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A B S T R A C T

Percolation properties of the Random Sequential Adsorption (RSA) of objects of various shapes
on simple three-dimensional (3D) cubic lattice are studied numerically by means of Monte
Carlo simulations. Depositing objects are ‘‘lattice animals’’, made of a certain number of nearest
neighbor sites on a lattice. The aim of this work is to investigate the impact of the geometrical
properties of the shapes on the values of percolation threshold 𝜃∗p . We analyzed all lattice
animals of size 𝑛 ⩽ 5.

Thanks to an extensive database of studied objects, we found that the number of nearest
neighbors 𝑁1 and the radius of gyration 𝑅𝑔 of the objects are correlated with the values of
percolation threshold 𝜃∗p . For lattice animals of the same size, the percolation threshold 𝜃∗p
decreases with an increase in the number of the object’s nearest neighbors 𝑁1. If objects of
the same size 𝑛 have the same number of nearest neighbors 𝑁1, their percolation threshold 𝜃∗p
decreases with an increase in the radius of gyration 𝑅𝑔 .

. Introduction

A connected subgraph of a lattice is called a lattice animal. It can also be viewed as a finite set of lattice sites connected
y a network of nearest neighbor bonds. In mathematics, and combinatorics in particular, terms polyominoes and polycubes are
requently used. A polyomino of size 𝑛 is an edge-connected set of 𝑛 squares on the square lattice 2 (the set of integers is denoted
y ). A polycube of size 𝑛 is a face-connected set of 𝑛 cubes in the cubic lattice 3. Because the square (cubic) lattice is self-dual,
olyominoes (polycubes) are equivalent to lattice animals on the dual lattice.

Depending on the problem to be solved, fixed and free animals are distinguished. Fixed animals are considered distinct if they
ave different shapes or orientations. Free animals, on the other hand, are distinguished only by shape, not by orientation. In
he mathematical literature, fixed polycubes are most discussed in the context of simple combinatorial problem — enumeration.
numeration deals with determining the number of polycubes corresponding to a certain parameter, usually their size or perimeter
1]. It is very interesting that to this day there is no known analytic formula for calculation of the number of fixed 𝑑-dimensional
olycubes of size 𝑛, 𝐴𝑑 (𝑛), 𝑑 > 1. The only known methods for computing 𝐴𝑑 (𝑛) are based on explicitly or implicitly enumerating
ll the polyominoes or polycubes using various numerical algorithms [1–4]. Furthermore, the enumeration of lattice animals has
raditionally served as a benchmark for computer performance and algorithm design [5–7].
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Extensive studies of lattice animals can also be found in statistical-physics literature, where fixed polycubes are usually referred
o as strongly embedded lattice animals. Lattice animals play an important role in computing the mean cluster density in percolation
rocesses [7,8]. Series expansions for the percolation probability or the average cluster size can be obtained as weighted sums over
he number of lattice animals 𝑔𝑛,𝑝, enumerated according to their size 𝑛 and perimeter 𝑝 [9]. Lattice animals have also been suggested

as a model of branched polymers with excluded volume [10,11].
Recently, we have carried out extensive numerical simulations of random deposition of large collections of lattice animals and

their binary mixtures on three-dimensional (3D) cubic lattices [12,13]. Random sequential adsorption (RSA) is a process in which
particles of different shapes and sizes are constantly trying to attach themselves to randomly chosen places on the 𝑛-dimensional
substrate [14]. If the incoming particle does not overlap any previously attached particles, it binds irreversibly. A quantity of central
interest is the fraction of the substrate occupied by the deposited objects, 𝜃(𝑡), at time 𝑡. Because of the blocking effect by the already
eposited particles, the limiting value 𝜃J is less than the close packing [15–17]. Due to the absence of relaxation, the formation of
he limiting jammed state is governed by the infinite memory correlation effects.

In Refs. [12,13], we have found that the number of different orientations that lattice animals can take when placed on a cubic
attice exerts a decisive influence on the adsorption kinetics near the jamming limit 𝜃J. The results also suggested absence of
orrelation between the number of possible orientations of the object and the corresponding values of the jamming density 𝜃J.
epending on the local geometry of the objects making the mixture, the jamming coverage of a mixture 𝜃mix

J can be either greater
han both single-component jamming coverages or can be in between these values. The first case is the most common, while in the
econd case, the jamming density of the mixture is very close to the higher jamming density for the pure component shapes.

