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Abstract. Understanding the effect of network connectivity patterns
on the relation between the spontaneous and the stimulus-evoked net-
work activity has become one of the outstanding issues in neuroscience.
We address this problem by considering a clustered network of stochas-
tic rate-based neurons influenced by external and intrinsic noise. The
bifurcation analysis of an effective model of network dynamics, com-
prised of coupled mean-field models representing each of the clusters,
is used to gain insight into the structure of metastable states char-
acterizing the spontaneous and the induced dynamics. We show that
the induced dynamics strongly depends on whether the excitation is
aimed at a certain cluster or the same fraction of randomly selected
units, whereby the targeted stimulation reduces macroscopic variabil-
ity by biasing the network toward a particular collective state. The
immediate effect of clustering on the induced dynamics is established
by comparing the excitation rates of a clustered and a homogeneous
random network.

1 Introduction

Characterizing the structure of spontaneous emergent activity in neuronal pop-
ulations, and the fashion in which it is modulated by the sensory stimuli, is
fundamental to understanding the principles of information processing in the cortex.
The generic patterns of spontaneous cortical dynamics, called slow rate fluctuations or
UP–DOWN states, involve switching between the episodes of elevated neuronal and
synaptic activity, and the stages of relative quiescence [1–3]. Alternation between UP
and DOWN states is orchestrated by coherent action of individual neurons, with the
observed rates typically lying in the range from 0.1 to 2 Hz [3]. Slow rate fluctuations
give rise to macroscopic variability in the cortex [4,5], underlying in vivo activity
during quiet wakefulness, sleep or under anesthesia [1,6,7], and even featuring in var-
ious in vitro preparations [8,9]. Our paper focuses on the open issues concerning the
ingredients that affect the relationship between the stimulus-evoked and the ongoing
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dynamics of neural assemblies, as well as the way the induced activity depends on
the stimulus.

The research on induced patterns in sensory cortical areas has surprisingly shown
that regardless of the type of stimuli, these patterns exhibit remarkable similarity
to those of the idling activity [10–13]. In fact, the onset of UP–DOWN states has
been recorded while performing perceptual tasks, but has also been found crucial
to pyramidal neurons of neocortex, where it facilitates certain forms of learning and
memory consolidation [1,14–17]. Such data evince that typical evoked activity pat-
terns are drawn from a limited ”vocabulary” already present within the spontaneous
dynamics [10], whereby the sampling ability is pinned by the form of sensory stim-
uli. The striking similarity between the ongoing and the induced cortical activity is
now considered as a generic feature of cortical dynamics, verified at increasing levels
of structural complexity [18]. Certain experimental studies have linked the similar-
ity to nontrivial properties of cortical connectivity, suggesting that it confines the
pool of potential activity patterns [18]. By this paradigm, the structure of patterns
reflects the modular (clustered) architecture of cortical networks, whereby certain pat-
terns are activated by stimulating particular local subcircuits, known as the leader
sites [19]. Conceptually, investigating the impact of clustered topology on different
aspects of collective dynamics is biologically plausible [5,20], as recent research indi-
cates strong prevalence of clustered over the homogeneous connectivity in cortical
networks [21–24]. Clustering has already been shown to enable task-specialization,
maintaining of high levels of neuronal activity, or adaptation to certain types of
stimuli [25,26].

Here, we examine how the interplay of modular network architecture and noise
influences the relation between the spontaneous and induced macroscopic activity,
as well as how the macroscopic variability is affected by the different types of net-
work stimulation. We analyze a model of a clustered network of noisy rate-based
neurons [27–29], employing a second-order effective model of collective dynam-
ics to gain insight into the structure of network’s metastable states. While the
spontaneous activity consists of noise-induced fluctuations between the metastable
states, we show that the specific type of stimulation, targeted at a certain clus-
ter, biases the network toward a particular state, thereby reducing the macroscopic
variability.

