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I. GREEN’S FUNCTIONS AND SPECTRAL FUNCTION

The fluctuation–dissipation theorem for single-particle Green’s functions states that the spectral function, which is
defined as

A(k, ω) = − 1

π
ImGR(k, ω), (1)

is related to the greater and lesser Green’s functions as follows1

A(k, ω) = − 1

2π
ImG>(k, ω)

(
1 + e−β~ω

)
, (2)

A(k, ω) =
1

2π
ImG<(k, ω)

(
1 + eβ~ω

)
. (3)

The Lehmann representation of G>(k, ω) reads as

G>(k, ω) = −2πi

Z

∑
nm

e−βEn δ(ω + ωn − ωm) |〈n |ck|m〉|2 , (4)

where state |m〉 belongs to the single-excitation subspace, while state |n〉 belongs to the zero-excitation subspace. It
is thus advantageous to separate out the vertical excitation energy εe from ωn by ωn = εe/~ + ∆ωn and to shift the
zero of the frequency axis to εe/~ by defining G>shifted(k, ω) = G>(ω + εe/~). The corresponding spectral function
Ashifted(k, ω) = A(k, ω + εe/~) then reads as

Ashifted(k, ω) = − 1

2π
ImG>shifted(k, ω)

(
1 + e−β~ωe−βεe

)
≈ − 1

2π
ImG>shifted(k, ω) (5)

under the physically plausible assumption that βεe � 1.
Using similar ideas, the Lehmann representation of G<(k, ω) is transformed as follows

G<(k, ω) =
2πi

Z
e−βεe

∑
nm

e−β~∆ωm δ(ω − εe/~ + ωn −∆ωm) |〈n |ck|m〉|2 . (6)

Defining

G<shifted(k, ω) = eβεe G<(k, ω + εe/~), (7)

and employing βεe � 1, we finally obtain that

Ashifted(k, ω) =
1

2π
ImG<shifted(k, ω) · eβ~ω. (8)

In the main body of the manuscript, we will not insist on notation G
>/<
shifted(k, ω), Ashifted(k, ω), which simply shifts the

origin of the energy scale from the energy of the unexcited state to the vertical excitation energy of the singly-excited
state. The latter choice is far more common in the literature.
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II. QMC METHOD FOR THERMODYNAMIC EXPECTATION VALUES

A. Operators that depend on electronic coordinates only

We now describe the calculation of the expectation value of the operators that depend on electronic coordinates
only, such as the free electronic operator He and the operator nk = |k〉 〈k| of the number of electrons of momentum
k. The expectation value of such an operator O is given as

〈O〉 =

∑
ab

∫
d{x} 〈a{x}|e−βH |b{x}〉 〈b|O|a〉∑

ab

∫
d{x} 〈a{x}|e−βH |b{x}〉 δab

(9)

To evaluate the integrals, we express 〈a{x}|e−βH |b{x}〉 using Eq. (63) in the main part of the paper and we analytically
calculate the Gaussian integrals over the phononic coordinates using Eq. (68) in the main part of the paper.

Equation (9) then takes the form

〈O〉 =
N1

D1
(10)

with

N1 =
∑
ab

∑
j1...jK−1

f(j1)f(j2) . . . f(jK−1)f

(
a− b−

K−1∑
i=1

ji

)
e

1
2b·A

−1·b 〈b|O|a〉 (11)

and

D1 =
∑
ab

∑
j1...jK−1

f(j1)f(j2) . . . f(jK−1)f

(
a− b−

K−1∑
i=1

ji

)
e

1
2b·A

−1·bδab. (12)

We then perform Monte Carlo summation in the same way as for the correlation function.
The results presented in Fig. 2(a) and 2(c) of the paper were obtained with 107 samples and K = 80.
The results presented in Figs. 5 and 6 in this Supplemental Material were obtained with 105 samples and K = 80,

except for Fig. 6(b) where K = 200.

