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ABSTRACT

We disclose a new class of patterns, called patched patterns, in arrays of non-locally coupled excitable units with attractive and repulsive
interactions. The self-organization process involves the formation of two types of patches, majority and minority ones, characterized by
uniform average spiking frequencies. Patched patterns may be temporally periodic, quasiperiodic, or chaotic, whereby chaotic patterns may
further develop interfaces comprised of units with average frequencies in between those of majority and minority patches. Using chaos and
bifurcation theory, we demonstrate that chaos typically emerges via a torus breakup and identify the secondary bifurcation that gives rise to
chaotic interfaces. It is shown that the maximal Lyapunov exponent of chaotic patched patterns does not decay, but rather converges to a
finite value with system size. Patched patterns with a smaller wavenumber may exhibit diffusive motion of chaotic interfaces, similar to that
of the incoherent part of chimeras.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0111507

While coherence–incoherence patterns have been exhaustively
explored both for spatially discrete systems of coupled oscilla-
tors and in the continuum limit, much less is known about the
generic mechanisms of onset and the finite-size effects associ-
ated with such patterns in coupled excitable systems. Recently
discovered supercritical scenario for the onset of bumps in cou-
pled excitable active rotators with nonlocal attraction and global
repulsion, as well as the two types of solitary states unveiled in
arrays of excitable FitzHugh–Nagumo units with nonlocal attrac-
tive and repulsive interactions, already suggests that the coher-
ence–incoherence patterns in coupled excitable systems may defy
the common intuition based on coupled oscillators. Here, we
introduce a new class of patterns, called patched patterns, in non-
locally coupled arrays of excitable units with attractive and repul-
sive interactions. These patterns involve splitting of an array into
spatially continuous domains, called patches, comprised of units
locked by their average spiking frequencies. Patched patterns may
be temporally periodic, quasiperiodic, or chaotic, and depending
on the prevalence of attraction vs repulsion, chaotic patterns

can develop interfaces with frequencies intermediate between the
majority and minority patches. Distinct from chimeras, chaos
in patched patterns is not spatially localized, but is of different
character for the units in the patches and at the interfaces: the
latter show more variability and resemble chaotic itinerancy. We
demonstrate the typical bifurcation scenario giving rise to chaos
for smaller and intermediate coupling ranges. We also show that
adjusting the coupling range to reduce the pattern wavenumber
may result in a transition to chaos accompanied by a diffusive
motion of interfaces.

I. INTRODUCTION

Combining different approaches and methods from pattern
formation, finite dimensional chaos, and bifurcation theory, as
well as statistical physics, has in recent years allowed for some
deep insights into the coherence–incoherence patterns in systems
of coupled oscillators. The two most important aspects concern
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understanding their mechanisms of onset and the dependence of
their behavior on system size. For example, it has become clear that
chimeras1–8 constitute inhomogeneous equilibria of certain macro-
scopic averaged quantities in the continuum limit,9–11 while in spa-
tially discrete systems, they are characterized by a self-localized,
spatially extensive weak hyperchaos where the positive part of the
Lyapunov spectrum decays to zero with system size.12 The interplay
of local nonlinearity and interactions, at least for the two classi-
cal scenarios admitting chimeras,1,3 results in nontrivial finite-size
effects, such as the pattern collapse to a uniform coherent state13 and
the Brownian-like diffusion of the incoherent domain.14

Nevertheless, an intriguing question is what happens to coher-
ence–incoherence patterns if a system is not comprised of oscil-
lators, but rather of excitable units.15–19 When isolated, excitable
systems remain in a stable stationary state, but may be triggered
to oscillate by a sufficiently strong perturbation via interactions
and/or noise. Excitability is one of the cornerstones for the physics
of life; underpinning the local dynamics of neuronal, cardiac, and
endocrine systems;15,20–23 and is also important for understanding
many other natural and synthetic systems, from chemical reactions24

and climate dynamics25 to lasers26 and machine learning.27 Self-
organization in coupled excitable systems cannot be described in
terms of a simple mutual adjustment of local oscillations, and
even the very onset of a collective mode requires the presence of
inhibitory/repulsive couplings,28,29 defying the common intuition
developed for coupled oscillators. With the full analogy to coupled
oscillators missing, the basic questions on coherence–incoherence
patterns in coupled excitable systems, such as the potential work-
ing definition, classification, generic mechanisms of onset, and the
contribution from finite-size effects still remain open.

