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A B S T R A C T

Explaining the mechanisms of dynamic memory, that allows for a temporary storage of information at the
timescale of seconds despite the neuronal firing at the millisecond scale, is an important challenge not only
for neuroscience, but also for computation in neuromorphic artificial networks. We demonstrate the potential
origin of such longer timescales by comparing the spontaneous activity in excitatory neural networks with
sparse random, regular and small-world connection topologies. We derive a mean-field model based on a
self-consistent approach and white noise approximation to analyze the transient and long-term collective
network dynamics. While the long-term dynamics is typically irregular and weakly correlated independent
of the network architecture, especially long timescales are revealed for the transient activity comprised of
switching fronts in regular and small-world networks with a small rewiring probability. Analyzing the dynamic
memory of networks in performing a simple computational delay task within the framework of reservoir
computing, we show that an optimal performance on average is reached for a regular connection topology
if the input is appropriately structured, but certain instances of small-world networks may strongly deviate
from configuration averages and outperform all the other considered network architectures.
1. Introduction

Performing various tasks, such as motion coordination and control,
speech recognition or driving a car, requires that certain information is
temporary stored in the brain for several seconds [1,2]. Nevertheless,
the characteristic timescale of neuronal spiking is much faster, namely
of the order of milliseconds. The problem of how to accommodate for
the gap between these two timescales, such that the information is
preserved for times much longer than that of neuronal spiking, has long
been in the focus of an intense debate [2–9]. While forming memories
on timescales of hours or longer is deemed to be facilitated by synaptic
weights, the information on a timescale of several seconds is likely
stored in the activity patterns. A rather obvious candidate, the working
memory, can indeed last for tens of seconds, but its functionality is still
limited by the small capacity of typically not more than ten items [10,
11]. Revealing the dynamical mechanism that gives rise to a sufficiently
long-term memory in networks of fast spiking neurons would not
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only provide a possible explanation for the way in which the brain
operates, but would also indicate new computational paradigms for
efficient processing of time-varying signals in neuromorphic artificial
systems [12–16].

A popular paradigm for understanding the information processing
in the brain is the reservoir computing [17–21]. In this context, neural
circuits within the brain are considered as a reservoir, which constitutes
a dynamical system demonstrating complex collective behavior. Input
signals perturb this dynamics and so project on the high-dimensional
space of the system states. These projections can be extracted from
the system by a simple linear readout, and a proper selection of the
output weights can in principle allow one to perform an arbitrary
operation on the input data. An important property of the reservoir
is the transient character of the stimulus-induced dynamics which
warrants an unambiguous mapping of the input onto the system state
and hence the output. However, some of the transient processes may
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in principle be quite slow time facilitating the storage of the input for
very long times.

In our previous paper [22], we have considered the dynamic mem-
ory [23–25] of neural networks with random connectivity, having
demonstrated the so-called rate chaos [26–29], an emergent phe-
nomenon reflected in the slow fluctuations of the network firing rates.
The underlying long timescales have naturally led to a hypothesis that
such processes may be leveraged for longer-term dynamic memory.
Nevertheless, achieving the extended temporal memory has surpris-
ingly turned out to be dependent on the particular scenario that
gives rise to rate chaos, and moreover, the only effective scenario
has involved the slow synaptic kinetics [22]. Slow synapses, however,
are neither typical for the brain neural circuits nor are beneficial for
neuromorphic computing due to their low energy efficiency. These
arguments underline the importance of finding a network architecture
that is based on fast synapses and yet supports long-lasting dynamic
memory.

We focus on this very problem and demonstrate the properties of
optimal network architecture and the input structure that facilitate ex-
tended dynamic memory. In particular, we investigate how the lifetime
of dynamic memory depends on the network topology, comparing the
three paradigmatic cases of random, regular and small-world networks.
The spontaneous network dynamics is investigated by developing a
mean-field theory [8,9,30–32] based on a white noise approximation,
which describes the transient and long-term network behavior in a
self-consistent way. The mean-field model is used to explain the ori-
gin of characteristic longer timescales that are associated with the
propagation of network activity following a spatially and temporally
localized excitation, and are an important ingredient in developing
sufficiently long dynamic memory. We show that the small-world ar-
chitecture provides an optimal substrate for episodic memory tasks in
case of a homogeneously distributed input. Nevertheless, introducing
a spatially structured input substantially improves the performance of
regular networks, making them superior to the small-world networks.
Surprisingly, we also reveal that there may exist particular small-
world network configurations for intermediate rewiring probabilities
that perform substantially better than the respective averages and even
outperform all the other considered network topologies.

