas the
propagation lengths along z can vary by an order of magnitude
as γ and � are varied, so it is more natural to express them in
terms of the characteristic distance b.

A. field-theoretical model

For some theoretical considerations it is useful to formulate
a Lagrangian (gradient) model which captures the essential
features of the equations of motion (4) and (5). As it often hap-
pens in studies of complex nonlinear pattern-forming systems,
we cannot easily write the original equations in such a form.
Instead, we construct a field theory which yields equations of
motion somewhat different from the original ones but which
still give the same phenomenology, and are able to explain
the results of numerical calculations with the equations (4)
and (5).

Let us think what such a field theory would look like. The
terms with the gradient of magnetic permittivity obviously
introduce dissipation, which physically originates from the
losses in the inductive rings of the metamaterial. In general,
dissipative systems do not have a Lagrangian, although a
number of generalized Lagrangian approaches exist for dis-
sipative systems: either with more general functional forms of
the Lagrangian, or with a dissipative function in addition to
the Lagrangian, or with extra degrees of freedom [30,31]. We
will take the first, most conventional of the three approaches:
we will consider a conventional Lagrangian (no dissipative
function, no extra degrees of freedom) which gives slightly
generalized equations of motion compared to (4) and (5),
with dissipative terms for both electric and magnetic fields
coming from the complex terms in the effective potential. The
effective action reads

L = LE + LH ,

LE = ı

2μ(|H |2)
(E∂zE

† − E†∂zE )

+ |∇⊥E |2
μ(|H |2)

+ k2|E |2
μ(|H |2)

− ω2ε(|E |2)|E |2,

LH = ı

2ε(|E |2)
(H∂zH

† − H†∂zH )

+ |∇⊥H |2
ε(|E |2)

+ k2|H |2
ε(|E |2)

− ω2
∫ HH†

0
dxμ(x). (6)

The last term in LE equals −ω2
∫ EE†

0 dxε(x), analogously to
the corresponding term in LH , but since ε is polynomial in

E†E the integral can be solved explicitly. Now (6) gives the
equations of motion:

− ı

b
∂zE = ∇2

⊥E + [ε(|E |2)μ(|H |2) − k2]E

− ı∂zμ(|H |2)

μ(|H |2)
E − ∇⊥μ(|H |2)

μ(|H |2)
∇⊥E − 	H , (7)

− ı

b
∂zH = ∇2

⊥H + [ε(|E |2)μ(|H |2) − k2]H

− ı∂zε(|E |2)

ε(|E |2)
H − ∇⊥ε(|E |2)

ε(|E |2)
∇⊥H − 	E , (8)

where 	E ,H are related to the fluxes of the electric and
magnetic field (prime denotes the derivative of ε and μ with
respect to their arguments E†E and H†H):

	H = ε′(|E |2)

ε2(|E |2)

(
ı

2
(H∂zH

† − H†∂zH )

+ |∇⊥H |2 + k2|H |2
)

, (9)

	E = μ′(|H |2)

μ2(|H |2)

(
ı

2
(E∂zE

† − E†∂zE )

+ |∇⊥E |2 + k2|E |2
)

. (10)

These are the extra terms compared to the physical equations
(4) and (5).1 Inserting ∂zE± from the equations of motion (7)
and (8) into the above we derive

	E = μ′

μ
∇⊥

(
E∇⊥E† − E†∇⊥E

μ

)
, (11)

and analogously for 	H , with ε ↔ μ, E ↔ H . This term is
proportional to a total derivative, and is therefore related to the
flux (E∇⊥E† − E†∇⊥E )/μ. For slowly changing ε and μ,
which is often the case in our system (i.e., for ε′, μ′ � ε, μ),
this term is small, which partly justifies the choice (6) for
the Lagrangian. But the ultimate justification, as it frequently
happens, is that a posteriori we will find that this model is able
to explain the features observed in the numerics. Therefore we
will not try to interpret the term (11) in detail.

III. GEOMETRY AND STABILITY OF VORTICES

We will now sum up our numerical results which demon-
strate the breaking of the circular symmetry of the vortex
beams and their decay during the propagation. We always start
from a Gaussian input beam with a topological charge Q, of
the form E (r, φ; z = 0) = E0 × e−r2/2σ 2

eiQφ and analogously
for the magnetic field, with amplitude H0 but with the same
vortex charge Q. Therefore, we always give an exact vortex as
an input. The parameters of the model were chosen so that the
permittivities ε and μ, given by (1) and (2), respectively, are of
order unity. This serves to limit the dissipative effects, so that
the propagation along the longitudinal direction can be clearly
observed. Same phenomena are found for arbitrary values of

1The dissipative term proportional to ∇⊥H in (8) is also absent in
the original equations, but that one is easy to interpret: we make both
LE and LH complex, so both fields have dissipative dynamics.
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FIG. 1. The radial profile of μ for a left-handed medium (a) and a right-handed medium (b), for a vortex of charge Q = 1. The profiles
are radially symmetric in accordance with the fact that μ depends strictly on the magnitude of the magnetic-field vector |H |2. The real (blue)
and imaginary (red) values of the complex permeability μ vs the frequency of the beam ω are displayed in (c). For frequencies higher than the
eigenfrequency of the resonator rings ω0, the real part of the permeability is negative, essentially yielding a left-handed medium. The figure is
made for dissipative ε; for lossless ε the behavior is similar.

ε and μ but on a different length scale. We do not aim at
a stamp-collecting exhaustive description of patterns for all
possible parameter values, so we will focus on just a few rel-
evant cases. We are mainly interested in left-handed materials
(ε, μ < 0) and how they compare to right-handed ones, so for
the dielectric constant we always choose the self-defocusing
Kerr nonlinearity (α = −1) with a linear part εD0 = 12.8,
which has both a left-handed and a right-handed regime. To
check the effects of dissipation, we either adopt γ = 0 in (1),
i.e., the lossless case, or we tune γ so that ω2

0/(ω2 + ıγω) =
1/2. In other words, we impose either Imε = 0 or Imε = Reε.
This is for simplicity and to avoid probing a huge parameter
space for all possible γ values; from now on we will call these
cases simply lossless ε and dissipative ε. The filling factor is
F = 0.4 and the magnetic dampening coefficient is � = 109

Hz; these values are kept fixed in all calculations. Numerical
calculations are performed with an operator split algorithm
described in detail in the Appendices of [32].