Currently, it seems likely that the extension of the concept of
weak chimeras,30 classically associated with small systems of cou-
pled oscillators, provides an effective framework for characteriza-
tion of coherence–incoherence patterns in finite systems of coupled
excitable units. By this concept, coherence–incoherence patterns
can be described in terms of frequency locking/unlocking, typically
involving a majority of units that are coherent, i.e., frequency locked,
and a minority of units unlocked from the bulk (and possibly mutu-
ally unlocked). In these terms, bump states,10,31–33 a common type of
pattern associated in neuroscience with spatial working memory34

and the head direction system35 can be described as a set of units
with an elevated firing rate self-localized on a continuous spatial
domain and appearing on top of an inactive background. Using
the model of excitable active rotators with a short-range attrac-
tion and long-range repulsion, it has recently been shown that the
bumps may emerge from Turing patterns via a supercritical sce-
nario that involves unlocking of a single unit from the bulk and a
subsequent sequence of bifurcations to a fully developed extensive
chaos.36 Such an onset mechanism turned out to be completely inde-
pendent on system size. In contrast to classical chimeras, no pattern
collapse was observed in small systems, and while typically being
static, bumps could also exhibit a lateral diffusive motion depend-
ing on the parameters. Also quite recently, applying the model of
an array of FitzHugh–Nagumo units with nonlocal attractive and
repulsive interactions, it has been shown that coupled excitable sys-
tems may display two types of solitary states37 with a different finite-
size behavior, namely, either size-independent periodic solutions

closely associated with unbalanced cluster states in globally coupled
networks or weakly chaotic solutions where a few isolated oscilla-
tors split off from the background alternating (modulated traveling)
wave. Finally, for the same model, it has been shown that the noise
may play a facilitatory role allowing for the onset of the so-called
coherence-resonance chimeras,38,39 whereby instead of the diffusion
drift of classical chimeras, the interplay of local noise and the intrin-
sic noise due to finite size gives rise to switching of positions between
the coherent and the incoherent domains.

In the present paper, we introduce a new class of patterns in
non-locally coupled excitable systems, called patched patterns. The
basic pattern structure is such that the units self-organize into spa-
tially continuous domains, called patches, comprised of units that
are mutually frequency locked. Our model is the same as in Refs. 40
and 37 and comprises an array of N non-locally coupled identical
FitzHugh–Nagumo units described by

εu̇k = uk − u3
k

3
− vk + κ

2R

k+R
∑

l=k−R

[guu(ul − uk) + guv(vl − vk)],

v̇k = uk + a + κ

2R

k+R
∑

l=k−R

[gvu(ul − uk) + gvv(vl − vk)].

(1)

The local slow-fast dynamics is paradigmatic of type II excitability15

and involves activator variables uk and recovery variables vk with a
timescale separation ε = 0.05. For an isolated unit, variation of the
bifurcation parameter a > 0 gives rise to a singular Hopf bifurca-
tion at a = 1, mediating between excitable (a & 1) and oscillatory
regimes (a < 1). Above the canard transition at a ≈ 1 − ε/8,41 har-
monic subthreshold (low-amplitude) oscillations give way to large-
amplitude relaxation oscillations. Here, we fix a = 1.01 such that the
isolated units are in the excitable regime. Each unit is coupled to
R nearest neighbors to its left and to its right, with all the indices
being periodic modulo N. Coupling strength κ is assumed to be
homogeneous and is fixed to κ = 0.4. Interactions between units
involve direct terms including only activator or only recovery vari-
ables, as well as the mixing terms, which is compactly described by
the rotational coupling matrix40

G =
(

guu guv

gvu gvv

)

=
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)

.

Note that the parameter ϕ impacts the prevalence of attractive vs
repulsive interactions by affecting the sign of the interaction terms.37

The paper is organized as follows. In Sec. II, we first make a
basic description of patched patterns and then focus on static chaotic
patched patterns with interfaces to characterize the local switching
dynamics of interface units, showing that it consists of laminar and
turbulent epochs consistent with chaotic itinerancy.42–44 In Sec. III,
we use chaos and bifurcation theory to demonstrate the typical sce-
nario for the onset of chaos with increasing coupling parameter ϕ,
where the torus bifurcation mediates the transition from periodic
to quasiperiodic patterns, and chaos emerges via torus breakup. It
is also shown that the maximal Lyapunov exponent converges to a
finite value rather than decaying with the system size, demonstrat-
ing the persistence of chaos. In Sec. IV, we demonstrate how varying
the coupling range to reduce the pattern wavenumber may give
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rise to the diffusion of interfaces. Section V provides a summary,
discussion, and outlook concerning our findings.

