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ABSTRACT

The activity in the brain cortex remarkably shows a simultaneous presence of robust collective oscillations and neuronal avalanches, where
intermittent bursts of pseudo-synchronous spiking are interspersed with long periods of quiescence. The mechanisms allowing for such
coexistence are still a matter of an intensive debate. Here, we demonstrate that avalanche activity patterns can emerge in a rather simple
model of an array of diffusively coupled neural oscillators with multiple timescale local dynamics in the vicinity of a canard transition. The
avalanches coexist with the fully synchronous state where the units perform relaxation oscillations. We show that the mechanism behind the
avalanches is based on an inhibitory effect of interactions, which may quench the spiking of units due to an interplay with the maximal canard.
The avalanche activity bears certain heralds of criticality, including scale-invariant distributions of event sizes. Furthermore, the system shows
increased sensitivity to perturbations, manifested as critical slowing down and reduced resilience.
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Cascading dynamics is a prominent feature of many complex
systems, from information or disease spreading in social inter-
actions to propagation of neuronal activity. Since the discovery
of neuronal avalanches, it has been suggested that the brain cor-
tex operates at criticality, leveraging this feature to maximize its
dynamic range, information capacity, and dynamical repertoire.
Nevertheless, in neuronal systems, the patterns of transient syn-
chrony, such as avalanches, typically coexist and/or interact with
robust collective rhythms, and the problem of generic mecha-
nisms that give rise to avalanches and simultaneously allow for
their coexistence with collective oscillations still remains unre-
solved. Here, we demonstrate that the avalanche activity can
emerge and coexist with synchronous oscillations in a simple

model of diffusively coupled neural oscillators with multiple
timescale local dynamics in the vicinity of a canard transition.
The avalanches are characterized by scale-invariant distributions
of event sizes and an analysis of laminar, that is, inter-event,
times. The latter quantifies both cascading and non-successive
avalanches. At the critical transition between the states of lower
and higher spiking rates that facilitates the onset of avalanches,
the system exhibits increased sensitivity to perturbations, man-
ifested as critical slowing down and reduced resilience. The
disclosed scenario for coexistence of a well-defined oscillation
rhythm and patterns with scale-invariant features may open a new
avenue of research concerning multistability (and metastability)
in neuronal systems.
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I. INTRODUCTION

The notions of criticality and phase transitions have gained a
revived interest following the formulation of the concept of criti-
cal transitions and tipping,1–3 which essentially translate the ideas
of bifurcation theory to the realm of complex systems. Naturally,
the latter is not a straightforward process due to high-dimensional
dynamics of complex systems. Moreover, in many applications,
understanding the details of the states involved in a critical tran-
sition, as well as finding appropriate indicators of tipping, proves
to be a difficult problem. Many complex systems exhibit multista-
bility and metastability, an ample example being the brain activity.
On the one hand, the functionality of the brain relies on generat-
ing robust collective rhythms based on synchronization at different
levels of self-organization within the cortex.4,5 On the other hand,
various types of experiments, both under in vivo and in vitro con-
ditions, have revealed the presence of neuronal avalanches,6–9 that
is, cascades of quasi-synchronous bursts of activity, whose main fea-
ture is scale invariance where the spatial and temporal distributions
of events follow power-law behaviors. The discovery of neuronal
avalanches has led to the brain criticality hypothesis,10–14 suggest-
ing that the emergent cortical dynamics derive from being poised
at the boundary of instability or at the edge of chaos. However,
the precise character of the underlying continuous phase transition
remains elusive.15–18 Moreover, a question that naturally arises is
how can so different types of activity, in particular, those with a well-
defined characteristic timescale (regular synchronous activity) and
others where such timescales are absent (irregular transiently syn-
chronous activity), coexist. Furthermore, what are the mechanisms
that facilitate such coexistence?

Recalling the classical theory of phase transitions, power-law
behaviors should naturally be expected in scenarios where criti-
cal transitions can be associated with supercritical bifurcations; for
instance, it is typically stated that neuronal avalanches emerge in the
vicinity of a critical transition between silent (absorbing) and active
states from a critical branching process11,19 or at the synchronization
transition.16–18,20,21 Nevertheless, power laws and other heralds of
criticality, such as critical slowing down, have also been observed in
relation to first-order phase transitions,22,23 where criticality involves
multistable and metastable behaviors. This also applies to certain
models of neuronal avalanches, which have indicated their onset in
the vicinity of a discontinuous transition showing hysteresis between
the low-activity (down) and the high-activity (up) state.24 Neverthe-
less, the general mechanisms that can reconcile the emergence of
avalanche-like patterns with collective rhythms in neuronal systems
are still a subject of on-going research.17,19,25,26

Motivated by the latter problem, we show in this paper
that avalanche-like bursting patterns can emerge in a rather sim-
ple model of an array of non-locally coupled FitzHugh–Nagumo
(FHN) units with attractive diffusive interactions, whereby such
an intermittent, recurrent collective bursting activity coexists with
a completely synchronous state. An important ingredient of local
dynamics is that it conforms to relaxation oscillations close to a
canard transition27–29 between subthreshold and relaxation oscil-
lations. Blending a recently introduced concept of phase-sensitive
excitability of a periodic orbit30–32 and the interaction-induced trap-
ping of orbits,33–35 we explain the mechanism by which the interplay
of interactions and the vicinity of a canard transition results in

quenching of relaxation oscillations. This gives rise to patterns of
rare spiking, which under variation of coupling strength may self-
organize into avalanche-like activity with scale-invariant features.
We further show that avalanche patterns emerge in the vicin-
ity of a transition between two collective regimes with lower and
higher spiking rates, exhibiting classical indicators of criticality,
such as decreased resilience to perturbations and critical slowing
down.13,36–38

This paper is organized as follows: Sec. II provides the details of
the model and outlines the aspects of singular perturbation theory
relevant to the explanation given in Sec. III on how the interplay of
interactions and structures associated with local multiple timescale
dynamics may quench the spiking activity. In Sec. IV, we investi-
gate the statistical features of avalanche patterns and show that these
patterns emerge at the transition where the system displays classi-
cal criticality features in response to external stimulation. Section V
contains our concluding remarks and outlook.