B. Interaction energy and fermion-boson correlation function

Next, we describe Monte Carlo calculation of averages of the operator of electron-phonon interaction He−ph and

the fermion-boson correlation function C(l) =
∑
i |i〉 〈i|

(
b†i+l + bi+l

)
. Expectation values of these operators read

〈He−ph〉 =

∑
a

∫
d{x} 〈a{x}|e−βH |a{x}〉xaγ

√
2mω0

~∑
a

∫
d{x} 〈a{x}|e−βH |a{x}〉

(13)

and

〈C(l)〉 =

∑
a

∫
d{x} 〈a{x}|e−βH |a{x}〉xa+l

√
2mω0

~∑
a

∫
d{x} 〈a{x}|e−βH |a{x}〉

. (14)

To evaluate the integrals in the numerator, we exploit the identity∫
dnz zae

− 1
2z·A·zeb·z = (2π)

n/2
(detA)

−1/2
e

1
2b·A

−1·b(A−1 · b
)
a

(15)

and obtain

〈He−ph〉 =
N2

D2
(16)
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with

N2 =
∑
a

∑
j1...jK−1

f(j1)f(j2) . . . f(jK−1)f

(
−
K−1∑
i=1

ji

)
e

1
2b·A

−1b
(
A−1b

)
a
γ

√
2mω0

~
(17)

and

D2 =
∑
a

∑
j1...jK−1

f(j1)f(j2) . . . f(jK−1)f

(
−
K=1∑
i=1

ji

)
e

1
2b·A

−1·b. (18)

We find as well

〈C(l)〉 =
N3

D2
(19)

with

N3 =
∑
a

∑
j1...jK−1

f(j1)f(j2) . . . f(jK−1)f

(
−
K−1∑
i=1

ji

)
e

1
2b·A

−1b
(
A−1b

)
a+l

√
2mω0

~
. (20)

The sums are then evaluated using the Monte Carlo method in the same way as in previous cases.
The results presented in Fig. 2(b) of the paper were obtained with 106 samples and K = 80, while the results in

Fig. 2(d) of the paper were obtained with 107 samples and K = 80.
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III. WEAK-COUPLING LIMIT: RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY

Truncating the HEOM [Eq. (30) of the main text] at depth 1, we remain with the following equations

∂tG
>(k, t) = −iΩkG>(k, t) + i

∑
qm

G
(>,1)

0+
qm

(k − q, t), (21)

∂tG
(>,1)

0+
qm

(k − q, t) = −i [Ωk−q + ωq(δm0 − δm1)]G
(>,1)

0+
qm

(k − q, t) + iω2
0cqmG

>(k, t). (22)

Separating out the free-rotation contribution from G> by defining G>(k, t) = e−iΩktG>(k, t), the integration of
Eq. (22) leads to

G
(>,1)

0+
qm

(k − q, t) = iω2
0cqm

∫ t

0

ds exp {i [Ωk − Ωk−q − ωq(δm0 − δm1)] s} e−iΩktG>(k, t− s). (23)

The Markov approximation G>(k, t − s) ≈ G>(t) assumes that G> changes very slowly in time, so that its value at
time t − s is approximately equal to its value at time t. The remaining integration can be performed analytically.
Nevertheless, one may resort to the so-called adiabatic approximation, in which the upper limit of the integral t is
replaced by +∞. Physically, this means that the last scattering on phonons that is relevant to the properties at time
t happened in the distant past. Moreover, to ensure the integral convergence, one adds a small and positive imaginary
part to the frequency difference. Finally,

G
(>,1)

0+
qm

(k − q, t) ≈ G>(k, t)× iω2
0cqm

∫ +∞

0

ds exp {i [Ωk − Ωk−q − ωq(δm0 − δm1) + iη] s}

=
−ω2

0cqm
Ωk − Ωk−q − ωq(δm0 − δm1) + iη

G>(k, t).

(24)

We now insert Eq. (24) into Eq. (21) and transfer to the frequency domain. Keeping in mind that Eq. (21) is solved
for t > 0 under the initial condition G>(k, t = 0) = −i, we finally obtain

G>(k, ω) =
1

ω − Ωk − Σk
(25)

where the one-phonon self-energy reads as

Σk =
∑
qm

ω2
0cqm

Ωk − Ωk−q − ωq(δm0 − δm1) + iη
. (26)

The real part of the self-energy brings about the energy renormalization

Re Σk =
γ2

~
1

N

∑
q

(
1 + nBE(ωq, T )

~Ωk − ~Ωk−q − ~ωq
+

nBE(ωq, T )

~Ωk − ~Ωk−q + ~ωq

)
(27)

while its imaginary part

Im Σk = −πγ
2

~
1

N

∑
q

{[1 + nBE(ωq, T )]δ(~Ωk − ~Ωk−q − ~ωq) + nBE(ωq, T )δ(~Ωk − ~Ωk−q + ~ωq)} (28)

is related to the second-order result for carrier scattering time τk via τ−1
k = −2Im Σk.
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IV. SINGLE-SITE LIMIT: LANG–FIRSOV RESULTS

Here, we explicitly present the steps that are needed to reduce the exact Feynman–Vernon results presented in
the main text to the Lang–Firsov results in the limit of vanishing electronic coupling. While these results are by no
means new (see, e.g., Ch. 4 of Ref. 1), we feel that it is important to demonstrate how our approach reduces to this
important limiting case.