The nonlinear frequency of the oscillator rings is obtained
as a solution to (3). Of the three branches of the solution,
we take the one that yields a negative real value of μ for
ω > ω0 (Fig. 1). We have freely taken ω = 9.8 × 109 Hz to
represent a left-handed medium, and ω = 7.0 × 109 Hz to
represent a right-handed medium. The transverse profiles are
displayed in Fig. 1. We see there is a well-defined left-handed
regime.

Now we discuss the transverse intensity profile for differ-
ent initial beam configurations, with vortex input beams as
explained in the beginning. We observe the following features.

(1) Circular symmetry of the vortex input always breaks
down to a discrete group.

(a) In a dissipative left-handed medium, the discrete sym-
metry group for a vortex of charge Q is C3Q, before break-
ing down to simple C2 axial symmetry at longer distances
[Fig. 2(a)].

(b) In a dissipative right-handed medium, the discrete sym-
metry group for a vortex of charge Q is C2Q, before breaking
to CQ and then to C2 axial symmetry at longer distances
[Fig. 2(b)].

(c) In a lossless left-handed medium, the discrete symmetry
group for a vortex of charge Q is C3Q for very short distances,
before quickly breaking down to CQ and finally C2 [Fig. 2(c)].

(d) In a lossless right-handed medium, the discrete symme-
try group for a vortex of charge Q is C2Q, before breaking to
simple C2 axial symmetry at longer distances [Fig. 2(d)].

(2) Vortices decay approximately exponentially as they
propagate along the longitudinal axis. Figure 4 shows the
intensity of the beam across the z axis, for various regimes. At
early z values, total intensity may behave nonmonotonically
and nonuniversally but on longer scales it decays exponen-
tially. For different charges, the intensity curves collapse to a
unique exponential function at large z. As could be expected,
lossless and dissipative cases differ somewhat and collapse to
different curves.

The bottom line is that there is a vocabulary of patterns
with CQ,C2Q, and C3Q symmetries. One of them dominates in
each case (left and right handed, dissipative and lossless) but
at longer propagation distances the symmetry can change, be-
fore the intensity drops to near zero from dissipation. The final
stadium of C2 symmetry is only seen at very low intensities,
so it might be practically unobservable in experiment; that is
why we say the vocabulary only has three possible patterns,
excluding C2.

The findings above are further corroborated by Fig. 3,
which shows the vortices with different charges Q =
1, 2, and 3 in the same regime [dissipative left handed (a) and
lossless left handed (b)]. As claimed above, the symmetry is
C3Q in panel (a), and (except at small z values) CQ in panel (b).
Finally, it is obvious that there is some mixing of patterns:
the polygons are never exactly regular, so the groups Cn are
certainly not exact symmetries; we use the Cn nomenclature
merely for convenience.

One interesting phenomenon in Fig. 2(c) is that the pat-
tern rotates along the z axis. This can be understood as
excitation of multiple angular modes (of the form eılz with
various l numbers) as the beam travels along the sam-
ple. This is a well-known consequence of nonlinear terms
[5,29] and typically depends on the relative strength of
nonlinear mode interactions compared to energy density
|E |2 + |H |2 and dissipation γ . We will not explore it in
quantitative detail in this paper as it is only tangential to
our main topic of radial symmetry breaking; as one can
see, the structure remains the same; just the orientation
changes.
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FIG. 2. The patterns for a Q = 1 vortex, in a left- and right-handed dissipative medium [(a) and (b), respectively], and in a left- and
right-handed lossless medium [(c) and (d), respectively], at longitudinal slices z = 2b, 4b, 6b, and 8b, showing the C3Q, C2Q, C3Q/CQ, and C2Q

regimes. The remaining parameters are defined in the text at the beginning of this section.

One might rightly worry that the initial conditions which
contain a vortex in both electric and magnetic field are not
very realistic, as in most materials the electric field dominates
the optical response. Therefore, in experimental practice, one
typically prepares a vortex in the electric field making use of
phase masks or some other method, and the initial magnetic-
field distribution is completely analytic. In Appendix B we
repeat the calculations from Fig. 3 and show that the outcome
is the same, including the vocabulary of patterns and their
Cn shapes. Therefore, the E -H symmetric ansatz is merely a
matter of convenience, and the realistic regime where |H | �
|E | is in fact covered by our paper.

Figure 4 shows that at long times the decay of intensity is
universal for given dielectric dampening coefficient γ , which
suggests the main mechanism of dissipation is in fact the
radiative loss. This is because we deliberately chose ε and μ

with small imaginary parts (for ε it can also be zero), so the
losses in the medium are not so important when it comes to
total energy (they are still important for being nonlinear and
influencing the patterns). One important difference between
the lossless medium (black and blue symbols in Fig. 4) and
the dissipative medium (red, magenta) is that the former has
a short interval of growing intensity, before reaching the
universal regime of radiative decay. The physical reason is

053853-5
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FIG. 3. The patterns for Q = 1, 2, and 3 vortices (left to right), in a dissipative (a) and lossless (b) left-handed metamaterial. The behavior
for three different charges confirms the previous conclusions for the type of symmetry encountered. All parameters except for the vortex charge
are the same as for Fig. 2. The propagation distance is z = 5b in (a) and z = 8b in (b).

that the polarization, i.e., the rearrangement of charges in the
self-defocusing metamaterial, reduces the overall electrostatic
potential energy of the medium, and this energy becomes
available to the beam, increasing its intensity. Clearly, once
the radiative losses overcome the total potential energy avail-
able, the intensity decays. The growth is clearly a transient
effect which cannot persist for long z intervals. A formal way
to understand this is that the nonconservation of energy is
encoded by the last term in (4), which can have a positive or
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FIG. 4. Decay of the total intensity I = ∫
dx

∫
dy(E 2 + H 2) in

computational units for Q = 1 and 2, for a lossless (blue circles,
black stars) and dissipative (red squares, magenta triangles) left-
handed material. At early times the behavior is complicated and
nonuniversal but at late times it collapses to an exponential curve.
This is expected when loss through radiation dominates. The oscilla-
tory features of the Q = 2 lossless case (black) are likely due to finite
numerical resolution.

negative imaginary part depending on the sign of ∂zμ/μ. At
large values of z, we expect to enter a universal regime where
this sign is constant, because the radiation loss dominates over
nonlinearities and the exchange of energy between the beam
and the medium; this is the universal decay regime in the
figure.