II. ARRAY OF NON-LOCALLY COUPLED

FITZHUGH–NAGUMO UNITS

Our model is an array of N identical FHN units39 with a simple
non-local interaction scheme where each unit is coupled to P of its
neighbors to its left and to its right on a one-dimensional ring,

εu̇i = ui −
u3

i

3
− vi +

σ

2P

i+P
∑

j=i−P

(uj − ui),

v̇i = ui + α + σ

2P

i+P
∑

j=i−P

(vj − vi).

(1)

All the indices are periodic modulo N. Due to the smallness of the
parameter ε � 1, here set to ε = 0.05, the local dynamics feature a
slow–fast structure with the fast (activator) variables ui represent-
ing neuronal membrane potentials and the slow (recovery) variables
vi reproducing the coarse-grained behavior of ion-gating channels.
The non-local interactions are assumed to be linear (diffusive) and
act between the activator/recovery variables in the units’ fast/slow
subsystems;40–42 see the coupling scheme in Fig. 1. Apart from the
coupling radius p = P/N, the interactions are characterized by the
coupling strength σ and are considered to be attractive (σ > 0) and
homogeneous over the array.

Local dynamics is controlled by the bifurcation parameter
α > 0 such that the singular Hopf bifurcation at α = 1 mediates the
transition between the excitable regime

(

α ' 1
)

, featuring a stable

equilibrium (u∗, v∗) =
(

−α, −α + α3/3
)

, and the oscillatory regime
(α < 1).39 Within the framework of singular perturbation theory,29

which treats the limit ε → 0, an isolated FHN system has been
shown to exhibit a special type of trajectories, called canards, which
closely follow the repelling branch of the slow manifold for an appre-
ciable time27–29 instead of rapidly departing from it. For small but
finite ε, such trajectories form an exponentially thin layer, whereby
there exists a so-called maximal canard43 that follows the entire
repelling branch of the slow manifold. The presence of such tra-
jectories strongly impacts the behavior of the bifurcating limit cycle
when decreasing α further below the bifurcation threshold α = 1. In
particular, the incipient limit cycle undergoes a canard transition,44
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FIG. 1. An array of FHN neurons for N = 8 and P = 2. Fast variables u are
represented in blue, while slow variables v are shown in yellow.

where its amplitude sharply increases within a narrow interval of
α values exponentially small in ε. The canard transition mediates
between small-amplitude harmonic oscillations of period O

(√
ε
)

and large-amplitude relaxation oscillations of period O(1). In the
language of neuroscience, this corresponds to a transition from sub-
threshold oscillations to the regime of tonic spiking. A classical
result from asymptotic expansion theory is that the canard transition
occurs at α = αc = 1 − ε/8; cf. Ref. 45.

Throughout this paper, the local bifurcation parameter is set
to α = 0.99, the value below αc, such that it supports relaxation
oscillations. Nonetheless, the vicinity of the canard transition still
influences the way the system responds to perturbations, be it due
to interactions and/or noise. In particular, while the subthresh-
old oscillations below the canard transition manifest excitability in
the classical sense,46 it has recently been reported that the relax-
ation oscillations show a specific type of excitable behavior called
phase-sensitive excitability of a limit cycle.30 The latter comprises
a non-uniform response to perturbations along the orbit of relax-
ation oscillations such that the FHN system provides a nonlinear
threshold-like response to perturbations during the passage close to
the unstable equilibrium (u∗, v∗). Then, perturbations of sufficient
amplitude and acting in the appropriate direction are capable of
inducing one or more subthreshold oscillations around the unstable
equilibrium, whereby the maximal canard acts as the threshold man-
ifold. The emergence of such subthreshold oscillations in response
to interactions will later prove important for understanding the
mechanism giving rise to nontrivial collective dynamics behind the
activity avalanches.

Our primary interest concerns the impact of coupling strength
σ on the system’s dynamics, focusing on the case of weak inter-
actions σ ∈ [0, 0.1]. All the numerical experiments have been per-
formed for the system size N = 50 and coupling range P = 10 unless
stated otherwise. The numerical integration has been performed
using the Cash–Karp (4, 5) method with adaptive stepsize control

implemented via GNU Scientific Library (GSL).47 The time series in
the remainder of the paper illustrate the asymptotic system behav-
ior after discarding a sufficiently long transient of, e.g., 5 × 103 time
units. When illustrating the dependence on σ , the coupling strength
increment is 1σ = 10−3. For each value of σ , we consider a set of ten
different random initial conditions

(

Eu0, Ev0

)

∈ [−2, 2]N × [−2, 2]N.
We find that a range of coupling strengths supports the

onset of a regime where an irregular asynchronous rare spiking
activity is interspersed with brief intervals of cascading pseudo-
synchronous bursting activities, called avalanches. The described
regime is bistable with the regime of a synchronous regular spiking
activity, as we will demonstrate in Sec. III.

III. ARRAY DYNAMICS IN DEPENDENCE OF COUPLING

STRENGTH

Given that the units are identical and interact by attractive
diffusive couplings, the system (1) possesses an invariant syn-
chronization manifold u1(t) = u2(t) = · · · = uN(t), v1(t) = v2(t)
= · · · = vN(t). Since the isolated dynamics of neurons comprises
relaxation oscillations, this manifold contains a limit cycle attrac-
tor where all the units perform identical relaxation oscillations. In
the following, we will show that under a variation of the coupling
strength σ , the system (1) may exhibit non-trivial emergent dynam-
ics that unfolds off the invariant synchronization manifold. In other
words, we find a range of σ values where due to non-local inter-
actions, not all of the initial conditions converge to the invariant
manifold, and the completely synchronized relaxation oscillations
coexist with another type of collective dynamics.