II. PATCHED PATTERNS

As already announced, patched patterns involve the forma-
tion of coherent spatial domains of frequency locked units. One
may distinguish between two types of domains, here called majority
and minority patches. The majority patches maintain a 1:2 reso-
nant frequency locking to the minority patches. Patched patterns
can be temporally periodic, quasiperiodic, or chaotic. The basic spa-
tial profile of average spiking frequencies ωk = 2πMk/T, where Mk

is the spike count within a macroscopic time interval T, is piecewise
constant, as in Fig. 1(a), which illustrates a periodic solution with
an additional reflection symmetry. In terms of local dynamics, the
patches are heterogeneous such that the units closer to the patch
center show a more similar dynamics than those at the patches’
boundaries. In contrast to periodic solutions, the chaotic solutions
may further develop interfaces comprised of incoherent units with
switching dynamics, whose frequencies are intermediate between
majority and minority patches, see Fig. 1(b). Depending on the sys-
tem parameters, in particular, the coupling range that controls the
pattern wavenumber, i.e., the number of minority patches, these
interfaces may be static, as in Fig. 1(b), or may display Brownian-
like diffusive motion we analyze later on in the paper. Within the

entire range supporting the patched patterns, the coupling parame-
ter ϕ favors repulsive over attractive interactions since three out of
four interaction terms (guu, gvu, gvv) between any two coupled units
have a negative sign.

A. Switching dynamics at the interfaces

Let us analyze in more detail the self-organization of local
dynamics for an example of a static chaotic pattern with interfaces,
whose spatial profile of average spiking frequencies is illustrated
in Fig. 1(b). Such wavenumber-4 pattern emerges from the cor-
responding periodic solution with a piecewise constant profile of
average frequencies, illustrated in Figs. 1(a) and 1(c), via a sequence
of bifurcations described in Sec. III. The typical time series of a fast
variable of a majority unit k = 62 [see the red arrow in Fig. 1(b)]
indicates mixed mode oscillations with each pair of successive spikes
separated by a subthreshold oscillation, whereas the time trace
of a typical minority unit k = 58, denoted by the blue arrow in
Fig. 1(b), primarily shows successive spiking, cf. Figs. 1(e) and 1(f).
On the other hand, a short time trace of an interface unit k = 60 in
Fig. 1(g) indicates mixed-mode oscillations with a switching dynam-
ics between the episodes where it approaches either the adjacent
majority or the minority patch.

To further elucidate the switching dynamics at the interfaces,
we construct the diagrams comparing the time evolution of the
first return times 1tn(t) to the Poincaré cross section uk(t) = 1.5, u̇k

FIG. 1. Patched patterns without and with chaotic interfaces. (a) and (c) Spatial profile of average spiking frequencies and spatiotemporal evolution of fast variables uk(t) for
a periodic patched pattern at ϕ = 2; (b) and (d) show the same, but for a chaotic patched pattern with interfaces (ϕ = 2.2). (e)–(g) Typical time traces uk(t) of units from a
majority patch [k = 62, red arrow in (b)], minority patch (k = 58, blue arrow), and from the interface (k = 60, black arrow). Red and blue shading in (g) indicates transient
episodes where the interface unit attaches to one of the patches. Remaining parameters: N = 100, a = 1.01, ε = 0.05, κ = 0.4, R = 20. The time horizon used to obtain
average spiking frequencies is T = 106 t.u.
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FIG. 2. Local fluctuations within patches and at interfaces. (a)–(c) Temporal evolution of the first return times to the Poincaré cross section uk(t) = 1.5, u̇k(t) > 0 for the
representative minority, majority, and interface units from Fig. 1(b), respectively. (d)–(f) Corresponding phase portraits in the uk − vk plane. System parameters are the same
as in Fig. 1(b).

(t) > 0 for the representative majority, minority and interface units
from Fig. 1, see Figs. 2(a)–2(c). For a minority unit, one typi-
cally observes small variations around two basic levels, which are
just induced by fluctuations of the local mean-field, also see the
phase portrait in Fig. 2(d). The similar holds for the representative
majority unit, cf. Figs. 2(b) and 2(e), though here one also finds
larger fluctuations in the first return times derived from rare sub-
threshold excitations. The most peculiar behavior is manifested by
the representative interface unit in Figs. 2(c) and 2(f), where the
dependence 1tn(t) involves a slow alternation between two types
of epochs: the laminar ones, when the unit is approximately fre-
quency locked to the adjacent majority or minority patch, and
turbulent ones, when the unit displays a high variability due to
fast fluctuations between the orbits resembling those of units in
majority and minority patches. Such slow alternating dynamics
is considered a fingerprint of chaotic itinerancy,42–44 ubiquitous
in high-dimensional state spaces. As opposed to the units within
minority and majority patches whose typical dynamics is illustrated
in Figs. 2(d) and 2(e), respectively, the units at the interfaces are sub-
jected to highly variable local mean-fields which act as sources of
intrinsic noise. Due to such variability, under increasing parameter
ϕ, the chaotic attractor undergoes transformation into a chaotic sad-
dle by acquiring unstable directions associated with the subspaces
of interface units. This is why the time evolution of the Poincaré
cross section of the interface unit in Fig. 2(c) contains the “levels”

associated with the laminar epochs, as well as additional structure
related to the turbulent epochs. Similarly, the phase portrait of the
interface unit in Fig. 2(e) combines the typical dynamics of the
patches but shows additional complexity reflecting the switching
process.