During the RSA process, the number of deposited objects on the substrate increases so that they form clusters. A cluster is a
roup of occupied sites, so each site has at least one occupied nearest-neighbor site. Percolation assumes the existence of a large
luster that extends from one side to the opposite one of the system. In other words, percolation theory is based on finding the
inimum coverage fraction for which a complete path of adjacent sites crossing the entire system becomes possible. This value

f the fraction of the total area is named the effective percolation threshold 𝜃p. This transition is a geometrical phase transition
here the critical concentration 𝜃p separates a phase of finite clusters from a phase where an infinite cluster is present. Forming

ong-range connectivity in disordered systems is important in many physical, chemical, and even sociological systems [18–20].
he percolation problem attracts considerable interest due to its applications in numerous practical issues, such as conductivity in
omposite materials, flow through porous media, polymerization, and behavior of scale-free random networks [21–26,26–33].

Numerous research papers have been published on percolations in three dimensions, which include some findings for more
omplex systems [34–38]. The study of irreversible deposition and percolation properties on 3D cubic lattices has mostly been
ocused on 𝑘-mers [39–41] and 𝑘 × 𝑘 × 𝑙 (𝑙 = 1, 𝑘) cubic objects [42,43]. Tarasevich and Cherkasova [39] have examined the
ercolation and jamming properties of dimers on simple 3D cubic lattices. In [41], the research of Tarasevich and Cherkasova
as been extended to larger 𝑘-mers (2 ⩽ 𝑘 ⩽ 64) to determine the relation between the jamming coverage and the size of the
eposited 𝑘-mers for simple cubic lattices. The study has revealed that the ratio between the percolation threshold and the jamming
overage exhibits a nonuniversal behavior, decreasing to zero with an increase in 𝑘. These findings suggest that the percolation

phase transition occurs for all values of 𝑘.
In the present study the percolation properties are analyzed for various shapes formed by connected sites on a 3D lattice. All

lattice animals of size 𝑛 = 1 – 5 (41 different shapes) are studied. Object size is the number 𝑛 of nodes that a lattice animal covers
on the grid. The number of examined lattice animals represents a good basis for studying the impact of the geometrical properties
of the shapes on the jamming coverage 𝜃J and on the values of percolation threshold 𝜃∗p. Here, the relationship between the values
of the percolation threshold 𝜃∗p of objects and the number of first neighbors 𝑁1 and the gyration radius 𝑅𝑔 of objects has been
thoroughly analyzed. Random deposition of lattice animals on 3D lattices is a complex problem and it is difficult to develop even
a qualitative understanding of the effects of shape on the packing density and percolation properties.

The paper is organized as follows. Section 2 describes the model and the details of the simulations. The percolation properties
of lattice animals are analyzed in Section 3. Finally, Section 4 contains some additional comments.

2. Definition of the model and the simulation method

We are focusing solely on the free lattice animals on a simple cubic lattice (the term ‘‘free’’ is omitted in the following text).
Table 1 shows all polycubes of size 𝑛 = 1, 2, 3, and 4. Polycubes of size 𝑛 = 1, 2, 3 are planar with a maximum of twelve different
orientations (object V3). There are eight tetracubes (fourth-order polycubes), of which five are planar [44]. Polycubes are usually
counted with mirror pairs (so-called chiral twins) distinguished, as would be natural for the cubical case in ordinary space. For
example, a tetracube A4 and its mirror image B4 are considered distinct because there is no rigid motion that transforms one onto
the other.

All polycubes of size 𝑛 = 5 (pentacubes) are shown in Table 2. There are 29 distinct three-dimensional pentacubes [44]. As it can
be seen, twelve pentacubes are flat and correspond to solid pentominoes. Among the nonplanar pentacubes, there are five that have
at least one plane of symmetry (A5, L35, Q5, T15, T25) and each of them is its own mirror image. The remaining twelve nonplanar
pentacubes form six chiral pairs: {J15, L15}, {J25, L25}, {J45, L45}, {N15, S15}, {N25, S25}, {V15, V25}. For two flats (I5, X5) of
the 29 pentacubes, there are only three possible orientations. Ten pentacubes have twelve orientations and each of the remaining
17 pentacubes has 24 orientations.