To observe such emergent dynamics, we introduce a global
order parameter µ that characterizes the synchronization of units’
average spiking frequencies. Unlike the more classical synchroniza-
tion parameters, involving synchronization error or average local
variances from the mean variables, µ is not indented to quantify
both frequency and phase synchronization of units, but rather to
describe the quenching of units’ average spiking frequencies due to
non-local interactions. By construction, µ is introduced to indicate
the relative persistence of units’ trajectories in the neighborhood
of the limit cycle S corresponding to relaxation oscillations of an
uncoupled (isolated) unit. To define µ, we first denote by K the spike
count of an uncoupled unit within a sufficiently long time interval
1T. Then, for the system of coupled units (1), we consider Ji as the
spike count of a unit i within the time interval 1T. Using these two
quantities, the global order parameter µ is given by

µ = 1

NK

N
∑

i=1

Ji. (2)

Qualitatively, µ compares the ensemble-averaged spiking frequency
of coupled units to the spiking frequency of an uncoupled unit. Nat-
urally, these two frequencies are equal, resulting in µ = 1, when the
system’s state lies on the large-amplitude limit cycle on the invariant
synchronization manifold. Nevertheless, note that µ = 1 also corre-
sponds to such states where the units are not on the synchronization
manifold, but perform relaxation oscillations mutually shifted in
phase. One expects the emergent dynamics with quenched spiking
of individual units to be characterized by µ < 1.
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FIG. 2. Order parameter µ in dependence of coupling strength σ for three dif-
ferent sets of initial conditions (green up-triangles, red down-triangles, and blue
circles). Intervals of σ denoted by R1 and R3 are characterized by the preva-
lence of relaxation oscillations (µ ≈ 1). Intervals R2 and T1, respectively, support
coexistence of asynchronous states µ ≈ 0 and 0 < µ < 1 with a completely
synchronous state. The dashed lineµ = 1 corresponds to the case where all the
units perform completely synchronous relaxation oscillations.

Figure 2 shows the order parameter µ in terms of the coupling
strength σ for asymptotic dynamics obtained from three different
sets of initial conditions (green up-triangles, red down-triangles, and
blue circles) in the weak coupling regime (σ � 1). For sufficiently
small σ , all the initial conditions lead to frequency synchronized
relaxation oscillations of individual units; see the region R1. Never-
theless, when increasing σ , one observes an interval σ ∼ [0.02, 0.07]
that supports asynchronous states characterized by the global order
parameter µ < 1. Such states emerge only for certain sets of ini-
tial conditions, and the synchronous state coexists throughout the
entire σ interval. By the corresponding values of µ, one may dis-
tinguish between two types of asynchronous states: (i) the region R2

where the global order parameter attains very small values µ ≈ 0
and (ii) an interval T1 where µ values of asynchronous states are
enhanced but still lie notably below the µ = 1 level. For a stronger
coupling strength σ , one finds region R3 where the synchronous
state is regained for all sets of initial conditions. The same phys-
ical picture qualitatively holds for a range of coupling radii p.
Nevertheless, the width of the interval of intermediate σ values sup-
porting asynchronous states reduces with p, eventually vanishing for
interactions of sufficiently long-range.

To gain a deeper insight into the emergent dynamics typical
for different σ intervals, we consider the corresponding state-space
projections (ui, vi) for two representative units, indicated in blue
solid and red dashed lines in Fig. 3. For σ = 0.001, which lies in
the region R1, the neurons already perform relaxation oscillations
along the same orbit but are shifted in phase; cf. the orbits and
the time traces in Fig. 3(a). For this small coupling strength, the
phases remain free along the limit cycles at the state space of dif-
ferent FHN units.48 Within the region R2, represented by σ = 0.02
in Fig. 3(b), the units mostly perform small-amplitude oscillations
around the unstable equilibrium (u∗, v∗), and only a few or none

FIG. 3. Main frames: orbits (ui(t), vi(t)) of two units i = 20 (blue solid lines) and
i = 50 (red dashed lines); insets: time traces ui(t) of the same two units for dif-
ferent system states. (a) σ = 0.001: phase-shifted synchronization of relaxation
oscillations. (b) σ = 0.02: the feedback from local mean-fields causes trapping of
orbits around the unstable equilibrium (u∗, v∗). (c) σ = 0.041: the orbits eventu-
ally escape from the trapping region, generating rare spikes. (d)σ = 0.1: coupling
strength is sufficient to induce complete synchronization of relaxation oscillations.
The unstable equilibrium (u∗, v∗) of isolated dynamics lies at the intersection of
nullclines (black dashed and dotted curves).

of the units occasionally escape the trapping region generating rare
spikes. Trapping of the trajectories in the vicinity of the unstable
equilibrium derives from the impact of local mean-fields, whose
fluctuations are reflected in the amplitude variability of subthresh-
old oscillations around (u∗, v∗). The localized excitations (spikes)
become more prevalent for a larger σ = 0.041 that belongs to the
interval T1; see Fig. 3(c). By increasing σ within T1, one observes
patterns comprising local mixed-mode oscillations44 where units
fire more frequently and more correlated. The statistical proper-
ties of such solutions are a key aspect of this study and will be
elucidated in Sec. IV. Finally, for σ = 0.1 from the region R3, the
system dynamics are characterized by completely (both frequency
and phase) synchronized relaxation oscillations of individual units;
cf. Fig. 3(d).