We start from the computation of G>. The exact solution in the single-site limit reduces to

G>(t) = −ie−iεet/~ exp

[
−ω2

0

∫ t

0

ds2

∫ s2

0

ds1

∑
m

cme
−µm(s2−s1)

]
. (29)

To obtain this result, we used the fact that, in the single-site limit, the operator Vq reduces to |j〉〈j|, which is time-
independent, so that the time-ordering sign entering the exact solution is not effective. Solving the integral under the
exponential we finally obtain

G>(t) = −ie−iεet/~ e−(γ/(~ω0))2(2Nph+1) exp

[(
γ

~ω0

)2 (
(1 +Nph)e−iω0t +Nphe

iω0t + iω0t
)]
, (30)

where Nph =
(
eβ~ω0 − 1

)−1
. The exact result for G>(ω) can then be obtained following the procedure from Ref. 1

The crux of the derivation is to employ the following identity2

ez cos θ =

+∞∑
l=−∞

Il(z) e
ilθ, (31)

where Il(z) are the Bessel functions of complex argument.
A similar procedure can be repeated to obtain the single-site limit of the exact result for G<:

G<(t) = ie−iεet/~e−β[εe−γ2/(~ω0)] e−(γ/(~ω0))2(2Nph+1) exp

[(
γ

~ω0

)2 (
(1 +Nph)eiω0t +Nphe

−iω0t + iω0t
)]
. (32)

Apart from the prefactors, the only difference between the single-site expressions for G> and G< is the place of phonon
factors 1 +Nph ± 1 in front of exponentials e±iω0t.

While G>/<(ω) is an infinite series of equidistant δ peaks of varying intensity, one commonly introduces the artificial
broadening η, i.e., replaces δ peaks by Lorentzians whose full width at half maximum is equal to η. To take the artificial
broadening into account, it is enough to replace

µ0 = iω0 → iω0 + η, µ1 = −iω0 → −iω0 + η. (33)

Equation (30) then becomes

G>(t) = −ie−iεet/~ e−(γ/(~ω0))2(2Nph+1)

× exp

[(
γ

~ω0

)2 (
(1 +Nph)e−i(ω0−iη)t +Nphe

i(ω0+iη)t + i(ω0 + i(2Nph + 1)η)t
)]

,
(34)

while Eq. (32) becomes

G<(t) = ie−iεet/~e−β[εe−γ2/(~ω0)] e−(γ/(~ω0))2(2Nph+1)

× exp

[(
γ

~ω0

)2 (
(1 +Nph)ei(ω0+iη)t +Nphe

−i(ω0−iη)t + i(ω0 + i(2Nph + 1)η)t
)]

.
(35)

On the other hand, the replacements of Eq. (33) affect the hierarchy through its kinetic term only, while the hierarchical
links remain unaffected. In more detail,[

∂tG
(n)
n (k − kn, t)

]
kin

= −i(ωk−kn + µn)G(n)
n (k − kn, t)

→ −i(ωk−kn + µn − inη)G(n)
n (k − kn, t),

(36)

so that the auxiliary Green’s functions at depth n are damped at rate nη. Analytical and numerical result exhibit
excellent agreement in the single-site limit, which is demonstrated in Fig. 1 for γ/ω0 =

√
2 and kBT/ω0 = 1 and

different values of the artificial broadening η/ω0 = 0, 0.01, 0.02.
The influence of η on the spectral properties in the single-site limit are summarized in Fig. 2.
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Figure 1. Results for G>(t) (left panels) and G<(t) (right panels) in the single-site limit for γ/ω0 =
√

2, kBT/ω0 = 1 and
different values of the artificial broadening η = 0 (upper panels), η/ω0 = 0.01 (middle panels), and η/ω0 = 0.02 (bottom
panels). Without loss of generality, we assume that εe = 0. Analytical results are obtained using Eqs. (34) and (35), while the
kinetic terms in the HEOM assume the form of Eq. (36).
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Figure 2. Electron-addition [A(ω) = − 1
2π