The origin of macroscopic variability, as an emergent network phenomenon, has
so far been treated within two different frameworks, one associating slow rate fluc-
tuations to deterministic networks, where balanced massive excitation and inhibition
render the collective dynamics highly sensitive to fluctuations, and the other, which
ties the slow rate fluctuations to multistability in attractor model networks, such that
switching between coexisting states emerges due to noise, whose action amounts to a
finite-size effect. In our recent paper [27], we have applied the latter approach, com-
paring the switching dynamics in clustered networks relative to random (statistically
uniform) networks with the same average connectivity, having shown that clustering
promotes multistability, thereby enhancing the switching phenomenon and its robust-
ness. Here, the use of effective model of collective dynamics derived in [27] is extended
to capture the response of random and clustered networks to external stimuli. In case
of clustered networks, we compare the effects of two different stimulation protocols,
including (i) the targeted stimulation, where an increased bias current is introduced
only to units in a certain cluster, and (ii) the distributed stimulation, where the same
fraction of randomly selected neurons is excited. It is found that due to modular
architecture, the two stimulation scenarios may give rise to fundamentally different
responses of the network.

The paper is organized as follows. In Section 2, we introduce the model of net-
work dynamics and present the effective model of its macroscopic behavior. Section 3
contains the bifurcation analysis of the effective model of a clustered network in
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the thermodynamic limit, applying it to anticipate the induced dynamics of the
network. In Section 4, we compare the numerical results to the predictions of the
mean-field model. Section 5 provides a brief summary and discussion on the obtained
results.

2 Network dynamics: full and the effective model

We consider an m-cluster network comprised of N neurons, assuming random connec-
tivity both within and between the clusters. The intra-cluster connectivity, specified
by connectedness probability pin, is more dense than the cross-connectivity pout,
whereby the degree of topological heterogeneity is characterized by the clustering
parameter g = pin/pout. Larger g implies stronger clustering, such that the limit-
ing case g = 1 describes the non-clustered (homogeneous random) network, while the
case g →∞ corresponds to a network of uncoupled clusters. The clustering algorithm
involves rewiring of a sparse random network, and thus preserves the average con-
nectedness probability, set to a biologically plausible level p = 0.2. The parameters
pin and pout can be linked to p via pin = gm

m−1+gp and pout = m
m−1+gp, which allows

one to explicitly compare the relevant parameter domains between the homogeneous
and the clustered network.

The local dynamics follows a stochastic rate model [27–31]

drXi

dt
= −λXrXi +H(vXi) +

√
2DξXi(t), (1)

where rXi is the firing rate of neuron i from cluster X, λX defines the rates relaxation
time, and H is the nonlinear gain function, whose argument is the total input to a
neuron vXi. The latter is given by vXi = uXi + IX +

√
2BηXi(t), where uXi is the

synaptic input uXi = κ
∑

Y

∑
j aY XjirY j and IX denotes the external bias current.

The coupling scheme is specified by the adjacency matrix aY Xji ∈ {0, 1}, such that
aY Xji stands for the link projecting from neuron j in cluster Y to neuron i in cluster
X. Coupling weights are assumed to be homogeneous and scale with the network
size as κ = KY X/N . The random perturbations in the microscopic dynamics derive
from two distinct sources of noise. In particular, the external noise, characterized by
B, and the intrinsic noise, described by D, are introduced to account for the action
of synaptic and ion-channel noise, respectively. All the associated fluctuations are
independent and are given by Gaussian white noise.

Note that the form (1) is quite general, in a sense that by choosing different H,
one may interpolate between different classes of models, including Wilson–Cowan or
Hopfield model. From a broader perspective, a plausible gain function should meet
three simple requirements: it should drop to zero for sufficiently small input, exhibit
saturation for large enough input, and just be monotonous for intermediate input
values. Here, the form of H

H(U) =


0, U ≤ 0,

3U2 − 2U3, 0 < U < 1,

1, U ≥ 1.

(2)

is selected to make the analysis of macroscopic dynamics analytically tractable
[27–29]. Note that the qualitative physical picture associated to the collective multi-
stable behavior in assemblies of neurons with rate-based dynamics does not depend
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on the particular choice of the gain function. This point has been extensively elab-
orated in [30], and we have also numerically verified that the results presented here
persist for the Heaviside-like gain function.