Now, let us focus on the mechanism causing the trapping
of units’ orbits in the vicinity of the unstable fixed point (u∗, v∗).
First, we recall the notion of phase-sensitive excitability of a peri-
odic orbit invoked in Sec. II. At variance with,30 which introduced
this notion while analyzing the non-uniform response of relaxation
oscillations to noise, a similar type of effect emerges due to non-
local interactions. Specifically, the units whose isolated dynamics
comprise relaxation oscillations become trapped and perform sub-
threshold oscillations around the unstable equilibrium. Then, the
maximal canard establishes a state space threshold separating the
transient small-amplitude oscillation from the limit cycle of relax-
ation oscillations. For deterministic networked systems, the trapping
of trajectories has previously been observed in the vicinity of more
complex invariant sets. In particular, in Refs. 33–35, it has been
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demonstrated that the couplings can trap units’ trajectories in the
vicinity of unstable chaotic sets. Then, the trapping mechanism is
based on an interplay between interactions and the dynamics in the
chaotic set, which creates random perturbations that prevent the
trajectories from escaping the vicinity of the invariant set via its
unstable manifold. The chaotic sets involved in the trapping occur
in the state space of each unit. The latter is similar to the scenario
here, but instead of chaotic sets, we consider the trapping mediated
by unstable equilibria encircled by the maximal canards.

In the following, we propose a mechanism to explain the
dynamics in the intervals R2 and T1 that contains the main ingre-
dients of both phase-sensitive excitability of periodic orbits and
the above described trapping phenomenon. We begin by revisit-
ing the dynamics of an isolated FHN neuron where the maximal
canard provides a threshold between different types of orbits, dis-
tinguished by the motion around the unstable fixed point (u∗, v∗).
The differences between the associated transients become appar-
ent if one determines the corresponding escapes time te from the
region enclosed by the maximal canard. This quantity expresses the
dimensionless time required for trajectories starting from different
initial conditions to reach the limit cycle of relaxation oscillations
S. In Fig. 4(a), color coding indicates the escape times te for a large
set of initial conditions (u0, v0). Note the thin boundaries between
the regions with different values of te that reflect the spiraling of
the maximal canard around (u∗, v∗), and the white line just below
indicates a segment of the orbit of the limit cycle corresponding to
relaxation oscillations. The subtlety of such boundaries makes the
system highly sensitive to perturbations; for instance, a trajectory in
the maximal canard region with a certain prescribed escape time, if
perturbed, may change its current escape route and perform extra
loops around (u∗, v∗). The same applies to the orbit of relaxation
oscillations, which, under the effect of an appropriate perturbation,
may be injected into the maximal canard region when passing close
to it so as to perform loops around the unstable fixed point.

Let us now focus on the case of FHN neurons embedded in an
array. There, it is the non-local interactions that provide perturba-
tions to local dynamics, sensitively affecting the units’ orbits around
the maximal canard. Depending on the character of perturbations,
the trajectories of only a subset of neurons may undergo subthresh-
old oscillations due to trapping by the maximal canard, while the
remaining neurons continue to perform relaxation oscillations. Such
a scenario gives rise to an emergent asynchronous behavior. Since
the coupling function is diffusive, its amplitude increases in a desyn-
chronized network, contributing to larger perturbations to neuronal
dynamics. Consequently, the interaction between the perturbation-
sensitive dynamics around the maximal canard and the couplings,
i.e., local mean-fields, constitutes a positive feedback loop. One may
numerically assess the range of coupling strengths σ where such
an impact of interactions is the strongest. Appreciating that the
interactions introduce a parametric perturbation of local neuronal
dynamics, we introduce an effective bifurcation parameter αi for
each neuron as

αeff
i (t) = α + σ

2P

i+P
∑

j=i−P

(vj(t) − vi(t)), (3)

where α = 0.99 is the unperturbed value defined in Sec. II.

FIG. 4. (a) For an isolated FHN unit, i.e., Eq. (1) with σ = 0, the color scheme
indicates escape times te from the maximal canard region for different initial con-
ditions (u0, v0); white curve: segment of the limit-cycle S close to the maximal
canard. (b) Time-averaged effective bifurcation parameters α̂eff

i as a function of

σ . (c) Blue dots: local variancesVα,i of effective bifurcation parametersαeff
i (t); red

dashed–dotted curves in (b) and (c): population-averaged values for different σ .

Figure 4(b) depicts the time averages α̂eff
i of the effective param-

eter αeff
i (t) as a function of σ . One observes that for σ . 0.018, the

value of α̂eff
i ≈ 0.99 approximately equals that of an isolated unit.

Here, the amplitude of perturbations from the local mean-fields
is subthreshold and cannot induce small-amplitude oscillations
around (u∗, v∗). Consequently, all the units perform relaxation oscil-
lations; cf. region R1 in Fig. 2. However, for σ ≈ 0.018, the couplings
become capable of trapping the units within the canard region to
generate small-amplitude oscillations. In parallel, one observes that
the value of α̂eff

i begin to substantially depart from the unperturbed
value α = 0.99; cf. Fig. 4(b). Such increasing deviations are associ-
ated with the feedback from non-local interactions, whose impact on
system dynamics grows as the desynchronization sets in. Enhancing
σ further, the contribution from non-local interactions to α̂eff

i peaks
around σ ≈ 0.04. There, the parametric perturbation to units shows
high variability over the array; cf. the increase in the correspond-
ing variances Vα,i of effective bifurcation parameters in Fig. 4(c).
The given value of σ approximately corresponds to the transition
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between regions R2 and T1 from Fig. 2. As σ is further increased, the
attractive nature of the couplings begins to dominate the dynamics,
contributing to units’ synchronization. This is accompanied by the
decrease of the amplitudes of parametric perturbations affecting the
units up to the point where they become subthreshold such that
the units again perform relaxation oscillations; cf. region R3 in Fig. 2.