ImG>(ω)] and electron-removal [A+(ω) = 1
2π

ImG<(ω)] spectral functions for a single

site with γ/ω0 =
√

2 and kBT/ω0 = 1 and different levels of the artificial broadening η/ω0 = 0, 0.01, 0.02. Both A(ω) and
A+(ω) are normalized so that their maximum values are equal to 1. A(ω) is presented in the positive half-plane, while A+(ω)
is presented in the negative half-plane. This style of presentation emphasises the fact that A(ω) and A+(ω) are mirror images
of one another around ωQP/ω0 = −(γ/ω0)2 = −2.
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V. ARTIFICIAL BROADENING OF SPECTRAL LINES

When the spectral density of the electron–phonon coupling is that of an underdamped Brownian oscillator

J (ω) = Λ

[
ωη

(ω − ω0)2 + η2
+

ωη

(ω + ω0)2 + η2

]
(37)

the bath correlation function assumes the following form3

Cq2q1(t) = δq2,−q1(~ω0)2
+∞∑
m=0

cm e−µmt (38)

where

c0 =
Λ

~ω0

(
1− i η

ω0

)
[1 + nBE(~ω0 − i~η, T )] , µ0 = iω0 + η (39)

c1 =
Λ

~ω0

(
1 + i

η

ω0

)
nBE(~ω0 + i~η, T ), µ1 = −iω0 + η (40)

cm = −4
η

ω0

ΛkBT

(~ω0)2
ρm−1

ξm−1

β~ω0

1−
(
ξm−1

β~ω0

)2

+
(
η
ω0

)2

[
1−

(
ξm−1

β~ω0

)2

+
(
η
ω0

)2
]2

+ 4 ξm−1

β~ω0

, µm =
ξm−1

β~
, m ≥ 2 (41)

In Eq. (41), ξm and ρm (for m ≥ 1) are the poles and residues of the Bose–Einstein function (ez − 1)
−1

in the upper
half of the complex plane. The corresponding decomposition of the Bose–Einstein function into simple poles reads as

1

ez − 1
= −1

2
+

1

z
+

+∞∑
m=1

ρm

(
1

z − iξm
+

1

z + iξm

)
. (42)

In the Matsubara decomposition, ξm = 2πm, ρm = 1. There are other possible choices, e.g., Padé decomposition.

Let us now assume that ~η is the smallest energy scale in the problem, i.e., ~η � kBT and η � ω0. One may then
neglect the imaginary parts of c0 and c1. For m ≥ 2, cm is linear in the small quantity η/ω0, while the corresponding
exponential factor e−µmt decays much faster than e−µ0/1t because of ξm−1/(β~η) � 1. We may thus completely
discard the infinite-series part of the bath correlation function, after which it reduces to

Cq2q1(t) = δq2,−q1
Λ

~ω0

{
[1 + nBE(ω0, T )]e−(iω0+η)t + nBE(ω0, T )e−(−iω0+η)t

}
. (43)

By identifying Λ = γ2/(~ω0), we obtain the expression that is identical to the bath correlation function presented in
the main text, with the only difference that the oscillatory terms are replaced by damped oscillatory terms.
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VI. COMPARISON BETWEEN TIME-DOMAIN AND FREQUENCY-DOMAIN HEOM DATA FOR
DIFFERENT MAXIMUM HIERARCHY DEPTHS

In Figs. 3 and 4, we compare the real part of the envelope G>(k, t) of the greater Green’s function and the spectral
function A(k, ω) for three different values of the maximum hierarchy depth D in the following regime of model

parameters: kBT/J = 0.4, ~ω0/J = 1, γ/J =
√

2, N = 8.
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Figure 3. Time dependence of the real part of the envelope of the greater Green’s function, Re G>(k, t), for three different
values of the maximum hierarchy depth (D = 6 in the upper panels, D = 7 in the middle panels, and D = 8 in the lower
panels) and for two different values of the dimensionless wave number (k = 0 in the left column, k = π in the right column).
The ranges on the vertical axes on all three left-column plots are the same ([−0.5, 0.4]), as are their counterparts on all three
right-column plots ([−0.2, 0.2]).
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Figure 4. Spectral function A(k, ω) for three different values of the maximum hierarchy depth (D = 6 is represented by dash-
dotted black lines, D = 7 is represented by dashed red lines, D = 8 is represented by solid blue lines) and for two different
values of the dimensionless wave number (k = 0 in the upper panel and k = π in the lower panel). All the time-domain data
presented in Fig. 3 are used to compute A(k, ω), which is signalized by the label ω0tmax = 500 in the legend.
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VII. COMPARISON BETWEEN QMC AND HEOM RESULTS FOR THE ELECTRONIC MOMENTUM
DISTRIBUTION