IV. THE THEORY OF VORTEX EVOLUTION

The phenomenology described in the previous section can
be understood on several levels. At the crudest level, we
can introduce a variable-separation ansatz in the equations of
motion and then linearize them in the amplitude (but not in
the phase). This picture explains the C2Q patterns, but not the
C3Q and CQ regimes. It also does not explain the instabilities,
that is, the changes and disappearance of patterns during the z
propagation. For the full picture it is necessary to take into
account the nonlinear effects through the loop corrections,
i.e., to move perturbatively beyond the amplitude-linearized
solution. A qualitative insight of the symmetry breaking can,
however, be obtained also in a simpler and more elegant way,
directly from the symmetry analysis of the model Lagrangian
(6). Therefore, after finishing the amplitude-linearized analy-
sis and the loop corrections from nonlinearity, we will obtain
the same results from a unified mean-field treatment of the
(nonlinear) model Lagrangian.

A note on terminology is in order. The solutions we find
are not the textbook type of vortex with phase dependence
solely of the type eıQφ ; rather, the dependence on the phase
is more complicated, i.e., the phase is doing more than just
the winding, but it is still true that the circulation of the
phase around some point (the location of the vortex core)
is an integer—the topological charge of the vortex. Such
solutions are sometimes called spirals [22] whereas the term
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“vortex” is reserved for the simple winding-phase solutions.
We nevertheless stick to the widespread term “vortex” for any
topologically charged solution under the fundamental group
of the U(1) phase symmetry.

A. Amplitude-linearized solution

We will separate variables in the equations of motion (4)
and (5) [or the Lagrangian equations (7) and (8), which do not
differ from the original equations at the amplitude-linearized
level] and then plug in the vortex ansatz. The vortex ansatz is
a solution which has a winding phase 	 with some winding
number Q, for a constant (averaged) value of the permittivity
μc = const, because we ignore the nonlinear dependence of
μ on |H |. The vortex solution of winding number (topological
charge) Q in cylindrical coordinates (r, φ, z) can be separated
into regular and vortex parts:

E = Ereg + Evort. (12)

We represent the vortex part as

Evort (r, φ, z) = ZE (z)RE (r)eıQφ−ı	(φ), (13)

and analogously for the magnetic field. Along the z axis we
get ZE (z) = eıλz as expected, and the eigenvalue λ is arbitrary
for now, i.e., it is determined by the boundary conditions along
the z axis. Upon inserting (13) into (4), the equation separates
into the angular part and the radial part. The former reads

	′′ − ı(	′)2 + 2ıQ	′ + ıl2 = 0, (14)

where l is the eigenvalue of the angular part. This is the crucial
equation—the phase dynamics is nonlinear because μ is in
general complex and the terms with ∇⊥μ contain nonlinear
dependence on the phase. The equation is easily solved by
first introducing w ≡ 	′ and then reducing it to quadratures.
The outcome is

	(φ) = cos(
√

Q2 + l2φ + Cl ). (15)

In other words, we still stay with a winding solution but
various winding numbers (equal to

√
Q2 + l2) are possible

when multiple modes are excited. Clearly, only the solutions
with integer windings are physical, otherwise they would not
be single valued. The most general solution is thus a su-
perposition of solutions ZE (λ, l; z)	E (λ, l; φ)RE (λ, l; r) with
different l modes so as to result in a single-valued function.
Now the radial part acquires the form

R′′
E + 1

r
R′

E +
(

λ

r2
− k2 + εD0ω̃

2

)
RE + αμcω̃

2

E2
c

R3
E = 0,

(16)
with ω̃ ≡ ω[1 − ω2

0/(ω2 + ıωγ )]. If we disregard the cubic
term (amplitude-linearized approximation),2 the well-known
solution in terms of Bessel functions is obtained:

RE (r) ≈ c(1)
E (λ, l )JQl (ar) + c(2)

E (λ, l )YQl (ar),

Ql ≡
√

Q2 + l2, a ≡
√

λ − εD0μcω̃/ωE2
0 − k2. (17)

2This is justified at least in some interval of z values, as the
system is dissipative and loses power

∫
(E 2 + H 2), so the amplitude

progressively decreases along z.

FIG. 5. Polygonal pattern |E |2 for a vortex of charge Q = 2,
for k = 2, εD0 = 12.8, and μc = 1.004 (values of all parameters and
constants in the main text), at radial slice z = 1, for a single vortex
mode l = 0 (a), and for a linear combination of modes with l =
0, 1, and 2 decaying at infinity (b). The symmetry is C2Q = C4,
which does not explain the CQ and C3Q regimes. Obviously, the crude
picture of breaking the radial symmetry works but full explanation is
lacking. It will come from the loop corrections.

Here, J and Y are the Bessel functions of first and second
kind, respectively. Similar solutions ZH (z),	(φ), and RH (r)
are obtained for the magnetic field. The angular equation is
identical for both fields: for this reason we have one solu-
tion 	 for both E and H . The eigenvalues λ and l and the
values of the constants c(1,2)

E ,H are determined by the boundary
conditions. Obviously, (15) imposes the C2Q symmetry, i f
l = 0. This simplest case is not necessarily the stable solution.
We might have a sum over many l values. In principle,
such sums may yield more complicated patterns, however we
will see that when the physically reasonable boundary con-
ditions are implemented (decay at infinity, single valuedness
everywhere) one typically always has the robust C2Q pattern.
One important consequence of the fact that multiple l modes
are possible is that due to nonlinear effects a new l mode
can be created during the propagation along the z axis. We
have already seen an example in Fig. 2(c). A quantitative
analysis of this phenomenon requires a full nonlinear model
and so can only be studied within the formalism of the next
section.

This solution is not very satisfying but reproduces some of
the features from the numerics, summarized at the start of the
previous section: (1) the reduction of the full O(2) symmetry
down to a discrete symmetry Cn for some n ∈ N, i.e., the
polygonal form of the vortex, and (2) the value n = 2Q is
true in some but not in all situations. We show the solutions
for a single angular mode from (15) and (17) in Fig. 5(a). In
Fig. 5(b), we show a linear combination of angular modes with
l = 0, 1, and 2, with the coefficients c(1,2)

E ,H in (17) chosen so
that the total intensity still decays sufficiently fast at infinity.
The symmetry is still C2Q. Apparently, the regimes with the CQ

and C3Q symmetries require loop corrections from nonlinear
μ to be taken into account.