The mechanism giving rise to switching between the epochs, as
well as the fast fluctuations between the episodes within turbulent
epochs, appears to be qualitatively the same. It is associated with the
interface unit performing small-amplitude oscillations around the
ghost of an unstable fixed point derived from the stable equilibrium
of an isolated unit, as illustrated in Fig. 3 for the fast fluctuations
within a turbulent epoch. Successive subthreshold oscillations are
also the reason of why the turbulent epochs contain 1tn levels absent
in the case of units within the patches, see Fig. 2(c). Relaxation oscil-
lations both within laminar and turbulent epochs are susceptible to
perturbations in a way similar to the phenomenon of phase-sensitive
excitability of a limit cycle,45,46 in the sense that a strong enough per-
turbation due to fluctuations in the local mean-field may induce a
large deviation from the relaxation oscillation orbit, giving rise to
one or more successive subthreshold oscillations.

Pattern formation is based on two self-organization mecha-
nisms classically observed in coupled excitable systems, namely,
self-localized excitations47 and propagation of excitation.38,48 The
activity within an array consists of sequentially repeating excitation
episodes, where the majority (minority) patches fire once (twice).
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FIG. 3. Superimposed orbits of a representative minority unit (k = 58, blue),
majority unit (k = 62, red), and an interface unit (k = 60, green) for the pattern
in Fig. 1(b). Black dashed lines: isolated unit’s fast and slow nullclines, whose
intersection determines the position of the corresponding stable equilibrium. Fast
switching between episodes within the turbulent epoch of an interface unit is due
to subthreshold oscillations around the ghost of the isolated unit’s equilibrium.

Within the patches, spiking is typically organized in such a way
that the units closer to the center fire before those at the patches’
boundaries. The excitation episodes are initiated at the minority
patches, see Figs. 4(a) and 4(d) that show the space-time evolution of
u̇k, k ∈ [1, N] for the periodic and the chaotic patched pattern with
interfaces from Figs. 1(a) and 1(b), respectively. For the periodic pat-
tern, the excitation of the minority patches, see, e.g., black regions
for t ≈ 1 occurs simultaneously as the solution carries a reflection
space-time symmetry. Contrasting that, the reflection symmetry is
broken for the chaotic pattern, cf. Fig. 4(d). The localized exci-
tation elicited within a minority patch becomes a source of two
counterpropagating excitation waves emanating to its left and right.
Each majority patch is embedded between two minority patches
and, hence, receives from them two counterpropagating excitation
waves that collide and annihilate. In their wake, another excitation
is born and induced by the described paradigm a second spike of
units within the minority patches. The latter cannot induce further
excitation at the majority patches because the units there feature
longer spikes and subsequently also have longer refractory periods,
see Figs. 4(b) and 4(e).

The temporal organization of activity within and between the
patches may further be examined by constructing the corresponding
cross-correlation matrix

Ckl = 〈ûk(t)ûl(t)〉T
√

〈ûk(t)
2〉T〈ûl(t)

2〉T

,

where 〈·〉T denotes the time averaging, while ûk(t) = uk(t) −
〈uk(t)〉T are the deviations of uk(t) from their means, see Figs. 4(c)
and 4(f). One immediately realizes that Ckl for the periodic pat-
tern has a clear-cut structure with a strong correlation within and
between a given type of patches (majority or minority), while the
correlation of activities between patches of different type is rather
weak. The intrinsic structure of Ckl for the chaotic pattern is more

FIG. 4. Intrinsic structure of typical periodic (left column) and chaotic pattern
with interfaces (right column). (a) Spatiotemporal evolution u̇k(t); white dotted
rectangle: segment of an array whose dynamics is extracted in (b); (b) bot-
tom-up: time traces uk(t), k = 1, 2, . . . , 20 (black lines) shown shifted by a con-
stant increment; blue triangles: spike times of units; (c) cross-correlation matrix
Ckl ; (d)–(f) same as (a)–(c) but for chaotic pattern with interfaces. Respective
parameters are identical to those in Figs. 1(a) and 1(b).

smeared, reflecting the existence of interface units, and in con-
trast to the periodic solution, there are also pairs of units with an
anti-correlated behavior.