As stated in Section 1, the structure of a polycube can be represented by means of a lattice animal that has a vertex for each
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cube and an edge for each two cubes that share a square. Several examples of lattice animals that are equivalent to corresponding
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Table 1
All polycubes (x) of size 𝑛 = 1, 2, 3, 4 and their number of orientations 𝑚.
(x) m Shape (x) m Shape

(M) 1 (I4) 3

(D) 3 (L4) 24

(I3) 3 (O4) 3

(V3) 12 (P4) 8

(A4) 12 (S4) 12

(B4) 12 (T4) 12

Table 2
All polycubes (x) of size 𝑛 = 5 and their number of orientations 𝑚.

(x) m Shape (x) m Shape (x) m Shape (x) m Shape

(A5) 24 (L25) 24 (S15) 24 (V25) 12

(F5) 24 (L35) 24 (S25) 24 (W5) 12

(I5) 3 (L45) 24 (T5) 12 (X5) 3

(J15) 12 (N5) 24 (T15) 12 (Y5) 24

(J25) 24 (N15) 24 (T25) 24 (Z5) 12

(J45) 24 (N25) 24 (U5) 12

(L5) 24 (P5) 24 (V5) 12

(L15) 12 (Q5) 24 (V15) 12

polycubes presented in Tables 1 and 2 are shown in Table 3. An overview of all lattice animals of size 𝑛 ⩽ 5 is given in our previous
works [12,13] (see, e.g. large Tables 1 and 2 in [13]). Table 4 shows the number of possible orientations 𝑚 for polycubes of size
𝑛 ⩽ 6 and the number of objects 𝐴𝑚

3 (𝑛) with the specified number of orientations. Polycubes of size 𝑛 ⩽ 5 can have 1, 3, 8, 12 or 24
different orientations.

The numerical algorithm used to deposit a lattice animal at randomly chosen places on the 3D substrate was already described in
details in the previous papers [12,13]. Therefore, we shall present it briefly, giving the algorithm additions necessary for determining
the percolation threshold.

The primary lattice animal is a group of connected sites in the cubic lattice that contains the origin (0, 0, 0). We call that point
the head of an object. At each Monte Carlo step, a lattice site is selected randomly. If the chosen site is unoccupied, deposition of
the object is tried in one of the 24 orientations, which is chosen randomly. Then, we fix the head of the object at the selected site
and search whether all necessary sites are unoccupied. If so, we occupy these sites and place the object. If the attempt fails, a new
855
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Table 3
Several lattice animals (x) of size 𝑛 = 5 and their number of orientations 𝑚. All lattice animals of size 𝑛 ⩽ 5 are displayed in our
previous works [12,13].
(x), 𝑚 Shape (x), 𝑚 Shape (x), 𝑚 Shape

(A5),24 (L45),24 (T25),24

(I5),3 (N15),24 (V5),12

(L15),12 (S25),24 (Y5),24

Table 4
Shown here is the number of polycubes 𝐴𝑚

3 (𝑛) of size 𝑛 with the specified number of possible orientations
𝑚 = 1, 3, 4, 6, 8, 12, 24. The results are shown for all polycubes of size 𝑛 ⩽ 6.

𝐴1
3 𝐴3

3 𝐴4
3 𝐴6

3 𝐴8
3 𝐴12

3 𝐴24
3 𝑁 =

∑

𝑚 𝐴𝑚
3

n = 1 1 1
n = 2 1 1
n = 3 1 1 2
n = 4 2 1 4 1 8
n = 5 2 10 17 29
n = 6 1 1 3 34 127 166

site and orientation are selected randomly, and so on. The numerical algorithm that searches all possible object orientations and
selects the random orientation of a lattice animal is given in the previous paper [12]. We have verified that using different heads
for all examined objects gives quantitatively the same results for the temporal evolution of density 𝜃(𝑡) and the jamming limit 𝜃J.

The coverage of the surface is increased in the RSA process up to the percolation threshold, when the opposite edges of the
system are connected via some path of nearest neighbor sites occupied by the particles. The tree-based union/find algorithm was
used to determine the percolation threshold [45,46]. This is the most challenging and time-consuming step of the procedure. Each
cluster of connected sites is stored as a separate tree, having a single ‘‘root’’ site. All cluster sites possess pointers to the root site,
so it is simple to ascertain whether two sites are members of the same cluster. When a deposited object connects two separate
clusters, they are amalgamated by adding a pointer from the root of the smaller cluster to the root of the larger one. This procedure
is repeated until the percolation threshold is reached, i.e., until a single cluster connects the opposite sides of the lattice.