The paper is organized as follows. In Section 2, we introduce the
model of a network of excitatory theta neurons with double expo-
nential synapses. In Section 3, we focus on the networks with the
sparse random topology, and develop a mean-field model of collective
dynamics, showing that it may explain both the transient and the long-
term network dynamics. In Sections 4 and 5, the mean-field theory is
generalized to regular ring and small-world networks, pointing out the
differences in their respective transient dynamics and explaining the
mechanisms of localized correlated fluctuations that give rise to longer
characteristic timescales. In Section 6, we analyze how the ability of a
network to perform a simple computational delay task depends on the
network topology, indicating the network architecture and the input
structure optimal for extended dynamic memory. Section 7 provides a
summary of our main findings.

2. Model

Our model is a network of 𝑁 theta neurons [33,34] whose isolated
ynamics is given by
𝑑𝜃
𝑑𝑡

= (1 − cos 𝜃) + (1 + cos 𝜃)𝐼, (1)

where 𝜃 ∈ 𝑆1 is the phase variable describing the state of the neuron,
whereas 𝐼 denotes an external stimulation current. Note that the phase
is related to the membrane voltage by 𝑉 = tan(𝜃∕2) [35,36], such that
1) may be rewritten in an equivalent form
𝑑𝑉 = 𝑉 2 + 𝐼, (2)
2

𝑑𝑡 a
yielding the classical quadratic integrate-and-fire neuron model [37,
38]. Nevertheless, the latter is inconvenient for simulation because the
spiking event conforms to 𝑉𝑗 reaching infinity, so we prefer to use the
theta-neuron representation where the neuron fires a spike once its
phase crosses the threshold 𝜃 = 𝜋.

The dynamics of a theta neuron is controlled by the input current 𝐼 .
If the latter is constant, a neuron can either be in the excitable (𝐼 < 0) or
the oscillatory (𝐼 > 0) regime, which are separated by the saddle–node
of infinite period (SNIPER) bifurcation at 𝐼 = 0. In the excitable regime,

hich is important to our subsequent analysis, a neuron possesses the
table rest state 𝜃 = −arccos ((1 + 𝐼)∕(1 − 𝐼)) and an unstable stationary

state 𝜃 = arccos ((1 + 𝐼)∕(1 − 𝐼)). The latter provides for the excitation
hreshold: if a perturbation applied to the neuron shifts its phase above
his threshold, the neuron performs a revolution crossing the 𝜃 = 𝜋
alue to emit a spike. Following the spike, the neuron returns back to
ts resting state. Note that the distance between the resting state and
he excitation threshold decreases as

√

−𝐼 when the input 𝐼 tends to
zero (from below), so that for small negative inputs the neuron becomes
highly susceptible to external perturbations.

When embedded into a network, the neurons 𝑗 = 1,… , 𝑁 receive
the input currents

𝐼𝑗 = 𝐼𝑏 + 𝑔
𝑁
∑

𝑘=1
𝐴𝑗𝑘𝑟𝑘. (3)

comprised on an external (slightly negative) constant bias current 𝐼𝑏
and the synaptic current. Within the latter term, 𝑔 is the coupling
oefficient, 𝐴𝑗𝑘 are the elements of the coupling matrix determining
he structure and the strength of synaptic connections, and 𝑟𝑘 are the

synaptic output currents obeying the second order kinetics:
𝑑𝑟𝑗
𝑑𝑡

= −
𝑟𝑗
𝜏𝑑

+ ℎ𝑗 , (4)

𝑑ℎ𝑗
𝑑𝑡

= −
ℎ𝑗
𝜏𝑟

+ 1
𝜏𝑟𝜏𝑑

∑

𝑡𝑝𝑗

𝛿(𝑡 − 𝑡𝑝𝑗 ). (5)

Eqs. (4) and (5) describe the double exponential synapses [39], where
the parameters 𝜏𝑟 and 𝜏𝑑 denote the synaptic rise and decay times
which respectively account for the rapid binding and slow unbinding
of neurotransmitters, while 𝑡𝑝𝑗 are the firing times of neuron 𝑗.

3. Sparse random network

Collective dynamics of the network strongly depends on its structure
given by the adjacency matrix 𝐴𝑗𝑘. Let us begin by considering an
Erdos–Rényi network with the connectivity 𝑐 = 0.1, so that the elements
of the adjacency matrix are set to be nonzero with the given probability
𝑐, see the coupling matrix in Fig. 1(a). The weights of the nonzero
connections are drawn randomly from the Gaussian distribution with
zero mean and variance (𝑁𝑐)−1. Then each neuron has on average
𝑐 incoming connections with zero mean and the variance 𝑔2(𝑁𝑐)−1.