B. Loop corrections

The origin of the breaking of radial symmetry is the fact
that a discrete set of modes in Fourier space is selected.
This is best seen from the Fourier transform of the solutions
(15) and (17). We will calculate the propagator G(u) at
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constant z, i.e., the Fourier transform r 
→ u of the solution
with a Dirac delta source. This source imposes the boundary
condition RE (0) → ∞,

∫
drr cos φRE (r) = 1, giving c(1)

E =
0, c(2)

E = 2π/�(Q/2) in (17). Fourier transforming (x, y) 
→
(ux, uy) we get for a single mode (17), making use of the
Bessel and Lommel integrals:

GE ,H (u) = 2π

�(Q/2)

eıQ(π/2+φ)

au

(
sin[(u − a)�]

u − a
− cos[(u + a)� − πQ]

u + a

)

+ 2π

�(Q/2)

e−ıQ(π/2+φ)

au

(
cos[(u − a)� + πQ]

u − a
− cos[(u + a)�]

u + a

)
. (18)

Here, � is the ultraviolet (UV) small-length and high-
momentum cutoff, i.e., the Fourier transform is performed by
integrating

∫ ∞
1/�

dr
∫ 2π

0 dφ. The cutoff has a clear physical
meaning: 1/� is the size of the vortex core (where the
vortex ansatz stops working because the gradient of the field
becomes too high). We clearly do not get anything new by
just Fourier transforming. The goal is to move beyond the
amplitude-linearized approximation of the previous section by
considering the effects of nonconstant permittivity μ instead
of constant (averaged) μc. This calculation is essentially ele-
mentary but might be tedious and boring for readers who are
not fond of perturbative field theory. Most of the integrations
are in Appendix C. Even the rest of this subsection can be
skipped until the the equation (22), where we discuss the final
result.

Putting μ from (3) in place of μc requires the solutions
for ω0NL in terms of the magnetic field. The solutions are
readily found from the Cardan formulas (we do not give them
explicitly as they are cumbersome and not very illustrative).
But the form of the H dependence of ω0NL is seen already
from the Viete formula:(

ω
(1)
0NL

)2 + (
ω

(2)
0NL

)2 + (
ω

(3)
0NL

)2 = 1 + 2�2

1 + |H |2/αE2
c

, (19)

so the solutions depend on |H |2 only, with no higher powers of
the magnetic field. Inserting this into L, we get the nonlinear
correction of the form

δL = g2,0,0|∇⊥E |2 + g0,2,0|E |2 + g0,2,2|E |2|H |2
+ g2,0,2|∇⊥E |2|H |2. (20)

We thus have two quartic interaction terms and two quadratic
terms. We do not intend to calculate the loop corrections
in full detail; it is not worth the effort as we only want to
capture the symmetry, i.e., the form of the angular depen-
dence. First of all, the quadratic corrections g2,0,0 and g0,2,0

trivially renormalize the parameters in the bare propagator
and do not change its functional form. Lowest-order non-
trivial loop corrections to the self-energy come from g0,2,2

and g2,0,2. The electric field receives the correction G−1
E 
→

(GE + �
(1)
E + �

(2)
E )

−1
with

�
(1)
E = g0,2,2

∫
du′GH (u′) ≈ g0,2,2e3ıQ/2 sin(πQ) ln �,

�
(2)
E = 3

2
g0,2,2

∫
du′

∫
du′′GH (u′)GH (u′′)GE (u − u′ − u′′)

≈ const × [a3/2 cos(3Qφ/2) − 2ıQ2 ln a]. (21)

We will write all equations for E , because this field receives
interesting corrections from the gradient of μ [Eqs. (4) and
(7)]. The magnetic field does not couple to the permeability
ε in the same way in the original equation (5), and in the
Lagrangian form (8) it does but ε does not contain such
strong (nonpolynomial) nonlinearities as μ. One- and two-
loop corrections appear not only in the self-energy but also
in the vertex operators. However, the vertex corrections only
have a weak momentum dependence and consequently the
coordinate dependence (geometric patterns) of the solution is
not significantly affected by them. For that reason we will not
discuss them in detail.

The correction �
(1)
E is the Hartree correction with a sin-

gle vacuum bubble which is not very interesting: it merely
introduces an additional mass term and does not influence the
momentum dependence and thus the geometry of the patterns.
As could be expected from power counting, it is logarithmi-
cally divergent in the UV cutoff �. Of course, this is not a
problem in an effective theory; we have already explained
the physical meaning of �. The watermelon diagram �

(2)
E ,H

is crucial: it is momentum dependent. Its calculation is found
in Appendix C. An informal way to estimate its effect is the
following: the leading contribution comes from the region
where u ≈ u′ − u′′ because this is a pole of the self-energy
correction. Then we are left with angular integrals only, and
they reduce to integrals of products of three rational functions
[for the three propagators in (21)] of the half angle—this gives
rise to 3φ/2 in the argument of the cosine. Now the dressed
propagator (G−1

E ,H + �)
−1

needs to be Fourier transformed
back to real space. We will only do this approximately (it is
likely impossible to do exactly in closed form). The outcome
is

Evort (r, φ, z) = e(ıλ−2Q2 ln a)z cos(Qφ)√
κr

×
[

c(1)
E (λ, l )

(
1+ (2π )3/2g0,2,2

�(Q/2)3
cos(3Qφ/2)

)

+ c(2)
E (λ, l )

(
1+ (2π )3/2g0,2,2

�(Q/2)3
sin(3Qφ/2)

)]
.

(22)

No doubt the reader sees that the terms
cos(3Qφ/2) and sin(3Qφ/2) give a pattern |Evort|2 with
3Q branches, in addition to the 2Q polygons obtained from
the term cos(Qφ). The interference between the two patterns
might (1) break the symmetry completely and (2) lead to CQ
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symmetry if the relative phase between the leading term and
the corrections is approximately 2π/Q. Both cases are seen
in numerical work: C3Q appears in all left-handed materials
[Figs. 2(a) and 2(c)], and elements of CQ symmetry are
present in almost all cases at long propagation distances z
[Figs. 2(a)–2(c) and 3].