The Monte Carlo simulations are performed on a 3D cubic lattice of linear size up to 𝐿max = 512. Periodic boundary conditions
are used in all directions. The data are averaged over 1024 independent runs for each investigated lattice animal. The time is counted
by the number of attempts to select a lattice site and scaled by the total number of lattice sites 𝐿3 ≈ 10–100 million.

3. Results

Values of the percolation thresholds for the infinitely large lattice 𝜃∗p are obtained using the usual finite-size scaling analysis of
the percolation behavior on three-dimensional lattices [47]. In such systems one assumes that the effective percolation threshold
856
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Fig. 1. Finite-size scaling of the percolation threshold 𝜃𝑝 against 𝐿−1∕𝜈 , with 𝜈 = 7∕8. The results are given for various lattice animals, as indicated in the legend
(see, Tables 1 and 2).

Fig. 2. Standard deviations 𝜎 of the percolation threshold on double logarithmic scale for four arbitrarily chosen lattice animals, as indicated in the legend (see,
Tables 1 and 2). Straight lines correspond to the best fit according to the power law of Eq. (2) with the values of the exponent 𝜈 given on each plot.

𝜃p(𝐿) (the mean value of threshold measured for a finite lattice of linear size 𝐿) approaches the asymptotic value 𝜃p(𝐿) → 𝜃∗p for
𝐿 → ∞ via the power law:

𝜃p(𝐿) − 𝜃∗p ∝ 𝐿−1∕𝜈 . (1)

Here the constant 𝜈 is the critical exponent that governs the divergence of the correlation length as 𝜉 ∝ |𝜃p − 𝜃∗p|
−𝜈 . It should be

noted that the universality class of random percolation in 3D is very well identified and the critical exponents are known, namely,
𝜈 = 0.8774(13) ≈ 7∕8 [48,49]. The latter relationship allows us to extrapolate the threshold for an infinite system, 𝐿 → ∞. This kind
of behavior, which is expected for systems without long-range correlations, has been observed in previous studies of percolation of
extended objects on 3D lattices [40–43,49].

The effective percolation threshold 𝜃p(𝐿) for each object was calculated for seven values of the linear lattice size 𝐿 =
32, 64, 96, 128, 192, 256, 320. We plotted the mean value 𝜃p(𝐿) of the threshold for various lattice sizes against 𝐿−1∕𝜈 which
confirmed the validity of the finite-size scaling in the system and enabled us to determine the asymptotic value of the percolation
threshold 𝜃∗p. Finite-size scaling of the lattice threshold 𝜃p(𝐿) against 𝐿−1∕𝜈 for 𝜈 = 0.8774(13) ≈ 7∕8 [48,49] is illustrated in Fig. 1
for ten arbitrarily chosen lattice animals. Values of the obtained percolation thresholds 𝜃∗p for all examined objects are given in
Tables 5 and 6 together with the corresponding jamming coverages 𝜃 .
857
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Table 5
For each lattice animal (𝑥) of size 𝑛 = 1, 2, 3, 4 with 𝑚 possible orientations, 𝜃(𝑥)J and 𝜃∗p(𝑥) are the jamming
coverage and percolation threshold, respectively. Error estimates concerning the last digits are indicated between
parentheses. Here, 𝑁1 is the number of first neighbors and 𝑅𝑔 is radius of gyration.

Shape (x), size 𝑛 m 𝑁1 𝑅𝑔 𝜃(𝑥)J 𝜃∗p(𝑥)

(M), 𝑛 = 1 1 6 0.0000 1.0000(0) 0.3122(9)

(D), 𝑛 = 2 3 10 0.5000 0.9184(1) 0.2566(9)

(I3), 𝑛 = 3 3 14 0.8165 0.8390(2) 0.2125(11)
(V3), 𝑛 = 3 12 13 0.6667 0.8788(2) 0.2396(10)