ince the fraction of shared connections between any two neurons is
mall due to the network sparseness, it is reasonable to assume that the
iring of the neurons is weakly correlated. Thus, each neuron receives
sum of a large number of weakly correlated pulse trains multiplied

y random weights which can be approximated by white noise.
To better understand the network dynamics, we first summarize

he behavior of a neuron driven by such a noisy signal filtered by the
ynaptic kinetics (4), (5). If the noise is too weak, the neuron cannot
xceed the excitation threshold. For moderate noise, such excitations
ventually occur, resulting in occasional spikes. Stronger noise excites
he neuron almost immediately after it regains the rest state following
he previous spike, which makes the firing more frequent and regular.
hese points are illustrated in Fig. 2(a) and (b) showing the mean firing
ate and the coefficient of variation of inter-spike intervals in depen-
ence of the noise level (note the logarithmic scale on the horizontal

xis in Fig. 2(b) and both axis in Fig. 2(a)).
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Fig. 1. Top row: coupling matrices for (a) a sparse random network, (b) a regular circular network and (c) a small-world network. Bottom row: representations of the networks
as mean-field models. White circles denote neural masses, while black lines denote connections between them. In (b) and (c), self-connections are not shown. In (c), the width of
the line is proportional to the coupling strength.
Fig. 2. (a) Mean firing rate of a single neuron in terms of the noise intensity 𝜎. (b) The coefficient of variation of the inter-spike intervals versus the noise intensity. (c) The
l.h.s (solid lines) and the r.h.s (dashed lines) of Eq. (6). The r.h.s. is plotted for actual 𝐶𝑉 (red line) and for 𝐶𝑉 = 1 (blue line). The l.h.s. is plotted for 𝑔 = 0.2, 𝑔 = 0.4 and
𝑔 = 0.8 (top to bottom). (d) Mean firing rate of a random sparse network predicted theoretically from the white noise approximation (solid lines) and obtained by direct numerical
simulations (dashed line). Theoretical results are plotted for actual 𝐶𝑉 from (b) (red line) and for 𝐶𝑉 = 1 (blue line). Parameters: 𝑁 = 400, 𝑐 = 0.1, 𝜏𝑟 = 2, 𝜏𝑑 = 20, 𝐼𝑏 = −0.001.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Given the insights above, let us now consider the collective network
dynamics. If the neurons of the network receive noisy signals of in-
tensity 𝜎 and fire irregularly with the mean rate 𝑟 = 𝑅(𝜎), the output
produced by all the synapses of a typical neuron can be estimated as
a white noise with intensity 𝜎′ = 𝐶𝑉 𝑔

√

𝑟, where 𝐶𝑉 is the coefficient
of variation. Thus, the possible collective regimes of the random sparse
network are given by the self-consistency conditions

𝐶𝑉 2(𝜎)𝑅(𝜎) = 𝜎2∕𝑔2. (6)

The left (l.h.s) and right hand sides (r.h.s.) of Eq. (6) are plotted in
Fig. 2(c). The l.h.s. is provided in two variants, namely using the actual
𝐶𝑉 (red curve) and under the approximation of 𝐶𝑉 = 1 (blue curve).
3

The r.h.s. is shown for three different values of the coupling constant
𝑔 (dashed lines). Due to the logarithmic scale on both axis, the r.h.s.
for different 𝑔 appear as straight lines in descending order with 𝑔.
For the weak coupling 𝑔 = 0.2, there is no intersection between the
curves representing the dependencies on the l.h.s. and r.h.s. of Eq. (6),
implying that the network does not support self-sustained activity. Note
that the silent state where all the neurons are at rest is always stable
because the isolated neurons are excitable rather than oscillatory. For
sufficiently large 𝑔 = 0.4, cf. the middle dashed line in Fig. 2(c), one
finds two intersection points that correspond to self-sustained network
activity: an unstable one with the lower activity and a stable one with
higher activity. Further enhancing 𝑔, see the bottom dashed line (𝑔 =
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Fig. 3. Local structure of the state with self-sustained activity in a random sparse network. (a) Spike raster plot; red arrow: moment and locus of the applied external input. (b)
Distribution of the times to first spike (TTFS). (c) Distribution of the spatially and temporally filtered neural activity. In (b) and (c), red solid vertical lines denote the means
of the distributions, whereas the dashed lines indicate the means plus/minus the standard deviation. Parameters: 𝑁 = 400, 𝑐 = 0.1, 𝜏𝑟 = 2, 𝜏𝑑 = 20, 𝐼𝑏 = −0.001, 𝑔 = 0.3. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
0.8), the network mean rate increases, as corroborated by the shift of
the top intersection point to the right.

In this way, the response of a single neuron to white noise allows
one to predict the collective regimes of a sparse random network. To
validate the above predictions, we have compared them to the results of
direct numerical simulations of a random sparse network, considering
averaging time intervals of 100 s for a set of different 𝑔 values varying
between 0 and 3. To avoid trapping into the silent state, the network
has to be stimulated by a brief strong input which allows it to settle to
the regime of self-sustained activity. Fig. 2(d) shows the dependencies
of the network mean firing rate obtained from the simulations and
from Eq. (6) on the coupling strength 𝑔. The self-consistency results are
plotted using the actual 𝐶𝑉 (red curve) and the Poisson approximation
𝐶𝑉 = 1 (blue curve).