III. EMERGENCE OF CHAOS

Having explained the structure of local dynamics underpinning
chaotic patched patterns with interfaces, we investigate the bifurca-
tion scenario that gives rise to chaos as the coupling parameter ϕ

is increased. Note that the features of the transition to chaos with
ϕ depend on the wavenumber of the primary periodic solution,
which is ultimately controlled by the coupling range R. We first
elaborate on a generic scenario where periodic patterns follow the
route to chaos via quasiperiodicity, focusing on the example of a
wavenumber-4 pattern. For this generic scenario, which holds for
smaller and intermediate coupling ranges R, the onset of chaos per se
is not immediately associated with the formation of turbulent inter-
faces, and the latter emerge separately via a secondary bifurcation on
a chaotic attractor.

The bifurcation diagram in Fig. 5(a) is constructed considering
an array of N = 100 units, performing a forward sweep in ϕ to col-
lect the first return times 1tn of local dynamics to the Poincaré cross
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FIG. 5. Emergence of chaos and formation of turbulent interfaces. (a) Bifurcation diagram of local dynamics: first return times1tn to the cross section uk(t) = 1.5, u̇k(t) > 0
in dependence of ϕ for the unit k = 45; black dash-dotted line: ϕ value where the solution loses reflection symmetry. (b) Variation of the maximal Lyapunov exponent λmax

with ϕ. (c)–(f) Spatial profiles of average local spiking frequencies ωk for the set of ϕ values indicated by the red dashed lines in (a). Remaining parameters are the same as
in Fig. 1.

section uk(t) = 1.5, u̇k(t) > 0. In the provided example, the selected
unit remains within one of the majority frequency patches over the
whole considered ϕ interval. The red dashed lines indicate the ϕ

values associated with the spatial profiles of average spiking frequen-
cies ωk in Figs. 5(c)–5(f). The latter are calculated by averaging over
an interval T = 106 t.u. having discarded a transient of additional
5 × 105 t.u. The bifurcation diagram is supplemented by the depen-
dence of the maximal Lyapunov exponent λmax(ϕ),49,50 see Fig. 5(b),
sampled for the solutions observed at a fixed increment 1ϕ = 0.01.

The initial state at ϕ = 2.0 is the periodic patched pattern with
a reflection symmetry, already illustrated in Figs. 1(a) and 1(c). Fol-
lowing a period doubling at ϕ ≈ 2.073, the period two pattern is
transformed into a stable quasiperiodic solution via a torus bifur-
cation at ϕ ≈ 2.103. Further increasing ϕ, there is a locking on the
torus at ϕ ≈ 2.112, which is followed by a subsequent transition to
chaos via a torus breakup around ϕ ≈ 2.128. The primary pattern,
corresponding to a relative periodic orbit with the period four in
the Poincaré section, as well as the incipient chaotic pattern, is illus-
trated by the respective first return maps 1tn+1(1tn) in Fig. 6. For
ϕ ≈ 2.125 just below the transition, cf. the black dash-dotted line in
Fig. 5(a), the solution loses the reflection symmetry, which we have
verified by calculating the L2-norm of the difference between the
solution and its counterpart obtained under reflection transforma-
tion. The onset of chaos under increasing ϕ is corroborated by the
fact that the maximal Lyapunov exponent in Fig. 5(b) first exhibits a
non-negligible positive value λmax = 1.4 × 10−4 at ϕ = 2.13. Note

that in contrast to the onset of a localized extensive chaos, typi-
cal for chimeras or bumps, where a certain subset of units unlocks
from the coherent background, the transition to chaos here is a
collective instability in the sense that all the units within an array
immediately exhibit chaotic behavior while the spiking frequencies
remain locked within the respective patches. Above the transition,
the emerging chaotic patterns do not immediately involve inter-
face units and still feature the piecewise-constant profile of local
average spiking frequencies, see Fig. 5(d). The creation of chaotic
patterns featuring interface units with frequencies in-between those
of majority and minority patches is rather associated with the reap-
pearance of chaos around ϕ ≈ 2.169 following a period-four win-
dow. In terms of ωk profiles, this transition may be understood
as a “slope bifurcation” of patched patterns’ spatial frequency pro-
file where the sharp transition between the majority and minority
patches is replaced by a smoother one, see Fig. 5(e). Further increas-
ing ϕ, the chaotic patterns gain complexity due to a growing num-
ber of turbulent interface units, showing the alternating dynamics
described in Sec. II A, cf. Fig. 5(f). Meanwhile, the correspond-
ing maximal Lyapunov exponent remains approximately constant,
cf. Fig. 5(b).