(A4), 𝑛 = 4 12 16 0.7906 0.8178(2) 0.2260(11)
(B4), 𝑛 = 4 12 16 0.7906 0.8178(2) 0.2260(11)
(I4), 𝑛 = 4 3 18 1.1180 0.7808(3) 0.1801(11)
(L4), 𝑛 = 4 24 17 0.9354 0.8339(2) 0.2004(11)
(O4), 𝑛 = 4 3 16 0.7071 0.8079(3) 0.2419(12)
(P4), 𝑛 = 4 8 15 0.7500 0.7941(3) 0.2414(12)
(S4), 𝑛 = 4 12 16 0.8660 0.8149(2) 0.2206(11)
(T4), 𝑛 = 4 12 16 0.8292 0.8114(3) 0.2214(12)

Table 6
For each lattice animal (𝑥) of size 𝑛 = 5 with 𝑚 possible orientations, 𝜃(𝑥)J and 𝜃∗p(𝑥) are the jamming coverage and
percolation threshold, respectively. Error estimates concerning the last digits are indicated between parentheses.
Here, 𝑁1 is the number of first neighbors and 𝑅𝑔 is the radius of gyration.

Shape (x) m 𝑁1 𝑅𝑔 𝜃(𝑥)J 𝜃∗p(𝑥)

(A5) 24 18 0.8485 0.7716(2) 0.2258(11)
(F5) 24 19 0.9798 0.7860(3) 0.2069(10)
(I5) 3 22 1.4142 0.7369(4) 0.1555(10)
(J15) 12 20 1.0583 0.7635(2) 0.1899(11)
(J25) 24 19 0.9381 0.7839(2) 0.2092(11)
(J45) 24 20 1.0198 0.7958(3) 0.1934(11)
(L5) 24 21 1.2329 0.7695(3) 0.1715(11)
(L15) 12 20 1.0583 0.7635(3) 0.1899(11)
(L25) 24 19 0.9381 0.7839(2) 0.2092(11)
(L35) 24 19 0.9798 0.7774(3) 0.2026(11)
(L45) 24 20 1.0198 0.7957(2) 0.1934(11)
(N5) 24 20 1.1314 0.7866(3) 0.1860(9)
(N15) 24 19 0.9798 0.7842(2) 0.2079(13)
(N25) 24 18 0.8944 0.7790(3) 0.2243(11)
(P5) 24 19 0.8944 0.8017(3) 0.2201(13)
(Q5) 24 18 0.8000 0.7826(3) 0.2355(11)
(S15) 24 19 0.9798 0.7841(2) 0.2079(13)
(S25) 24 18 0.8944 0.7790(3) 0.2243(11)
(T5) 12 20 1.0198 0.7500(3) 0.1899(11)
(T15) 12 17 0.8485 0.7582(3) 0.2388(11)
(T25) 24 19 0.8944 0.7863(2) 0.2136(12)
(U5) 12 20 1.0198 0.7611(3) 0.1939(10)
(V5) 12 21 1.1314 0.7628(3) 0.1758(9)
(V15) 12 19 0.9381 0.7647(3) 0.2130(11)
(V25) 12 19 0.9381 0.7647(3) 0.2130(11)
(W5) 12 19 1.0583 0.7615(3) 0.2033(12)
(X5) 3 18 0.8944 0.7007(3) 0.2273(12)
(Y5) 24 20 1.0954 0.7595(3) 0.1877(13)
(Z5) 12 20 1.0954 0.7643(2) 0.1888(10)

According to the scaling theory, the standard deviation 𝜎 of the percolation threshold measured for a finite lattice 𝐿 satisfies the
power law:

𝜎 ∝ 𝐿−1∕𝜈 . (2)

In Fig. 2 the standard deviation 𝜎 vs. 𝐿 is shown on a double logarithmic scale for several arbitrarily chosen lattice animals. For
all lattice animals we confirmed the power law of Eq. (2) with the mean value of the exponent 𝜈 = 0.882 ± 0.022. Therefore, these
results are in good agreement with the universal value 𝜈 ≈ 7∕8 [48,49].