In Fig. 3(a) is shown the spike raster plot illustrating the local
structure of a typical state featuring collective self-sustained activity.
The network is activated at 𝑡 = 0 by a strong stimulus applied to 10
neurons with indices 𝑗 = 201 to 𝑗 = 210, cf. the red arrows. Note that
the activity rapidly spreads across the network. To demonstrate this,
we have plotted the distributions of the times to first spike (TFTS) in
Fig. 3(b). One finds that the neurons fire for the first time in 0.36 ± 0.32
s after the network activation. After encompassing the whole network,
the activity remains irregular and distributed homogeneously both in
space and time. To corroborate the homogeneity feature, we have
filtered the network activity taking the moving average both in time
(averaging time interval of 0.5 s) and in space (averaging over the
spatial window of 20 neurons assuming that the neurons lie on a ring
with periodic boundary conditions). The distribution of the filtered
activity in Fig. 3(c) turns to be relatively narrow with the mean 3.35
and standard deviation 0.83 which gives the coefficient of variation
𝐶𝑉 = 0.25.

Numerical simulations of the network activity together with the self-
consistency theory allows one to formulate the mean-field or a neural
mass model of the dynamics of a random sparse network. Since its
activity is homogeneous, it can be described by the single variable
4

𝑟 = 1
𝑁

∑𝑁
𝑗=1 𝑟𝑗 which presents the mean synaptic output of all the

neurons. In particular, the latter obeys
𝑑𝑟
𝑑𝑡

= − 𝑟
𝑇

+ 𝑅(𝑔
√

𝑟), (7)

where 𝑇 = 0.36 s is the characteristic time of the activity onset
estimated as the mean of TTFS, 𝑅(𝜎) is the firing rate of a single neuron
receiving noisy input of the intensity 𝜎, and 𝜎 is the intensity of the
effective noise received by the neurons of the network with the activity
𝑟. For the Poisson approximation 𝐶𝑉 = 1, the effective noise intensity
may be written as 𝜎 = 𝑔

√

𝑟.
The dynamics of the mean-field model (7) is rather simple: for

strong enough coupling, it has two steady state, namely the silent one
with 𝑟 = 0 and the active one with 𝑟 given by the self-consistency
condition (6). These two states are separated by an unstable steady
state serving as an excitation threshold. If the external stimulus takes
the system over the threshold, its dynamics settles into the active state
following the transient of duration 𝑇 . Thus, the mean-field model cap-
tures well the dynamics of a random sparse network. In the following,
we will show that this mean-field model can be useful for describing
the activity networks with other connectivity patterns.

4. Regular ring network

In this Section, we consider a network with regular ring topology
so that two neurons 𝑖 and 𝑗 are connected if and only if |𝑖 − 𝑗| ≤ 𝑚
where 𝑚 is a positive integer, cf. the corresponding coupling matrix
in Fig. 1(b). To keep the total number of connections per neuron
equal to the previously considered case of a random network we
take 𝑚 = 𝑐𝑁∕2. The connection weigths are again drawn from the
Gaussian distribution with zero mean and variance (𝑁𝑐)−1, so that the
variance of the incoming connection weights is again the same as for
the random network. However, now each neuron is connected only
with its neighbors rather than the whole network, which results in the
emergence of novel dynamical features.

The typical dynamics of a regular ring network is illustrated by the
spike raster plot in Fig. 4(a). As in Fig. 3(a), we activated the network
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Fig. 4. Local structure of self-sustained activity in a regular ring network. (a) Spike raster plot; red arrow: moment and locus of the external input; red circle: moment and locus
of the correlated activity collapse. (b) Distribution of times to first spike (TTFS). (c) Distribution of spatially and temporally filtered neural activity. In (b) and (c), red solid vertical
lines denote the means of distributions, while dashed lines indicate means plus/minus standard deviation. Parameters: 𝑁 = 400, 𝑚 = 20, 𝜏𝑟 = 2, 𝜏𝑑 = 20, 𝐼𝑏 = −0.001, 𝑔 = 0.3. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
by applying a strong stimulus to 10 neurons at 𝑡 = 0 (red arrow).
However, here the activity spreads across the network gradually due
to absence of long-range connections. As evident from the spike raster
plot, it takes about 2 s for the activity to spread across the entire
network. This property is reflected in the distribution of the TTFS
in Fig. 4(b), which reveals that the neurons fire for the first time at
𝑡 = 1.13 ± 0.84 s. This characteristic timescale of transient processes of
about 1–2 s may play an important role for the dynamic memory of the
network.

Moreover, even after encompassing the whole network, the activity
turns out to be less homogeneous than for the random network. This
heterogeneity manifests itself through recurrent events of correlated
collapses of local activity, see the example of a white spot marked by
a red circle in Fig. 3(a). To quantify the heterogeneity of the network
activity, we have filtered the network activity both in space and time,
using the method described in Section 3. The distribution of the filtered
activity much wider than for the random sparse network, featuring
the mean of 3.28, standard deviation of 1.18 and the CV = 0.36, see
Fig. 4(c). Note that the distribution of the filtered activity spans down
to zero reflecting the localized activity collapses. Thus, the sustained
dynamics of the network is also enriched with a new time scale of about
0.5 s which may as well be important for the realization of the dynamic
memory.