Next, we address the two issues concerning how the system
dynamics varies with system size. In particular, we first consider
whether and how the observed sequence of bifurcations to chaos
depends on N and then examine how the complexity of the solu-
tions changes with N. In reply to the former, one notes that for
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FIG. 6. Focus on the breakup of torus bifurcation: first return maps 1tn+1(1tn)

indicate the disappearance of an invariant curve with increasing ϕ. Inset: an
enlarged view of one of the segments of the relative period-four orbits in the
Poincaré section. Remaining parameters are the same as in Fig. 1.

the given coupling strength κ and range R, the described bifur-
cation route to chaos qualitatively does not change with N when
the initial periodic pattern is constructed by replicating the initial
solution for N = 100. Nevertheless, our simulations indicate that
the ϕ values where the particular bifurcations take place shift with
increasing N, and the threshold for the emergence of chaos appar-
ently reduces with system size. As for the solution complexity, one
typically observes that the number of turbulent interface units grows
with N when all the remaining parameters are kept fixed. Finally,
chaos is found to persist with increasing N, as corroborated by the
dependence of the maximal Lyapunov exponent λmax on system size
in Fig. 7. There, the coupling parameter is fixed to ϕ = 2.13, the
value just above the transition to chaos for the system size N = 100,
see Figs. 5(a) and 6. As expected, λmax for N = 100 is quite small,
but the values calculated for the corresponding solutions at larger N
indicate a convergence to a finite value λmax ≈ 0.06 with increasing
system size. This is distinct from the classical result for chimeras,12

where the maximal Lyapunov exponent decays as N−1/2.

IV. PATTERN DEPINNING AND DIFFUSION OF

INTERFACES

So far, we have considered only static patched patterns that
undergo the transition to chaos that is not accompanied by an
immediate onset of turbulent interfaces. While this is typical for
smaller and intermediate coupling ranges, one finds a rather differ-
ent scenario if the coupling range R is further increased. Increas-
ing the coupling range affects the primary pattern by reducing its

FIG. 7. Dependence of maximal Lyapunov exponent with system size λmax(N).
Note the convergence to a finite value λmax ≈ 0.06 for large N. Parameters:
ϕ = 2.13, and the remaining ones are the same as in Fig. 1.

wavenumber, similar to Ref. 40 and 51. For such patterns, the tran-
sition to chaos coincides with the formation of turbulent interfaces,
which moreover engage in lateral diffusive motion, similar to the
random walk of the incoherent part of chimeras. As an example of
this scenario, we have considered the onset of chaos for a periodic
patched pattern with the wavenumber two, a solution analogous to
that in Fig. 1(a), but obtained for R = 40 with all the other param-
eters preserved. About ϕ ≈ 2.213, one observes the transition to
chaos, as corroborated by the dependence of the maximal Lyapunov
exponent with ϕ, see Fig. 8(a). Below the transition, there is just a
static periodic pattern, illustrated in Fig. 8(b) by the spatiotemporal
evolution uk(t), plotting its local time averages within windows of
100 t.u. over a long time horizon of 106 t.u. In contrast to the sce-
nario described in Sec. III, the interfaces emerge immediately at the
transition, and instead of being pinned to the neighboring patches,
rather display a Brownian-like motion, see Fig. 8(c). Due to this, just
like in the case of chimeras,30 the spatial profiles of average spik-
ing frequencies for such diffusive patched patterns should be flat
when considered over sufficiently long time intervals. The diffu-
sive motion becomes more pronounced as ϕ is further increased,
cf. Fig. 8(d).

To demonstrate that the motion of interfaces indeed conforms
to a Brownian one, we explicitly show that the mean square dis-
placement of the pattern position for example in Fig. 8(d) grows
linearly with time. The position of the pattern at the given moment
is determined following the procedure described in Ref. 14, which
essentially entails comparing the vector uk(t), k ∈ [1, N] to a suit-
ably chosen periodic reference function f(x, ξ) so that the position
of the pattern is given by the ξ value that minimizes the distance
between uk(t) and the reference profile. The results of the proce-
dure are shown in Fig. 9(a), where white dots, indicating the pattern
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FIG. 8. Emergence of chaos and diffusion of interfaces for a wavenumber-2 pattern. (a) Dependence of maximal Lyapunov exponent with ϕ indicates the onset of chaos for
ϕ ≈ 2.213. (b)–(d) Spatiotemporal evolution of uk(t) for a periodic pattern at ϕ = 2.21 and chaotic patterns at ϕ = 2.22 and ϕ = 2.23, respectively. System parameters:
R = 40, κ = 0.4, a = 1.01, ε = 0.05,N = 100.