In Fig. 5 we compare QMC and HEOM predictions for the electronic momentum distribution for two different
temperatures, kBT/J = 1 in Figs. 5(a) and 5(c), and kBT/J = 0.4 in Figs. 5(b) and 5 (d).
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Figure 5. (a) and (b): Electronic momentum distribution fk computed using QMC (black dots) and HEOM (red empty circles)
for (a) kBT/J = 1 and (b) kBT/J = 0.4. QMC error bars are smaller than the size of individual dots. (c) and (d): Difference
between QMC and HEOM electronic momentum distributions for (c) kBT/J = 1 and (d) kBT/J = 0.4. The remaining
parameters assume the following values: ~ω0/J = 1, γ/J =

√
2.
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In Fig. 6 we compare QMC and HEOM predictions for the electronic momentum distribution for two different
electron–phonon coupling strengths, γ/J = 1 in Figs. 6(a) and 6(c), and γ/J = 2 in Figs. 6(b) and 6 (d).
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Figure 6. (a) and (b): Electronic momentum distribution fk computed using QMC (black dots) and HEOM (red empty circles)
for (a) γ/J = 1 and (b) γ/J = 2. QMC error bars are smaller than the size of individual dots. (c) and (d): Difference between
QMC and HEOM electronic momentum distributions for (c) γ/J = 1 and (d) γ/J = 2. The remaining parameters assume the
following values: ~ω0/J = 1, kBT/J = 1.
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VIII. DISCUSSION OF THE HEOM METHOD RESULTS IN THE STRONG-COUPLING ADIABATIC
REGIME

Here, we discuss in greater detail the results of the HEOM method in the strong-coupling adiabatic regime, ~ω0/J =

0.2, γ/J =
√

4/5, at temperature kBT/J = 1.
We start with Fig. 7, in which we compare the real parts of the envelopes G>(k, t) of the greater Green’s functions

at finite temperature for different maximum depths D of the hierarchy. While the calculations are actually performed
up to maximum time ω0tmax = 400, which translates to Jtmax/~ = 2000, Fig. 7 shows only the time window
0 ≤ Jt/~ ≤ 200. For Jt/~ > 200, Re G>(k, t) exhibits small-amplitude oscillations around 0, the effect that is due
to the finite size of the system studied. Although the differences between the results for different D are difficult to
appreciate in the real-time domain, they become more visible upon transformation in the real-frequency domain, which
is demonstrated in Fig. 8. To obtainA(k, ω) shown in Fig. 8, we usedG>(k, t) up to the maximum time Jtmax/~ = 2000
for which we performed the calculations. The positions and intensities of the peaks exhibit appreciable changes with
D, which is very different from the situation presented in Fig. 4, where the positions of the peaks do not change with
D, while the changes in their intensities are minor. The results presented in Figs. 7 and 8 suggest that the HEOM
method experiences problems in the adiabatic regime.
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Figure 7. Time dependence of the real part of the envelope of the greater Green’s function, ReG>(k, t), for three different values
of the maximum hierarchy depth (D = 9 in the upper panels, D = 10 in the middle panels, and D = 11 in the lower panels)
and for two different values of the dimensionless wave number (k = 0 in the left column and k = π in the right column). The
vertical-axes ranges on all six panels are the same, [−0.3, 0.3]. The model parameters assume the following values: kBT/J = 1,

~ω0/J = 0.2, γ/J =
√

4/5, N = 6.
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Figure 8. Spectral function A(k, ω) for three different values of the maximum hierarchy depth (D = 9 is represented by dash-
dotted black lines, D = 10 is represented by dashed red lines, D = 11 is represented by solid blue lines) and for two different
values of the dimensionless wave number (k = 0 in the upper panel and k = π in the lower panel). The model parameters

assume the following values: kBT/J = 1, ~ω0/J = 0.2, γ/J =
√

4/5, N = 6.