2.1 Effective model of clustered network dynamics

The effective model of network dynamics is comprised of coupled mean-field models
representing the activities of particular clusters. Typically, the effective models of
network behavior concern either the case of random sparse connectivity or the case
of full connectivity. In this context, our model can be seen as interpolating between the
two standard scenarios, featuring dense intra-cluster connectivity and sparse inter-
cluster connections. The applied mean-field approach involves a Gaussian closure
hypothesis [32–35], such that the collective dynamics of each cluster X is described
by the mean-rate RX and the associated variance SX

RX =
1

NX

∑
i

rXi ≡
〈
rXi

〉
SX =

〈
r2Xi

〉
−R2

X , (3)

where 〈·〉 denotes averaging over the neurons within the given cluster. For each of
the clusters, we use the bottom-up approach to obtain the second-order stochastic
equations of macroscopic behavior. With the detailed derivation of the effective model
already provided in [27], here we only briefly outline the two main steps necessary
to carry out the appropriate averaging over the microscopic dynamics, namely the
Ansatz on local variables and the Taylor expansion of H function.

The Ansatz on local variables consists in writing rXi as rXi = RX +
√
SXρXi [36],

where {ρXi} is a set of variables satisfying 〈ρXi〉 = 0, 〈ρ2Xi〉 = 1, as readily follows
from definition (3). The introduced Ansatz is applied to rewrite the total input to a
neuron as vxi = UX + δvXi, where

UX = IX + κ
∑
Y

pY XNYRY (4)

presents the assembly-averaged input to cluster X, pY X denotes the connectedness
probability from cluster Y to cluster X, and NY is the size of cluster Y . The deviation
δvXi from the average input UX consists of two terms:

δvXi = κ
∑
Y

RY νY Xi + κ
∑
Y

√
SY σY Xi. (5)

The first term accounts for the topological effect associated to the deviation νY Xi =∑
j

aY Xji − pY XNY from the average number of connections pY XNY , whereas the

second term captures the effect of local rate fluctuations, contained within the fac-
tor σY Xi =

∑
j

aY XjiρY j . Equations (4) and (5) allow one to average the terms

containing the gain function by developing H(vXi) about UX up to second order.
This leads to H(vXi) = H0X + H1XδvXi + H2Xδv

2
Xi, having introduced notation

H0X ≡ H(UX), H1X = dH
dvXi

(UX), H2X = 1
2

d2H
dv2

Xi
(UX).
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Following a number of intermediate steps elaborated in [27], one arrives at the
effective model of network dynamics stated in terms of interacting finite-size mean-
field models describing the cluster dynamics. The effective model is given by

dRX

dt
= −λXRX +H0X + 2BXH2X +H2X

∑
Y

K2
Y XpY XNY

(
R2

Y + SY

)/
N2

+
√
ΨXβ(t) +

√
ΩXη,

dSX

dt
= −2λXSX + 2BXH

2
1X + 2DX , (6)

and involves three types of finite-size effects, including the small deterministic correc-
tion term, the effective “macroscopic” noise of intensity ΨX , as well as the quenched
randomness, accounting for the fact that each particular network realization features
distinct deviations from the average connectivity degree. The macroscopic noise is
multiplicative

ΨX =
1

N

(
2DX + 2BXH

2
1X

)
+

1

N
H2

1X

∑
Y

K2
Y XpY X

NY

NX
SY , (7)

and incorporates three terms: the first two describe how the local external and
intrinsic noise are translated to macroscopic level, whereas the third one reflects
the impact of local fluctuations in the input arriving to each neuron in the clus-
ter. At variance with the time-varying stochastic term featuring β(t), the effect of
quenched randomness in (6) is characterized by a constant random term of magni-
tude ΩX = 1

NH
2
1X

∑
Y

K2
Y XpY X

NY

NX
R2

Y , with η being just a constant random number

N (0, 1).
In the SX dynamics, for simplicity we omit all the finite-size effects, including

the deterministic correction and the stochastic terms. One may do so because the
variance SX only affects the O(1/N) terms in the dynamics of RX .