The self-energy has an imaginary part [equivalently, the
solution (22) exhibits exponential decay in z], meaning that
these configurations are not stable—they are only seen up
to some propagation distance z. The exact order (along z)
and stability of each of the patterns depend on the details
of the permeability ε. One important and universal lesson is,
however, that the decay rate [the real part of the exponent in
(22)] is proportional to Q2, therefore the higher the value of
|Q| the faster it decays. This supports the general intuition
that vortices with high winding numbers are not stable. But
unlike the simplest case of the XY model or a superfluid
where the stability only allows Q = ±1 we can in principle
have arbitrarily high Q as we have seen also in the numerics;
their lifetimes are smaller and smaller as Q grows, but still
finite. The exponential decay itself is also confirmed by the
numerics, as seen from Fig. 4.

C. Isotropy breaking: The look from the action

The basic mechanism leading to the symmetry breaking
O(2) 
→ C3Q 
→ C2Q 
→ CQ is seen already from the model
Lagrangian (6). The symmetry breaking is essentially the
consequence of the interplay of the nonlinear-sigma-model
form of the kinetic term and the complex nonlinearity of
the magnetic permittivity μ. Therefore, we can take a static
approximation of the z dynamics, ignoring the z dependence;
clearly, in that framework we can only obtain the vocabulary
of patterns, not the relative stability of CQ,C2Q, and C3Q.3

The separation of variables remains a natural ansatz, and the
vortex nature of the solution implies Evort = E0(r)eı�(φ) with∮

dφ�(φ) = 2πQ and analogously for the magnetic field.
The Lagrangian (6) then becomes

L = (E ′
0)2 + (�′ )2

r2 + k2E2
0

μ
+ (H ′

0)2 + (�′ )2

r2 + k2H2
0

ε
. (23)

The fact that μ contains ω2
0NL(|H |2), which is in turn the

solution of the cubic equation, introduces a branch cut in H
because of the cubic roots. This is the simplest explanation
of the origin of the C3Q symmetry. More quantitatively, the
story follows exactly the Landau-Ginzburg paradigm: while
the initial Lagrangian only depends on |E |2 and |H |2 and thus
preserves isotropy, the saddle-point solution is given by the
equation

ε(∇2
⊥ − H )E − ε′∇⊥E · ∇⊥H

ε2
+ μ′

μ2
|H |−1/3 = 0, (24)

where we have used that μ = μ(ω2
0NL) and ω2

0NL =
ω2

0NL(|H |2/3, |H |4/3) (from the Cardan formulas). With the
ansatz adopted above, the amplitude equation for E0(r) is the

3We could take the ansatz eıλz instead; it would merely modify
k2 
→ k2 − λ.

nonlinear amplitude equation (16). The equation for the phase
part � is more interesting. It reads

(�′)2
(
1 − ε′

ε
E0
H0

) − k

ε
+ 2μ′

3μ2
|H |−1/3 = 0. (25)

The cubic root carries a branch cut, and the last term
really evaluates to 2μ′/3μ2 × H−1/3

0 e−ı�/3+2nπ ı/3 with n =
−1, 0, and 1. The solution �0 which satisfies the phase wind-
ing condition is obtained in implicit form as

ı(�0 + 2πn/3) = Kn ln

[
k
(
1 − ε′

ε
E0
H0

)
E2

0 + H2
0

sec2

(
Q

2
φ

)]
,

(26)

where Kn is a constant determined by the amplitude solution
and depending also on n = −1, 0, and 1; its exact value is
hard to find analytically as we do not know the solution
to the amplitude equation in the nonlinear regime. But that
is not crucial for our general argument. The point is that
the system can choose a solution with any of the values
n = −1, 0, and 1; i.e., even though the equations of motion
(and the Lagrangian) are isotropic, the solution is not. Each n
branch behaves as ≈1/ cos2(Qφ/2), only they are rotated by
±2π/3 with respect to each other, and each of them has a CQ

symmetry. Put together, the three branches give C3Q patterns.
But all that holds if two of the cubic roots are complex. If all
cubic roots are real, the phase remains single valued, and we
only have CQ symmetry, coming directly from (26) if we fix
n = 0, i.e., if we only keep a single branch.4

What is the regime in which cubic roots are real and the
symmetry is CQ, as opposed to the complex roots and C3Q

patterns? The easiest way is to look at the cubic equation (3)
for the magnetic permeability (and the nonlinear frequency
ω0NL). For μ > 0 (right-handed regime), the roots are all real
and C3Q patterns cannot occur. Indeed, the C3Q phase is only
present in Figs. 2(a) and 2(c), in left-handed media.

This approach is much more physical and elegant than the
tour-de-force calculations of the previous two sections but it
does not give explicit solutions for E and H ; it only classifies
the symmetries of the solution. This is why we we still needed
the perturbative linear and two-loop analysis, to arrive at more
quantitative results.

The saddle-point solution (26) is nonlinear, unlike the
linearized solution found in the first subsection (15). It is not
a vacuum in the usual field-theory sense, however, as it is
not constant. We are dealing with dynamical criticality of the
kind discussed in [21]. In the vicinity of this solution, the La-
grangian describes the fluctuations of amplitude δE and δH ,
and the fluctuations of phase δ	. Similar to the O(3)-type spin
models [23] and multibeam optical systems [32], and unlike
simple XY-type models, the phase and amplitude fluctuations
mix. By analyzing the fluctuation equations, it should be
possible to understand analytically also the transition from the
left-handed to the right-handed regime as the parameters are
varied, i.e., what are the instabilities that drive it. We will not

4We use the fact that a cubic equation has either one or all three
solutions real.
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FIG. 6. (a) Frequency dependence of the typical propagation length scale for the dissipation of the vortex a2Q2
(blue dashed line) and for

the evolution of the symmetry-breaking Cn patterns (red dotted line). The symmetry breaking is detectable as long as the pattern evolution is
faster than the dissipation, i.e., as long as the red curve is below the blue one. This is obviously the case for most of the frequency range. We
also plot the frequency dependence of the negative permittivity −μ (black full line; because of the minus sign large positive values in the plot
are really large negative values of μ). The left-handed regime is most prominent at intermediate frequencies, which are also inside the regime
of the symmetry breaking. (b) Frequency dependence of the relative strength of nonlinear interactions ω0NL/ω (blue dashed line) together with
negative permittivity −μ as in (a) (black full line). Our calculations, based on a pair of nonlinear Schrödinger-like equations, are reliable as
long as the nonlinearity is not too strong. This is again the case for all but very small frequencies, and again includes the left-handed regime.

attempt that here; it is a long subject that deserves separate
work.