position ξ(t) after every τ = 400 t.u., are plotted on top of the uk(t)

heatmap. Note that the local time averages ξ(t) are used to eliminate
fast oscillations. In Fig. 9(b) are extracted the long-term (main-
frame) and short-term (inset) motion of a single incoherent region,
corresponding to a minority patch of the primary pattern bounded
on both sides by the turbulent interface units. Similar to chimeras,
the motion of interfaces providing the boundary of a minority region
remains correlated such that the domain does not grow or shrink

with time. For a fixed sufficiently large time step τ , the histogram
of the corresponding shifts in position 1ξ can readily be fitted to a
Gaussian distribution

p(1ξ) = 1√
2πσ(τ)

e
− 1ξ2

2σ(τ) , (2)

see Fig. 9(c) for the case τ = 400. Extracting in this way the variances
σ(τ) for several values of τ , we demonstrate that they indeed follow

FIG. 9. (a) White dots: position of the pattern at every time step τ = 400 t.u.; (b) shifts in position of a single incoherent region bounded by interfaces ξ(t) over a long time
horizon of 106 t.u. (mainframe) and over a short timescale (inset); (c) fit of a histogram of displacements1ξ to a Gaussian distribution for τ = 400; (d) variance of Gaussian
distributions σ as a function of time step τ . System parameters: ϕ = 2.23,R = 40, κ = 0.4, a = 1.01, ε = 0.05,N = 100.
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a linear dependence of the form σ(τ) = 2Dτ , see Fig. 9(d), which
can be used to determine the diffusion coefficient D ≈ 1.4 × 10−4 of
the corresponding Fokker–Planck equation.

V. SUMMARY AND DISCUSSION

We have presented patched patterns as a new class of self-
organized patterns in coupled excitable systems with nonlocal
attractive and repulsive interactions. Pattern formation involves a
symmetry breaking, where an assembly of identical units with sym-
metrical interactions spontaneously splits into patches of frequency
locked units, with the majority and minority patches displaying a
1:2 frequency resonance. We have demonstrated that in terms of
temporal organization, patched patterns can be classified as peri-
odic, quasiperiodic, or chaotic, whereby the former two are always
static, while the latter may also show lateral diffusive motion. Apart
from patches, chaotic patterns may also include interface units
and feature chaotic itinerancy, characterized by a slow alternating
activity between laminar epochs, where the unit is approximately
locked to either of the neighboring patches, and turbulent epochs,
with a fast switching between the orbits similar to local dynam-
ics within the patches. We have explained the basic mechanism
of self-organization of patched patterns as an interplay between
self-localized excitations and propagation of excitations, the two
phenomena classically observed in coupled excitable systems. Using
standard chaos and bifurcation theory in finite-dimensional sys-
tems, we have disclosed the typical transition route from periodic
solutions to chaos via quasiperiodicity as the coupling parameter ϕ

is increased. There, chaos emerges from the torus breakup, and the
onset of turbulent interfaces is associated with a secondary bifurca-
tion. Nevertheless, the transition to chaos is further found to depend
on the wavenumber of the primary pattern, which can be controlled
by the coupling range. For sufficiently large coupling ranges admit-
ting wavenumber-2 patterns, we have identified the second scenario
of transition to chaos, where its emergence coincides with the forma-
tion of diffusive interfaces, explicitly shown to exhibit Brownian-like
motion.

Patched patterns we have discovered bear a certain resem-
blance to coherence–incoherence patterns observed so far in cou-
pled oscillators or coupled excitable systems, but also display con-
siderable differences. In particular, patched patterns are different
from bumps10,32,33,36 because the extensive chaos is spatially localized
and the bulk units are stationary (inactive). Also, our patched pat-
terns with interfaces are distinct from classical solitary states because
the interface units are not isolated and randomly distributed, but
rather form a spatially continuous profile. Distinct from the classi-
cal chimeras12 in coupled phase oscillators, the maximal Lyapunov
exponent for the patched patterns converges to a finite value instead
of decaying with the system size, and at variance with the multi-
headed chimeras,40,52 the frequency profile within all the patches is
piecewise constant. Still, we note a certain similarity to some of the
less conspicuous types of coherence–incoherence patterns observed
in coupled oscillators. First, we recall the so-called chimera Ising
walls in non-locally coupled Ginzburg–Landau oscillators with a
parametric forcing.53 There, the incoherent units also form inter-
faces connecting frequency-locked domains, but in contrast to our
patched patterns, the domains at two sides of an interface are 1:1

frequency locked. Second, our class of solutions may be compared
to oscillons,54 which also involve a temporally modulated localized
spiking activity, as in our minority patches, but such an activity is
embedded on an inactive rather than a spiking background. The
emergence of spatially incoherent interfaces has also been observed
for the so-called mosaic or skeleton patterns in coupled maps,40,51,57

but the onset of spatial incoherence is not associated with tempo-
ral chaos in local dynamics. We note that the onset of an alternating
activity similar to our interface units has been found for the so-called
itinerant chimeras.55 While this is also not a finite-size effect, it
involves all the units within an array, rather than remaining spa-
tially localized. Finally, a recent paper on theta-neuron oscillators
mentions non-stationary patterns with the frequency profile similar
to ours,56 but instead of spiking, the majority units there are in the
state of oscillation death.