In order to understand whether the HEOM-method results in the adiabatic limit are reasonable, in Figs. 9(a)
and 9(b) we compare the imaginary-time correlation function C(k, τ) evaluated using the QMC method on a N = 6-
site chain and the HEOM method on a N = 6-site chain with maximum depths D = 9, 10, and 11. The results show
that, as D is increased, the ratio QMC6/HEOM(6,D) of the QMC and HEOM results (labels are precisely defined in
the caption of Fig. 9) becomes closer to unity on the whole imaginary-time interval 0 ≤ Jτ/~ ≤ βJ . This suggests
that the HEOM results for D = 11 are reasonable in the parameter regime studied. These results are shown in
Figs. 9(a1) and 9(a2) of the main body of the paper.
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Figure 9. Imaginary-time correlation function C(k, τ) (a) in the zone center k = 0 and (b) at the zone edge k = π computed
using QMC on a 6-site chain (label QMC6) and HEOM on a 6-site chain with different maximum depths D (label HEOM(6,D)).
Insets present the ratio QMC6/HEOM(6,D) for different D. The model parameters assume the following values: kBT/J = 1,

~ω0/J = 0.2, and γ/J =
√

4/5.
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IX. INFLUENCE OF THE STATISTICAL SAMPLE SIZE ON QMC RESULTS IN THE
INTERMEDIATE-COUPLING LOW-TEMPERATURE REGIME

Here, we present the results for the QMC imaginary-time correlation function C(k, τ) obtained with different sizes of
the statistical sample and compare them to the HEOM results for the same quantity. The calculations are performed
on an N = 8-site chain (the HEOM method is applied to the chain of the same length) with the following values of

model parameters: ~ω0/J = 1, kBT/J = 0.4, and γ/J =
√

2. In Figs. 10(a) and 10(b) we show HEOM and QMC
data for C(k = 0, τ) [Fig. 10(a)] and C(k = π, τ) [Fig. 10(b)], while in Figs. 10(c) and 10(d) we compare the ratios
CQMC(k, τ)/CHEOM(k, τ) for different sizes of the QMC sample.
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Figure 10. (a) and (b) Imaginary-time correlation function C(k, τ) in the zone center [(a)] and at the zone edge [(b)] computed
using QMC with different statistical sample sizes (empty symbols) and HEOM (solid line). (c) and (d) Ratio of the QMC
and HEOM results for different QMC statistical sample sizes. For the sake of clearer visibility, in (d) we show QMC/HEOM
only for sample sizes 106 and 107, while the inset in (b) shows the ratio of the QMC and HEOM results for all sample sizes
considered. The model parameters assume the following values: kBT/J = 0.4, ~ω0/J = 1, γ/J =

√
2, N = 8.

The results presented in Figs. 10(a)–10(d) unambiguously show the reduction in the QMC statistical noise when
the sample size is increased from 105 to 106 and 107. While in the zone center decent results are obtained already
with 105 samples, at the zone edge we need as many as 107 samples to reduce the level of the statistical noise.
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X. IMAGINARY-TIME CORRELATION FUNCTION IN THE ADIABATIC AND ANTIADIABATIC
REGIME

In Figs. 11(a) and 11(b) we present comparison between imaginary-time correlation functions in the zone center
[Fig. 11(a)] and at the zone edge [Fig. 11(b)] obtained using the QMC and HEOM methods in the adiabatic regime,

kBT/J = 1, ~ω0/J = 0.2, γ/J =
√

4/5. The HEOM-method calculation is performed on a N = 6-site chain.
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Figure 11. Imaginary time correlation function C(k, τ) (a) in the zone center k = 0 and (b) at the zone edge k = π computed
using QMC with different chain lengths (empty symbols) and HEOM (solid line). Insets present the ratio of QMC and HEOM
results for N = 6 (full left-triangles) and the ratio of QMC results for N = 6 and N = 20 (empty right-triangles). The model

parameters assume the following values: kBT/J = 1, ~ω0/J = 0.2, γ/J =
√

4/5.
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In Figs. 12(a) and 12(b) we present comparison between imaginary-time correlation functions in the zone center
[Fig. 12(a)] and at the zone edge [Fig. 12(b)] obtained using the QMC and HEOM methods in the antiadiabatic

regime, kBT/J = 1, ~ω0/J = 3, γ/J =
√

12. The HEOM-method calculation is performed on a N = 6-site chain.
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Figure 12. Imaginary time correlation function C(k, τ) (a) in the zone center k = 0 and (b) at the zone edge k = π computed
using QMC with different chain lengths (empty symbols) and HEOM (solid line). Insets present the ratio of QMC and HEOM
results for N = 6 (full left-triangles) and the ratio of QMC results for N = 6 and N = 20 (empty right-triangles). The model
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