3 Bifurcation analysis of the effective model in the
thermodynamic limit

In this section, we carry out the bifurcation analysis of the system (6) in the limit
N →∞ to characterize the response of a clustered network to external stimuli. Our
focus is on the scenario of targeted stimulation, where an increased bias current
is applied to a certain cluster, while the rest of the network remains unperturbed.
The stimulation is provided in the form of a rectangular pulse, whose duration ∆ is
sufficiently long such that the network is allowed to reach the new metastable state.
Our analysis will address the issues of why the evoked states of the network are similar
to those occurring within the spontaneous activity, and how the stimulus biases the
network dynamics to a particular collective state. Note that the system (6) holds for
networks of an arbitrary number of clusters of arbitrary sizes, but for simplicity we
consider the case of m equal clusters of size Nc = N/m.

In our previous study, the model (6) has been analyzed in case where the entire
network receives homogeneous external current I. Here, we deal with inhomoge-
neous stimulation, conforming to a paradigm with l clusters delivered the current
IA, whereas the remaining ones are influenced by IB . One is interested into solutions
where the mean activity of the unperturbed clusters equals RB , whereas the state of
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Fig. 1. (a) Bifurcation diagram R(I) for the non-clustered network subjected to homoge-
neous stimulation. The network parameters are α = 0.8, B = 0.004, D = 0.02 and g = 1.
(b) Bifurcation diagram for the clustered network m = 5 influenced by the homogeneous
stimulation: bias current I against logarithm of the clustering coefficient g. The numbers
indicate how many coexisting attractors exist within the given region.

the excited clusters RA may be different. Neglecting the finite-size effects O(1/N), it
follows that the network dynamics is given by

dRA

dt
= −RA − 2UA

(
RA, RB

)3
+ 3UA

(
RA, RB

)2
+ 6B

(
1− 2UA

(
RA, RB

))
dRB

dt
= −RB − 2UB

(
RA, RB

)3
+ 3UB

(
RA, RB

)2
+ 6B

(
1− 2UB

(
RA, RB

))
, (8)

where the average input to the two subsets of clusters reads

UA

(
RA, RB

)
= IA +

α

m− 1 + g

[(
g + l − 1

)
RA +

(
m− l

)
RB

]
UB

(
RA, RB

)
= IB +

α

m− 1 + g

[
lRA +

(
g +m− l − 1

)
RB

]
, (9)

having α = Kp denote the network coupling parameter.
Prior to analyzing the induced dynamics of the network, let us briefly consider

the spontaneous activity, which is in this framework represented by a setup with
homogeneous bias currents IA = IB = I. In case of a non-clustered network (g = 1),
one observes bistability in a certain interval I ∈ [I1, I2] [29], provided the coupling
parameter α is sufficiently large. The corresponding bifurcation diagram R(α) in
Figure 1a contains two stable branches associated to the UP and DOWN states of the
network. Introducing sufficiently strong clustering promotes multistability, giving rise
to network states which do not exist in the non-clustered case. The increased number
of network levels derives from the states with broken symmetry, where subsets of
clusters may lie in their respective high or low states [27]. For such inhomogeneous
collective states, the system symmetry is reduced from the permutation group Σm

(permutation of all cluster indices), to a subgroup of the type Σl ⊗ Σm−l, where
l ∈ {1, 2, ,m − 1}. Given that each cluster may either lie in the low or the high
state, the maximal multistability of a network comprised of m clusters is m+ 1. To
provide an example, in Figure 1b is shown a bifurcation diagram in the (g, I) plane
for a modular network m = 5. There, one observes that maximal multistability is
facilitated by the clustering parameter g ' 100.