To explain the dynamics of a regular ring network via the mean-
field model, we approximate it as a ring of subnetworks of size 𝑚
resided on a ring where each subnetwork is connected only to its two
nearest neighbors. Then, each subnetwork receives half of its connec-
tions from within, and a quarter of connections from each neighboring
subnetwork, see Fig. 1(b). The mean-field model (7) can be adapted
to describe the dynamics of a single subnetwork if the input into this
subnetwork is calculated as a sum of the inputs from itself and both
neighbors. Then the dynamics of the whole network is governed by

𝑑𝑟𝑗
𝑑𝑡

= −
𝑟𝑗
𝑇

+ 𝑅

(

𝑔
√

𝑟𝑗
2

+
𝑟𝑗−1
4

+
𝑟𝑗+1
4

)

, (8)

where 𝑟𝑗 is the activity of the 𝑗th subnetwork, having inherited the
periodic boundary conditions. System (8) presents a ring of 𝑛 = 𝑁∕𝑚
5

units with bidirectional local coupling. Since each node is a bistable
unit, the propagation of switching fronts along the ring is possible:
when one of the units is switched into the active state, it excites its
neighbors forcing them to switch to the active states as well, and so on.
To estimate the time that takes to switch the whole network into the
active state, recall that a single unit has a typical switching (excitation)
time 𝑇 , and since the switching front propagates in both directions, the
total time equals

𝑇𝛴 = 𝑛
2
𝑇 = 𝑇

𝑐
. (9)

For our parameters, the estimate gives 𝑇𝛴 = 3.6, which is in good
agreement with the results of numerical simulations from Fig. 4(b)
where some of the neurons fire for the first time not earlier than 3 s
after the excitation of the activity seed.

5. Small-world network

We have demonstrated that the transient collective dynamics of a
regular network features longer timescales compared to the random
sparse network. The longest timescale is associated with the propaga-
tion of the excitation fronts along the ring and can be estimated as
being 1∕𝑐 times larger than that of a random network. To explain the
mechanism giving rise to this longer timescale, we now focus on the
transition between the random and the regular network topology. In
particular, we invoke the model of small-world networks [40] whose
connectivity structure may interpolate between the regular and random
networks. Small-world networks are characterized by a short average
path length between any two nodes (like random networks) and yet
high clustering coefficients (like regular networks). They are known
to often display optimal dynamical and computational properties, and
what proves to be of special interest to our study, have already been
indicated as potential substrates for long-term memory [41].

To obtain the small-world connectivity matrix, we follow the clas-
sical algorithm from Watts and Strogatz [40]. Namely, starting from
the regular ring network, we randomly rewire each connection with a
given probability 𝑝 and leave it untouched with the probability 1 − 𝑝.
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Fig. 5. Quantitative measures of the collective dynamics of a small-world network in terms of the rewiring probability 𝑝. (a) Mean firing rate ⟨𝑟⟩ of individual neurons. (b)
Spatially and temporally filtered activity. (c) Coefficients of variation (CV) of inter-spike intervals. (d) Times to first spike (TTFS). All the results are obtained by averaging over
an ensemble of 50 different network realizations. Parameters: 𝑁 = 400, 𝑐 = 0.1, 𝜏𝑟 = 2, 𝜏𝑑 = 20, 𝐼𝑏 = −0.001, 𝑔 = 0.3.
hoosing different values of 𝑝 allows one to interpolate between regular
etworks (𝑝 = 0) and random networks (𝑝 = 1 − 𝑐).

Next we show that the dynamics in small-world networks can also
e described in terms of an appropriate mean-field model. To do so, we
gain divide the network into subnetworks of size 𝑚, but in contrast to
he case of regular networks, for any 𝑝 > 0, each subnetwork is con-
ected to all the other subnetworks. Then the fractions of connections
eceived from different subnetworks are given by

𝑠 =
1 − 𝑝
2

for self-connections,

𝑛 =
1 − 𝑐 − (1 − 2𝑐)𝑝

4(1 − 𝑐)
for connections from the neighbors,

𝛼𝑜 =
𝑝𝑐

2(1 − 𝑐)
for connections to the other subnetworks.

Thus, the dynamics of the entire network is described as follows:

𝑑𝑟𝑗
𝑑𝑡

= −
𝑟𝑗
𝑇

+ 𝑅
⎛

⎜

⎜

⎝

𝑔
√

𝛼𝑠𝑟𝑗 + 𝛼𝑛(𝑟𝑗−1 + 𝑟𝑗+1) + 𝛼𝑜
∑

𝑘≠𝑗,𝑗−1,𝑗+1
𝑟𝑘
⎞

⎟

⎟

⎠

. (10)

Note that the mean-field model (10) predicts that the emergent self-
sustained activity of the small-world network should be independent
on the rewiring probability 𝑝. One may readily verify this by noting
hat if 𝑟𝑗 = 𝑟 for each 𝑗, Eq. (10) transforms into Eq. (7). However, the
peed of the activity spreading across the small-world network cannot
e readily estimated from the mean-field model and requires numerical
imulations.