The relation between the patched patterns and other types
of coherence–incoherence patterns along the path from complete
coherence to incoherence in coupled excitable systems requires fur-
ther study. So far, there is only a partial result suggesting that the
patched patterns coexist with solitary states in non-locally coupled
arrays of FitzHugh–Nagumo units37 and that the noise promotes
patched patterns at the expense of solitary states. Such robustness
of patched type of solutions relative to solitary states derives from
their comparably larger basins of attraction. In terms of system’s
multistability, one also notes that the patched patterns per se may
have different symmetry properties and that patterns with different
wavenumbers and fractions of minority vs majority units may stably
coexist. The patched patterns may further coexist with other types
of solutions, such as rotating waves and modulated waves.

The presented results, together with Refs. 36 and 37, indi-
cate that the study of self-organized coherence–incoherence patterns
in coupled excitable systems opens up interesting new directions
of research, revealing types of solutions that bear only a partial
resemblance to those in coupled oscillators. An interesting prob-
lem would be to investigate these new types of solutions for models
amenable to a rigorous analysis of the system behavior in the con-
tinuum limit. Also, in order to extend the comparison with coher-
ence–incoherence patterns in coupled phase oscillators, it would be
important to explicitly demonstrate the potentially extensive char-
acter of chaos for patched patterns with interfaces by calculating
the corresponding Lyapunov spectrum. Another important prob-
lem for future research would be to understand in detail the scenario
giving rise to primary periodic patched patterns with increasing cou-
pling parameter ϕ. What makes this problem difficult to address
is that their onset is not immediately related to the destabiliza-
tion of the homogeneous stationary state, where all the units lie in
the stable equilibrium of local dynamics. Under increasing ϕ, this
state is destabilized around ϕ = π/2 because there the prevalence
of attractive vs repulsive interactions changes such that the repul-
sive interactions begin to dominate.37 Nevertheless, this factor alone
does not give rise to patched patterns, and their onset is appar-
ently related with the more complex patterns emerging from the
secondary canard transitions. Therefore, disclosing the scenario by
which solutions gain complexity under increasing coupling param-
eter ϕ, beginning from the initial homogeneous stationary state over
intermediate spatially inhomogeneous states up to primary periodic
patched patterns, would be an important step toward a more general
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understanding of how the interplay between the repulsive interac-
tions and canard transitions impacts pattern formation in coupled
excitable systems.
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Igor Franović: Conceptualization (equal); Data curation (equal);
Formal analysis (equal); Funding acquisition (equal); Investiga-
tion (equal); Methodology (equal); Project administration (equal);
Resources (equal); Software (equal); Supervision (equal); Valida-
tion (equal); Visualization (equal); Writing – original draft (equal).
Writing – review & editing (equal). Sebastian Eydam: Conceptu-
alization (equal); Data curation (equal); Formal analysis (equal);
Funding acquisition (equal); Investigation (equal); Methodology
(equal); Project administration (equal); Resources (equal); Soft-
ware (equal); Supervision (equal); Validation (equal); Visualization
(equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380
(2002), available at http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.
html.
2D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004).
3D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Phys. Rev. Lett. 101,
084103 (2008).
4A. Zakharova, Chimera Patterns in Networks: Interplay Between Dynamics,
Structure, Noise, and Delay—Understanding Complex Systems (Springer Nature,
Switzerland, 2020).
5F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, and
M. Perc, Phys. Rep. 898, 1 (2021).
6M. J. Panaggio and D. M. Abrams, Nonlinearity 28, R67 (2015).
7S. W. Haugland, J. Phys.: Complexity 2, 032001 (2021).
8O. E. Omel’chenko and E. Knobloch, New J. Phys. 21, 093034 (2019).
9O. E. Omel’chenko, Nonlinearity 31, R121 (2018).
10C. R. Laing, Physica D 240, 1960 (2011).
11O. E. Omel’chenko, Nonlinearity 26, 2469 (2013).
12M. Wolfrum, O. E. Omel’chenko, S. Yanchuk, and Y. L. Maistrenko, Chaos 21,
013112 (2011).
13M. Wolfrum and O. E. Omel’chenko, Phys. Rev. E 84, 015201(R) (2011).
14O. E. Omel’chenko, M. Wolfrum, and Y. L. Maistrenko, Phys. Rev. E 81,
065201(R) (2010).

15E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitabil-
ity and Bursting (MIT Press, Cambridge, MA, 2007).
16B. Lindner, J. García-Ojalvo, A. Neiman, and L. Schimansky-Geier, Phys. Rep.
392, 321 (2004).
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