Note that the external noise B acts in (8) as a bifurcation parameter, influencing
the number and position of stationary states in the thermodynamic limit. Figure 2a
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Fig. 2. (a) Bifurcation diagram in the (B, I) for the non-clustered network subjected to
homogeneous stimulation. The remaining parameters are α = 0.8, D = 0.02 and g = 1.
(b) Shift of the maximal multistability region in the (g, I) plane for a clustered net-
work m = 5. The red solid lines outline the maximal multistability domain for noise level
B = 0.004, whereas the blue dotted lines and the green dashed lines correspond to B = 0.01
and B = 0.015, respectively.

shows the bifurcation diagram referring to spontaneous activity of the non-clustered
network in the (B, I) plane, obtained under fixed connectivity α = 0.8. The bistability
region again lies between two branches of fold bifurcations (red curves) that meet at
the cusp point, where a pitchfork bifurcation occurs. One finds that for fixed I, there
always exists a B value above which a non-clustered network can no longer support
bistable behavior. For the spontaneous dynamics of a clustered network, it can be
shown that the region of maximal multistability in the (g, I) plane, bounded by
two curves of fold bifurcations intersecting at the pitchfork bifurcation, reduces and
shifts toward stronger clustering under increasing B, cf. Figure 2b. In other words,
for higher external noise, one requires larger clustering in order to observe maximal
multistability in the network.

To investigate the scenario of a targeted stimulation, we analyze the network’s
response by looking into solutions of (8) for l = 1, such that the stimulated cluster
occupies the state different from the remaining clusters. The clustering coefficient g
and the stimulation current IA are considered as control parameters, while the remain-
ing parameters α = 0.8, B = 0.004, and IB = 0.1 are such that the spontaneous
dynamics of the associated homogeneous random network with I = IB pertains to
bistability region in Figure 1a. The (g, IA) bifurcation diagram explaining the action
of targeted stimulation is plotted in Figure 3a. For IA ≈ IB and strong enough clus-
tering, the network possesses four stable steady states, which can readily be traced
in the limit of ultimate clustering g →∞. Indeed, suppose that a network is decom-
posed into a set of non-interacting clusters, and that IA and IB lie within the interval
[I1, I2] from Figure 1a. Then, each of the clusters is bistable, which gives exactly four
stable steady states in the full system (8). The area of maximal multistability, where
both the stimulated cluster and the resting network may either occupy the low or
the high state, extends to moderate clustering g ∼ 100. In Figure 3b, the four stable
steady states of the effective model are denoted by OLL, OLH , OHL and OHH . Note
that the first and second index refer to states of the stimulated cluster and the rest of
the network, respectively, whereby L/H indicates the low/high level, and U denotes
the unstable state.

As the stimulation IA increases, the system undergoes a saddle-node bifurcation
in which the states OLH and OUH are annihilated, see the curve C1 in Figure 3a.
Then the system passes to the area with 3 stable steady states, with the correspond-
ing phase portrait shown in Figure 3c. Further growth of IA causes the states OLL

and OUL to collide, cf. the curve C2 in Figure 3a, such that the system becomes
bistable, as corroborated by the phase portrait in Figure 3d. For small g, very
strong simulation IA leads to a collision and disappearance of the steady states OHL
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Fig. 3. (a) Bifurcation diagram IA(g) of system (8), with the number of coexisting solutions
indicated for particular regions. The remaining parameters are fixed to α = 0.8, B = 0.004,
D = 0.02, m = 5 and IB = 0.1. (b–d) Phase portraits associated to system (8) under
increasing IA.

and OHU , see the curve C3 in Figure 3a, whereby the system becomes monostable.
Note that the decrease of IA (targeted inhibition) gives rise to a similar scenario.
When IA is systematically reduced, the system first becomes tristable with coexist-
ing states OLL, OLH and OHH , then bistable and eventually passes to monostability
domains.

4 Numerical results: targeted vs. distributed stimulation

In this section, our aim is to first explicitly demonstrate that the effective model (8)
can successfully predict the response of a clustered network in case of targeted stimu-
lation. Nevertheless, we shall also show an interesting effect evincing that the response
of modular networks to external stimulation is strongly dependent on the character of
stimulation, i.e. the fashion in which it is distributed to neurons within the network.