We have carried out extensive numerical experiments with small-
orld networks having varied the rewiring probability 𝑝 from 0 to 1−𝑐.
or each value of 𝑝, we generated 50 instances of the coupling matrix.
or each coupling matrix, the network activity has first been initiated
y exciting 10 adjacent neurons, and has then been monitored for the
ext 10 s. For every trial, we have calculated the following measures:
i) distributions of the mean firing rates of individual neurons, (ii) dis-
ributions of temporally and spatially filtered activity, (iii) distributions
f coefficients of variation of inter-spike intervals of individual neurons,
6

nd (iv) distributions of TTFS. For each of these distributions, we have
calculated the mean and the variance, having further averaged them
across the trials, see the results in Fig. 5.

As predicted by the mean-field theory, the average network activity
does not depend on the rewiring probability and remains very close
to ⟨𝑟⟩ = 3.7 for all values of 𝑝. As for the filtered activity, its mean is
naturally close to this value, but the deviations are more pronounced
for smaller 𝑝, i.e. closer to the limit of regular networks. This reflects the
possibility of strong correlated fluctuations of local activity with typical
timescales of about 500 ms (the width of the window of the temporal
filter). This is also corroborated by the larger coefficients of variation
of the inter-spike intervals for small 𝑝. Nevertheless, the most striking
feature of the networks with small 𝑝 is the slow propagation of activity
across the network which gives rise to large TTFS that may even span
several seconds. One may assume that the emergence of this slowest
timescale may provide the basis for comparably long dynamic mem-
ory. This conjecture is investigated in Section 6, considering how the
networks with different rewiring probability 𝑝 perform computational
tasks requiring episodic memory.

6. Dynamic memory of the network

Performing computations by the neural network involves receiv-
ing the input signals, responding to them through intrinsic network
dynamics and sending output that reflects the results of information
processing. Having the network perform certain computational tasks
is achieved by its training. Here we use the framework of reservoir
computing [17,42], a concept rooted in liquid-state and echo-state
machines [20,43]. This method considers the neural network as a
‘‘reservoir’’ and entails training of output connections only, leaving
the network intrinsic structure untouched [18]. This allows not only
for an efficient and fast training, but also enables one to relate the
performance of various networks with their structure and compare
the different network configurations in terms of their computational
efficiency.

We have trained the network to perform the following simple com-
putational delay task. An input signal comprising a Poisson spike train

with the rate 𝜆 = 1 Hz is presented to the network, and the network has
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to recall whether it has received a spike or not within the given past
period. In particular, there is a certain interval 𝜏, such that the network
is expected to respond by ‘‘1’’ if it has received at least one spike within
the last 𝜏 milliseconds and by ‘‘0’’ otherwise. Obviously, the network
performance depends crucially on the value of the delay 𝜏 which is the
key parameter of the task. The maximal delay for which the network
demonstrates a sufficient accuracy provides a reasonable estimate for
the duration of its dynamic memory.

The input signal is fed into the network by adding it to the signal
received by each neuron, so that (3) modifies to

𝐼𝑗 = 𝐼𝑏 + 𝑔
𝑁
∑

𝑘=1
𝐴𝑗𝑘𝑟𝑘 + 𝑔𝑖𝑛𝑝𝑢𝑗𝑟𝑖𝑛𝑝. (11)

where 𝑔𝑖𝑛𝑝 is the input gain, 𝑢𝑗 are the input weights for the neurons,
and 𝑟𝑖𝑛𝑝 is the input synaptic current derived from filtering of the input
signal by the same type of synaptic kinetics as within the network:
𝑑𝑟𝑖𝑛𝑝
𝑑𝑡

= −
𝑟𝑖𝑛𝑝
𝜏𝑑

+ ℎ𝑖𝑛𝑝, (12)

𝑑ℎ𝑖𝑛𝑝
𝑑𝑡

= −
ℎ𝑖𝑛𝑝
𝜏𝑟

+ 1
𝜏𝑟𝜏𝑑

∑

𝑡𝑝𝑖𝑛𝑝

𝛿(𝑡 − 𝑡𝑝𝑖𝑛𝑝), (13)

where 𝑡𝑝𝑖𝑛𝑝 are the moments of the input spikes. The output of the
network is calculated as

𝑟𝑜𝑢𝑡 =
𝑁
∑

𝑗=1
𝑤𝑗𝑟𝑗 , (14)

where 𝑤𝑗 are the output weights which are to be tuned during the
training. The network response is assumed to be ‘‘1’’ if its output
exceeds a certain threshold 𝜃 and ‘‘0’’ otherwise. The choice of 𝜃 allows
for the trade-off between the false positive and false negative rates.