V. TOWARD EXPERIMENTAL VERIFICATION
AND APPLICATIONS

We will now briefly discuss what an experimentalist can
learn from our results and what to look for in practical
work. Wave propagation through the metamaterial can be
observed by measuring the transmission coefficients Si j . From
these coefficients, one can also reconstruct the electric-field
intensity |E |2, which can be directly compared to our intensity
maps like Figs. 2 and 3 [33]. Another quantity which can
be measured is the voltage waveform, which can be used to
construct amplitude envelopes [34].

Therefore, the predicted symmetry breaking is in principle
directly observable. But the question remains how widespread
it will be for realistic values of the parameters. From a more
applied viewpoint, this question is reversed: how to make a
vortex transmission through a left-handed waveguide stable.
In other words, how not to observe the symmetry breaking. It
is true that the phenomenon disappears as soon as the vortex
charge is zero, i.e., when the beam is not a vortex. However,
the vortex patterns are likely important in applications. First,
as a topologically protected object with conserved charge, a
vortex is among the natural candidates for computational de-
vices and information transmission (for the same reasons that
solitons are also interesting in that regard: they are robust to
noise, carry a discrete “quantum” number, i.e., charge, and are
stable to small local perturbations). Second, in the presence
of impurities in the sample, vortices can form in a nonlinear
metamaterial from the initially nonvortexing beam [23].

Let us focus on the left-handed regime, which is the most
interesting and the most relevant for applications. The first
condition is therefore to be in the frequency regime with
μ(ω) < 0. This can be checked directly from Eq. (2) as
we did in Fig. 1(c). The second issue is that the symmetry
breaking takes some finite time, i.e., some finite propagation
length, which is of order b; as can be seen from Fig. 3 and

directly from Eqs. (4) and (5), this is the length scale over
which the patterns change. On the other hand, the one-loop
calculation (22) shows that the intensity decays with the
rate ∼a−2Q2

. As long as this is less than the characteristic
length b, one will likely not see the symmetry breaking but
just eventual dissipation of the beam. Therefore, these two
scales should be compared for some reasonable parameter
values. We show this in Fig. 6(a) for F = 0.4, εD0 = 12.8,
γ = 1 GHz, and ω0 = 10 GHz. Apparently, the length scale of
the Cn pattern development (red dotted line) is nearly always
shorter than the dissipation scale (blue dashed line), so we
expect that the effect predicted in the paper is readily seen in
experiment, at least for Q = ±1. For larger vortex charges,
the dissipation grows quickly and high Q values are probably
not easily observed. Conversely, if the goal is to keep a stable
radially symmetric vortex pattern, one should remain at small
frequencies, although for ω � ω0 the material is not strongly
left handed, as can be seen from the −μ(ω) dependence, also
given in the figure.

There is still one remaining issue. Our theoretical ap-
proach, based on a pair of nonlinear Schrödinger-like equa-
tions, inherently disregards some effects. It describes a quasi-
monochromatic wave without wave mixing or dissipation due
to higher harmonic generation [5]. Such phenomena become
significant for strong nonlinearities, so we should compare the
nonlinearities in ε and μ to the typical energy (frequency)
scale of the vortex. In Eqs. (1) and (2) the approximate ratios
of the nonlinear to linear terms are given by |E |2/εD0 and
ω0NL/ω0 ∼ (A/H )1/3. The first scale is frequency indepen-
dent and solely depends on the beam intensity. The second
scale depends on frequency and needs to be inspected more
closely. In Fig. 6(b) we plot the nonlinearity ratio for the
magnetic field for a range of frequencies ω, again together
with the permittivity to make sure we are at the same time
in the left-handed regime. The relative nonlinearity strength
quickly saturates around a value 0.06 � 1, so we are rather
confident that our equations of motion still make sense.

Altogether, the conclusion is that the breaking of radial
symmetry is observable by standard means (measuring the
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transport coefficients and reconstructing the intensity map at
the exit face of the metamaterial), as long as the frequency
of the wave is not too low. This kind of instability kicks in
at shorter propagation lengths [of order 0.1 mm in Fig. 6(a)]
than the nonlinear diffraction effects studied for breathers in
[35], suggesting that vortex signals are more fragile and less
convenient for information transmission.

VI. DISCUSSION AND CONCLUSIONS

Our main result is contained already in the title—left-
handedness and nonlinearity together create the breaking of
the O(2) symmetry down to a discrete group, with the pattern
vocabulary consisting of the C3Q,C2Q, and CQ patterns. In the
right-handed system with the same nonlinearity the isotropy
is broken again, but the pattern vocabulary only has C2Q

and CQ stages. How exactly the patterns evolve into each
other and through which instabilities is not universal, and it
depends on the exact form of ε and μ. In our model, the ε

dependence is mainly encapsulated in the dissipation γ : the
left-handed nondissipative case is usually dominated by CQ

after a much shorter C3Q phase, whereas the dissipative left-
handed metamaterials most prominently show C3Q patterns.
For the right-handed materials, nondissipative and dissipative
dynamics show mainly C2Q and CQ patterns, respectively.

A detailed account of the pattern dynamics was only
possible through numerical work. But the vocabulary itself—
the existence of symmetries C3Q,C2Q, and CQ—we were able
to understand analytically. The dynamic Landau-Ginzburg
picture reveals this as a consequence of the cubic root non-
linearity in the magnetic permittivity, and the fact that the
cubic equation has either two complex roots in the left-handed
regime or all three real roots in the right-handed regime,
and the presence or absence of dissipation in the electric
permeability. In the framework of our field theory model,
the second derivative of the free energy (on-shell Lagrangian,
Landau-Ginzburg functional) likely has a jump when the
symmetry changes. This is a strong encouragement that the
phenomena we observe here, and in general the walk through
the pattern vocabulary, can be understood from the viewpoint
of order and disorder transitions.