In Figure 4, the response of a clustered network m = 5 to a targeted stimula-
tion is compared against the induced dynamics of the effective model analyzed in
Section 3. Note that the numerical experiments concerning the full system (1) have
been carried out on a relatively small network comprised of N = 300 neurons, which
corresponds to only 60 neurons per cluster, having fixed the noise levels to D = 0.02
and B = 0.004. Given the relatively small cluster size, one would expect strong fluc-
tuations in the network dynamics. Nevertheless, it will be shown that even under
such conditions, the mean-field analysis performed in case of thermodynamic limit
still remains qualitatively valid, in a sense of being able to qualitatively capture the
induced behavior of the network.



Advances in Nonlinear Dynamics of Complex Networks 1071

Fig. 4. (a) Response of a clustered network (m = 5) to a stimulus of intensity IA and
duration ∆ introduced to cluster 5 at the moment T0. Notation Ri, i ∈ [1, 5] refers to mean-
rates of particular clusters, whereas RN stands for the collective network activity. Panels
(b) and (c) show excitation and relaxation processes of the network in the (RA, RB) plane,
respectively. The system’s orbit is superimposed on the vector field of the effective model (8),
obtained for (IA, IB) = (0.12, 0.1) in (b) and IA = IB = 0.1 in (c). The remaining parameters
are g = 250, B = 0.004, D = 0.02.

The scenario of targeted stimulation unfolds in such a way that before introducing
the stimulation, all the clusters occupy the low state and are influenced by the same
current IA = IB = 0.1. Then, at the moment T0 = 500, a rectangular pulse of elevated
bias current IA = 0.12 is introduced solely to cluster 5. The pulse is maintained
for a sufficiently long time ∆ = 500, such that the network is allowed to reach the
new metastable state. Note that during the stimulation, IA lies very close to the
bifurcation curve C2 from Figure 3a. Therefore the state OLL is weakly stable, and
the finite-size fluctuations may easily drive the system away from it, as indicated by
the time traces in Figure 4a. In Figure 4b, we have plotted the excitation orbit of
the network in the (RA, RB) plane in order to demonstrate that the system switches
between the metastable states anticipated by the effective model (8). In particular, the
vector field provided in the background presents the flow of system (8) for (IA, IB) =
(0.12, 0.1). One observes that the network rapidly leaves the vicinity of the state OLL

and switches to OHL, conforming to the path where a single cluster, described by
RA, is perturbed by the stimulation, whereas the remaining clusters, associated to
RB , remain unaffected.

We have also examined the relaxation process of the network after the termination
of the stimulus at t = T0 + ∆. In Figure 4c, the relaxation orbit is plotted against
the vector field of the system (8) for IA = IB = 0.1. As predicted by the effective
model, the state OHL lies far from bifurcations, which makes it relatively stable, in
a sense that the network may spend quite a long time in its vicinity. However, the
fluctuations induced by the finite-size effect eventually drive the network back to the
homogeneous DOWN state OLL.

The dependence of the networks response on the stimulation magnitude IA is
illustrated in Figure 5. The response is characterized by the ”excitation rate” γ,
defined as the average fraction of excited neurons at the moment T0 + ∆ just after
the stimulus has ceased, having performed averaging over an ensemble of 80 stochastic
realizations. Since the targeted stimulation may only give rise to excitation of a single
cluster, γ in this case is merely the probability of cluster excitation. The response
function γ(IA) exhibits threshold-like behavior, with the rising stage triggered at
IA ≈ 0.11 and completed at IA ≈ 0.12, cf. the blue solid line with empty circles. Note
that the latter value is in perfect agreement with the prediction of the bifurcation
diagram in Figure 3a. For large IA, the excitation rate saturates at γ = 1/m = 0.2,
which implies that only a single cluster is excited regardless of how large IA becomes.
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Fig. 5. Excitation rate, i.e. fraction of excited clusters γ in terms of IA for the different
stimulation scenarios. The circles and squares refer to targeted and distributed stimulation
of a clustered network (m = 5, g = 250), respectively, whereas the diamonds indicate the
response of a homogeneous random network (g = 1). The empty symbols connected by solid
lines denote γ values at the moment T0 +∆ when the stimulation is terminated. The solid
symbols connected by the dotted lines show γ at the moment T1 after the stimulation has
ceased, cf. Figure 4a. The remaining network parameters are B = 0.004, D = 0.02 and
IB = 0.1.