We have used the method of least squares [44] to train the output
weights during a training period 𝑡𝑡𝑟𝑎𝑖𝑛, after which the network’s perfor-
mance was estimated during a test period 𝑡𝑡𝑒𝑠𝑡 = 100 s. To characterize
the performance, we introduce the error in the same way as in our
previous work [22]

𝜀 = 𝜀0fnr + 𝜀1fpr, (15)

where fpr and fnr respectively denote false positive rate and false
negative rate, and 𝜀0 and 𝜀1 are the error weights set such that a
constant output of either zero or one leads to a total error 𝜀 = 1. The
network performance 𝑃 is then estimated as the inverse of the error
𝑃 = 1∕𝜀.

Following our previous paper [22], we have used the training time
of 𝑡𝑡𝑟𝑎𝑖𝑛 = 100 s and 𝑔𝑖𝑛𝑝 = 10 in all the numerical experiments con-
sidered below. We generated a set of networks with coupling matrices
𝐴 obtained with different rewiring probabilities 𝑝 varying from 0 to
1 − 𝑐. For each 𝑝 we have generated ten instances of the network.
Having trained each network to solve the delay task for different 𝜏,
we have plotted for each 𝑝 the configuration-averaged performance
𝑃 as a function of the delay 𝜏. For each 𝑝 the resultant plot turned
out to be unimodal with optimal performance found for intermediate
delays. Low performance at small delays is the result of inertness of
the neurons which cannot react immediately to a stimulus, while the
decay of the performance at large delays is due to the forgetting of
the input with time. Thus, the delay values corresponding to optimal
performance provide a reasonable estimate of the memory duration.

Nevertheless, it turns out that the memory lifetime substantially
depends on the configuration of the input weights. Let us first consider
the standard homogeneous input scheme where the input weights are
drawn randomly from a uniform distribution 𝑢𝑗 ∈ [−1; 1]. The corre-
sponding performance curves are provided in Fig. 6(a). Surprisingly,
the results have shown almost no dependence on 𝑝 for 𝑝 > 0 which
has allowed us to present the averaged results for all 𝑝 > 0. The
performance of a regular network with 𝑝 = 0 is only marginally better
7

than the average performance of small-world networks.
However, the difference between regular and small-world networks
dramatically increases when the input weight configuration is modified
so to obtain a spatial structure. To do so, we have reordered the earlier
generated coupling weights such that all the positive weights project
onto one half of the neurons with indices 𝑗 = 101 to 𝑗 = 300 and
the negative weights are supplied to the rest of the network. Such
reordering almost mkes no impact on the performance of small-world
networks with 𝑝 > 0 but significantly improves the performance of
the regular network (𝑝 = 0). The reason is the interaction of the
input weights structure with the ordered spatial structure of the regular
network. Due to the presence of these two structures, an input pulse
triggers excitation in one half of the network and inhibits the activity
in the other half. Then in a regular ring network, it takes a certain
time for the activity to spread over the entire network, and this time
represents the lifetime of the dynamic memory.

The enhancement of the memory lifetime turns to be even stronger
when the input weights are more structured. To showcase this, we
introduce positive weights only for the 10% of adjacent neurons with
𝑗 = 181 to 𝑗 = 220 and negative for the other ones, having rescaled
the weights to preserve their mean and variance. Then the input pulse
inhibits 90% of the network, and it takes even more time for the activity
to reverberate in a regular network. As a result, the memory lifetime
increases even more. Interestingly, in small-world networks, focusing
of the positive input to only 10% of neurons also yields a moderate
improvement of the network performance. The likely reason is the
effective increase of the input gain 𝑔𝑖𝑛𝑝 which is already known to
influence the network computational capabilities [22].

The results so far seem to suggest that regular networks are optimal
in terms of dynamic memory lifetime, and any rewiring, even a weak
one (𝑝 = 0.01), deteriorates the performance due to violating the
network’s regular spatial structure. However, a more in-depth study
of the consistency of network performance for different configurations
with the same 𝑝 reveals a more complicated picture. As an example, the
performances curves of five different networks with 𝑝 = 0 and 𝑝 = 0.09
are plotted in Fig. 6(b). For the regular network the performance curves
follow each other quite closely, while for the small-world network
most of the curves do the same with a remarkable exception of one
curve lying much higher than the others. Detailed investigation shows
that such strong deviations occur rarely but regularly for small-world
networks with intermediate rewiring probabilities.