Upon examining the percolation threshold values 𝜃∗p for all objects of size 𝑛 ⩽ 5 (see, Tables 5 and 6), we concluded that the
number of object orientations 𝑚 is not correlated with the values of 𝜃∗p. The coverage kinetics is known to be slowed down with
the increase in the number of possible placements 𝑚 of the shape [12]. However, it is not difficult to notice some other geometric
properties of the deposited shapes that affect their percolation properties. Each lattice shape is surrounded by the first neighboring
sites on the lattice. The obtained results show that the number of an object’s nearest neighbor sites 𝑁1 significantly influences its
858
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(𝑁1 = 18) and the lowest percolation threshold value (𝜃∗p = 0.1801(11)). Object I5, which is a shape of size 𝑛 = 5, has the highest
number of first neighbors (𝑁1 = 22) and hence corresponds to the smallest value of the percolation threshold (𝜃∗p = 0.1555(10)).
Objects L5 and V5 have slightly higher percolation thresholds because they have one less first neighbor than object I5. All other
objects of size 5 have fewer first neighbors (𝑁1 ⩽ 20) and, hence, higher percolation threshold values. Qualitatively, we can say
that the value of 𝜃∗p depends on the object’s capability to make connections with other depositing objects. The number of nearest
neighbors 𝑁1 seems to be a quantity closely related to the connectivity. Indeed, we observe that the object T15, with the largest
threshold (𝜃∗p = 0.2388(11)), has the smallest number 𝑁1 of the first neighboring sites on the lattice, i.e. 𝑁1 = 17.

From Tables 5 and 6, it can be seen that there are objects of the same size 𝑛, with the same number of first neighbors 𝑁1, whose
percolation thresholds 𝜃∗p differ significantly. The geometric characteristic of the objects that can be related to these changes in the
percolation properties of the objects is the radius of gyration 𝑅𝑔 . The radius of gyration is defined as the root-mean-square average
of the distance of all lattice nodes occupied by the object from the center of mass of the object. Actually, the radius of gyration 𝑅𝑔
of a lattice animal of size 𝑛 that fills the nodes of the grid with coordinates {𝑟𝑖} = {(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)}, 𝑖 = 1,… , 𝑛 is given by the expression

𝑅𝑔 =

[

1
𝑛

𝑛
∑

𝑖=1
𝑠2𝑖

]1∕2

, (3)

here

𝑠2𝑖 = (𝑥𝑖 − 𝑥𝑐 )2 + (𝑦𝑖 − 𝑦𝑐 )2 + (𝑧𝑖 − 𝑧𝑐 )2, (4)

and

𝑥𝑐 =
1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖, 𝑦𝑐 =

1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖, 𝑧𝑐 =

1
𝑛

𝑛
∑

𝑖=1
𝑧𝑖. (5)

For two lattice animals having the same size, the one with the larger radius of gyration is the more extended or less spherical one.
If the value of 𝑅𝑔 is small, then we can say the object is relatively compact.

In Figs. 3(a) and 4(a), the dependence of the percolation threshold 𝜃∗p on the radius of gyration 𝑅𝑔 is shown for all lattice animals
with a size of 𝑛 ≤ 5. Figs. 3(b) and 4(b) are included for a simpler insight into the number of nearest neighbors 𝑁1 for each studied
object. Due to the greater diversity of lattice animals of size of 𝑛 = 5, let us first analyze the results shown in Fig. 4. It is clear that for
attice animals of the same size, the percolation threshold decreases with an increase in the number of the object’s nearest neighbors.
ndeed, the values of the percolation threshold 𝜃∗p for objects with 𝑁1 = 18 first neighbors are in the range of 0.223 ≲ 𝜃∗p ≲ 0.236.
or objects with a greater number of neighbors, the range of the percolation threshold values shifts towards lower values. Thus, for
1 = 19, the percolation threshold is in the range of 0.201 ≲ 𝜃∗p ≲ 0.221, for 𝑁1 = 20, it is 0.186 ≲ 𝜃∗p ≲ 0.194, and for 𝑁1 = 21, the

range is of 0.170 ≲ 𝜃∗p ≲ 0.175. Objects with 𝑁1 = 17 and 𝑁1 = 22 first neighbors have the highest and lowest percolation threshold
alues, respectively. Qualitatively the same correlation between the percolation threshold values and the number of first neighbors
f objects of size 𝑛 < 5 can be seen in Fig. 3.