Similar phenomena were studied also in [15,18] and above
all [10], where C3Q necklaces were found, within a model of
left-handed metamaterials given in [15] and similar to ours.
Clearly, we have not exhausted this subject; more research
is still needed to fully understand the transition between
different symmetries and their instabilities. Vortices in meta-
materials seem to be a promising arena, as in a metamaterial
the nonlinearity and the frequency band where the material
is left-handed can to some extent be tuned at will. Therefore,
the phase diagram of collective vortex interactions can also be
studied, and is an obvious topic for future work.
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APPENDIX A: DERIVATION OF THE EQUATIONS
OF MOTION FROM THE MAXWELL EQUATIONS

Start from the definitions D̂ = εÊ and B̂ = μĤ and the
Maxwell equations in the absence of external charges and
currents (ρ = ĵ = 0):

∇ · D̂ = ρ = 0, ∇ · B̂ = 0, ∇ × Ê = −∂t B̂,

∇ × Ĥ = 4π ĵ + ∂t D̂ = ∂t D̂. (A1)

We make the following assumptions.
(1) We assume small gradients of the permittivities ε and

μ, so their second and higher derivatives are disregarded.
Since ω ∝ k, it means that mixed derivatives of the form ∂t∇ε

are also disregarded. In other words, the characteristic length
scale l along the z axis on which ε and μ change is assumed to
be large compared to the characteristic scale b of the changes
in E and H .

(2) We assume that the time dependence is harmonic so
∂t = −ıω.

Acting on the last equation by ∇× and making use of the
identity ∇ × ∇ × Ĥ = −∇2Ĥ + ∇(∇ · Ĥ ), one gets for the
left-hand side

∇ × ∇ × Ĥ = −∇2Ĥ + ∇
(

∇ · B̂

μ

)

= −∇2Ĥ + ∇
(

1

μ
∇ · B̂

)
− ∇

(∇μ

μ2
· B̂

)

= −∇2Ĥ + ∇
(

1

μ
∇ · B̂

)
− ∇ ·

(∇μ

μ2

)
B̂

− ∇μ

μ2
∇ · B̂ = −∇2Ĥ + 0 + O(1/l2) + 0

= −∇2Ĥ, (A2)

where we used ∇ · B̂ = 0 and disregarded the second deriva-
tive of μ. The right-hand side yields

∇ × ∇ × Ĥ = ∇ × (∂t D̂) = −ıω∇ × D̂ = −ıω∇ × (εÊ )

= −ıω(∇ε)Ê − ıωε∇ × Ê

= −ıω(∇ε)Ê − ω2εμĤ = O(1/l2) + ω2εμĤ ,

(A3)

so we obtain

∇2Ĥ + ω2εμĤ = 0. (A4)

For the Ê field we start from the third Maxwell equation, act
by ∇×, and find for the left-hand side

∇ × ∇ × Ê = −∇2Ê + ∇(∇ · Ê ) = −∇2Ê − ∇
(

∇ · D̂

ε

)

= ∇2Ê − ∇
(

1

ε
∇ · D̂

)
+ ∇

(∇ε

ε2

)
εÊ

+ ∇ε

ε2
∇ · D̂ = −∇2Ê + 0 + O(1/l2) + 0

= −∇2Ê , (A5)
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and for the right-hand side we get

∇ × ∇ × Ê = −∂t (∇ × B̂) = −∂t (∇ × B̂)

= −∂t [∇ × (μĤ )] = −∂t [(∇μ)Ĥ + μ∇ × Ĥ ]

= −(∂t∇μ)Ĥ − ∇μ · ∂t Ĥ − ∂t (μ∂t D̂)

= O(1/l2) − ∇μ

μ
∇Ê + ω2εμÊ , (A6)

so

∇2Ê + ω2εμÊ − ∇μ

μ
∇Ê = 0. (A7)

For our geometry we take the paraxial beam approximation,
with the ansatz Ê = E (x, y)eı(kz−ωt ), Ĥ = H (x, y)eı(kz−ωt ), so
the nabla acts as

∇Ê = (∇⊥E , ∂zE + ıkE )eı(kz−ωt ), (A8)

and the Laplacian operator acts as

∇2Ê = (∇2
⊥E + 2ık∂zE − k2E )eı(kz−ωt ), (A9)

and analogously for the magnetic field. Now to write the equa-
tions motion in the final form we rescale E → E × 2kb, H →
H × 2kb, and z 
→ z × 2kb, where b is some characteristic
length scale along the z axis, and divide the equations by
bk2 to obtain the equations (4) and (5), reprinted here for
convenience:

− ı

b
∂zE = ∇2

⊥E + [ω2ε(|E |2)μ(|H |2) − k2]E

− ∇⊥μ(|H |2)

μ(|H |2)
∇⊥E − ı

∂zμ(|H |2)

2μ(|H |2)
E , (A10)

− ı

b
∂zH = ∇2

⊥H + [ω2ε(|E |2)μ(|H |2) − k2]H. (A11)

For comparison to the equations given in [4,7,12], one needs
(1) to rescale H 
→ ω2/c2H to get the term −γ 2H = −k2/ω2

in (A11) and (2) to absorb the factor −k2 in (A10) in the
definition of εD0. This is possible as ε and μ have a constant
term (equal εD0 and 1, respectively) so the product εμ also
has a constant term proportional to εD0, and the contribution
k2E can be absorbed as εD0 
→ εD0 − k2. We thus arrive at a
system identical to that from [4], except for the extra terms for
the propagation along the z axis.

APPENDIX B: CONFIGURATIONS WITH NO VORTICITY
IN THE MAGNETIC FIELD

Here we show that our results stay valid also when only
the electric field has vortex patterns whereas the magnetic
field starts analytic everywhere. As we discuss in the main
text, this situation is experimentally more relevant than the
one assumed in most calculations in the paper (that both the

electric and the magnetic field have a vortex as they enter
the material). The electric field is typically a few orders of
magnitude more intense than the magnetic field, as seen in
[4]. Therefore, one typically controls the electric field directly,
imposing a given boundary condition at the front end of the
material. Despite this fact, the magnetic field remains very
important: the coupled equations of motion (4) and (5) require
both E and H to be nonzero. Indeed, as explained in [4], the
left handedness comes as a consequence of the hysteresis-type
dependence of the magnetic permittivity on H . So while it
is crucial that E and H are both nonzero, it is also true that
the results should remain valid for |H | � |E |, and for the
boundary condition that only has a vortex in E at the front of
the metamaterial, not for H . With such boundary conditions
and the same parameter values as before, Fig. 7 repeats the
calculations of Fig. 3. Obviously, the symmetries remain the
same and the similarity of the results for the two cases is
striking. Obviously, the |E |2 map is insensitive to the details
of the initial magnetic-field pattern, as one expects from
experiments and common wisdom in nonlinear optics. We are
thus content that the numerically simplifying assumption of
identical z = 0 boundary conditions for E and H does not put
into question the findings of our paper.