To demonstrate that, we calculated the average and maximal per-
formances at a certain large delay value 𝜏 = 700 for 30 instances of
coupling matrix generated with different values of 𝑝. The results in
Fig. 7 refer to the homogeneous input weights. Although the average
performance is almost independent on 𝑝, the maximal performance
demonstrate a pronounced peak at 𝑝 = 0.09 ÷ 0.1. Note that the standard
deviation of the performance for such 𝑝 does not show a substantial
growth which implies that the configurations with extended dynamical
memory are not typical, yet emerge regularly (1–2 instances out of 30).

7. Discussion and conclusions

We have considered the collective behavior and the formation of
dynamic memory in excitatory spiking neural networks with random,
regular ring and small-world connection topologies. To get an insight
into the collective regimes, we have developed a mean-field model
approximating the input as white noise, which allowed us to describe
the network activity in a self-consistent way by the average firing rate.
Though derived for the case of sparse random topology, the mean-field
model turned out to be useful in explaining the collective dynam-
ics for other network topologies, combined with extensive numerical
simulations.

In terms of autonomous dynamics, the properties of all three net-
work types are relatively close. Namely, they all show irregular, weakly
correlated activity of individual neurons with coefficient of variation

of inter-spike intervals close to one. A certain distinction of regular
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Fig. 6. Network performance 𝑃 in dependence of delay 𝜏. (a) Performance averaged over 30 network configurations with the same value of 𝑝. Black solid curves: homogeneous
input weights, blue dashed curves: positive input weights projecting on half of the network, red dashed–dotted curves: positive input weights focused on 10% of the network. Thin
curves: averaged data for 𝑝 > 0, thick curves: data for 𝑝 = 0 (regular network). (b) Performance of single configurations of the networks with 𝑝 = 0 (black solid curves) and 𝑝 = 0.09
(red dashed curves) for homogeneous input weights. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Performance 𝑃 of 30 instances of the small-world network in terms of
ewiring probability 𝑝. Blue solid line: average performance, blue dashed lines: average
lus/minus standard deviation, red thick solid line: maximal performance. (For
nterpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

etworks and small-world networks with weak rewiring is the recurrent
mergence of spatially and temporally correlated fluctuations of local
ctivity which, however, are relatively rare. In contrast to long-term
ynamics, the transient dynamics depends strongly on the rewiring
robability 𝑝. The most striking difference concerns the character of
he activity spreading over the network after introducing a localized
xcitation. For random networks (and small-world networks with large
> 0.1) the spreading process is fast, taking less than a second. For

egular networks (and small-world networks with small 𝑝 < 0.1), the
ctivity spreading resembles the propagation of a switching front and
ay take up to several seconds. This property endows the network
ynamics with slow timescales which can provide the substrate for
rolonged dynamic memory.

The dependence of the dynamic memory on the network connectiv-
ty patterns has been investigated by training the networks to perform a
imple computational task requiring the temporary storage of informa-
ion for a certain period 𝜏. In this scenario, the maximal time for which
he system performance remains high provides a reasonable estimate
or the memory duration. We have shown that the average performance
f a small-world network depends only marginally on the rewiring
8

probability in a wide range of 𝑝 ∈ [0.01, 0.9]. For all such networks,
the maximal performance 𝑃 ≈ 15 is reached at 𝜏 ∼ 200 ÷ 250 ms.
This implies that on average, the small-world networks facilitate similar
dynamic memory as random networks.

We have further demonstrated that, in contrast to small-world
networks, the performance of regular networks crucially depends on
the structure of input weights feeding the input signal. For a homoge-
neous distribution of input weights, the average performance of regular
networks is very close to that of small-world networks. However, when
the positive (excitatory) weights are focused on a localized part of the
network, the regular networks start to outperform small-world ones
with the maximal performance reached at 𝜏 ≈ 300 ms when the positive
input is applied to 50% of neurons, and at 𝜏 ≈ 350 ÷ 400 ms when it
projects to 10% of neurons. The performance 𝑃 ≈ 15 is reached for
𝜏 ≈ 550 ms which corresponds to almost tripling of the memory lifetime
compared to small-world networks. Extension of the dynamic memory
duration in regular networks is apparently related to the fact that
their spatial structure allows for the propagation of activity wavefronts
across the network, conveying the information about the input for
relatively long times. In other words, to utilize the network structure,
the input to the network has to be structured as well. Consistent
with [2], we have found that random networks are least suitable for
dynamic memory tasks.

Considered on average, the transition from regular to small-world
networks appears destructive for the memory lifetime. Indeed, even
a weak rewiring of the connections with the probability as small as
1% reduces the memory performance to that of a random network.
Obviously, the rewiring violates the regularity of the network structure
and prevents one from using it for prolonged data storage. However, a
more detailed study has revealed that for intermediate rewiring prob-
abilities 𝑝 ∼ 0.1, some network configurations may still demonstrate an
extended dynamic memory, even outperforming the regular networks
for long delays 𝜏. This implies that certain realizations of random
rewiring may be more favorable for temporary data storage than others.
Intriguing questions for future study are to understand why there are
such preferred configurations and to develop algorithms that would
allow one to generate them in a controlled way.
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