In general, the persistence of the elevated state does not depend on the applied
stimulation magnitude IA, but is rather determined by the relaxation speed of the
state the network occupies at the moment T0 +∆ when the stimulation is terminated.
In order to analyze the features of the relaxation process, we have measured the
excitation rate γ at a later moment T1 = 1250, sufficiently long after the excitation
pulse has ceased, cf. the blue dotted line connecting the filled circles in Figure 5.
Since in the case of targeted stimulation one always encounters the same excited
state with only a single cluster perturbed, it is natural to expect proportionality
between the excitation rate immediately after the stimulation (moment T0 +∆) and
at a later moment T1. Our results corroborate that the elevated state may indeed
persist considerably longer than the triggering pulse.

As already announced, we also report on an interesting finding that the induced
dynamics of modular networks strongly depends on the applied stimulation proto-
col. In particular, suppose that instead of a targeted stimulation, one introduces an
elevated bias current to the same fraction of neurons as in a single cluster, but just
randomly distributed over the network. We refer to such a scenario as “distributed
stimulation”. In this instance, for sufficiently large stimulation IA, the network may
reach states where substantially more than a single cluster is elicited, in spite of
relatively large clustering coefficient g.

The network excitation rate as a function of IA for the case of distributed stimula-
tion is indicated by the solid red line with empty squares in Figure 5. One immediately
realizes that the impact of the distributed stimulation is quite distinct from that of
the targeted one in two aspects: (i) the IA threshold where it starts to excite a single
cluster is significantly larger than for the targeted stimulation and (ii) for sufficiently
strong stimulation IA, all the clusters may cross to high state.

To gain a deeper insight into how the network’s response is shaped by clus-
tering, we consider an additional scenario, where a certain fraction of neurons is
stimulated in a homogeneous random network g = 1. To allow the comparison, we
have perturbed the same fraction of units as in the clustered network, but here one
cannot distinguish between the targeted and the distributed stimulation protocols
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Fig. 6. Dependence of excitation rate γ on the applied current IA for levels of external
noise B where the network cannot exhibit maximal multistability. The green diamonds
concern the response of a homogeneous random network g = 1 in case where the effective
model exhibits only the DOWN state (B = 0.028, D = 0.02, IB = 0.1). The blue circles
and the red squares refer cases of a targeted and distributed stimulation of a clustered
network m = 5, respectively. In the thermodynamic limit, the parameters of the clustered
network facilitate bistable dynamics between the homogeneous UP and DOWN states (B =
0.018, D = 0.02, g = 60, IB = 0.1). The solid/empty symbols are used the same way as in
Figure 5.

because any subset of units is equivalent. The ensuing excitation rate, plotted in
Figure 5 by the solid green line, indicates a response substantially distinct from
that of a clustered network in case of targeted stimulation, but reminiscent of the
induced dynamics typical for the distributed stimulation. This is so because the
homogeneous network possesses only two metastable states, namely the homogeneous
DOWN and UP states, which implies that one cannot excite only a certain fraction
of units, but can rather excite the entire network. As the DOWN state vanishes
at the bifurcation curve C3 in Figure 3a, the guaranteed excitation of the network
is observed only if IA lies sufficiently close to this curve. The associated threshold
current corresponds to the saturation of the excitation rate observed at IA ≈ 0.19
in Figure 5.