APPENDIX C: THE CALCULATION
OF THE SELF-ENERGY DIAGRAMS

We discuss here in some more detail the equations (21)
from the main text. First we give the expressions for the
couplings g2,0,0, g0,2,0, g2,0,2, and g0,2,2, which come from
the expansion over the magnetic field H of the nonlinear
dependence μ(H ) in (20):

g2,0,0 = αE4
c ω2

0 − (ω − ı�)ωαE8
c

H0 + αE4
c

[
ω2

0 − (ω − ı�)ωαE2
c

] , (C1)

g0,2,0 = (k2 − λ2)g2,0,0, (C2)

g2,0,2 = 2αE2
c H0

ω2
0 − (ω − ı�)ωαE4

c{
H0 + αE4

c

[
ω2

0 − (ω − ı�)ωαE2
c

]}2 , (C3)

g0,2,2 = (k2 − λ2)g2,0,2. (C4)

For simplicity, we will treat the case when λ = k and thus
g0,2,0 = g0,2,2 = 0. This simplifies the calculations substan-
tially while it does not change the symmetry of the solution.
It is possible to evaluate the diagram �(1) exactly in terms of
sine and cosine integrals Si and Ci. The angular integration
is straightforward; the integration over u results in four com-
binations of the trigonometric integrals, for the four terms in
(18). Three of the four integrals are finite and therefore they
just shift the mass term. The third term of the propagator is
logarithmically divergent:

�
(1)
3 = 4π sin πQ

Q�(Q/2)
e−3ıπQ/2 1

a2
{γE + ln � + (−1)Qa[cos(a�)Ci(a�) + sin(a�)Si(a�)]}. (C5)

To judge the effect of this term, we should extract the mass squared rm of the bare propagator, writing it out for small u:

G(u → 0) = 2π

�(Q/2)

1

u(u2 − a2)
{eıQ(π/2+φ)[cos(a� − πQ) − sin(a�)] + e−ıQ(π/2+φ)[cos(a� + πQ) − cos(a�)]}. (C6)
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FIG. 7. The patterns for Q = 1, 2, and 3 vortices (left to right), in a dissipative (a) and lossless (b) left-handed metamaterial. All parameters
are the same as in Fig. 3 but the boundary condition at z = 0 is now a vortex for the electric field E and a homogenous background for H . The
symmetries and the whole qualitative picture are the same as before, confirming that the predictions of the paper do not require preparing a
vortex in magnetic field at the entry.

Since G−1(u → 0) ∝ u = 0, the bare propagator is massless. The one-loop correction �(1) therefore gives a cutoff-dependent
mass rM ∼ ln �, which could be absorbed in the overall normalization of the propagator. As we declared in the main text, the
one-loop self-energy does not do much.

The crucial diagram �(2), the popular watermelon diagram, cannot be calculated exactly. It can be evaluated in the regime
of small external momentum u, i.e, when u < u′, u′′; more precisely, we can look at the regime when u < u0 < u′, u′′ for some
(arbitrary) scale u0 and expand in a series in u/u0. Let us denote such an entity by �(2)(u; u0): it contains enough information
for our purposes: we are interested mainly in angular integrations which determine the symmetry, and these can be done exactly
as they separate from the integrations over the module u in the small-u limit. For u = 0 the watermelon diagram reads (with∫ ≡ ∫ 2π

0 dφ′ ∫ 2π

0 dφ′′ ∫ du′ ∫ du′′)

�(2) ≈
∫

G(u′)G(u′′)
v

{eıQ[π/2+(φ−φ′−φ′′ )][cos(a� − πQ) − sin(a�)] + e−ıQ[π/2+(φ−φ′−φ′′ )][cos(a� + πQ) − cos(a�)]},

v ≡
√

(u′)2 + (u′′)2 − 2u′u′′ cos(φ − φ′ − φ′′). (C7)

One angular integration is performed by taking φ′ 
→ φ′ + φ′′, which makes the φ′′ integral completely trivial, and the φ′ integral
is evaluated in terms of the elliptic integrals E and K . The outcome is finite, hence it is observable (not only at the cutoff scale)
and reads

�(2)(0; u0) =
(

2π )

a�(Q/2)

)3

e3ıQ/2 cos(3Qφ/2)2
∫

du′
∫

du′′ [(u′)2 − (u′′)2](u′ + u′′)E
(− 4u′u′′

(u′+u′′ )2

)
(u′)2(u′′)2[(u′)2 − a2][(u′′)2 − a2][(u′)2 − (u′′)2]

= 1

4π

(
2π

a�(Q/2)

)3

e3ıQ/2 cos(3Qφ/2)2(a3/2 − 1/�3/2) + O(1/�2). (C8)

In particular, this means that a nontrivial mass term is acquired, of the order a3/2. This mass is anisotropic, and the factor
cos(3Qπ/2)2 is all we need for the 3Q polygon. The leading correction in u/u0 is in fact inessential for the symmetry, but it is
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important as it contains a nonzero imaginary part, introducing a finite lifetime for such patterns. It reads

�(2)(u; u0) =
∫

G(u′)G(u′′)
w

{eıQ[π/2+(φ′−φ′′ )][cos(a� − πQ) − sin(a�)] + e−ıQ[π/2+(φ′−φ′′ )][cos(a� + πQ) − cos(a�)]}

= 1

4π

(
2π

a�(Q/2)

)3

e3ıQ/2

(
2ıa3/2

π
sin(3Qφ/2) + 2�3/2

π
cos(3Qφ/2)

)
,

w ≡
√

(u′)2 + (u′′)2 − 2u′u′′ cos(φ′ − φ′′) − 2u[u′ cos(φ − φ′) + u′′ cos(φ − φ′′)]. (C9)

At leading order, this tedious expression behaves like 1/r3, falling off much quicker than the bare propagator (18), which goes
as 1/

√
r (most obvious from the Bessel-function form of the real-space solution), suggesting that the shape of the vortex, which

is mainly determined by long-distance behavior, is not much influenced by the finite-u correction to �(2).
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