In Sec. IV, we will explore the statistical properties of the net-
work solutions. We pay special attention to the transition between
R2 and T1, where the non-local coupling and sensitive response to
perturbations of relaxation oscillations in the vicinity of the maximal
canard make the largest impact.

IV. AVALANCHE ACTIVITY

As elaborated in Sec. III, for a range of intermediate σ in
Fig. 2, one finds activity patterns where the units spend much time
trapped by the maximal canard in the vicinity of the unstable fixed
point (u∗, v∗), while being rarely released to perform spikes. In the
following, we resolve the spatiotemporal structure of such emer-
gent states showing that they conform to an avalanche-like activity,
where intermittent pseudo-synchronous spiking, localized to var-
ious degrees, is separated by long periods of quiescence over the
array. Note that the observed avalanches are not intended to model

classical neuronal avalanches,6–9 though a partial analogy may be
drawn, as discussed in Sec. IV A.

Let us first consider the spatiotemporal evolution of local mem-
brane potentials ui(t) described by Eq. (1); see Figs. 5(a) and 5(b).
Indeed, the latter indicates that the typical activity patterns are self-
organized into episodes of pseudo-synchronous spiking separated
by silent episodes. Nevertheless, in terms of temporal organization,
two types of avalanches may be distinguished, namely, cascading
events, cf. the example of an avalanche beginning around t ≈ 30 in
Fig. 5(b), where the (spatially localized) spiking activity propagates
forming temporal sequences; and temporally localized (isolated)
events, where the (spatially localized) spiking occurs within a nar-
row time window. Note that the duration of the time window used to
identify pseudo-synchronous spiking is specified in Sec. IV A. Qual-
itatively, the episodes of a spiking activity resemble self-localized
excitations in excitable media.49,50 The cascading events have a step-
pyramid-like space-time structure. This reflects the fact that at every
next level, only the units closer to the center of the previous level
perform a spike. The latter units remain active because they receive
most of the input from the spiking rather than the silent units. Natu-
rally, the units at the top level, e.g., unit i = 68 in Figs. 5(a) and 5(b),
fire more spikes during a cascading event than the units whose spik-
ing terminates at some of the lower levels. In contrast to cascading
avalanches, each unit participating in a temporally localized event

FIG. 5. Self-organization of avalanches. (a) Time traces ui(t) for three units i = 2, i = 45, and i = 68, indicated by green, blue, and red rectangles in panel (b), respectively.
(b) Spatiotemporal evolution of fast variables ui(t). (c) Spatiotemporal evolution of the quantity α∗

i (t) = αeff
i (t) − αc, which shows that the units spend most of the time in

the vicinity of the canard transition. System parameters: σ = 0.04, N = 100, p = 0.2.
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spikes only once. In terms of spatial organization, the units spik-
ing within a given narrow time window can appear as connected
clusters or may display a multi-cluster structure forming spatially
disconnected clusters.

The intrinsic structure and self-organization of avalanche pat-
terns can be described in more detail by looking into the spatiotem-
poral evolution of the quantity α∗

i (t) = αeff
i (t) − αc as shown in

Fig. 5(c). In particular, one observes that units spend most of the
time in the vicinity of the canard transition α∗

i ≈ 0, which underlies
the important role of the canard transition in the self-organization
of avalanches. Moreover, for the cascading events, one observes that
the units around the excited region are furthest above the bifurcation
threshold, i.e., have the largest values of α∗

i (t). This effectively facili-
tates the pattern confinement, making the avalanche events spatially
localized.

The local dynamics comprise irregular mixed-mode oscilla-
tions, involving fast subthreshold oscillations interspersed with ran-
dom rare spikes, cf. Fig. 5(a), which illustrates the time traces ui(t) of
three units highlighted in Fig. 5(b). The irregularity of single units’
interspike intervals is corroborated by Fig. 6(a) showing the tempo-
ral evolution of the return times 1tn(t) to the Poincaré cross section
uk(t) = 1, u̇k(t) > 0 for an arbitrary unit. Together with the corre-
sponding first return map of successive return times 1tn(1tn−1) in
Fig. 6(b), it evinces that the units may sometimes fire spikes in close
succession, but that there may also be long periods of quiescence.
The spatial profile of average spiking frequencies ωk = 2πMk/T,
where Mk is the spike count within a macroscopic time interval T,
is shown in Fig. 6(c). Expectedly, as the averaging time interval is
increased, the ωi profile becomes more uniform, indicating that it

FIG. 6. (a) Temporal evolution of the return times 1tn(t) to the Poincaré cross
section uk(t) = 1, u̇k(t) > 0 of a single unit. (b) First return map 1tn(1tn−1)

of successive return times to the Poincaré cross-section. (c) Spatial distribu-
tion of average spiking frequencies ωk over time periods T = 5 × 104 (empty
squares), T = 2 × 105 (empty diamonds), and T = 4 × 105 (solid circles).
System parameters: σ = 0.04, N = 100, p = 0.2.

should appear flat for very long T as the spiking excitations occur
randomly in space. Qualitatively, our scenario involving rare and
irregular recurrent spiking bears certain resemblance to the onset of
extreme events in systems of diffusively coupled nonidentical FHN
units with excitable local dynamics,51–54 as well as identical FHN
oscillators with delayed diffusive couplings.40,42 However, in contrast
to Ref. 51, we typically find spatially localized events, rather than the
bursting events spanning the entire network.