As already indicated, the external noise influences the multistable dynamics of
both the homogeneous and the clustered networks. In Figure 6, it is examined how
the excitation rate changes if the level of external noise B is increased such that
the network can no longer exhibit maximal multistability in the thermodynamic
limit. For the non-clustered network, we have considered the case where the deter-
ministic dynamics is monostable, admitting only the DOWN state. As expected,
stimulating a fraction of neurons with arbitrary strong external current cannot switch
the network to the UP state, cf. the green diamonds in Figure 6. For the clus-
tered network m = 5, the external noise B and the clustering coefficient g have
been set such that the deterministic dynamics exhibits only bistability between
the homogeneous UP and DOWN states. For both the scenarios of the targeted
and distributed stimulation protocols, the excitation rate exhibits a threshold-like
behavior, ultimately reaching the network-wide UP state for a sufficiently strong
stimulation. As predicted by the effective model, the targeted stimulation can no
longer bring the network to a heterogeneous state where only a single cluster is
excited.
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5 Summary and discussion

In the present paper, we have analyzed the induced dynamics of a clustered network
subjected to two types of stimulation protocols, the targeted stimulation and the
distributed stimulation. In the former case, it has explicitly been demonstrated that
the effective model, describing the macroscopic dynamics in terms of coupled mean-
field models associated to each of the clusters, may accurately capture the networks
response, predicting the metastable state reached by the network.

An interesting finding is that the response of a clustered network strongly depends
on the applied stimulation protocol. In particular, in case of a targeted stimulation,
under sufficiently strong clustering, one typically observes that only the targeted
cluster is activated, whereas the remaining clusters are unaffected by the perturbation.
Nevertheless, for the distributed stimulation, applying a sufficiently strong excitation
may result in much richer dynamics, where different forms of elevated states, including
a network-wide high state, may be reached.

Concerning the immediate impact of the modular network architecture, we have
established that the response of a clustered network is drastically different from that
of a statistically homogeneous one even if the same number of randomly selected units
is stimulated. In particular, given the same stimulation magnitude, the excitation rate
of the homogeneous random network turns out to be substantially lower than that of a
clustered network. This distinction derives from the fact that a non-clustered network
cannot exhibit heterogeneous states. As expected, the differences in behavior of the
non-clustered and clustered networks vanish for sufficiently strong stimuli, where the
network-wide excitation becomes the prevalent scenario regardless of the network
structure. In case of a non-clustered network, the reduced model has been shown
to provide a good estimate of the threshold current that guarantees reaching the
elevated state.

The external noise has been found to play a nontrivial role with respect to the exci-
tation process, because it affects the features of the network’s multistable behavior in
the thermodynamic limit. This is a consequence of the fact that the macroscopic
noise derived from the local external noise is multiplicative [37]. The associated
changes in the multistability have been shown to substantially influence the exci-
tation rates in clustered networks for both the stimulation protocols, as well as in the
scenario where the stimulus acts on a certain fraction of neurons in a non-clustered
network.

For the particular stimulation protocol, the properties of the relaxation process
are found not to be determined by the intensity of excitation, but rather by the
state of the network at the moment the stimulation is terminated. One should note
that instances of prolonged relaxation have been observed, especially in the case of
distributed stimulation under higher intensities of the applied current, which facilitate
excitation to the homogeneous UP state. The lifetimes of the metastable states are
also influenced by the level of the external noise, and the underlying effects provide
an interesting topic for future studies. In particular, the impact of multistability on
the relaxation process may consist in inducing nonlinear dependencies of relaxation
times on the noise level, which can manifest as noise-enhanced stability of metastable
states [38,39].

Within the present study, we have explained by the effective model, and cor-
roborated numerically, why the induced dynamics of a clustered network resembles
the spontaneous one, further demonstrating how the stimulation biases the net-
work toward a particular collective state. Recent experimental research indicates
that the external stimulation reduces both the macroscopic and the microscopic
neuronal variability [10,40,41], the latter being associated to randomness in local
dynamics, viz. the spiking series of individual units. While our results may indeed
account for the stimulation-induced decrease of macroscopic variability, one cannot
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infer anything regarding the microscopic variability, since we apply a rate-based
neuron model. In this context, it would be of interest to consider in detail the
induced dynamics of a clustered network of spiking neurons via an effective model,
especially given that the numerical results in [5,13,20] already link the stimu-
lated activity with reduction of both the macroscopic and microscopic neuronal
variability.
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