If objects of the same size 𝑛 have the same number of nearest neighbors 𝑁1, their percolation threshold 𝜃∗p decreases with an
ncrease in the radius of gyration 𝑅𝑔 (see, Figs. 3 and 4). The radius of gyration 𝑅𝑔 can be considered as a measure of the compactness
f an object. More compact objects have smaller linear dimensions along the lattice directions. For example, objects A5 and I5 are
f the same size 𝑛 = 5 (see, Table 3), while their radii of gyration differ significantly. Object I5 is elongated and has a large radius of
yration (𝑅𝑔 = 1.4142). Object A5 is compact and rounded, so its radius of gyration is considerably smaller (𝑅𝑔 = 0.8485). Compact
bjects cover space more efficiently and have a lower connecting probability. Compact objects tend to form dense, isolated islands
n the lattice. Then, the connectivity in the system is poor at low densities, and percolation sets in at larger density values. This
uggests that, for various objects of the same size, the percolation threshold 𝜃∗𝑝 of more compact and rounded shapes (smaller 𝑅𝑔)

exceeds the 𝜃∗𝑝 of the elongated ones (larger 𝑅𝑔).

. Concluding remarks

Our previous work [32] investigated percolation and jamming phenomena for random sequential deposition of objects of various
hapes and sizes on a two dimensional (2D) triangular lattice. Self-avoiding lattice steps made the shapes. It has been shown that
or various planar objects of the same length, the percolation threshold 𝜃∗p of more compact shapes (hexagons, triangles) exceeds

the 𝜃∗p of elongated ones (line segments, angled objects). The present study reached similar conclusions by examining a significantly
broader class of objects, lattice animals in three dimensions. A systematic approach is made by examining a wide variety of object
shapes.

Our results suggest that for lattice animals of the same size:
(i) the percolation threshold 𝜃∗p decreases with an increase in the number of the object’s nearest neighbors 𝑁1;
(ii) The percolation threshold 𝜃∗p for compact and rounded objects is higher than for elongated ones. This behavior of the percolation
threshold value is consistent with the size of the radius of gyration 𝑅𝑔 of the lattice animal. If two objects are of the same size and
have the same number of nearest neighbors 𝑁1, the object with the larger radius of gyration 𝑅𝑔 is less compact or more extended.
Therefore, as the object’s radius of gyration 𝑅𝑔 increases, the percolation threshold value 𝜃∗p decreases.

It is important to emphasize that there are lattice animals of the same size 𝑛 = 5, which have an equal number of nearest
neighbors 𝑁1 and the same 𝑅𝑔 value, but their percolation thresholds differ slightly (see, Fig. 4). Examples of such shapes are
objects P5 and T25, or F5 and L35. We have not been able to identify any other geometric characteristic of the shape that would
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Fig. 3. Dependence of the percolation threshold 𝜃∗p on the radius of gyration 𝑅𝑔 (Eq. (3)) for all lattice animals of size 𝑛 = 2, 3, 4, as indicated in the legend.
Both panels display the same results. On the right side of each symbol (circle), the name of the corresponding object (panel (a)) and the number of its first
neighbors 𝑁1 (panel (b)) are listed. Next to the symbols corresponding to chiral pairs, the names of both objects are listed. For 𝜃∗p the error bars do not exceed
the size of the symbols.

correlate with this variation in the percolation threshold. In most cases, objects with greater anisotropy have a lower percolation
threshold. A more detailed analysis of additional geometric characteristics of the shapes will be the subject of future work.

The model considered here is highly idealized and is not intended to reproduce a particular experimentally studied system.
However, this work aims to encourage the development of more advanced models that can reproduce concrete experimental systems.
Specifically, percolation theory has been successfully used to study the well-known sol–gel transition [50], in which the percolation
threshold determines the point at which a system shifts from a liquid to a gel state. This transition is governed by the ability
of molecules to form a network that traps solvent molecules, creating a semi-solid structure. It is well known that the shape of
a molecule affects the gelation process by influencing how molecules interact, the number and strength of contact points, their
conformational flexibility, and the nature of their self-assembly [51–55]. These factors collectively determine the efficiency and
stability of the gel network formed. Examining these points requires a systematic approach using a wide variety of extended objects
on a 3D lattice. Accordingly, the percolation of various shapes on 3D lattice could be an interesting topic for further research that
will provide a better description of the gelation process.
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Fig. 4. Dependence of the percolation threshold 𝜃∗p on the radius of gyration 𝑅𝑔 (Eq. (3)) for all lattice animals of size 𝑛 = 5. Both panels display the same
results. On the right side of each symbol (circle), the name of the corresponding object (panel (a)) and the number of its first neighbors 𝑁1 (panel (b)) are
listed. Next to the symbols corresponding to chiral pairs, the names of both objects are listed. For 𝜃∗p the error bars do not exceed the size of the symbols.
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