A. Statistical features of avalanches

In this section, our goal is to address in detail how the sta-
tistical features of activity patterns, such as the one in Fig. 5(a),
depend on the coupling strength σ . Let us first precisely define
the avalanche events and the associated properties we are inter-
ested in. Starting from a set of random initial conditions

(

Eu0, Ev0

)

∈ [−2, 2]N × [−2, 2]N, we consider the evolution of an array Eq. (1)
over the interval 1T = 5 × 104. An individual avalanche event com-
prises a joint spiking activity of a cluster of a certain number of
units k within the narrow time window 1t = 100δt, where δt is the
integration step. The avalanche size, denoted by Sk, then refers to
the number of units that have fired at least once during this small
interval and is not related to the total number of spikes emitted by
the units forming the cluster. In other words, S1 denotes an event
where only a single unit has fired within the given time window 1t,
whereas SN corresponds to an avalanche spanning the whole array.
To elucidate how the avalanche properties depend on σ without a
potential bias due to initial conditions; for each value of σ , we per-
form numerical experiments with ten different sets of random initial
conditions.

Focusing on the σ interval associated with regimes R2 and T1,
Fig. 7(a) illustrates the σ dependence of the maximal avalanche sizes
max(sk) normalized over the array size N; i.e., sk = Sk/N. Multiple
symbols for a given value of σ denote the results obtained for the
different sets of initial conditions, and the red curve indicates the
values averaged over the ensemble of initial conditions. For smaller
σ , even the maximal avalanche sizes do not exceed the normal-
ized coupling range 2p = 2P/N, indicated by the horizontal green
line. This implies that avalanches remain localized events focused
around the initial excitation or, put differently, that the correlation
length of spontaneous activity fluctuations remains short. However,
for larger coupling strengths σ ' 0.025, the average values over dif-
ferent initial conditions exceed the coupling range, suggesting that
the synchronous spiking activity typically propagates over the array,
indicating an increase in the system’s correlation length. Enhanc-
ing the coupling strength further into the T1 regime (σ > 0.04), we
observe that maximal avalanches indeed span the entire array.

To get an insight into the variability of avalanche cluster sizes,
in Fig. 7(b), we show how the maximal number of different cluster
sizes C(sk) depends on σ . Multiple symbols for any given σ again
correspond to results for different initial conditions. One observes
that the variability of cluster sizes, reflected in the number of dif-
ferent recorded cluster sizes, reaches a maximum around σ ≈ 0.04,
the values near the transition between the regimes R2 and T1 from
Fig. 2. Nonetheless, within the T1 regime, another form of variabil-
ity increases. Specifically, the diversity of cluster sizes recorded in
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FIG. 7. Statistical properties of avalanches. (a) Largest, relative avalanche sizes
max(sk) in terms of σ . For each σ , dots indicate the results for ten different initial
conditions. The average values (red curve) exceed the connectivity 2p = 2P/N
(green dashed line) for σ > 0.03. (b) Number of different cluster sizes C(sk) as a
function of σ . The average (red curve) shows a peak in the vicinity of the transition
between regions R2 and T1; cf. Figs. 2 and 4.

simulations starting from different initial conditions becomes much
more pronounced than in the R2 regime.

Both the onset of avalanches that span the entire array in
Fig. 7(a), and the highest variability of avalanche sizes observed in
Fig. 7(b) for σ ≈ 0.04, suggest that the change of regimes from R2 to
T1 under increasing σ bears signatures of criticality. One may draw
a partial analogy to observations on a resting state (spontaneous)
activity in neuronal systems. There, the neuronal avalanches,6–9

found in electrophysiological recordings, both under in vitro and
in vivo conditions, as well as by electroencephalography and func-
tional magnetic resonance imaging, are known to show criticality
features. Manifestations of criticality classically involve scale invari-
ance in the distributions of relevant quantities, e.g., the size and

duration of neuronal avalanches, which is reflected in the power-law
behaviors of the form F(x) ∝ x−γ , where γ is a critical exponent.55,56

Criticality features are generally associated with proximity to criti-
cal/phase transitions between ordered and disordered phases11,14,19,57

or in the case of neuronal avalanches, between an absorbing state
with a quickly decaying spiking activity and an active state with
runaway (exploding) activity propagation.58 Nevertheless, the con-
cept of phase transitions applies to systems in the thermodynamic
limit N → ∞; therefore, an observation of genuine power-laws
cannot be expected for finite-size systems. To resolve this, one
often invokes the point that the phase transitions in finite systems
extend over a critical region called the Griffiths phase.59–61 There,
the system is quasi-critical and maintains certain aspects of crit-
icality, including the truncated power-law behaviors (power laws
with exponential cutoffs) of relevant quantities.62 This also applies
to neuronal avalanches, where the classically reported exponents
for the avalanche size and duration are 3/2 (with some excep-
tions) and 2, respectively, while the cutoff typically matches the
system size6,63 but may also deviate from it.64,65 One should further
note that the power-law distributions of event sizes per se may not
necessarily imply that the system is poised close to criticality.66,67

Conversely, there are instances, such as certain models of neuronal
avalanches, where a critical system shows a scale-free distribution
of event sizes that does not conform to a power-law.68 Such results
may partly derive from a potentially fuzzy relationship between
the definition of observed events and the local dynamics behind
them.

Given the arguments above, we focus on the properties of
avalanches in the narrow range σ ∈ [0.037, 0.043] around the transi-
tion between the regimes R2 and T1 from Fig. 2. In particular, fixing
σ , we consider the probability distributionP(s) of relative avalanche
cluster sizes s = S/N and the probability distribution P(τ ) of time
intervals τ between the successive avalanches; see the left and right
column in Fig. 8, respectively. Both P(s) and P(τ ) are sampled for
three different array sizes (N = 50, N = 100, and N = 200) main-
taining the fixed coupling radius p = P/N = 0.2. For all three N
values, the distributions P(s) show an approximate scaling regime
for small and intermediate relative cluster sizes s ≤ p, cf. the verti-
cal dashed lines in Figs. 8(a), 8(c), and 8(e), followed by a cutoff due
to finite system size. For the largest array size N = 200 in Fig. 8(e),
we have included as a guideline the power-law scaling β = 3/2
(black dashed–dotted line) classically obtained for the distribution
of neuronal avalanches.

The distributions P(τ ) of intervals between the successive
avalanche events, also called the laminar times,69,70 indicate two
different regimes that guide the avalanche recurrence processes;
cf. Figs. 8(b), 8(d), and 8(f). In particular, very short laminar times
describe the intrinsic dynamics of cascading avalanches, i.e., cor-
respond to cascades’ intra-event intervals between the successive
bursts. For intermediate τ , one observes the peak that indicates
the presence of a characteristic timescale in the avalanche recur-
rence process rather than the scale invariant behavior. Such traces of
pseudo-regularity in avalanche recurrent times reflect an occasional
degradation of the trapping mechanism associated with the maxi-
mal canard, which allows the system to intermittently evolve in the
vicinity (not on) of the synchronization manifold, having the units
generate spikes mutually shifted in phase.
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FIG. 8. Distributions of relative avalanche sizes s = S/N and laminar times τ for
(a) and (b) N = 50, (c) and (d) N = 100, and (e) and (f) N = 200. Different sym-
bols indicate the results obtained for different sets of initial conditions. σ is chosen
in the vicinity of the transition between the regions R2 and T1. Coupling radius
p = P/N = 0.2 (vertical dashed black lines in the left column) is kept fixed in all
the simulations. Distributions P(s) in (a), (c), and (e) show power-law behavior
for small and intermediate avalanches followed by a cutoff. The comparison with
the power-law β = 3/2 (black dotted line) in panel (e) is provided as a guideline.
Distributions of laminar times P(τ ) in (b), (d), and (f) show a peak indicating the
presence of a characteristic timescale.

The results in this section suggest that our system in the vicin-
ity of the transition between the regimes R2 and T1 from Fig. 2
shows certain aspects of critical behavior, such as the increase of
correlation length compared to coupling radius (indirectly observed
by the growth of maximal cluster sizes) and the enhanced vari-
ability of cluster sizes. To further this point, in the next section,
we investigate the system’s response to perturbations, demonstrat-
ing evidence of critical slowing down and decreased resilience of the
system’s dynamics in the vicinity of this transition.

B. Indicators of criticality

Approaching the critical transition, complex systems tend
to show progressively less resilience to perturbations, taking
increasingly longer times to recover.2 Such slower recovery rates
are classically described as a herald of a critical slowing down
phenomenon.13,36–38 The latter also influences the relaxation pro-
cesses and, hence, the statistics of fluctuations underlying the
spontaneous activity of systems near criticality. Qualitatively, this
increases their short-term memory and variability and is reflected
in enhanced autocorrelation and variance of systems’ observables.

In terms of induced activity, systems at criticality are known to
maximize their dynamic range.10,71,72

In the following, our goal is to demonstrate that at the onset of
the T1 region, or rather for σ values close to the transition between
regions R2 and T1 from Fig. 2, an array of FHN units exhibits two
signature effects of criticality, namely, increased recovery times to
small perturbations and reduced resilience. To do so, we introduce
two types of stimulation protocols: one, called an LC-shift, where
a small fraction M of units is triggered to spike, i.e., their orbits are
kicked toward the orbit of a relaxation oscillation limit cycle; and the
other, called an FP-shift, where the same fraction of units is injected
into the vicinity of the unstable fixed point (u∗, v∗). The described
perturbations are applied at time t = Tp, after which the array spon-
taneously evolves until the moment t = T. To quantify the effect of
perturbations, we compare the orbit of the system after introduc-
ing the stimulus to that of the unperturbed system and numerically
determine the deviations ζ(t). As a measure of the impact of the
stimulus, we take the variance Var(ζ(t)) of the deviations calculated
over the interval T − Tp.

In Fig. 9(a) are shown the time series of variances Var(ζ(t)) for
three different values of σ following an FP-shift at Tp = 150. The
horizontal red dashed lines indicate the levels of the corresponding
initial FP-shifts. We first point out that the post-stimulus amplitude
variance (shown green) is much higher than the initial amplitude
of the FP-shift for σ = 0.04 (middle panel), whereas it is lower for
σ = 0.024 (top panel) and σ = 0.043 (bottom panel). This reflects
the array’s reduced resilience, i.e., the decreased recovery capability
for σ = 0.04, and also shows that the perturbations from external
stimuli are amplified for this value of σ . Moreover, one observes
that the post-stimulus interval of nonzero variance is much longer
for σ = 0.04 than for the other two σ values. This evinces that the
array’s recovery times TR from a perturbation (see the blue dashed
line with arrows) are much slower for σ = 0.04. Note that the val-
ues at the top and bottom panels are selected from regions R2 and
T1 from Fig. 2, while the longest recovery time and the largest vari-
ance amplitude are found approximately at the transition boundary
between these regions. In other words, in the vicinity of the latter
transition, the system shows two prominent features of criticality,
having the recovery time and signal variance following a perturba-
tion substantially different compared to the system’s behavior below
and above the transition.

To better characterize the described behavior, let us investi-
gate the array’s recovery times and variances over the continuous
interval of σ spanning between the regions R2 and T1. Our aim is to
show that the variability of the system’s response to perturbations is
indeed the largest in the vicinity of the transition between these two
regions. Hence, for each considered value of σ , we perform simula-
tions of the array dynamics for ten different initial conditions and
implement either the FP-shift or the LC-shift stimulation protocol.
Then, we numerically estimate the cumulative variance per unit time
φ2 for each set of initial conditions,

φ2 = 1

T − Tp

∫ T

Tp

Var(ζ ) dt. (4)

The dependence of the quantity φ2 on σ is illustrated in
Fig. 9(b). Note that for a given value of σ , each symbol describes the
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FIG. 9. Indicators of criticality at the transition between regions R2 and T1 from
Fig. 2. (a) Time traces of variance Var(ζ ) after an FP-shift introduced to a
fraction of M = 0.05 units at Tp = 150 for σ = 0.024 (top panel), σ = 0.04
(middle panel), and σ = 0.043 (bottom panel); red dashed line: level of an ini-
tial FP-shift. (b) Cumulative variance φ2 and (c) normalized recovery time ρ as
a function of σ . Each symbol stands for a different set of initial conditions, and
the color code refers to LC-shift (red) and FP-shift (blue) stimulation protocols.
The dashed–dotted and dotted curves in panel (b) indicate the values of φ2 aver-
aged over an ensemble of initial conditions for LC-shift (red) and FP-shift (blue),
respectively. System parameters: N = 50, p = 0.2.

system’s response for a different set of initial conditions, whereas the
responses to different types of stimulation protocols are indicated
by red (LC-shift) and blue (FP-shift). The two dotted lines indicate
the system’s responses averaged over the ensemble of different ini-
tial conditions for the two types of stimulus. One finds that such
averaged φ2 quantities show peaks around the coupling strength
σ ≈ 0.04, indicating that the system is most sensitive to perturba-
tions near the transition between the regions R2 and T1. Nonetheless,
for the same interval of σ , we examine the array’s recovery times

after implementing both types of stimulation protocols. In particu-
lar, we collect the recovery times TR [indicated in Fig. 9(a)] for ten
different sets of initial conditions. To make the observed values of TR

comparable, we normalize them by the total observation time after
the stimulus T − Tp, thus obtaining the normalized recovery time

ρ = TR/
(

T − Tp

)

. Figure 9(c) shows the observed values of ρ as a
function of σ . One readily notes that indeed, the larger values of ρ

occur near the transition between the regions R2 and T1.

V. DISCUSSION

We have introduced a simple model of an array of diffusively
coupled neural oscillators whose local dynamics are poised in the
vicinity of a canard transition. This facilitates coexistence between
completely synchronous oscillations and avalanche-like patterns of
pseudo-synchronous bursting activities. The onset of avalanches is
shown to be associated with an inhibitory effect of interactions. This
effect is manifested at a range of small coupling strengths, where
interactions quench local relaxation oscillations due to an interplay
with a maximal canard, a structure that stems from local multiple
timescale dynamics. The observed long-term trapping of orbits in
the vicinity of an unstable fixed point derives from a combination
of a recently introduced concept of phase-sensitive excitability of a
periodic orbit30 and the trapping mechanism from Refs. 33–35. Essen-
tially, each unit, as an oscillating system driven by a fluctuating local
mean-field, provides a non-uniform response to perturbations along
the orbit of a limit cycle, which leads to persistent strong deviations
from the unperturbed orbit. Compared to Refs. 33–35, the trapping
phenomenon is here extended to a confinement of orbits to a region
of maximal canard instead of the original confinement by a chaotic
saddle. In terms of concept, one should note that distinct from
the classical notion of excitability, the phase-sensitive excitability is
not immediately related to the system being close to a bifurcation
between stable stationary and oscillatory states, but is instead con-
nected to a canard transition between subthreshold and relaxation
oscillations. In a broader context, the important role of a canard
transition in pattern formation has already been shown in the cases
of alternating (leap-frog) dynamics in small motifs of units31 or the
different types of coherence–incoherence patterns (solitary states
and patched patterns) in non-locally coupled arrays with repulsive
and attractive interactions,32,50 involving either coupled excitable
units or self-oscillating units close to the bifurcation toward the
excitable state. Complementing this, here, we have shown the impact
of a canard transition on the self-organization and intrinsic structure
of avalanche patterns.

We have further demonstrated that avalanches can emerge at
the transition between two collective regimes featuring lower and
higher spiking activity rates. The avalanches have been shown to
satisfy power-law behaviors regarding avalanche cluster sizes and
laminar times. Moreover, the system generating avalanches has been
found to bear classical indicators of criticality under external per-
turbations, including reduced resilience and critical slowing down.
So far, neuronal avalanches have primarily been suggested to arise
in the vicinity of two very different types of continuous transitions,
namely, the transition between absorbing and active phases or at
the onset of synchronization. Also, implementing various adapta-
tion rules, such as synaptic plasticity or excitability adaptation, it has
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been indicated that models of neuronal networks may self-organize
to a critical state facilitating avalanches, which has linked the onset
of avalanches to self-organized criticality.23,73–75 On the other hand,
it has been found that avalanches may emerge from critical dynam-
ics in balanced excitatory–inhibitory networks, where they can be
combined with different types of collective oscillation rhythms.76,77

The latter can involve two types of scenarios: one with collective
rhythms and avalanches coexisting (either independently or with
rhythms modifying the features of avalanches) and the other hav-
ing the rhythms embedded in the avalanche activity.20,78 Finally, it
has been reported that scale-invariant avalanches may also emerge
without the neural network operating at criticality, but just due to a
balanced input or its interaction with noise.76,77,79,80

In light of the above studies, our findings apparently point
to a possibility of independent coexistence between a synchronous
oscillation rhythm and a transiently synchronous avalanche activity,
whereby the mechanism facilitating such coexistence requires two
ingredients: the non-local diffusive interactions and local dynam-
ics in the vicinity of a canard transition between subthreshold and
relaxation oscillations. In terms of the states involved, the charac-
ter of the critical transition supporting avalanches is most similar
to the one in Ref. 24, in the sense that it also mediates between the
states with lower- and higher spiking rates. Nevertheless, in contrast
to our study, the model in Ref. 24 has a more complex structure
combining stochastic local dynamics with a quenched disorder in
network topology, and criticality occurs in the vicinity of a spinodal
line of a discontinuous transition. For future research, it would be
important to gain insight into the switching dynamics between the
coexisting regimes in our model, both under the impact of noise and
when applying different types of external stimulation.
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